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Abstract—Event detection targets at recognizing and localizing
specified spatio-temporal patterns in videos. Most research of
human activity recognition in the past decades experimented on
relatively clean scenes with limited actors performing explicit
actions. Recently, more efforts have been paid to the real-world
surveillance videos in which the human activity recognition
is more challenging due to large variations caused by factors
such as scaling, resolution, viewpoint, cluttered background, and
crowdedness, etc. In this paper, we systematically evaluate 7
different types of low-level spatio-temporal features in the context
of surveillance event detection using a uniform experimental
setup. Fisher Vector is employed to aggregate low-level features
as the representation of each video clip. A set of Random
Forests is then learnt as the classification models. To bridge the
research efforts and real-world applications, we utilize the NIST
TRECVID Surveillance Event Detection (SED) as our testbed
in which 7 events are pre-defined involving different levels of
human activity analysis. Strengths and limitations for each low-
level feature type are analyzed and discussed.

Index Terms—Surveillance event detection, Low-level feature
evaluation, Fisher Vector, Random Forests, Human activity recog-
nition.

I. INTRODUCTION

RECOGNIZING human activities has been widely applied
to a number of practical applications including surveil-

lance event detection. Event detection aims at recognizing
and localizing specified spatio-temporal patterns in videos [1].
Automatic event detection of video surveillance has a variety
of security applications for both private and public areas, e.g.,
house, airport, bank, supermarket, etc. Along with the rapid
deployment of huge amounts of surveillance cameras, security
agencies are seeking intelligent solutions to assist or replace
human operators for the conventional surveillance systems
which heavily demand human monitors. In the past decades,
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most research of human activity recognition experimented on
relatively simple and clean scenes where only a limited number
of actors performing explicit actions [2], [3], [4], [5]. This
constrained scenario however rarely holds in the real-world
surveillance videos. It is of great challenge to recognize human
activities from surveillance videos captured in the wild due to
large variations caused by different factors such as scaling,
resolution, viewpoint, occlusion, cluttered background, and
imbalanced data. Fig. 1 presents several examples captured
by surveillance cameras. As observed, it is even a challenging
task for human experts to recognize certain human activities.

In the proposed evaluation framework, we first extract low-
level features, and code these features over a visual dictionary,
then pool the codes in some pre-defined space-time cells. Most
recent activity recognition approaches hinge on the bag-of-
visual-words (BOV) representation which consists of com-
puting and aggregating statistics from local spatio-temporal
features [6]. In the basic framework of BOV, K-means is
used to learn a visual dictionary and hard-assignment is
employed to quantize low-level features. A set of more robust
coding methods is then proposed to reduce information loss
by relaxing the restrictive cardinality constraint in encoding
low-level features, e.g., soft-assignment [7], sparse coding
[8], and locality-constrained linear coding [9]. A specific
coding method can be coupled with either average-pooling or
max-pooling. Recently, several more effective coding methods
have emerged to encode low-level features by recording the
differences between features and visual words, e.g., Fisher
Vector [10], vector of locally aggregated descriptors [11], and
super sparse coding vector [4]. These approaches usually retain
higher order statistics compared to the traditional coding meth-
ods. Extensive evaluations have shown that these approaches
could achieve noticeably better recognition results in both
image and video classification tasks [10], [4]. A significant
progress has also been made in the development of low-level
spatio-temporal features. A number of papers have flourished
and reported the state-of-the-art results on various benchmarks.
While several evaluations of low-level features on action
recognition [12] and multimedia event classification [13] have
been reported in the past, the efficacy of each individual low-
level feature has not been systematically evaluated on the
complex and unconstrained surveillance videos. We attempt to
fill the gap of missing systematic low-level feature evaluation
over real-world surveillance videos in this paper.

It is well known that the performance of a visual recognition
system strongly depends on all stages of the pipeline. In this
paper, we aim to evaluate and compare the low-level spatio-
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Fig. 1: Samples of the 7 events in surveillance videos from
NIST TRECVID SED task. Persons involved in the identified
events are circled in red. Due to the cluttered background,
limited resolution, and other factors presented, it is extremely
challenging to recognize certain human activities even for
human experts.

temporal features in the context of surveillance event detection
using a common experimental setup. In particular, we consider
7 types of low-level spatio-temporal features: the Space-Time
Interest Points (STIP) [14], Motion Scale-invariant Feature
Transform (MoSIFT) [15], Action Histograms of Oriented
Gradients (Action-HOG) [16], as well as Trajectory (TRA),

Histograms of Oriented Gradients (HOG), Histograms of
Optical Flow (HOF), and Motion Boundary Histogram (MBH)
from dense trajectories [17], [18]1. Fisher Vector is employed
to aggregate the low-level features as the representation of
each video clip. In order to handle the imbalanced nature
of the surveillance data (i.e., negative samples � positive
samples), we propose the ensemble of Random Forests [19]
as the learning model, which partitions the training data into
balanced chunks and learns a Random Forest within each
data portion. Detection performance for each low-level feature
type at a variety of pre-defined events is evaluated utilizing a
common testing dataset measured in several different metrics.

To bridge the research efforts and real-world applications,
we utilize the NIST TRECVID [20], [21] Surveillance Event
Detection (SED) as our testbed. SED provides a corpus of
144-hour videos under 5 cameras views from the London
Gatwick International Airport. In this dataset, 99-hour videos
are provided with annotations of temporal spans and event
labels and are divided into the development set and the
testing set. Our experiments are based on all the 7 pre-defined
events, i.e., PersonRuns, CellToEar, ObjectPut, PeopleMeet,
PeopleSplitUp, Embrace, and Pointing. Within the testbed, we
perform the evaluation over all the pre-defined events, i.e.,
to determine the temporal localization of each specific event,
which is meaningful to the applicability to surveillance video
indexing.

The remainder of this paper is organized as follows. Section
II introduces the 7 types of low-level features evaluated in
this paper. Section III presents the event detection system uti-
lized to evaluate the detection performance of each low-level
feature. Experimental results and discussions are presented in
Section IV. Section V summarizes our observations including
the future work.

II. LOW-LEVEL FEATURES

In this paper, we extract and evaluate 7 most widely used
local spatio-temporal features, namely, four types of dense
trajectory based features [17], [18], including TRA, HOG,
HOF, and MBH, and three other features which are STIP [14],
MoSIFT [15], and Action-HOG [16]. To evaluate the perfor-
mance of each low-level feature type, we first extract them
from the raw video data respectively. Recent work on action
recognition demonstrated that local spatio-temporal features
are more effective and robust to image degradations, occlu-
sion, illumination inconsistency, and cluttered background as
compared with global features such as shape descriptors and
contour representations, due to the capability of encoding both
the appearance and the motion information of the objects in
the continuous frames. A spatio-temporal feature extraction
generally includes two phases: detection (i.e., a feature detec-
tor localizes interest points in a spatio-temporal space) and
description (i.e., a feature descriptor computes representations
of the detected points).

1In later context, for ease of simplicity, we use HOG, HOF, and MBH to
represent dense trajectory based HOG, HOF, and MBH.
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A. Dense Trajectory based Features

Dense trajectory based features were originally introduced
by Wang et al. in [18] as an alternative to interest point based
detectors. Due to different characteristics of the 2D spatial
domain and the 1D time domain, it is more intuitive to track
2D interest points through time rather than to directly detect
3D interest points in videos. To better combine the power of
the conventional 3D volume representations and the dense
trajectory feature, extra descriptors are computed within a
space-time volume around the trajectory, as described in the
subsections below.

1) TRA: The trajectory feature is obtained by tracking
densely sampled points using optical flow fields. Inspired
by the improvements in the dense sampling based image
classification approaches over the sparse sampling based ones,
it was proposed in [18] to adopt densely sampled trajectories
that are extracted in multiple spatial scales. Feature points are
sampled on a grid spaced by W pixels both horizontally and
vertically, and tracked in each scale separately. Each point at
one frame is tracked to the next frame through median filtering
in a dense optical flow, which is more robust than commonly
used bilinear interpolation especially when tracked points are
near motion boundaries. Once the dense optical flow field
is computed, points can be tracked densely enough without
additional cost. Points of subsequent frames are concatenated
to form a trajectory. The shape of a trajectory with length
L encodes local motion patterns, and could be described as
a sequence S = (∆Pt, ...,∆Pt+L−1) of displacement vector
∆Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − yt). The generated
vector is further normalized by the sum of magnitude and
referred as the trajectory descriptor.

In the evaluation, we set W = 5 and adopt 8 spatial scales

spaced by a factor of
1√
2

, which is the same as in [18].

Moreover, since trajectories tend to drift from their initial
locations during tracking, we limit the length of a trajectory
to a length of L = 15 to avoid drifting as suggested in [18].
In our experimental setting, the dimension of each trajectory
feature is set to 30.

2) HOG: Among the existing descriptors for action recog-
nition, HOG [6] has shown good and stable performance in
representing local appearance information. The distribution
of local intensity gradients or edge directions is effective in
describing object appearance and shape information.

We derive HOG along the dense trajectories, and quantize
the whole range of orientations [0, 360◦) into 8 bins. The
descriptor is further normalized with the L2 norm, and the
size of the space-time volume around the trajectory is N ×N
pixels and endures L frames. To embed structure information
in the representation, the volume is subdivided into a spatio-
temporal grid of size nσ × nσ × nτ . The parameters in our
experiments are N = 32, L = 15, nσ = 2, nτ = 3. Therefore,
in our evaluation the final feature dimension of each interest
point is 96.

3) HOF: Compared with HOG, HOF descriptor [6] tends
to capture the local motion information instead of the static
appearance information. Optical flow [22] measures the pattern
of apparent motion of image objects between two consecutive

frames caused by the movements of the objects or the camera.
It is a 2D vector field in which each entry is a displacement
vector representing the movement of points between the two
consecutive frames. In the HOF descriptor generation, the
dense optical flow that has already been computed to extract
dense trajectories, is reused to boost the efficiency of the
computation process.

In our evaluation, the orientations of HOF are quantized into
8 bins similar to HOG, but with an additional zero bin (i.e.,
9 bins in total). The descriptor normalization is also based on
the L2 norm. Routine of the volume subdivision is the same
as in HOG and the feature dimension is 108.

4) MBH: Since optical flow computes the absolute motion
and will inevitably introduce the camera motion, Dalal et
al. [23] proposed the MBH descriptor for human detection
where derivatives are computed separately for the horizontal
and vertical components of the optical flow. Hereby MBH is
considered another top-performance descriptor besides HOG
and HOF to further describe the dense trajectories. Since it
also represents the gradient of the optical flow, the constant
motion information mainly caused by the camera motion is
suppressed and only the clue for variations in the flow field
(i.e., motion boundaries) is kept for further analysis.

The MBH descriptor separates the optical flow field Iω =
(Ix, Iy) into its x and y components. Spatial derivatives are
computed for each of them and the orientation information
is quantized into histograms, similarly to the HOF descriptor.
In the experiments, the 8-bin histogram is derived for each
component, and then is normalized separately with L2 norm.
The final feature dimension for each interest point is 192.

B. STIP
The STIP detector was proposed by Laptev and Lindeberg in

[14], [24], which extends the Harris detector [25] in the space-
time domain. Firstly the points with large gradient magnitude
are extracted by the 3D Harris corner detector in both the
spatial and the temporal domains, and afterwards, a spatio-
temporal second-moment matrix is computed at each interest
point. The descriptors used to describe STIP interest points
are HOG/HOF descriptors. To characterize the local motion
and appearance information, histograms of spatial gradient
and optical flow accumulated in space-time neighborhoods
of detected interest points are computed by the detector in
STIP volumes. The features are extracted by searching interest
points with significant variations in both spatial and temporal
domains.

The descriptor size of HOG/HOF is defined by ∆x(σ) =
∆y(σ) = 18σ and ∆t(τ) = 8τ , with scales fixed as σ2 = 4
and τ2 = 2. Each STIP volume is subdivided into 3 × 3 × 2
cuboids as suggested in [6]. A 4-bin histogram of gradient
orientation and a 5-bin histogram of optical flow are further
generated on each cuboid, and concatenated as the final
HOG/HOF descriptor after normalization. The final feature
dimension for each interest point is 3× 3× 2× 9 = 162.

C. Action-HOG
It is quite restrictive to assume the existence of large

intensity changes in both spatial and temporal domains since
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the detected points are usually very sparse and insufficient
in the action recognition tasks. Therefore, instead of utilizing
the spatio-temporal volumes, in Action-HOG [16], spatial and
temporal information are extracted separately, i.e., first apply
the Speed Up Robust Features (SURF) detector and then
followed by the Motion History Image (MHI) filtering and
HOG. The SURF detector [26] is firstly exploited to extract
visually distinctive points in the spatial domain. Compared
with the 2D Harris detector, SURF detector performs better
by generating additional scale information while maintaining
computational efficiency. The dominant orientations of interest
points which serve as motion directions also provide important
clues for action recognition. These extracted SURF points
are then filtered by MHI [16] generated by differentiating
adjacent frames, i.e., only SURF points with the most recent
motions or large MHI intensities are selected as the interest
points. In particular, MHI is a real-time motion template
generated by stacking consecutive frame differences [27]. The
brighter pixels on MHI correspond to the more recent motions.
MHI gradients also reflect directional information of human
actions. Therefore, the pixels with relatively larger intensities
in MHI represent moving objects with more recent motion. To
characterize the shape and motion information, HOG features
are then computed for each interest point on both the image
channel and the MHI channel. In addition, due to the specific
camera views and scenes, occurrence of the specific events is
usually biased to a certain range of locations. We further take
advantage of this spatial prior to eliminate a large amount of
interest points from the background.

In the experimental settings, each support region associated
with an interest point on the image, MHI, and optical flow
channels is subdivided into 3 × 3 grids. Image and MHI
gradients are evenly sampled in 8 orientation bins. Therefore,
each SURF/MHI-HOG point generates a feature vector of
3× (3× 3× 8) = 216 dimensions.

D. MoSIFT

Scale-invariant Feature Transform (SIFT) feature was orig-
inally proposed by Lowe in [28] as a local image feature
based on the appearance of the image at particular interest
points. SIFT features are invariant to image scale and rota-
tion. Moreover, they are robust to noise, blur, illumination
variations, and minor changes in viewpoint. It performs well
in static single image related tasks but still suffers from
lacking of continuous inter-related temporal information. By
contrast, the MoSIFT feature [15] introduces the multiple-
scale optical flows which are calculated according to the SIFT
scales, which effectively extends the SIFT descriptor with
extra temporal information. MoSIFT is able to encode both
the appearance and motion information of the objects and
scenes in a video. The local appearance part is the same as the
original SIFT. The local motion is computed through an optical
flow pyramid constructed over two Gaussian pyramids. Optical
flow is computed at multiple scales in concert with the SIFT
scales. As long as a candidate SIFT interest point contains a
small amount of movement, the algorithm will extract it as a
MoSIFT interest point.

In the evaluation, to compensate the sheer volume of video
data in the dataset and improve the processing efficiency, we
resample all the videos to a standard size of 320 × 240 for
dynamic feature extraction. The aggregated grids generated
are further concatenated to form a 256-dimension vector via
the public implementation [29] with default parameter settings.

III. EVENT DETECTION EVALUATION SYSTEM

In this section, we present the event detection system
designed for the evaluation of the 7 low-level feature types
introduced in Section II over all the 7 pre-defined events in
TRECVID SED (examples shown in Fig. 1), i.e., PersonRuns,
CellToEar, ObjectPut, PeopleMeet, PeopleSplitUp, Embrace,
and Pointing.

A. System Overview

As illustrated in Fig. 2, the evaluation system consists of
three main components: (1) low-level feature extraction, (2)
video (sliding window) representation based on Fisher Vector,
and (3) event learning and prediction by Random Forests.

In the event detection system, we evaluate the 7 low-level
feature types as mentioned in Section II which are TRA,
HOG, HOF, MBH, STIP, Action-HOG, and MoSIFT. Feature
encoding is commonly used to aggregate the low-level features
to represent images and videos. The superiority of Fisher
Vector has been demonstrated in the evaluation of recent
feature encoding methods [30]. In this paper, Fisher Vector
is employed to encode local spatial-temporal features. To
accomplish data decorrelation and to reduce the computational
complexity and memory consumption, we apply PCA to
reduce the feature dimension by half over all listed low-level
features but keeping the dimension of TRA before Fisher
Vector representation.

Based on the above video representations, Random Forests
[19] are utilized to learn the event-based models. However, the
surveillance data is highly imbalanced for all events because
positive events occur far less frequently than negative ones
(statistics listed in Fig. 3). CellToEar and PeopleSplitUp are
the least and most frequent events that occupy only 0.31%
and 4.37% of the training video sequences, respectively. To
overcome this extreme imbalance, in the offline learning
phase, the original training data is disassembled into smaller
chunks which are relatively more ‘balanced’. A Random Forest
classifier is learnt for each data segment. A straightforward
weighted average process is performed to combine all the
prediction results generated by multiple Random Forests in
the online detection process.

B. Video Representation

After extracting the low-level features, we perform PCA
for the dimensionality reduction of all features by half except
TRA. Fisher Vector [31] is then employed to represent each
sliding window. Fisher Vector encodes each feature descriptor
by its deviation with respect to the parameters of a generative
model and provides a feature aggregation scheme based on
Fisher kernel that bounds the benefits of both generative and
discriminative models.
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Fig. 2: Surveillance event detection system overview.

In the proposed framework, Gaussian mixture models (G-
MM) Gλ(x) =

∑K
k=1 πkgk(x) are adopted as the generative

model for the Fisher Vector in which gk represents the kth
Gaussian component:

gk(x) =
1

2π
D
2 |Σk|

1
2

exp {−1

2
(x− µk)

′
Σk

−1(x− µk)},

∀k : πk ≥ 0,

K∑
k=1

πk = 1.

(1)

in which x ∈ RD represents the feature descriptor; K
is the number of Gaussian components; πk, µk, and Σk
denote the mixture weight, mean vector, and the covariance
matrix, respectively. We assume that the covariance matrix
Σk is diagonal with the variance vector σ2

k. Expectation-
Maximization (EM) algorithm is employed to optimize the
Maximum Likelihood (ML) to estimate the GMM parameters
λ = {πk, µk,Σk, k = 1, . . . ,K} based upon a large set of
training descriptors.

Let X = {x1, . . . , xN} represent a set of descriptors
extracted within a sliding window. The soft assignment of
descriptor xi with respect to the kth component is defined
as:

wki =
πkgk(xi)∑K
j=1 πjgj(xi)

. (2)

The Fisher Vector of X is represented as F (x) =
{α1, β1, . . . , αK , βK} where αk and βk(k = 1, . . . ,K) are

D-dimensional gradients with respect to the mean vector µk
and the standard deviation σk of component k:

αk =
1

N
√
πk

N∑
i=1

wki (
xi − µk
σk

), (3)

βk =
1

N
√

2πk

N∑
i=1

wki [
(xi − µk)2

σ2
k

− 1]. (4)

This system follows the scheme introduced in [31] to
normalize the Fisher Vector, i.e., first the power normalization
and followed with L2 normalization. The L2 normalization
is adopted to remove the dependence on the proportion of
event-specific information contained in a video, in other words,
to cancel the effect of different amount of foreground and
background information contained in different video segments.
The power normalization is motivated by the observation that,
with the increment of Gaussian component numbers, Fisher
Vector becomes sparser which negatively impacts the dot-
product in the following steps. Therefore, the power normal-
ization f(z) = sign(z)|z|a with 0 < a ≤ 1 is applied to
each dimension z in the Fisher Vector. We set a = 0.5 (i.e.,
the Hellinger kernel) to perform the signed square-rooting
operation.

Compared with the BOV based approaches, Fisher Vector
holds the following advantages:

• BOV is a particular case of Fisher Vector since only the
gradient with respect to the mixture weights of GMM is
utilized. The additional gradients with respect to the mean
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Fig. 3: Proportions of video sequences containing positive
events in the training set.

vectors and standard deviations in Fisher Vector provide
extra distribution information of descriptors.

• Fisher Vector can be computed upon a much smaller
vocabulary compared with that used in BOV which
facilitates a lower computational cost.

• Fisher Vector performs well with simple linear classifiers
and is efficient in terms of both training and testing.

C. Model Learning and Post-Processing

In the event detection system, we adopt a 60-frame sliding
window size strides in every 15 frames. This sliding window
scheme generates highly imbalanced data. As shown in Fig. 3,
among the evaluated events, 5 out of the 7 events cover less
than 1.7% of the entire video sequences.

Event-dependent models are learnt to reduce intra-class
variance and memory consumption in the training phase,
namely, a set of Random Forests is trained for each of the
7 events utilizing training data combined from all 5 camera
views. In order to handle the imbalanced data and make
full usage of the valuable positive samples, we propose the
following data segmentation scheme as illustrated in Fig. 4.
For event i, the training data under all the camera views are
combined and then separated according to the positive and
negative labels. They are denoted as Di = {Di+, Di−}. For
simplicity concern, notation D = {D+, D−} is utilized in
later context. The negative data set is further segmented into
a series of non-overlapped partitions D−

m,m = 1, . . . ,M with
triple size of |D+|. The whole training set is therefore chopped
into a group of data segments in which each data chuck is
composed of a portion of the negative samples and the whole
positive data. A Random Forest is then trained within each
data chunk. Therefore, for each low-level feature type under
every event, a set of Random Forests is generated through
learning upon segmented data chunks.

Given a testing video, all the 7 types of low-level features
are extracted utilizing the same scheme as in the training
step. Each low-level feature representation generates a cor-
responding Fisher Vector. Afterwards, all Fisher Vectors are

Fig. 4: Illustration of the data segmentation where within each
data chunk a Random Forest is learnt.

fed into a group of pre-learnt Random Forests and a simple
averaging is adopted to combine the prediction results from
all classifiers where each prediction measures the probability
of this window span contains this specific event detected.
Generally, an event spans several different windows due to
the fixed sliding window scheme utilized in our system and
the time-lasting for different events varies. Therefore, after
the classifier prediction, we employ a post-processing step
to group continuous positive windows as to decide the final
temporal interval of a detected event. To be more specific,
two positive predictions which have overlaps in their sliding
windows are merged together.

IV. EXPERIMENTAL RESULTS

In this section, details of the dataset used for the evaluation
is listed. Moreover, we present the detection performance over
the 7 evaluated events for all the 7 low-level feature types
utilizing the pipeline described in Section III. Strengths and
limitations of each low-level feature are discussed.

A. Dataset and Parameter Settings

As mentioned in Section I, we utilize NIST TRECVID
SED as our testbed. SED provides a corpus of 144-hour
videos under 5 fixed camera views from the London Gatwick
International Airport. It contains 7 pre-defined events, i.e., Per-
sonRuns, CellToEar, ObjectPut, PeopleMeet, PeopleSplitUp,
Embrace, and Pointing. These events represent three levels of
human activity analysis: single person action (Pointing, Per-
sonRuns), person-object interaction (CellToEar, ObjectPut),
and multiple people activity (Embrace, PeopleMeet, People-
SplitUp). As observed from samples of the events presented
in Fig. 1, it is an extremely challenging task to detect a
specific event with subtle movements and short durations in
such crowded environment. Certain events take place far from
the camera which causes a very limited resolution for the target
people involved.

All videos provided by TRECVID SED are captured with
the frame resolution 720 × 576 at 25 fps. Within the video
corpus, 99-hour videos are provided with annotations of tem-
poral extents and event labels. In our experiments, we further
divide the annotated videos into two parts where half of the
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data forms the training set and the rest half is utilized as the
testing set to evaluate the detection performance over a specific
event. The experiments reported in this paper are performed
on an Intel Xeon computation server that comprises 24 cores
(2.0GHz), 256GB memory, and 12TB hard disk. In the low-
level feature extraction process, we downsample all videos
to half of the original size in both horizontal and vertical
directions. After performing PCA of all the 7 types of low-
level features other than TRA to further reduce the feature
dimension, we train GMM with 128 Gaussian components.
Table I illustrates the dimensions of Fisher Vectors for all the
7 feature types. Within each Random Forest, the maximum
depth of each tree is set to 5 and the maximum number of
trees in the forest is 20.

B. Evaluation Methodology and Results

For each feature type i, under the event j, a set of Random
Forests RFji are learnt utilizing the annotated training data in
NIST TRECVID SED dataset. Provided with a testing video,
after generating Fisher Vector representations for feature i
utilizing the sliding window scheme, Random Forests RFji are
employed to produce outputs for each sliding window under
event j. The output of a certain sliding window measures the
probability that these frames contain the detected event.

Top N j
i sliding windows with the largest Random Forests

scores are considered the positive predictions for feature type
i under event j. Based on the empirical observations during
the training, we adopt a universal setting of 2, 000 for all
N j
i (i, j = 1 . . . 7). As mentioned in Section III.C, generally

an event spans several sliding windows and therefore, among
the 2, 000 selected instances, two positive predictions which
have overlaps in their sliding windows are merged together.
Therefore, the actual number of the positive predictions (i.e.,
#SysInp shown in Table III) varies for each case and normally
are less than 2000 (refer to Table III for details).

Table II represents the numbers of True Positives, False
Positives, and False Negatives for all feature types under
all 7 events. To further evaluate the sliding window based
performance, error rates are provided to illustrate how many
sliding windows in the testing data are misclassified. As
observed, since majority of the sliding windows do not contain
any pre-defined events, the sliding window based error rates
are small (less than 5% for most cases).

Table III presents the detection performance for all the
evaluated low-level feature types of each event in which
#CorDec, #SysInp, and #GT denote the number of correct
detections, the number of actual system inputs after merging
the top 2, 000 positive predictions, and the number of positive
ground-truths. The F-score is adopted to evaluate the detection
performance for each feature. F-score is widely employed to
measure a test’s accuracy which reaches its best value at 1 and
the worst at 0 and is calculated utilizing precision and recall:

F = 2 · precision · recall
precision + recall

, (5)

in which the precision and recall are computed with:

TABLE II: Comparison of the detection performance for
different types of low-level features in the 7 events measured
in the numbers of True Positives, False Positives, False Neg-
atives, and the sliding window based error rates.

.
Event1: PersonRuns #TruePos #FalsePos #FalseNeg Error Rate
Action-HOG 42 1341 294 0.0196
HOF 54 1584 282 0.0162
HOG 67 1525 269 0.0161
MBH 66 1435 270 0.0162
MoSIFT 25 1571 311 0.0169
STIP 54 1521 282 0.0166
TRA 67 1653 269 0.0160
Event2: CellToEar #TruePos #FalsePos #FalseNeg Error Rate
Action-HOG 58 1198 329 0.0151
HOF 60 1467 327 0.0124
HOG 75 1562 312 0.0124
MBH 70 1496 317 0.0124
MoSIFT 43 1712 344 0.0129
STIP 68 1618 319 0.0127
TRA 42 1687 345 0.0125
Event3: ObjectPut #TruePos #FalsePos #FalseNeg Error Rate
Action-HOG 252 1427 1757 0.0392
HOF 283 1425 1726 0.0320
HOG 291 1368 1718 0.0320
MBH 308 1340 1701 0.0320
MoSIFT 236 1431 1773 0.0334
STIP 297 1383 1712 0.0327
TRA 267 1473 1742 0.0320
Event4: PeopleMeet #TruePos #FalsePos #FalseNeg Error Rate
Action-HOG 275 1390 1013 0.0697
HOF 341 1367 947 0.0565
HOG 319 1470 969 0.0568
MBH 348 1479 940 0.0565
MoSIFT 263 1330 1025 0.0592
STIP 292 1348 996 0.0581
TRA 348 1367 940 0.0564
Event5: PeopleSplitUp #TruePos #FalsePos #FalseNeg Error Rate
Action-HOG 135 1450 559 0.0726
HOF 197 1581 497 0.0593
HOG 225 1616 469 0.0592
MBH 216 1603 478 0.0590
MoSIFT 180 1611 514 0.0617
STIP 180 1416 514 0.0606
TRA 72 1297 622 0.0597
Event6: Embrace #TruePos #FalsePos #FalseNeg Error Rate
Action-HOG 58 1338 366 0.0293
HOF 97 1601 327 0.0237
HOG 62 1664 362 0.0240
MBH 103 1547 321 0.0236
MoSIFT 16 1523 408 0.0250
STIP 128 1554 296 0.0242
TRA 38 1653 386 0.0241
Event7: Pointing #TruePos #FalsePos #FalseNeg Error Rate
Action-HOG 376 1292 2040 0.0500
HOF 382 1371 2034 0.0411
HOG 390 1363 2026 0.0412
MBH 402 1300 2008 0.0411
MoSIFT 300 1408 2116 0.0428
STIP 403 1283 2013 0.0420
TRA 358 1355 2058 0.0411

precision =
true positive

true positive + false positive
,

recall =
true positive

true positive + false negative
.

(6)

In Table III, for each event, the two low-level feature types
with the top two largest F-scores are marked in bold for a
clearer illustration.

To provide a more comprehensive comparison of all the
evaluated low-level features, a breakdown of the time and
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TABLE I: Dimensions of the Fisher Vector representations for all the 7 feature types: Action-HOG, HOF, HOG, MBH, MoSIFT,
STIP, and TRA.

.
Feature AHOG HOF HOG MBH MoSIFT STIP TRA
FisherVector Dim 27,648 13,824 12,288 24,576 32,768 20,746 7,680

TABLE III: Comparison of the detection performance for different types of low-level features in the 7 events. For each event,
the two feature types with the largest F-Scores are marked in bold.

.

Event1: PersonRuns #CorDet #SysInp #GT Precision Recall F-Score
Action-HOG 42 1343 336 0.0313 0.1250 0.0500
HOF 54 1638 336 0.0330 0.1607 0.0547
HOG 67 1592 336 0.0421 0.1994 0.0695
MBH 66 1501 336 0.0440 0.1964 0.0719
MoSIFT 25 1596 336 0.0157 0.0744 0.0259
STIP 54 1575 336 0.0343 0.1607 0.0565
TRA 67 1720 336 0.0390 0.1994 0.0651
Event2: CellToEar #CorDet #SysInp #GT Precision Recall F-Score
Action-HOG 58 1256 387 0.0462 0.1499 0.0706
HOF 60 1527 387 0.0393 0.1550 0.0627
HOG 75 1637 387 0.0458 0.1938 0.0741
MBH 70 1566 387 0.0447 0.1809 0.0717
MoSIFT 43 1755 387 0.0245 0.1111 0.0401
STIP 68 1686 387 0.0403 0.1757 0.0656
TRA 42 1729 387 0.0243 0.1085 0.0397
Event3: ObjectPut #CorDet #SysInp #GT Precision Recall F-Score
Action-HOG 252 1679 2009 0.1501 0.1254 0.1367
HOF 283 1708 2009 0.1657 0.1409 0.1523
HOG 291 1659 2009 0.1754 0.1448 0.1587
MBH 308 1648 2009 0.1869 0.1533 0.1684
MoSIFT 236 1667 2009 0.1416 0.1175 0.1284
STIP 297 1680 2009 0.1768 0.1478 0.1610
TRA 267 1740 2009 0.1534 0.1329 0.1424
Event4: PeopleMeet #CorDet #SysInp #GT Precision Recall F-Score
Action-HOG 275 1665 1288 0.1652 0.2135 0.1863
HOF 341 1708 1288 0.1996 0.2648 0.2276
HOG 319 1789 1288 0.1783 0.2477 0.2073
MBH 348 1827 1288 0.1905 0.2702 0.2234
MoSIFT 263 1593 1288 0.1651 0.2042 0.1826
STIP 292 1640 1288 0.1780 0.2267 0.1995
TRA 348 1715 1288 0.2029 0.2702 0.2318
Event5: PeopleSplitUp #CorDet #SysInp #GT Precision Recall F-Score
Action-HOG 135 1585 694 0.0852 0.1945 0.1185
HOF 197 1778 694 0.1108 0.2839 0.1594
HOG 225 1841 694 0.1222 0.3242 0.1775
MBH 216 1819 694 0.1187 0.3112 0.1719
MoSIFT 180 1791 694 0.1005 0.2594 0.1449
STIP 180 1596 694 0.1128 0.2594 0.1572
TRA 72 1369 694 0.0526 0.1037 0.0698
Event6: Embrace #CorDet #SysInp #GT Precision Recall F-Score
Action-HOG 58 1396 424 0.0415 0.1368 0.0637
HOF 97 1698 424 0.0571 0.2288 0.0914
HOG 62 1726 424 0.0359 0.1462 0.0577
MBH 103 1650 424 0.0624 0.2429 0.0993
MoSIFT 16 1539 424 0.0104 0.0377 0.0163
STIP 128 1682 424 0.0761 0.3019 0.1216
TRA 38 1691 424 0.0225 0.0896 0.0359
Event7: Pointing #CorDet #SysInp #GT Precision Recall F-Score
Action-HOG 376 1668 2416 0.2254 0.1556 0.1841
HOF 382 1753 2416 0.2179 0.1581 0.1832
HOG 390 1753 2416 0.2225 0.1614 0.1871
MBH 402 1702 2416 0.2362 0.1664 0.1952
MoSIFT 300 1708 2416 0.1756 0.1242 0.1455
STIP 403 1689 2416 0.2386 0.1668 0.1963
TRA 358 1713 2416 0.2090 0.1482 0.1734
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TABLE IV: Comparison of the time and space complexity
for all low-level features in feature extraction, Fisher Vector
representation, and Random Forests prediction steps measured
based on 1, 000 frames.

.
Feature Extraction FV Generation RF Prediction

Time(sec) Space(MB) Time(sec) Space(MB) Time(sec)
Action-HOG 30.16 4.88 0.84 4.16 11.45
HOF 106.53 31.70 4.52 3.51 32.17
HOG 112.03 28.45 5.37 3.12 33.79
MBH 133.09 54.45 6.03 6.23 36.64
MoSIFT 801.37 4.89 4.26 8.25 39.02
STIP 359.04 12.96 6.52 5.22 32.51
TRA 93.60 10.32 4.87 1.95 24.94

space complexity for the key components in the evaluation
pipeline is listed in Table IV. To be more specific, for a video
consists of 1, 000 frames, the time cost of extracting each low-
level feature2 along with the space occupied are recorded. The
time and space of the Fisher Vector representation genera-
tion process are also listed. Finally, we measure that during
the testing phase, the time utilized for the Random Forests
prediction process3. Generally speaking, the time consumed
in the Random Forests prediction step is proportional to the
dimensions of the Fisher Vector representations of each low-
level feature. However, since Action-HOG does not extract
features for certain frames in the testing video without suffi-
cient motions, the time cost is significantly smaller compared
with peer features. Moreover, based on the fact that the label
files generated after the Random Forests predictions take the
same amount of space for all the features, the space used in
this step is not listed in Table IV.

C. Detection Performance Evaluation and Discussions

Generally speaking, as observed from Table III, group
activities (e.g., PeopleMeet, PeopleSplitUp) are with higher
F-scores due to a relatively higher ratio of the foreground
objects in the scene. Since we employ a fixed number of
system inputs (i.e., 2, 000 before merging post-processing), the
mismatch between the actual number of system inputs and the
number of the ground-truths is another factor that would affect
the F-score values.

CellToEar is commonly considered the most challenging
task among the 7 events evaluated [32]. It is a very subtle and
short activity which begins with some person starting to move
the phone to the ear and ends when the phone reaches the ear.
Compared with ObjectPut, size of the object (i.e., cellphone)
is very small and even unrecognizable if the resolution is
limited. Therefore, false positives arise when the detected
person tries to reach his/her head or ear with empty hand. As
observed from the provided training data, even ground-truths

2Please note that in our experiments to evaluate the performance of the low-
level features, we use https://lear.inrialpes.fr/people/wang/dense trajectories to
extract dense trajectory based features at the same time. However, in order to
measure the time and space complexity of extracting each feature as shown
in Table IV, we modify the original source code and compute the 4 dense
trajectory based features separately.

3For each low-level feature, 36 pre-trained Random Forests under Event 1
are utilized to measure the time complexity in the Random Forests prediction
step shown in Table IV.

contain mislabels and ambiguities due to chaotic surroundings
in which various event-unrelated human behaviors occur.

Among the evaluated 7 types of features, TRA, HOG, HOF,
and MBH utilize dense sampling while the rest three (i.e.,
Action-HOG, MoSIFT, and STIP) sample on sparse points.
Generally speaking, for image and video event detection
purpose, dense sampling works better compared with sparse
sampling. However, as demonstrated in Table IV, it brings in
higher storage consumption and computation costs.

As revealed from the detection performance shown in Table
III, STIP outperforms MoSIFT and Action-HOG measured
in F-score in 6 events: PersonRuns, ObjectPut, PeopleMeet,
PeopleSplitUp, Embrace, and Pointing. Strong constraints to
spatio-temporal interest points are not posed by the MoSIFT
detector during detection. A MoSIFT interest point is extracted
as long as a candidate SIFT interest point contains a minimal
amount of movement. Similarly, spatial and temporal informa-
tion is separated during Action-HOG detection utilizing SURF
and MHI-HOG respectively. However, on the other hand, STIP
detector computes a spatio-temporal second-moment matrix
at each point which successfully bounds both spatial and
temporal information. Moreover, when computing descriptors,
MoSIFT encodes the appearance of the objects/scenes and the
motion information of only one frame while STIP accumulates
more appearance and motion information in the temporal scale.

Although both MoSIFT and Action-HOG fail to pose
strong constraints to the bounding of spatial and temporal
information, Action-HOG reveals superiority over MoSIFT
measured in time and space complexity. Our experimental
results demonstrate that Action-HOG (i.e., SURF/MHI-HOG)
runs beyond 10 times faster in terms of processing each frame
and around 20 times faster in terms of computing each interest
point than MoSIFT (i.e., STIP-HOG/HOF).

Dense trajectory based MBH appears to be the feature with
the best performance considering the detection results in all
the 7 events. This is probably due to the fact that MBH
represents the gradients of the optical flow and reserves the
motion clues mostly in the motion boundary which leads to a
more accurate and discriminative motion estimation. However,
as demonstrated in Table IV, compared with other low-level
features, MBH consumes significant larger amount of memory
in the feature extraction step. In terms of describing the
motion, MBH and HOF provide more explicit information
compared with HOG. On the other hand, in events that
involve objects (i.e., CellToEar and ObjectPut), HOG conveys
strong appearance cues and yields relatively better detection
performance compared with other events.

Densely sampled trajectories are extracted in multiple spa-
tial scales which are simple descriptions of motion patterns.
Among the 4 evaluated dense trajectory based features, TRA
consumes the least amount of time and space for almost all
the steps. Compared with activities that involving subtle and
short movements, trajectories are more effective and comple-
mentary in the events with large and consistent motions (i.e.,
PersonsRuns, PeopleMeet) as demonstrated by the detection
performance.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, we have systematically evaluated the detection
performance of 7 different low-level feature types utilizing
NIST TRECVID Surveillance Event Detection dataset which
contains a variety of challenging events.

A set of Random Forests is learnt through a uniformed
pipeline for each low-level feature type in each event. The
event detection performance is then evaluated utilizing the
trained Random Forests over the testing videos measured with
F-scores of the positive predictions.

As observed from the detection results for all the 7 events,
dense sampling works better compared with sparse sampling.
STIP outperforms MoSIFT and Action-HOG in 6 out of the 7
events since it bounds both spatial and temporal information
in detection and accumulates more appearance and motion
information in computing descriptors. Generally speaking,
among all the events, MBH appears to be the best performing
feature type. HOG conveys strong appearance cues in events
involving objects. TRA can be effective in events involving
large and consistent motions.

Deep models have gained a growing interest in action
detection and recognition. In the future, we will investigate
more in deep learning based classification methods in real-
world surveillance event detection with more complicated
events involved.
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