

PreRNN and BandRNN for Video Understanding

Xiaodong Yang with Pavlo Molchanov, Matthijs Van Keirsbilck, Alex Keller, Jan Kautz

Sequential Learning Problems

machine translation

polyphonic music modeling

handwriting modeling

speech recognition

intelligent video analytics

language modeling

RNNs in Sequential Learning

Vanilla RNN (VRNN)

Long Short-Term Memory (LSTM)

Gated Recurrent Unit (GRU)

tanh

RNNs in Video Understanding

Examples

Ng et al. CVPR 2015

Yang et al. ACMMM 2016

Molchanov et al. CVPR 2016

Peng et al. ECCV 2016

Zhou et al. CVPR 2017

Tokmakov et al. ICCV 2017

RNNs in Video Understanding

Distinct Properties of Videos

- Processing unit in a more structured format such as image or snippet
- CNNs serve as backbone networks
- Pre-trained on large-scale image or video datasets
- How to construct RNNs to better leverage the pre-trained CNNs
- Large redundancy and diverse temporal dependencies on different applications
- Such as facial alignment, hand gesture recognition, activity recognition
- Poorly understood which recurrent structure or which gating mechanism best suits

PreRNN+BandRNN for Video Understanding

- PreRNN: make pre-trained CNNs recurrent by transforming pre-trained convolutional or fully connected layers into recurrent layers
- PreRNN-SIH: simplify input-to-hidden states and reduce recurrent parameters
- BandRNN: sparsify hidden-to-hidden weights and further reduce recurrent parameters

PreRNN for Video Understanding

Overview

PreRNN for Video Understanding

Overview

Traditional RNNs

Notation

VRNN

 $\boldsymbol{h}_t = \mathcal{H}(\boldsymbol{W}_{ih} \boldsymbol{y}_t + \boldsymbol{W}_{hh} \boldsymbol{h}_{t-1})$

LSTM

$oldsymbol{i}_t = \mathrm{sigm}(oldsymbol{W}_{ii}oldsymbol{y}_t + oldsymbol{W}_{hi}oldsymbol{h}_{t-1})$	$\boldsymbol{f}_t = \operatorname{sigm}(\boldsymbol{W}_{if} \boldsymbol{y}_t + \boldsymbol{W}_{hf} \boldsymbol{h}_{t-1})$
$oldsymbol{o}_t = \mathrm{sigm}(oldsymbol{W}_{io}oldsymbol{y}_t + oldsymbol{W}_{ho}oldsymbol{h}_{t-1})$	$ ilde{oldsymbol{c}}_t = anh(oldsymbol{W}_{ic}oldsymbol{y}_t + oldsymbol{W}_{hc}oldsymbol{h}_{t-1})$
$oldsymbol{c}_t = oldsymbol{f}_t \odot oldsymbol{c}_{t-1} + oldsymbol{i}_t \odot oldsymbol{ ilde{c}}_t$	$oldsymbol{h}_t = oldsymbol{o}_t \odot anh(oldsymbol{c}_t)$

GRU

$$r_t = \operatorname{sigm}(\boldsymbol{W}_{ir}\boldsymbol{y}_t + \boldsymbol{W}_{hr}\boldsymbol{h}_{t-1}) \qquad \boldsymbol{z}_t = \operatorname{sigm}(\boldsymbol{W}_{iz}\boldsymbol{y}_t + \boldsymbol{W}_{hz}\boldsymbol{h}_{t-1}) \\ \tilde{\boldsymbol{h}}_t = \operatorname{tanh}(\boldsymbol{W}_{ih}\boldsymbol{y}_t + \boldsymbol{W}_{hh}(\boldsymbol{r}_t \odot \boldsymbol{h}_{t-1})) \qquad \boldsymbol{h}_t = (1 - \boldsymbol{z}_t) \odot \boldsymbol{h}_{t-1} + \boldsymbol{z}_t \odot \tilde{\boldsymbol{h}}_t$$

Traditional RNNs

Input-to-Hidden State

VRNN

 $\boldsymbol{h}_t = \mathcal{H}(\boldsymbol{W}_{ih}\boldsymbol{y}_t + \boldsymbol{W}_{hh}\boldsymbol{h}_{t-1})$

LSTM

$oldsymbol{i}_t = \mathrm{sigm}(oldsymbol{W}_{ii}oldsymbol{y}_t + oldsymbol{W}_{hi}oldsymbol{h}_{t-1})$	$oldsymbol{f}_t = \mathrm{sigm}(oldsymbol{W}_{if}oldsymbol{y}_t + oldsymbol{W}_{hf}oldsymbol{h}_{t-1})$
$oldsymbol{o}_t = \mathrm{sigm}(oldsymbol{W}_{io}oldsymbol{y}_t + oldsymbol{W}_{ho}oldsymbol{h}_{t-1})$	$ ilde{oldsymbol{c}}_t = anh(oldsymbol{W}_{ic} oldsymbol{y}_t + oldsymbol{W}_{hc} oldsymbol{h}_{t-1})$
$oldsymbol{c}_t = oldsymbol{f}_t \odot oldsymbol{c}_{t-1} + oldsymbol{i}_t \odot ilde{oldsymbol{c}}_t$	$oldsymbol{h}_t = oldsymbol{o}_t \odot anh(oldsymbol{c}_t)$

GRU

$$r_{t} = \operatorname{sigm}(\boldsymbol{W}_{ir}\boldsymbol{y}_{t} + \boldsymbol{W}_{hr}\boldsymbol{h}_{t-1}) \qquad \boldsymbol{z}_{t} = \operatorname{sigm}(\boldsymbol{W}_{iz}\boldsymbol{y}_{t} + \boldsymbol{W}_{hz}\boldsymbol{h}_{t-1})$$
$$\tilde{\boldsymbol{h}}_{t} = \operatorname{tanh}(\boldsymbol{W}_{ih}\boldsymbol{y}_{t} + \boldsymbol{W}_{hh}(\boldsymbol{r}_{t} \odot \boldsymbol{h}_{t-1})) \qquad \boldsymbol{h}_{t} = (1 - \boldsymbol{z}_{t}) \odot \boldsymbol{h}_{t-1} + \boldsymbol{z}_{t} \odot \tilde{\boldsymbol{h}}_{t}$$

Traditional RNNs

Hidden-to-Hidden State

VRNN

 $\boldsymbol{h}_t = \mathcal{H}(\boldsymbol{W}_{ih}\boldsymbol{y}_t + \boldsymbol{W}_{hh}\boldsymbol{h}_{t-1})$

LSTM

$$\begin{split} & \boldsymbol{i}_t = \operatorname{sigm}(\boldsymbol{W}_{ii}\boldsymbol{y}_t + \boldsymbol{W}_{hi}\boldsymbol{h}_{t-1}) & \boldsymbol{f}_t = \operatorname{sigm}(\boldsymbol{W}_{if}\boldsymbol{y}_t + \boldsymbol{W}_{hf}\boldsymbol{h}_{t-1}) \\ & \boldsymbol{o}_t = \operatorname{sigm}(\boldsymbol{W}_{io}\boldsymbol{y}_t + \boldsymbol{W}_{ho}\boldsymbol{h}_{t-1}) & \boldsymbol{\tilde{c}}_t = \operatorname{tanh}(\boldsymbol{W}_{ic}\boldsymbol{y}_t + \boldsymbol{W}_{hc}\boldsymbol{h}_{t-1}) \\ & \boldsymbol{c}_t = \boldsymbol{f}_t \odot \boldsymbol{c}_{t-1} + \boldsymbol{i}_t \odot \boldsymbol{\tilde{c}}_t & \boldsymbol{h}_t = \boldsymbol{o}_t \odot \operatorname{tanh}(\boldsymbol{c}_t) \end{split}$$

GRU

$$r_t = \operatorname{sigm}(\boldsymbol{W}_{ir}\boldsymbol{y}_t + \boldsymbol{W}_{hr}\boldsymbol{h}_{t-1}) \qquad \boldsymbol{z}_t = \operatorname{sigm}(\boldsymbol{W}_{iz}\boldsymbol{y}_t + \boldsymbol{W}_{hz}\boldsymbol{h}_{t-1})$$
$$\tilde{\boldsymbol{h}}_t = \tanh(\boldsymbol{W}_{ih}\boldsymbol{y}_t + \boldsymbol{W}_{hh}(\boldsymbol{r}_t \odot \boldsymbol{h}_{t-1})) \qquad \boldsymbol{h}_t = (1 - \boldsymbol{z}_t) \odot \boldsymbol{h}_{t-1} + \boldsymbol{z}_t \odot \tilde{\boldsymbol{h}}_t$$

Transformation for VRNN

• A feedforward layer in CNNs

 $oldsymbol{y} = \mathcal{H}(oldsymbol{W}_{xy} \circ oldsymbol{x})$

PreVRNN

$$\boldsymbol{y}_t = \left\{ \begin{array}{ll} \mathcal{H}(\boldsymbol{W}_{xy}\boldsymbol{x}_t + \boldsymbol{W}_{hh}\boldsymbol{y}_{t-1}) & \text{a fc layer} \\ \mathcal{H}(\mathcal{P}(\mathcal{B}(\boldsymbol{W}_{xy} \ast \boldsymbol{x}_t) + \boldsymbol{\gamma}_t) + \boldsymbol{W}_{hh}\boldsymbol{y}_{t-1}) & \text{a conv layer} \end{array} \right.$$

- ${\mathcal B}$ batch normalization
- ${\cal P}$ pooling

Transformation for LSTM

• A feedforward layer in CNNs

 $oldsymbol{y} = \mathcal{H}(oldsymbol{W}_{xy} \circ oldsymbol{x})$

Gate-dependent input-to-hidden state

 $\boldsymbol{u}_t(g) = \begin{cases} \boldsymbol{W}_{ig}^p \boldsymbol{x}_t & \text{a fc layer} \\ \mathcal{P}(\mathcal{B}(\boldsymbol{W}_{ig}^p * \boldsymbol{x}_t) + \boldsymbol{\gamma}_t) & \text{a conv layer} \end{cases}$

PreLSTM

 $i_t = \operatorname{sigm}(\boldsymbol{u}_t(i) + \boldsymbol{W}_{hi}\boldsymbol{h}_{t-1}) \qquad \boldsymbol{f}_t = \operatorname{sigm}(\boldsymbol{u}_t(f) + \boldsymbol{W}_{hf}\boldsymbol{h}_{t-1})$ $\boldsymbol{o}_t = \operatorname{sigm}(\boldsymbol{u}_t(o) + \boldsymbol{W}_{ho}\boldsymbol{h}_{t-1}) \qquad \tilde{\boldsymbol{c}}_t = \operatorname{tanh}(\boldsymbol{u}_t(c) + \boldsymbol{W}_{hc}\boldsymbol{h}_{t-1})$

- $\mathcal{H}^{\scriptscriptstyle +}$ activation function
- ${\mathcal B}$ batch normalization
- \mathcal{P} pooling

Transformation for GRU

A feedforward layer in CNNs

 $oldsymbol{y} = \mathcal{H}(oldsymbol{W}_{xy} \circ oldsymbol{x})$

Gate-dependent input-to-hidden state

 $oldsymbol{u}_t(g) = \left\{egin{array}{cc} oldsymbol{W}_{ig}^p oldsymbol{x}_t & ext{a fc layer} \ \mathcal{P}(\mathcal{B}(oldsymbol{W}_{ig}^p st oldsymbol{x}_t) + oldsymbol{\gamma}_t) & ext{a conv layer} \end{array}
ight.$

PreGRU

$$r_t = \operatorname{sigm}(\boldsymbol{u}_t(r) + \boldsymbol{W}_{hr}\boldsymbol{h}_{t-1}) \qquad \boldsymbol{z}_t = \operatorname{sigm}(\boldsymbol{u}_t(z) + \boldsymbol{W}_{hz}\boldsymbol{h}_{t-1})$$
$$\tilde{\boldsymbol{h}}_t = \operatorname{tanh}(\boldsymbol{u}_t(h) + \boldsymbol{W}_{hh}(\boldsymbol{r}_t \odot \boldsymbol{h}_{t-1}))$$

 $\mathcal{H}^{\scriptscriptstyle +}$ activation function

 ${\mathcal B}$ batch normalization

 ${\cal P}$ pooling

Comparison to Traditional RNN

VRNN => PreVRNN

 $\boldsymbol{h}_t = \mathcal{H}(\boldsymbol{W}_{ih}\boldsymbol{y}_t + \boldsymbol{W}_{hh}\boldsymbol{h}_{t-1})$

LSTM => PreLSTM

$$\begin{split} & \boldsymbol{i}_t = \operatorname{sigm}(\boldsymbol{W}_{ii}\boldsymbol{y}_t + \boldsymbol{W}_{hi}\boldsymbol{h}_{t-1}) \quad \boldsymbol{f}_t = \operatorname{sigm}(\boldsymbol{W}_{if}\boldsymbol{y}_t + \boldsymbol{W}_{hf}\boldsymbol{h}_{t-1}) \\ & \boldsymbol{o}_t = \operatorname{sigm}(\boldsymbol{W}_{io}\boldsymbol{y}_t + \boldsymbol{W}_{ho}\boldsymbol{h}_{t-1}) \quad \boldsymbol{\tilde{c}}_t = \operatorname{tanh}(\boldsymbol{W}_{ic}\boldsymbol{y}_t + \boldsymbol{W}_{hc}\boldsymbol{h}_{t-1}) \end{split}$$

GRU => PreGRU

 $\begin{aligned} \boldsymbol{r}_t &= \operatorname{sigm}(\boldsymbol{W}_{ir}\boldsymbol{y}_t + \boldsymbol{W}_{hr}\boldsymbol{h}_{t-1}) \quad \boldsymbol{z}_t = \operatorname{sigm}(\boldsymbol{W}_{iz}\boldsymbol{y}_t + \boldsymbol{W}_{hz}\boldsymbol{h}_{t-1}) \\ \boldsymbol{\tilde{h}}_t &= \operatorname{tanh}(\boldsymbol{W}_{ih}\boldsymbol{y}_t + \boldsymbol{W}_{hh}(\boldsymbol{r}_t \odot \boldsymbol{h}_{t-1})) \end{aligned}$

 $\boldsymbol{y}_{t} = \begin{cases} \mathcal{H}(\boldsymbol{W}_{xy}\boldsymbol{x}_{t} + \boldsymbol{W}_{hh}\boldsymbol{y}_{t-1}) & \text{a fc layer} \\ \mathcal{H}(\mathcal{P}(\mathcal{B}(\boldsymbol{W}_{xy} * \boldsymbol{x}_{t}) + \boldsymbol{\gamma}_{t}) + \boldsymbol{W}_{hh}\boldsymbol{y}_{t-1}) & \text{a conv layer} \end{cases}$

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

$$\begin{aligned} \boldsymbol{r}_t &= \operatorname{sigm}(\boldsymbol{u}_t(r) + \boldsymbol{W}_{hr}\boldsymbol{h}_{t-1}) \quad \boldsymbol{z}_t = \operatorname{sigm}(\boldsymbol{u}_t(z) + \boldsymbol{W}_{hz}\boldsymbol{h}_{t-1}) \\ \boldsymbol{\tilde{h}}_t &= \operatorname{tanh}(\boldsymbol{u}_t(h) + \boldsymbol{W}_{hh}(\boldsymbol{r}_t \odot \boldsymbol{h}_{t-1})) \end{aligned}$$

- $\mathcal{H}_{ ext{-}}$ activation function
- ${\mathcal B}$ batch normalization
- ${\cal P}$ pooling

PreRNN-SIH

Transformation for LSTM

A feedforward layer in CNNs

 $oldsymbol{y} = \mathcal{H}(oldsymbol{W}_{xy} \circ oldsymbol{x})$

Single input-to-hidden (SIH) state

 $oldsymbol{v}_t = \left\{egin{array}{cc} oldsymbol{W}_{xy}oldsymbol{x}_t & ext{a fc layer} \ \mathcal{P}(\mathcal{B}(oldsymbol{W}_{xy}*oldsymbol{x}_t)+oldsymbol{\gamma}_t) & ext{a conv layer} \end{array}
ight.$

PreLSTM-SIH

$$\begin{split} & \boldsymbol{i}_t = \operatorname{sigm}(\boldsymbol{v}_t + \boldsymbol{W}_{hi}\boldsymbol{h}_{t-1}) & \boldsymbol{f}_t = \operatorname{sigm}(\boldsymbol{v}_t + \boldsymbol{W}_{hf}\boldsymbol{h}_{t-1}) \\ & \boldsymbol{o}_t = \operatorname{sigm}(\boldsymbol{v}_t + \boldsymbol{W}_{ho}\boldsymbol{h}_{t-1}) & \boldsymbol{\tilde{c}}_t = \operatorname{tanh}(\boldsymbol{v}_t + \boldsymbol{W}_{hc}\boldsymbol{h}_{t-1}) \end{split}$$

 $\mathcal{H}^{\scriptscriptstyle +}$ activation function

 ${\mathcal B}$ batch normalization

 ${\cal P}$ pooling

PreRNN-SIH

Transformation for GRU

A feedforward layer in CNNs

 $oldsymbol{y} = \mathcal{H}(oldsymbol{W}_{xy} \circ oldsymbol{x})$

Single input-to-hidden (SIH) state

 $oldsymbol{v}_t = \left\{egin{array}{cc} oldsymbol{W}_{xy}oldsymbol{x}_t & ext{a fc layer} \ \mathcal{P}(\mathcal{B}(oldsymbol{W}_{xy}*oldsymbol{x}_t)+oldsymbol{\gamma}_t) & ext{a conv layer} \end{array}
ight.$

PreGRU-SIH

 $egin{aligned} m{r}_t &= ext{sigm}(m{v}_t + m{W}_{hr}m{h}_{t-1}) & m{z}_t &= ext{sigm}(m{v}_t + m{W}_{hz}m{h}_{t-1}) \ m{ ilde{h}}_t &= ext{tanh}(m{v}_t + m{W}_{hh}(m{r}_t \odot m{h}_{t-1})) \end{aligned}$

- $\mathcal{H}^{\scriptscriptstyle +}$ activation function
- ${\mathcal B}$ batch normalization
- ${\cal P}$ pooling

PreRNN-SIH

Comparison to PreRNN

Gate-dependent => Single) input-to-hidden state

 $\boldsymbol{u}_t(g) = \begin{cases} \boldsymbol{W}_{ig}^p \boldsymbol{x}_t & \text{a fc layer} \\ \mathcal{P}(\mathcal{B}(\boldsymbol{W}_{ig}^p * \boldsymbol{x}_t) + \boldsymbol{\gamma}_t) & \text{a conv layer} \end{cases}$

- PreLSTM => PreLSTM-SIH
 - $i_t = \operatorname{sigm}(\boldsymbol{u}_t(i) + \boldsymbol{W}_{hi}\boldsymbol{h}_{t-1}) \qquad \boldsymbol{f}_t = \operatorname{sigm}(\boldsymbol{u}_t(f) + \boldsymbol{W}_{hf}\boldsymbol{h}_{t-1})$ $\boldsymbol{o}_t = \operatorname{sigm}(\boldsymbol{u}_t(o) + \boldsymbol{W}_{ho}\boldsymbol{h}_{t-1}) \qquad \tilde{\boldsymbol{c}}_t = \operatorname{tanh}(\boldsymbol{u}_t(c) + \boldsymbol{W}_{hc}\boldsymbol{h}_{t-1})$
- PreGRU => PreGRU-SIH $r_t = \operatorname{sigm}(u_t(r) + W_{hr}h_{t-1})$ $z_t = \operatorname{sigm}(u_t(z) + W_{hz}h_{t-1})$ $\tilde{h}_t = \operatorname{tanh}(u_t(h) + W_{hh}(r_t \odot h_{t-1}))$

$$oldsymbol{v}_t = \left\{egin{array}{cc} oldsymbol{W}_{xy}oldsymbol{x}_t & ext{a fc layer} \ \mathcal{P}(\mathcal{B}(oldsymbol{W}_{xy}*oldsymbol{x}_t)+oldsymbol{\gamma}_t) & ext{a conv layer} \end{array}
ight.$$

$$egin{aligned} m{i}_t &= ext{sigm}(m{v}_t + m{W}_{hi}m{h}_{t-1}) & m{f}_t &= ext{sigm}(m{v}_t + m{W}_{hf}m{h}_{t-1}) \ m{o}_t &= ext{sigm}(m{v}_t + m{W}_{ho}m{h}_{t-1}) & m{ ilde{c}}_t &= ext{tanh}(m{v}_t + m{W}_{hc}m{h}_{t-1}) \end{aligned}$$

$$egin{aligned} m{r}_t &= ext{sigm}(m{v}_t + m{W}_{hr}m{h}_{t-1}) & m{z}_t &= ext{sigm}(m{v}_t + m{W}_{hz}m{h}_{t-1}) \ m{ ilde{m{h}}}_t &= ext{tanh}(m{v}_t + m{W}_{hh}(m{r}_t \odot m{h}_{t-1})) \end{aligned}$$

- $\mathcal{H}_{arepsilon}$ activation function
- ${\mathcal B}$ batch normalization
- ${\cal P}$ pooling

Applications Diversity

Applications	Sequences	CNNs	Datasets	Objectives
Sequential Face Alignment	Color	VGG16 [38]	300VW [7]	ℓ_2
Hand Gesture Recognition	Color & Depth	C3D [43]	NVGesture [28]	CTC [15]
Action Recognition	Color & Flow	ResNet50 [20]	UCF101 [39]	NLL

Summary of the diverse experiments in terms of applications, video types, pre-trained backbone CNNs, benchmark datasets, and objective functions.

Face Alignment

Applications	Sequences	CNNs	Datasets	Objectives
Sequential Face Alignment	Color	VGG16 [<u>38</u>]	300VW [7]	ℓ_2
Hand Gesture Recognition	Color & Depth	C3D [<u>43</u>]	NVGesture [28]	CTC [<u>15</u>]
Action Recognition	Color & Flow	ResNet50 [20]	UCF101 [<u>39</u>]	NLL

Summary of the diverse experiments in terms of applications, video types, pre-trained backbone CNNs, benchmark datasets, and objective functions.

Face Alignment

Examples of detected facial landmarks on the 300VW dataset by traditional GRU (left) and PreGRU (right).

Blue dots: ground truth Red dots: detected landmarks Green bar: PreGRU with larger error Yellow bar: traditional GRU with larger error Bar length: error scale

Face Alignment

	Traditional			PreRNN			PreRNN-SIH		
	1 layer	2 layers	fc6	fc7	fc6/7	fc6	fc7	fc6/7	
VRNN	0.704	0.716	0.757	0.742	0.763	-	-	-	
LSTM	0.718	0.671	0.769	0.754	0.746	0.743	0.746	0.719	
GRU	0.722	0.698	0.772	0.755	0.761	0.768	0.748	0.762	

AUC of traditional RNNs and our proposed PreRNN(-SIH) on 300VW.

Ratios of reduced recurrent parameters by PreRNN-SIH.

Comparison of our approach with the state-of-the-art methods.

Hand Gesture Recognition

Applications	Sequences	CNNs	Datasets	Objectives
Sequential Face Alignment	Color	VGG16 [<u>38</u>]	300VW [7]	ℓ_2
Hand Gesture Recognition	Color & Depth	C3D [43]	NVGesture [28]	CTC [15]
Action Recognition	Color & Flow	ResNet50 [20]	UCF101 [<u>39</u>]	NLL

Summary of the diverse experiments in terms of applications, video types, pre-trained backbone CNNs, benchmark datasets, and objective functions.

Hand Gesture Recognition

PreVRNN based hand gesture recognition system for in-car media player control.

Hand Gesture Recognition

	Traditional			PreRNN			PreRNN-SIH		
	1 layer	2 layers	fc6	fc7	fc6/7	fc6	fc7	fc6/7	
VRNN	83.3%	80.8%	81.9%	82.9%	84.4%	-	-	-	
LSTM	81.3%	81.3%	81.7%	81.9%	82.7%	80.0%	81.7%	84.2%	
GRU	81.9%	82.5%	82.1%	81.0%	83.1%	84.4%	79.8%	83.8%	

Classification accuracy of traditional RNNs and our proposed PreRNN(-SIH) on NVGesture.

Method	Modality	Accuracy
C3D [43]	Color	69.3%
R3DCNN [28]	Color	74.1%
Ours	Color	76.5 %
SNV [49]	Depth	70.7%
C3D [43]	Depth	78.8%
R3DCNN [28]	Depth	80.3%
Ours	Depth	84.4 %
Two-Stream [37]	Color + Flow	65.6%
iDT [45]	Color + Flow	73.4%
R3DCNN [28]	Five Modalities	83.8%
Baseline (w/o RNN)	Color + Depth	81.0%
Ours	Color + Depth	85.0 %

Comparison of our approach with the state-of-the-art methods.

Action Recognition

Applications	Sequences	CNNs	Datasets	Objectives
Sequential Face Alignment	Color	VGG16 [<u>38</u>]	300VW [7]	ℓ_2
Hand Gesture Recognition	Color & Depth	C3D [43]	NVGesture [28]	CTC [15]
Action Recognition	Color & Flow	ResNet50 [20]	UCF101 [39]	NLL

Summary of the diverse experiments in terms of applications, video types, pre-trained backbone CNNs, benchmark datasets, and objective functions.

Action Recognition

Examples of misclassified videos by traditional GRU, but corrected by PreGRU.

Action Recognition

	Traditional				PreRNN		P	PreRNN-SIH		
	Color	Flow	Comb	Color	Flow	Comb	Color	Flow	Comb	
VRNN	82.9%	83.6%	91.6%	83.8%	84.6%	92.7%	-	-	-	
LSTM	83.4%	84.0%	92.5%	85.3%	84.8%	93.2%	85.0%	84.6%	93.5%	
GRU	83.6%	83.8%	92.2%	84.3%	85.2%	93.7 %	84.9%	84.7%	93.3%	

Classification accuracy of traditional RNNs and our proposed PreRNN(-SIH) on UCF101.

-14%

Ratios of reduced recurrent parameters by PreRNN-SIH.

Method	Accuracy
Dynamic Image Nets [3]	76.9%
Long-Term Recurrent ConvNet [10]	82.9%
Composite LSTM Model [40]	84.3%
C3D [43]	85.2%
iDT [45]	86.4%
Two-Stream ConvNet [37]	88.0%
Multilayer Multimodal Fusion [48]	91.6%
Long-Term ConvNets [44]	91.7%
Two-Stream Fusion [14]	92.5%
Spatiotemporal ResNets [12]	93.4%
Inflated 3D ConvNets [4]	93.4%
Temporal Segment Networks [46]	94.2 %
Spatiotemporal Multiplier Nets [13]	94.2%
Baseline (w/o RNN)	91.7%
Ours	94.3 %

Comparison of our approach with the state-of-the-art methods.

Overview

BandRNN

Sparsify Hidden-to-Hidden Weight Matrix

Action Recognition

PreVRNN	Sparsity (H2H)		PreLSTM	PreLSTM-SIH	Sparsity (H2H)		PreGRU	PreGRU-SIH	Sparsity (H2H)
91.9%	diag		92.7%	92.6%	diag		92.8%	92.5%	diag
92.3%	1%		92.8%	93.0%	1%		92.8%	92.5%	1%
92.0%	5%		92.9%	92.7%	5%		92.8%	92.3%	5%
92.2%	10%		93.2%	92.9%	10%		92.9%	92.6%	10%
92.7%	full		93.2%	93.5%	full		93.7%	93.3%	full
Traditional	Traditional VRNN: 91.6% Traditional LSTM: 92.5%			Traditional GRU: 92.2%		: 92.2%			
Baseline (w	//o RNN): 91.2%		Baseline (w/o RNN): 91.2%			Baseline (w/o RNN): 91.2%		N): 91.2%	

Classification accuracy of PreRNN(-SIH) with various sparsity of hidden-to-hidden weight matrices on UCF101.

Action Recognition

PreLSTM	PreLSTM-SIH	Sparsity (H2H)	
92.7%	92.6%	diag	
92.8%	93.0%	1%	
92.9%	92.7%	5%	
93.2%	92.9%	10%	
93.2%	93.5%	full	
Traditional LSTM: 92.5%			
Baseline (w/o RNN): 91.2%			

Classification accuracy of PreLSTM(-SIH) with various sparsity of hidden-to-hidden weight matrices on UCF101.

PreLSTM

Ratios (%) of recurrent parameters of PreLSTM(-SIH) to traditional LSTM with various sparsity of hidden-to-hidden weight matrices.

Action Recognition

PreLSTM	PreLSTM-SIH	Sparsity (H2H)	
92.7%	92.6%	diag	
92.8%	93.0%	1%	
92.9%	92.7%	5%	
93.2%	92.9%	10%	
93.2%	93.5%	full	
Traditional LSTM: 92.5%			
Baseline (w/o RNN): 91.2%			

Classification accuracy of PreLSTM(-SIH) with various sparsity of hidden-to-hidden weight matrices on UCF101.

PreLSTM PreLSTM-SIH

Ratios (%) of recurrent parameters of PreLSTM(-SIH) to traditional LSTM with various sparsity of hidden-to-hidden weight matrices.

PreRNN+BandRNN for Video Understanding

- PreRNN: better leverage strong generalization of pre-trained CNNs
- PreRNN-SIH: simplify input-to-hidden states and largely reduce input-to-hidden recurrent parameters
- BandRNN: sparsify hidden-to-hidden weight matrices and further significantly reduce hidden-to-hidden recurrent parameters
- PreRNN+BandRNN: simple and effective, produce better or comparable results to traditional RNNs, while only introduce super lightweight recurrent parameters

Majority of this work can be found at:

X. Yang, P. Molchanov, J. Kautz. Making Convolutional Networks Recurrent for Visual Sequence Learning. CVPR, 2018.

Convergence

PreRNN Converges Faster

Comparison of the training processes between the traditional RNN and our proposed PreRNN(-SIH) for VRNN (left) and LSTM (right).

Understanding RNNs

Internal Mechanism of Traditional RNN and PreRNN

Examples of the gate activation distribution for LSTM and GRU. Top: saturation plots of the fraction of times that each gate unit is left or right saturated for LSTM. Bottom: activation histograms over 10 bins for GRU.