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Abstract

Weakly supervised learning has emerged as a compelling
tool for object detection by reducing the need for strong
supervision during training. However, major challenges
remain: (1) differentiation of object instances can be am-
biguous; (2) detectors tend to focus on discriminative parts
rather than entire objects, (3) without ground truth, object
proposals have to be redundant for high recalls, causing
significant memory consumption. Addressing these chal-
lenges is difficult, as it often requires to eliminate uncertain-
ties and trivial solutions. To target these issues we develop
an instance-aware and context-focused unified framework.
It employs an instance-aware self-training algorithm and
a learnable Concrete DropBlock while devising a memory-
efficient sequential batch back-propagation. Our proposed
method achieves state-of-the-art results on COCO (12.1%
AP, 24.8% APsy), VOC 2007 (54.9% AP), and VOC 2012
(52.1% AP), improving baselines by great margins. In addi-
tion, the proposed method is the first to benchmark ResNet
based models and weakly supervised video object detec-
tion. Code, models, and more details will be made available
at: https://github.com/NVlabs/wetectron.

1. Introduction

Recent works on object detection [18, 36, 35, 27] have
achieved impressive results. However, the training process
often requires strong supervision in terms of precise bound-
ing boxes. Obtaining such annotations at a large scale can
be costly, time-consuming, or even infeasible. This moti-
vates weakly supervised object detection (WSOD) meth-
ods [5, 46, 23] where detectors are trained with weaker
forms of supervision such as image-level category labels.
These works typically formulate WSOD as a multiple in-
stance learning task, treating the set of object proposals in
each image as a bag. The selection of proposals that truly
cover objects is modeled using learnable latent variables.

While alleviating the need for precise annotations, exist-
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Figure 1: Typical WSOD issues: (1) Instance Ambiguity:
missing less salient objects (top) or failing to differentiate
clustered instances (middle); (2) Part Domination: focus-
ing on most discriminative object parts (bottom).

ing weakly supervised object detection methods [5, 46, 51,
41, 61] often face three major challenges due to the under-
determined and ill-posed nature, as demonstrated in Fig. 1:

(1) Instance Ambiguity. This arguably the biggest chal-
lenge which subsumes two common types of issues: (a)
Missing Instances: Less salient objects in the background
with rare poses and smaller scales are often ignored (top
row in Fig. 1). (b) Grouped Instances: Multiple instances
of the same category are grouped into a single bounding box
when spatially adjacent (middle row in Fig. 1). Both issues
are caused by bigger or more salient boxes receiving higher
scores than smaller or less salient ones.

(2) Part Domination. Predictions tend to be dominated by
the most discriminative parts of an object (Fig. 1 bottom).
This issue is particularly pronounced for classes with big
intra-class difference. For example, on classes such as ani-
mals and people, the model often turns into a ‘face detector’
as faces are the most consistent appearance signal.

(3) Memory Consumption. Existing proposal generation
methods [50, 65] often produce dense proposals. With-
out ground-truth localization, maintaining a large number
of proposals is necessary to achieve a reasonable recall rate


https://github.com/NVlabs/wetectron

and good performance. This requires a lot of memory, es-
pecially for video object detection. Due to the large number
of proposals, most memory is consumed in the intermediate
layers after ROI-Pooling.

To address the above three challenges, we propose a uni-
fied weakly supervised learning framework that is instance-
aware and context-focused. The proposed method tack-
les Instance Ambiguity by introducing an advanced self-
training algorithm where instance-level pseudo ground-
truth, in forms of category labels and regression targets are
computed by considering more instance-associative spatial
diversification constraints (Sec. 4.1). The proposed method
also addresses Part Domination by introducing a para-
metric spatial dropout termed ‘Concrete DropBlock.” This
module is learned end-to-end to adversarially maximize the
detection objective, thus encouraging the whole framework
to consider context rather than focusing on the most dis-
criminative parts (Sec. 4.2). Finally, to alleviate the issue
of Memory Consumption, our method adopts a sequential
batch back-propagation algorithm which processes data in
batches at the most memory-heavy stage. This permits the
assess to larger deep models such as ResNet [19] in WSOD,
as well as the exploration of weakly supervised video object
detection (Sec. 4.3).

Tackling the aforementioned three challenges via our
proposed framework leads to state-of-the-art performance
on several popular datasets, including COCO [30], VOC
2007 and 2012 [11]. The effectiveness and robustness of
each proposed module is demonstrated in detailed ablation
studies, and further verified through qualitative results. Fi-
nally, we conduct additional experiments on videos and give
the first benchmark for weakly supervised video object de-
tection on ImageNet VID [8].

2. Related work

Weakly supervised object detection (WSOD). Object
detection is one of the most fundamental problems in com-
puter vision. Recent supervised methods [17, 16, 36, 18,

, 31, 27] have shown great performance in terms of both
accuracy and speed. For WSOD, most methods formu-
late a multiple instance learning problem where input im-
ages contain a bag of instances (object proposals). The
model is trained with a classification loss to select the most
confident positive proposals. Modifications w.r.t. initial-
ization [44, 43], regularization [7, 3, 55], and representa-
tions [7, 4, 28] have been shown to improve results. For in-
stance, Bilen and Vedaldi [5] proposed an end-to-end train-
able architecture for this task. Follow-up works further im-
prove by leveraging spatial relations [406, 45, 23], better op-
timization [62, 22, 2, 51], and multitasking with weakly su-
pervised segmentation [ 13, 38, 12, 41].

Self-training for WSOD. Among the above directions,
self-training [67, 66] has been demonstrated to be semi-
nal. Self-training uses instance-level pseudo labels to aug-
ment training and can be implemented in an offline man-
ner [63, 42, 28, 63]: a WSOD model is first trained us-
ing any of the methods discussed above; then the confi-
dent predictions are used as pseudo-labels to train a final
supervised detector. This iterative knowledge distillation
procedure is beneficial since the additional supervised mod-
els learn form less noisy data and usually have better archi-
tectures for which training is time-consuming. A number
of works [46, 45, 51, 12, 61, 47] studied end-to-end imple-
mentations of self-training: WSOD models compute and
use pseudo labels simultaneously during training, which is
commonly referred to as an online solution. However, these
methods typically only consider the most confident predic-
tions for pseudo-labels. Hence they tend to have overfitting
issues with difficult parts and instances ignored.

Spatial dropout. To address the above issue, an effec-
tive regularization strategy is to drop parts of spatial fea-
ture maps during training. Variants of spatial-dropout have
been widely designed for supervised tasks such as classi-
fication [14], object detection [54], and human joints lo-
calization [49]. Similar approaches have also been ap-
plied in weakly supervised tasks for better localization in
detection [40] and semantic segmentation [56]. However,
these methods are non-parametric and cannot adapt to dif-
ferent datasets in a data-driven manner. As a further im-
provement, Kingma et al. [24] designed variational dropout
where the dropout rates are learned during training. Wang
et al. [54] proposed a parametric but non-differentiable
spatial-dropout trained with REINFORCE [58]. In contrast,
the proposed ‘Concrete DropBlock’ module has a paramet-
ric and differentiable structured novel form.

Memory efficient back-propagation. Memory has al-
ways been a concern since deeper models [19, 39] and
larger batch size [33] often tend to yield better results. One
way to alleviate this concern is to trade computation time for
memory consumption by modifying the back-propagation
(BP) algorithm [37]. A suitable technique [25, 34, 6] is to
not store some intermediate deep net representations dur-
ing forward-propagation. One can recover those by inject-
ing small forward passes during back-propagation. Hence,
the one-stage back-propagation is divided into several step-
wise processes. However, this method cannot be directly
applied to our model where a few intermediate layers con-
sume most of the memory. To address it, we suggest a batch
operation for the memory-heavy intermediate layers.

3. Background

Bilen and Vedaldi [5] are among the first to develop an
end-to-end deep WSOD framework based on the idea of



multiple instance learning. Specifically, given an input im-
age I and the corresponding set of pre-computed [50, 65]
proposals R, an ImageNet [8] pre-trained neural network is
used to produce classification logits f,,(c,7) € R and de-
tection logits g,, (¢, ) € R for every object category ¢ € C
and for every region r € R. The vector w subsumes all
trainable parameters. Two score matrices, Le., s(c|r) of a
region r being classified as category ¢, and s(r|c) of detect-
ing region r for category c are obtained through

exp gw(c,r)

> erexpgule,r)’
M

The final score s,,(c,r) for assigning category c¢ to region

r is computed via an element-wise product: s, (c,r) =

sw(c|r)sw(rlc) € [0,1]. During training, s,(c,r) is

summed for all regions € R to obtain the image evidence

buw(c) =, crSw(c,r). The loss is then computed via:

exp fu(c,7)

—————"—— and su(r|c) =
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where y(c) € {0,1} is the ground truth (GT) class label
indicating image-level existence of category c. For infer-
ence, S (c,r) is used for prediction followed by standard
non-maximum suppression (NMS) and thresholding.

To integrate online self-training, the region score
sw(c,r) is often used as teacher to generate instance-level
pseudo category label §(c,r) € {0,1} for every region
r € R[45, 51, 12, 61, 47]. This is done by treating the
top-scoring region and its highly-overlapped neighbors as
the positive examples for class c. The extra student layer is
then trained for region classification via:

Eimg (w) =—

Z ¢, ) 1og Sy (c|r), 3)

ceC

Lyoi(w) = | R‘
where §,,(c|r) is the output of this layer. During testing, the
student prediction $,, (c|r) will be used rather than s,,(c, ).
We build upon this formulation and develop two additional
novel modules as described subsequently.

4. Approach

Image-level labels are an effective form of supervision
to mine for common patterns across images. Yet inexact
supervision often causes localization ambiguity. To address
the mentioned three challenges caused by this ambiguity,
we develop the instance-aware and context-focused frame-
work outlined in Fig. 2. It contains a novel online self-
training algorithm with ROI regression to reduce instance
ambiguity and better leverage the self-training supervision
(Sec. 4.1). It also reduces part-domination for classes with
large intra-class variance via a novel end-to-end learnable
‘Concrete DropBlock® (Sec. 4.2), and it is more memory
friendly (Sec. 4.3).

>X—> Sw > P—> by

— fw
—> 9w
Cancrete
‘ Base DranIack Neck Ij miIsT
Student
il
#N

E:D—) Sy> cls. prob.
—>fl ~» regress. Student ~N 3N
2 Camiz) "¢

Figure 2: The overall framework. ROI-Pooling and the op-
erations in Eq. (1) are abstracted away for readability.

4.1. Multiple instance self-training (MIST)

With online or offline generated pseudo-labels [45, 42,

], self-training helps to eliminate localization ambigu-
ities, benefiting mainly from two aspects: (1) Pseudo-
labels permit to model proposal-level supervision and inter-
proposal relations; (2) Self-training can be broadly regarded
as a teacher-student distillation process which has been
found helpful to improve the student’s representation. We
take the following dimensions into account when designing
our framework:

Instance-associative: Object detection is often ‘instance-
associative’: highly overlapping proposals should be as-
signed similar labels. Most self-training methods for
WSOD ignore this and instead treat proposals indepen-
dently. Instead, we impose explicit instance-associative
constraints into pseudo box generation.
Representativeness: The score of each proposal in general
is a good proxy for its representativeness. It is not perfect,
especially in the beginning there is a tendency to focus on
object parts. However, the score provides a high recall for
being at least located on correct objects.

Spatial-diversity: Imposing spatial diversity to the selected
pseudo-labels can be a useful self-training inductive bias. It
promotes better coverage on difficult (e.g., rare appearance,
poses, or occluded) objects, and higher recall for multiple
instances (e.g., diverse scales and sizes).

The above constraints and criteria motivate a novel al-
gorithm to generate diverse yet representative pseudo boxes
which are instance-associative. The details are provided in
Alg. 1. Specifically, we first sort all the scores across the
set R for each class c that appears in the category-label. We
then pick the top p percent of the ranked regions to form an
initial candidate pool R’(c). Note that the size of the candi-
date pool R/(c), i.e (¢)] is image-adaptive and content-
dependent by being proportional to | R|. Intuitively, |R| is a
meaningful prior for the overall objectness of an input im-
age. A diverse set of high-scoring non-overlapping regions
are then picked from R'(c) as the pseudo boxes R(c) us-
ing non-maximum suppression. Even though being simple,
this effective algorithm leads to significant performance im-
provements as shown in Sec. 5.




Algorithm 1 Multiple Instance Self-Training

Input: Image I, class label y, proposals R, threshold 7, percentage p
Output: Pseudo boxes Rl

1: Feed I into model; get ROI scores s

2: for ground-truth class c do
R(¢)sorted < SORT(s(c,*)) //sort ROIs by scores of class ¢
4 R/ (c) + top p percent of R(¢)sorted
5: R(c) + 1 /" save first region (top-scoring) r(, € R’
6: fori in {2...|R'(c)|} do // start from the second highest
7
8:

(95]

APPEND(R(c),r!) if ToU(r],7;) < T, ¥ #; € R(c)

return 2(c)

Self-training with regression. Bounding box regression
is another module that plays an important role in super-
vised object detection but is missing in online self-training
methods. To close the gap, we encapsulate a classification
layer and a regression layer into ‘student blocks’ as shown
via blue boxes in Fig. 2. We jointly optimize them using
pseudo-labels R. The predicted bounding boxes from the
regression layer are referred to via p,,(r) for all regions
r € R. For each region r, if it is highly overlapping with a
pseudo-box 7 € R for ground-truth class ¢, we generate the
regression target (1) by using the coordinates of 7 and by
marking the classification label §(c,r) = 1. The complete
region-level loss for training the student block is:

1

Lroi (w) = ﬁ Z )\T(Lsmooth-Ll (f(T‘), Hw (T))
reER 1 R R (4)
- ﬁ Z 9(c,7) log Sw (c|r)),
ceC

where Lgmoom-L1 18 the Smooth-L1 objective used in [16]
and )\, is a scalar per-region weight used in [46].

In practice, conflicts happen when we force the g(-,r)
to be a one-hot vector since the same region can be cho-
sen to be positive for different ground-truth classes, espe-
cially in the early stages of training. Our solution is to use
that class for pseudo-label 7 which has a higher predicted
score s(c,7). In addition, the obtained pseudo-labels and
the proposals are inevitably noisy. Imposing bounding box
regression is able to correctly learn from the noisy labels by
capturing the most consistent patterns among them, and re-
fining the noisy proposal coordinates accordingly. We em-
pirically verify in Sec. 5.3 that bounding box regression im-
proves both robustness and generalization.

Self-ensembling. We follow [46, 45] to stack multiple
student blocks to improve performance. As shown in Fig. 2,
the first pseudo-label R' is generated from the teacher
branch, and then the student block N generates pseudo-
label RY for the next student block N + 1. This technique
is similar to the self-ensembling method [26].

4.2. Concrete DropBlock

Because of the intra-category variation, existing WSOD
methods often mistakenly only detect the discriminative
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—
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Figure 3: Tllustration of the Concrete DropBlock idea. Dis-
criminative parts such as head are zeroed out.

parts of an object rather than its full extent. A natural so-
lution for this issue encourages the network to focus on the
context which can be achieved by dropping the most dis-
criminative parts. Hence, spatial dropout is an intuitive fit.

Naive spatial dropout has limition for detection since the
discriminative parts of objects differ in location and size. A
more structured DropBlock [14] was proposed where spa-
tial points on ROI feature maps are sampled randomly as
blob centers, and the square regions around these centers of
size H x H are then dropped across all channels on the ROI
feature map. Finally, the feature values are re-scaled by a
factor of the area of the whole ROI over the area of the un-
dropped region so that no normalization has to be applied
for inference when no regions are dropped.

DropBlock is a non-parametric regularization technique.
While it is able to improve model robustness and alleviate
part domination, it basically treats regions equally. We con-
sider dropping more frequently at discriminative parts in an
adversarial manner. To this end, we develop the Concrete
DropBlock: a data-driven and parametric variant of Drop-
Block which is learned end-to-end to drop the most relevant
regions as shown in Fig. 3. Given an input image, the fea-
ture maps v, (1) € R¥*H are computed for each region
r € R using the layers up until ROI-Pooling. H is the
ROI-Pooling output dimension. We then feed ), () into a
convolutional residual block to generate a probability map
po(r) € RE*H \yr € R where 6 subsumes the trainable pa-
rameters of this module. Each element of py(r) is regarded
as an independent Bernoulli variable, and this probability
map is transformed via a spatial Gumbel-Softmax [21, 32]
into a hard mask My(r) € {0,1}*H vr € R. This op-
eration is a differentiable approximation of sampling. To
avoid trivial solutions (e.g., everything will be dropped or a
certain area is dropped consistently), we apply a threshold
7 such that pp(r) = min(pe(r), 7). This guarantees that
the computed mask My(r) is sparse. We follow DropBlock
to finally generate the structured mask and normalize the
features. During training, we jointly optimize the original
network parameters w and the residual block parameters 6
with the following minmax objective:

w*,0" = arg n}vinméax;&mg(w,@) + Loi(w,0).  (5)
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By maximizing the original loss w.r.t. the Concrete Drop-
Block parameters, the Concrete DropBlock will learn to
drop the most discriminative parts of the objects, as it is
the easiest way to increase the training loss. This forces the
object detector to also look at the context regions. We found
this strategy to improve performance especially for non-
rigid object categories, which usually have a large intra-
class difference.

4.3. Sequential batch back-propagation

In this section, we discuss how we propose to handle
memory limitations particularly during training, which turn
out to be a major bottleneck preventing previous WSOD
methods from using state-of-the-art deep nets. We introduce
our memory-efficient sequential batch forward and back-
ward computation, tailored for WSOD models.

Vanilla training via back-propagation [37] stores all in-
termediate activations during the forward pass, which are
reused when computing gradients of network parameters.
This method is computationally efficient due to memoiza-
tion, yet memory-demanding for the same reason. More
efficient versions [25, 6] have been proposed, where only
a subset of the intermediate activations are saved during a
forward pass at key layers. The whole model is cut into
smaller sub-networks at these key layers. When comput-
ing gradients for a sub-network, a forward pass is first ap-
plied to obtain the intermediate representations for this sub-
network, starting from the stored activation at the input
key layer of the sub-network. Combined with the gradi-
ents propagated from earlier sub-networks, the gradients of
sub-network weights are computed and gradients are also
propagated to outputs of earlier sub-networks.

This algorithm is designed for extremely deep networks
where the memory cost is roughly evenly distributed along
the layers. However, when these deep nets are adapted
for detection, the activations (after ROI-Pooling) grow from
1 x CHW (image feature) to N x CHW (ROI-features)
where N is in the thousands for weakly supervised models.
Without ground-truth boxes, all these proposals need to be
maintained for high recall and thus good performance (see
the evidence in Appendix F).

To address this training challenge, we propose a sequen-
tial computation in the ‘Neck’ sub-module as depicted in
Fig. 7. During the forward pass, the input image is first
passed through the ‘Base’ and ‘Neck,” with only the activa-
tion A, after the ‘Base’ stored. The output of the ‘Neck’
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blobs represent activation, gradients, and the module that is being updated.

Methods Val-AP  Val-AP5y | Test-AP  Test-AP5g
Fast R-CNN 18.9 38.6 19.3 39.3
Faster R-CNN 21.2 41.5 21.5 42.1
WSDDN [5] - - - 11.5
WCCN [9] - - - 12.3
PCL [45] 8.5 19.4
C-MIDN [12] 9.6 214 - -
WSOD2 [61] 10.8 22.7 - -
Diba et al. [10]+SSD - - - 13.6
OICR [46]+Ens+FRCNN 7.7 174 - -
Ge et al. [13]+FRCNN 8.9 19.3 - -
PCL [45]+Ens.+FRCNN 9.2 19.6 - -
Ours (single-model) 114 24.3 12.1 24.8
Table 1: Single model results (VGG16) on COCO.
Methods Proposal ~ Backbone AP AP35
Faster R-CNN RPN R101-C4 | 272 484
Ours MCG VGGl16 114 24.3
Ours MCG R50-C4 12.6 26.1
Ours MCG R101-C4 13.0 26.3

Table 2: Single model results (ResNet) on COCO 2014 val.

then goes into the ‘Head’ for its first forward and back-
ward pass to update the weights of the ‘Head’ and the gra-
dients GG, as shown in Fig. 7 (a). To update the parameters
of the ‘Neck,” we split the ROI-features into ‘sub-batches’
and run back-propagation on each small sub-batch sequen-
tially. Hence we avoid storing memory-consuming feature
maps and their gradients within the ‘Neck.” An example
of this sequential method is shown in Fig. 7 (b), where we
split 2000 proposals into two sub-batches of 1000 propos-
als each. The gradient G}, is accumulated and used to up-
date the parameters of the ‘Base’ network via regular back-
propagation as illustrated in Fig. 7 (c). For testing, the same
strategy can be applied if either the number of ROIs or the
size of the ‘Neck’ is too large.

S. Experiments

We assess our proposed method subsequently after de-
tailing dataset, evaluation metrics and implementation.

Dataset and evaluation metrics.  We first conduct exper-
iments on COCO [30], which is the most popular dataset
used for supervised object detection but rarely studied in
WSOD. We use the COCO 2014 train/val/test split and re-
port standard COCO metrics including AP (averaged over
IoU thresholds) and AP5q (IoU threshold at 50%).

We then evaluate on both VOC 2007 and 2012 [11],
which are commonly used to assess WSOD performance.
Average Precision (AP) with IoU threshold at 50% is used



to evaluate the accuracy of object detection (Det.) on the
testing data. We also evaluate correct localization accuracy
(CorLoc.), which measures the percentage of training im-
ages of a class for which the most confident predicted box
has at least 50% IoU with at least one ground-truth box.

Implementation details. For a fair comparison, all set-
tings of the VGG16 model are kept identical to [46, 45] ex-
cept those mentioned below. We use 8 GPUs during training
with one input image per device. SGD is used for optimiza-
tion. The default p and IoU in our proposed MIST technique
(Alg. 1) are set to 0.15 and 0.2. For the Concrete DropBlock
7 = 0.3. The ResNet models are identical to [16]. Please
check Appendix A for more details.

5.1. Overall performance

VGG16-COCO. We compare to state-of-the-art WSOD
methods on COCO in Tab. 1. Our single model without
any post-processing outperforms all previous approaches
(w/ bells and whistles) by a great margin. On the private
Test-dev benchmark, we increase APsg by 11.2 (+82.3%).
For the 2014 validation set, we increase AP and AP5q by 0.6
(+5.6%) and 1.6 (+7.1%). Complete results are provided
in Appendix B. Note that compared to supervised models
shown in the first two rows, the performance gap is still rel-
atively big: ours is 56.9% of Faster R-CNN on average. In
addition, our model achieves 12.4 AP and 25.8 AP5( on the
COCO 2017 split as reported in Tab. 4, which is more com-
monly adopted in supervised papers.

ResNet-COCO. ResNet models have never been trained
and evaluated before for WSOD. Nonetheless, they are
the most popular backbone networks for supervised meth-
ods. Part of the reason is the larger memory consumption
of ResNet. Without the training techniques introduced in
Sec. 4.3, it’s impossible to train on a standard GPU using
all proposals. In Tab. 2 we provide the first benchmark for
the COCO dataset using ResNet-50 and ResNet-101. As
expected we observe ResNet models to perform better than
the VGG16 model. Moreover, we note that the difference
between ResNet-50 and ResNet-101 is relatively small.
VGG16-VOC. To fairly compare with most previous
WSOD works, we also evaluate our approach on the VOC
datasets [11]. The comparison to most recent works is re-
ported in Tab. 3. All entries in this table are single model
results. For object detection, our single-model results sur-
pass all previous approaches on the publicly available 2007
test set (+1.3 AP5p) and on the private 2012 test set (+1.9
AP5p). In addition, our single model also performs bet-
ter than all previous methods with bells and whistles (e.g.,
‘+FRCNN’: supervised re-training, ‘+Ens.’: model ensem-
ble). Combining the 2007 and 2012 training set, our model
achieves 58.1% (+2.1 AP5p) on the 2007 test set as reported
in Tab. 4. CorLoc results on the training set and per-class
results are provided in Appendix C. Since VOC is easier

Methods Proposal | 07-APso 12-AP50

Fast R-CNN SS 66.9 65.7

Faster R-CNN RPN 69.9 67.0
WSDDN [5] EB 34.8 -

OICR [46] SS 41.2 37.9

PCL [45] SS 435 40.6

SDCN [29] SS 50.2 43.5

Yang et al. [60] SS 51.5 45.6

C-MIL [51] SS 50.5 46.7

WSOD2 [61] SS 53.6 47.2

Pred Net [2] SS 52.9 48.4

C-MIDN [12] SS 52.6 50.2
C-MIL [51]+FRCNN SS 53.1 -

SDCN [29]+FRCNN SS 53.7 46.7

Pred Net [2]+Ens.+FRCNN SS 53.6 49.5

Yang et al. [60]+Ens.+FRCNN SS 54.5 49.5

C-MIDN [ 2]+FRCNN SS 53.6 50.3

Ours (single) SS 54.9 52.1%

Table 3: Single model (VGG16) detection results on VOC.

Data-Split 07-Trainval 12-Trainval 07-Test
Metrics CorLoc CorLoc Det
Ours-07 68.8 - 54.9
Ours-12 - 70.9 56.3

WSOD2(07+12) [61] 71.4 72.2 56.0
Ours-(07+12) 71.8 72.9 58.1
Metrics 17-Val-AP 17-Val-APsg  17-Val-APr75
Ours-Train2014 114 24.3 9.4
Ours-Train2017 124 25.8 10.5

Table 4: Does more data help?

than COCO, the performance gap to supervised methods is
smaller: ours is 78.1% of Faster R-CNN on average.
Additional training data. The biggest advantage of
WSOD methods is the availability of more data. Therefore,
we are interested in studying whether more training data im-
proves results. We train our model on the VOC 2007 train-
val (5011 images), 2012 trainval (11540 images), and the
combination of both (16555 images) separately, and evalu-
ate on the VOC 2007 test set. As shown in Tab. 4 (top), the
performance increase consistently with the amount of train-
ing data. We verify this on COCO where 2014-train (82783
images) and 2017-train (128287 images) are used for train-
ing, and 2017-val (a.k.a. minival) for testing. Similar results
are observed as shown in Tab. 4 (bottom).

5.2. Qualitative results

Qualitatively, we compare our full model with Tang et
al. [46]. In Fig. 8 we show a set of two pictures side by side,
with baselines on the left and our results on the right. Our
model is able to address instance ambiguity by: (1) detect-
ing previously ignored instances (Fig. 8 left); (2) predicting
tight and precise boxes for multiple instances instead of a
big one (Fig. 8 center). Part domination is also alleviated
since our model focuses on the full extent of objects (Fig. 8
right). Even though our model can greatly increase the score

*http://host.robots.ox.ac.uk:8080/anonymous/DCJ5GA.
html
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Figure 9: More visualization (top: VOC 207,

of larger boxes (see the horse example), the predictions may
still be dominated by parts in some difficult cases.

More qualitative results are shown in Fig. 9 for all three
datasets we used, as well in Appendix D. Our model is
able to detect multiple instances of the same category (cow,
sheep, bird, apple, person) and various objects of different
classes (food, furniture, animal) in relatively complicated
scenes. The COCO dataset is much harder than VOC as the
number of objects and classes is bigger. Our model still tells
apart objects decently well (Fig. 9 bottom row). We also
show some failure cases (Fig. 9 right column) of our model
which can be roughly categorized into three types: (1) rel-
evant parts are predicted as instances of objects (hands and
legs, bike wheels); (2) in extreme examples, part domina-
tion remains (model converges to a face detector); (3) object
co-occurrence confuses the detector when it predicts the sea
as a surfboard or the baseball court as a bat.

5.3. Analysis

How much does each module help? We study the effec-
tiveness of each module in Tab. 5. We first reproduce the
method of Tang et al. [46], achieving similar results (first
two rows). Applying the developed MIST module improves

person-0.92

A horse-0.95 I 5 rse-0.89
% (] X6
\‘\ cow-0.60
¥ e

PEISON-0:94 o005

< +

middle: VOC 2012,b0tt0m: COO) and some failure caes (rigt coumn).

the results significantly. This aligns with our observation
that instance ambiguity is the biggest bottleneck for WSOD.
Our conceptually simple solution also outperforms an im-
proved version [45] (PCL), which is based on a computa-
tionally expensive and carefully-tuned clustering.

The devised Concrete DropBlock further improves the
performance when using MIST as the basis. This mod-
ule surpasses several variants including: (1) (Img Spa.-
Dropout): spatial dropout applied on the image-level fea-
tures; (2) (ROI-Spa.-Dropout): spatial dropout applied on
each ROI where each feature point is treated independently.
This setting is similar to [40, 54]; (3) (DropBlock): the best-
performing DropBlock setting reported in [14].

Has Instance Ambiguity been addressed? To validate
that instance ambiguity is alleviated, we report Average Re-
call (AR) over multiple IoU values (.50 : .05 : .95), given
1, 10, 100 detections per image (AR, AR, AR'Y) and
for small, medium, annd large objects (AR, AR™, AR') on
VOC 2007. We compare the model with and without MIST
in Tab. 6 where our method increases all recall metrics.

Has Part Domination been addressed? In Fig. 10, we
show the 5 categories with the biggest relative performance



Data-Split 07 trainval 07 test | 12 trainval 12 test Methods Backbone  Det. (AP) | Backbone Det. (AP)
Metrics CorLoc Det. CorLoc Det. Supervised VGG16 61.7 [59] R-101 80.5 [59]
Baseline [46]* 60.8 42.5 - - [5] VGG16 24.2 R-101 21.9
+ PCL [45] 62.7 43.5 63.2 40.6 [46] VGG16 34.8 R-101 40.5
+ MIST w/o Reg. 62.9 48.3 65.1 - Ours (MIST only) VGG16 35.7 R-101 44.0
+ MIST 64.9 514 66.7 - Ours VGG16 36.6 R-101 45.7
+ Img Spa.-Dropout 64.3 51.1 65.9 - Ours+flow VGG16 38.3 R-101 46.9
++R§r10i%al'o?kr(ﬁj; ' gg:? 2;3 2;:3 ] Table 7: Video Object Detection Results.
+ Concrete DropBlock 68.8 54.9 70.9 52.1 65 ol
Table 5: Ablation study. (*: our implementation) Lo ¥ - ” 58
<57 —e— Det. < 54 —e— Det.
Metrics | AR! AR AR  ARs  AR™ AR P = Corloc | & Corloc
w/o MIST 18.6 30.6 32,5 8.8 25.8 38.9 E o E o
w/ MIST 20.5 37.8 43.9 15.0 348 517 o k’"\\'

Table 6: Average Recall (AR) (%) comparison.

VOC 2007 Det. VOC 2012 Det.

mmm Relative mAP change

s Relative mAP change

cat dog diningtable bird sofa
Figure 10: Top-5 classes with biggest performance boost
when using Concrete DropBlock. Animal classes are em-
phasized using green color.
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Figure 11: ResNet-101 model memory consumption using
different methods and different number of proposals.

improvements on the VOC 2007 and VOC 2012 dataset
after applying the Concrete DropBlock. The performance
of animal classes including ‘person’ increases most, which
matches our intuition mentioned in Sec. 1: the part domi-
nation issue is most prominent for articulated classes with
rigid and discriminative parts. Across both datasets, three
out of the five top classes are mammals.

Space-time analysis of sequential batch BP?  We also
study the effect of our sequential batch back-propagation.
We fix the input image to be of size 600 x 600, and run two
methods (vanilla back-propagation and ours with sub-batch
size 500 using ResNet-101 for comparison. We change the
number of proposals from 1k to 5k in 1k increments, and re-
port average training iteration time and memory consump-
tion in Fig. 11. We observe: (1) vanilla back-propagation
cannot even afford 2k proposals (average number of ROIs
widely used in [16, 5, 46]) on a standard 16GB GPU, but
ours can easily handle up to 4k boxes; (2) the training pro-
cess is not greatly slowed down, ours takes ~1-2x more

0.10 0.15 0.20 0.30 0.1 0.2 0.3 0.4
loU

Figure 12: VOC 2007 results for different p and IoU.

time than the vanilla version. In practice, input resolution
and total number of proposals can be bigger.

Robustness of MIST?  To assess robustness we test a
baseline model plus this algorithm only using different top-
percentage p and rejection IoU on the VOC 2007 dataset.
Results are shown in Fig. 12. The best result is achieved
with p = 0.15 and IoU = 0.2, which we use for all the
other models and datasets. Importantly, we note that, over-
all, the sensitivity of the final results on the value of p is
small and only slightly larger for IoU.

5.4. Extension: video object detection

We finally generalize our models to video-WSOD, which
hasn’t been explored in the literature. Following supervised
methods, we experiment on the most popular dataset: Im-
ageNet VID [8]. Frame-level category labels are available
during training. Uniformly sampled key-frames are used for
training following [64] and evaluation settings are also kept
identical. Results are reported in Tab. 7. The performance
improvement of the proposed MIST and Concrete Drop-
Block generalize to videos. The memory-efficient sequen-
tial batch back-propagation permits to leverage short-term
motion patterns (i.e., we use optical-flow following [64]) to
further increase the performance. This suggests that videos
are a useful domain where we can obtain more data to im-
prove WSOD. Full details are provided in Appendix G.

6. Conclusion

In this paper, we address three major issues of WSOD.
For each we have proposed a solution and demonstrated its
effectiveness through extensive experiments. We achieve
state-of-the-art results on popular datasets (COCO, VOC 07
and 12) and are the first to benchmark ResNet backbones
and weakly supervised video object detection.
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Change Log
e vl: ArXiv preprint.

e v2: Additional implementation details (Appendix A);
Fixed a minor mistake in Fig. 8; Re-organized Ap-
pendix for better readability.

Appendix

In this section, we provide: (1) additional quantitative re-
sults on COCO; (2) per-class detection (AP) and correct lo-
calization (CorLoc) results on VOC; (3) additional qualita-
tive results; (4) proposal statistics; (5) ablation study on the
amount of proposals; (6) implementation details and video
demo of weakly supervised video object detection. Specif-
ically, we show that our approach produces state-of-the-art
results on COCO (see Tab. 8), outperforms all competing
models on VOC 2007 and 2012 (see Tab. 9 and Tab. 10).
We also provide correct localization results in Tab. 11 and
Tab. 12 for completeness and illustrate the necessity of the
sequential batch back-propagation (introduced in Sec. 4.3
of the main paper) in Tab. 13 and Tab. 14. Comprehensive
visualizations are also provided (Fig. 13 to Fig. 16).

A. Implementation Details

In this section, we provide additional implementation de-
tails for completeness.

A.1. Backbones

VGG-16 We use the standard VGG-16 (without batch
normalization) as backbone. As shown in Fig. 2, the ‘Base’
network contains all the convolutional layers before the
fully-connected layers. Following [46], we remove the
last max-pooling layer, and replace the penultimate max-
pooling layer and the subsequent convolutional layers with
dilated convolutional (dilation=2) layers to increase the fea-
ture map resolution. Standard Rol-pooling is used for com-
puting region-level features. We use the fully-connected
layers of VGG-16 except the last classifier layer as the
‘Neck’. After ‘Neck’, the Rol features are projected to
Sfws Gws Sw, [l using 4 single fully-connected layers.

ResNets We use the ResNet-50/101-C4 variant from
Detectron code repository [15]. Convolutional layers of the
first 4 ResNet stages (C1-C4) are used as ‘Base’ and the last
stage (C5) is used as ‘Neck’. Standard Rol-pooling is used,
and Rol features are projected using linear layers.

A.2. Concrete DropBlock

Concrete DropBlock is implemented as a standard resid-
ual block as in ResNets. It takes as input the Rol features
and output a 1 channel heatmap py(r). On the skip connec-
tion we use 1 x 1 convolution to reduce feature channels. We

then generate the hard mask My(r) using Gumbel-softmax,
and the structured dropout region as in DropBlock [14].

A.3. Student Blocks

Following [46], we stack 3 student blocks. During train-
ing, student block N generates pseudo labels for the next
student block N + 1. During testing, we average the predic-
tions of all student blocks as final results.

A 4. Training

Our code is implemented in PyTorch and all the experi-
ments are conducted on single 8-GPU (NVIDIA V100) ma-
chine. SGD is used for optimization with weight decay
0.0001 and momentum 0.9. The batch size and initial learn-
ing rate is set to 8 and 0.01 on VOC 2007; 16 and 0.02 on
VOC 2012. On both datasets we train the model for 30k
iterations and decay the learning rate by 0.1 at 20k and 26k
steps. On COCO, we train the model for total 130k itera-
tions and decay the learning rate at 90k and 120k steps with
batch size 8 and initial learning rate 0.01. We use Selective-
Search (SS) [50] for VOC datasets and MCG [ 1] for COCO.

A.5. Data Augmentation & Inference

Multi-scale inputs (480, 576, 688, 864, 1000, 1200) are
used during both training and testing following [46, 23] and
the longest image side to set to less than 2000. At test time,
the scores are averaged over all scales and their horizontal
flips.

B. Additional quantitative results on COCO

In Tab. 8, we report quantitative results at different
thresholds and scales on COCO for different models. The
reported metrics include: Average Prevision (AP) over
multiple ToU thresholds (.50 : .05 : .95), at IoU thresh-
old 50% and 75% (AP®°, AP75), and for small, medium
and large objects (AP, AP™, AP'); and Average Recall
(AR) over multiple IoU values (.50 : .05 : .95), given 1,
10 and 100 detections per image (AR', AR'?, AR'%Y); and
for small, medium and large objects (AR®, AR™, ARY). The
results in Tab. 8 show that object size is a significant factor
that influences the detection accuracy. The detector tends to
perform better on large objects rather than smaller ones.

C. Additional results on VOC
C.1. Per-class detection results

In Tab. 9 and Tab. 10, we report the per-class detection
APs on the test sets of both VOC 2007 and 2012. Compared
to other WSOD methods we observe: (1) Our method out-
performs all others on most categories (10 classes on VOC
2007, 14 classes on VOC 2012). (2) The classes that are
hard for our approach (e.g., boat, plant, and chair) are also



Train Test Model | AP AP AP APS AP™ AP' | ARl AR AR AR' AR™ AR
2014 Train 2014 Val VGGl16 114 243 9.4 3.6 12.2 17.6 13.5 22.6 23.9 8.5 254 38.3
2014 Train 2014 Val ~ R50-C4 12.6 26.1 10.8 3.7 13.3 19.9 14.8 23.7 24.7 8.4 25.1 41.8
2014 Train 2014 Val ~ R101-C4 | 13.0 26.3 11.4 3.5 13.7 20.4 15.4 23.4 24.6 8.5 24.6  40.9
2017 Train minival VGG16 12.4 25.8 10.5 3.9 13.8 19.9 14.3 23.3 24.6 9.7 26.6 39.6
2014 Train ~ Test-Dev ~ VGG16 12.1 24.8 10.2 4.1 13.0 18.3 13.5 25.5 29.0 9.6 30.0  46.7

Table 8: Single model detection results on COCO.
Methods Proposal | Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV AP
Fast R-CNN SS 734 770 634 454 446 751 781 79.8 405 737 622 794 781 73.1 642 356 668 672 704 711 | 66.0
Faster R-CNN RPN 700 806 70.1 573 499 782 804 82.0 522 753 672 803 798 75.0 76.3 39.1 683 673 8l1.1 67.6 69.9

Cinbis [7] SS 358 406 81 7.6 31 359 418 168 14 230 49 141 319 419 193 111 276 12.1 310 40.6 | 224

Bilen [4] SS 462 469 241 164 122 422 471 352 78 283 127 215 301 424 7.8 200 268 208 358 296 | 277

Wang [53] SS 488 410 236 121 111 427 409 355 111 366 184 353 348 513 172 174 268 328 351 456 | 309

Li [28] EB 545 474 413 208 177 519 635 461 21.8 571 221 344 505 618 162 299 407 159 553 402 | 395
WSDDN [5] EB 394 501 315 163 126 645 428 426 101 357 249 382 344 556 9.4 147 302 407 547 469 | 348
Teh [48] EB 488 459 374 269 92 507 434 436 106 359 270 386 485 438 24.7 121 29.0 232 488 419 | 345
ContextLocNet [23] SS 57.1 520 315 7.6 115 550 53.1 341 1.7 331 492 420 473  56.6 15.3 128 248 489 444 478 | 363
OICR [46] SS 58.0 624 311 194 130 651 622 284 248 447 306 253 378 655 157 241 417 469 643 626 | 412

Jie [22] ? 522 471 350 267 154 613 660 543 30 53.6 247 436 484 658 6.6 18.8 519 436 536 624 | 417

Diba [9] EB 495 606 386 292 162 708 569 425 109 441 299 422 479 641 13.8 235 459 541 608 545 | 428

PCL [45] SS 544 690 393 192 157 629 644 300 251 525 444 196 393 677 178 229 466 575 586 63.0 | 435

Wei [57] SS 593 575 437 273 135 639 61.7 599 241 469 367 456 399 626 103 236 417 524 587 566 | 443

Tang [47] SS 579 705 378 57 210 66.1 692 594 34 571 573 352 642 686 328 286 508 495 411 300 | 453

Shen [38] SS 520 645 455 267 279 605 478 597 13.0 504 464 563 496  60.7 254 282 500 514 665 297 | 456

Wan [52] SS 556 669 342 29.1 164 688 68.1 430 250 656 453 532 496 68.6 2.0 25.4 525 568 621 57.1 473

SDCN [29] SS 594 715 389 322 215 677 645 689 204 492 476 609 559 674 312 229 450 532 609 644 | 502

C-MIL [51] SS 625 584 495 321 198 705 66.1 634 200 605 529 535 574 68.9 8.4 24.6 51.8 587 66.7 63.6 50.5
Yang [60] SS 57.6 708 507 283 272 725 69.1 650 269 645 474 477 535 669 137 293 560 549 634 652 | 515
C-MIDN [12] SS 533 715 498 261 203 703 699 683 287 653 451 646 580 712 200 275 549 549 694 635 | 526
Arun [2] SS 66.7 695 528 314 247 745 741 673 146 53.0 461 529 699 708 18,5 284 546 607 67.1 604 | 529
WSOD2 [61] SS 651 648 572 392 243 698 662 610 298 646 425 601 712 707 219 281 586 597 522 648 | 53.6
Ours SS 688 777 57.0 277 289 69.1 745 670 321 732 481 452 544 737 350 293 641 538 653 652 | 549
Table 9: Single model per-class detection results using VGG16 on PASCAL VOC 2007.
Methods Proposal | Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV AP
Fast R-CNN SS 803 747 669 469 377 739 68.6 877 417 71.1 511 860 778 79.8 698 321 655 638 764 617 | 657
Faster R-CNN RPN 823 764 710 484 452 721 723 873 422 737 500 868 787 78.4 77.4 345 70.1  57.1  77.1 58.9 67.0
Li [28] EB 629 555 437 149 136 577 524 509 133 454 40 302 556 670 3.8 231 394 55 507 293 | 359
ContextLocNet [23] SS 640 549 364 8.1 126 53.1 405 284 66 353 344 491 426 624 198 152 270 331 330 500 | 353
OICR [46] SS 67.7 612 415 256 222 546 497 254 199 470 181 260 389 677 2.0 226 411 343 379 553 | 379
Jie [22] ? 60.8 542 341 149 131 543 534 586 37 531 83 434 498 692 4.1 175 438 256 550 50.1 | 383

Diba [9] EB - - - - - - - - - - - - - - - - - - - - 37.9

Shen [38] SS - - - - - - - - - - - - - - - - - - - - 39.1

PCL [45] SS 582 660 418 248 272 557 552 285 166 51.0 175 28.6 497 705 7.1 257 475 366 441 592 | 406

Wei [57] SS 674 57.0 377 237 152 569 49.1 648 151 394 193 484 445 672 2.1 233 351 402 46,6 458 | 400

Tang [47] SS - - - - - - - - - - - - - - - - - - - - 40.8

Wan [52] SS - - - - - - - - - - - - - - - - - - - - 424

SDCN [29] SS - - - - - - - - - - - - - - - - - - - - 43.5

Yang [60] SS 647 663 468 285 284 598 586 709 138 550 157 605 639 692 8.7 238 447 527 415 626 | 468

C-MIL [51] SS - - - - - - - - - - - - - - - - - - - - 46.7
WSOD2 [61] SS - - - - - - - - - - - - - - - - - - - - 472
Arun [2] SS - - - - - - - - - - - - - - - - - - - - 48.4
C-MIDN [12] SS 729 689 539 253 297 609 560 783 230 578 257 730 635 737 131 287 515 350 561 575 | 502
Ours' SS 783 739 565 304 374 642 593 603 266 668 250 550 618 793 145 303 615 407 564 635 | 52.1

Table 10: Single model per-class detection results using VGG16 on PASCAL VOC 2012.

challenging for other methods. This suggests that these cat-
egories are essentially hard examples for WSOD methods,
for which a certain amount of strong supervision might still
be needed.

Compared to supervised models (Fast R-CNN, Faster R-
CNN) we note: (1) Our weakly supervised model performs
competitively for classes such as: airplane, bicycle, bus,
car, cow, motorbike, sheep, tv-monitor, where the perfor-
mance gap is usually less than 10% AP. Our model some-
times even outperforms supervised models on categories
that are considered relatively easy with small intra-class dif-
ference (bicycle and motorbike in VOC 2007, motorbike

and tv-monitor in VOC 2012). (2) For classes like boat,
chair, dinning table, person, all WSOD methods are signifi-
cantly worse than supervised methods. This is likely due to
a large intra-class variation. WSOD methods fail to capture
the consistent patterns of these classes.

C.2. Per-class correct localization results

In Tab. 11 and Tab. 12, we report the per-class cor-
rect localization (CorLoc) results on the trainval sets of
both VOC 2007 and VOC 2012. Consistent with prior
work [5, 46, 51, 61, 63, 2] this metric is computed on the
training set. Thus it does not reflect the true performance



Methods Proposal | Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV | CorLoc
Cinbis [7] SS 56.6 583 284 207 68 549 69.1 208 92 505 102 290 580 649 36.7 187 565 132 549 594 38.8
Bilen [4] SS 66.4 593 427 204 213 634 743 596 21.1 582 140 385 495 600 198 392 417 301 502 441 43.7
Wang [53] SS 80.1 639 515 149 210 557 742 435 262 534 163 567 583 69.5 14.1 383 588 472 491 60.9 48.5
Li[28] EB 782 67.1 61.8 381 361 618 788 552 285 688 185 492 641 73.5 214 474 646 223 609 523 52.4
WSDDN [5] EB 65.1 58.8 585 331 398 683 602 59.6 348 645 305 430 568 824 255 41,6 615 559 659 637 53.5
Teh [48] EB 840 646 700 624 258 806 739 715 357 816 465 713 79.1 78.8 56.7 343 698 567 77.0 727 64.6
ContextLocNet [23] SS 833 686 547 234 183 736 741 541 86 651 471 595 670 835 353 399 670 497 635 652 55.1
OICR [46] SS 81.7 804 487 495 328 817 854 40.1 406 795 357 337 605 88.8 21.8 579 763 599 753 814 60.6
Jie [22] ? 727 553 530 278 352 686 819 607 11.6 716 297 543 643 882 222 537 722 526 689 755 56.1
Diba [9] EB 839 728 645 441 40.1 657 825 589 337 725 256 537 674 714 268  49.1 681 279 645 557 56.7
Wei [57] SS 842 741 613 521 321 767 829 666 423 706 395 570 612 834 9.3 546 722 600 650 703 61.0
Wan [52] SS - - - - - - - - - - - - - - - - - - - - 614
PCL [45] SS 796 855 622 479 370 838 834 430 383 80.1 506 309 578 90.8 27.0 582 753 685 757 789 62.7
Tang [47] SS 715 812 553 197 443 802 866 695 10.1 877 684 521 844 916 574 634 773 581 57.0 538 63.8
Li[29] SS 850 839 589 596 431 797 852 779 313 781 506 756 762 884 497 564 732 626 772 199 68.6
Shen [38] SS 829 740 734 471 609 804 775 788 186 700 567 670 645  84.0 470 501 719 576 833 435 64.5
C-MIL [51] SS - - - - - - - - - - - - - - - - - - - - 65.0
Yang [60] SS 80.0 839 742 532 485 827 862 695 393 829 536 614 724 91.2 224 575 835 648 757 711 68.0
WSOD2 [61] SS 87.1 800 748 60.1 366 792 838 706 435 884 460 747 874 908 442 524 814 618 677 799 69.5
Arun [2] SS 886 863 718 534 512 876 89.0 653 332 866 588 659 877 933 309 589 834 678 78.7 802 70.9
Ours SS 875 824 760 580 447 822 875 712 491 815 51.7 533 714 928 382 528 794 61.0 783 76.0 68.8

Table 11: Single model per-class correct localization (CorLoc) results using VGG16 on PASCAL VOC 2007.

Methods Proposal | Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV | CorLoc
Li[29] EB - B - - - B - B B B - - B B - B - B B B 20.1
ContextLocNet [23] SS 783 708 525 347 366 800 587 386 277 712 323 487 762 714 16.0 484 699 475 669 629 54.8
OICR [46] SS - - - - - - - - - - - - - - - - - - - - 62.1
Jie [22] ? 824 681 545 389 359 847 731 648 17.1 783 225 570 708 86.6 18.7 49.7 80.7 453 70.1 71.3 58.8
PCL [45] SS 772 830 62.1 550 493 830 758 377 432 816 468 429 733 90.3 21.4 56.7 844 550 629 825 63.2
Wei [57] SS 79.1 839 646 506 378 874 740 741 404 806 426 536 665 888 18.8 549 804 604 707 793 64.4
Shen [38] SS - - - - - - - - - - - - - - - - - - - - 63.5
Tang [47] SS 855 60.8 625 366 538 821 801 482 149 877 685 607 857 892 629 621 871 540 451 706 64.9
Li[29] SS - - - - - - - - - - - - - - - - - - - - 67.9
C-MIL [51] SS - - - - - - - - - - - - - - - - - - - - 67.4
Yang [60] SS 824 837 724 579 529 865 782 786 40.1 864 379 679 87.6 905 256 539 850 719 662 847 69.5
Arun [2] SS - - - - - - - - - - - - - - - - - - - - 69.5
WSOD2 [61] SS - - - - - - - - - - - - - - - - - - - - 71.9
Ours SS 917 856 717 566 556 88.6 773 634 536 900 516 626 793 942 327 588 905 577 709 857 70.9

Table 12: Single model per-class correct localization (CorLoc) results using VGG16 on PASCAL VOC 2012.

of the detection models and has not been widely adopted by
supervised methods [16, 36, 18]. For WSOD approaches, it
serves as an indicator of the ‘over-fitting’ behavior. Com-
pared with previous state-of-the-art, our method achieves
the third best result on VOC 2007, winning on 2 categories.
We also achieve the second best performance on VOC 2012
and win on 19 categories. We find that: (1) Our model per-
forms well for classes like: airplane, bicycle, bottle, bus,
motorbike, sheep, tv-monitor. This observation aligns very
well with the detection results. (2) The best performing
methods differ across classes, which suggest that methods
could potentially be ensembled for further improvements.

D. Additional qualitative results
D.1. Results on static-image datasets

We show additional results that highlight cases of ‘In-
stance Ambiguity’ and ‘Part Domination’ in Fig. 13 and
Fig. 14, respectively. Following the main paper, we com-
pare our final model to a baseline without the modules pro-
posed in Sec. 4.1 and Sec. 4.2 of the main paper to demon-
strate the effectiveness of these two modules visually. We
show a set of two pictures side by side, the baseline on the

Thttp://host.robots.ox.ac.uk:8080/anonymous/DCI5GA html

left and ours on the right. From the results, we observe: (1)
we have addressed the ‘Missing Instances’ issue and pre-
viously ignored objects are detected with great recall (e.g.,
monitor, sheep, car, and person in Fig. 13); (2) we have ad-
dressed the ‘Grouped Instances’ issue as our model predicts
tight and precise boxes for multiple instances rather than
one big one (e.g., bus, motor, boat, car in Fig. 13); (3) we
have also alleviated the ‘Part Domination’ issue for objects
like dog, cat, sheep, person, horse, and sofa (see Fig. 14).
We also provide additional visualization of our results
on COCO in Fig. 15. We obtain these results by running the
VGG16 based model on the COCO 2014 validation set. Our
model is able to detect different instances of the same cate-
gory (e.g., car, elephant, pizza, cow, umbrella) and various
objects of different classes in relatively complicated scenes,
and the obtained boxes can cover the whole objects pretty
well rather than simply focusing on discriminative parts.

D.2. Results on ImageNet VID dataset

Additional visualizations of our obtained results on Im-
ageNet VID are shown in Fig. 16, where the frames of the
same video are illustrated in the same row. These results
are obtained using the ResNet-101 based model. We ob-
serve: our model is able to handle objects of different poses,
scales, and viewpoints in the videos.



E. Proposal statistics

For consistency with prior literature, we use Selective-
Search (SS) [50] for VOC and MCG [1] for COCO. Both
methods generate around 2K proposals on average as shown
in Tab. 13 but occasionally yield more than 5K on certain
images. Our Sequential batch back-propagation can handle
these cases easily even with ResNet-101, while other meth-
ods quickly run out of memory (Fig. 11 in main paper).

Data voc07-train voc07-val vocO7-test  vocl2-train  vocl2-val  vocl2-test
Avg/Max | 2001/4663 2001/5236 2002/5398 2014/5254 2010/5563 2020/5660
Data cocol4-train  cocold-val  cocol7-train  cocol7-val coco-test

Avg/Max | 1957/5143 1958 /6234  1957/6234 1961/3774 1947/4411

Table 13: Proposals statistics.

F. Need for redundant proposals

In WSOD, since ground-truth boxes are missing, object
proposals have to be redundant for high recall rates, con-
suming significant amounts of memory. To study the need
for a large number of proposals we randomly sample p per-
cent of all proposals. A VGG16 based model on VOC 2007
is used. The results are summarized in Tab. 14. Reducing
the number of proposals even by a small amount signifi-
cantly reduces accuracy: using 95% of the proposals causes
a2.8% AP drop. This suggests that all proposals should be
used for best performance.

p | 60% 80% 90% 95% | 100%
AP | 484 497 50.8 521 | 549

Table 14: Effect of using different number of proposals.

G. Additional details on video experiments

In this section, we provide additional details of Sec. 5.4.
Following supervised methods for video object detec-
tion [64, 59], we experiment on the most popular dataset:
ImageNet VID [8]. Frame-level category labels are avail-
able during training. For each video, we use the uniformly
sampled 15 key-frames from [64] for training. For eval-
uation, we test on the standard validation set, where per-
frame spatial object detection results are evaluated for all
the videos.

The two models ‘Ours’ and ‘Ours (MIST only)’ are two
single-frame baselines with or without Concrete DropBlock
(main paper Sec. 4.2). In addition, the memory-efficient se-
quential batch back-propagation (main paper Sec. 4.3) per-
mits to leverage short-term motion patterns (i.e., optical-
flow) to further increase the performance. For ‘Ours+flow,’
we first use FlowNet2 [20] to compute optical flow between
neighboring frames and the reference frame. The estimated
flow maps are then used to warp the nearby frames’ feature

maps to linearly sum with the reference frame for represen-
tation enhancement. The accumulated features are then fed
into the proposed task head (modules after ‘Base’ in main
paper Fig. 2) for weakly supervised training. This method
combines the flow-guided feature warping method as dis-
cussed in [64] to leverage temporal coherence and the pro-
posed WSOD task head to handle frame-level weak super-
vision. Hence it achieves better results than the aforemen-
tioned two baselines (‘Ours’ and ‘Ours (MIST only)’) using
both VGG16 and ResNet-101 as reported in Tab. 7.
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Figure 13: Examples that highlight cases of ‘Instance Ambiguity’. For every pair: baseline (left) and our model (right).
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Figure 14: Examples that highlight cases of ‘Part Domination’. For every pair: baseline (left) and our model (right).
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Figure 15: Additional visualization results of the proposed method on the COCO2014 validation set.
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Figure 16: Additional visualization results of the proposed method on the ImageNet VID validation set.



