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1. Abstract 
 
The advent of depth sensors has facilitated a variety of visual 
recognition tasks including human activity understanding. This 
paper presents a novel feature representation to recognize human 
activities from video sequences captured by a depth camera. We 
assemble local neighboring hypersurface normals from a depth 
sequence to form the polynormal which jointly encodes local 
motion and shape cues. Fisher vector is employed to aggregate the 
low-level polynormals into the Polynormal Fisher Vector. In order 
to capture the global spatial layout and temporal order, we employ 
a spatio-temporal pyramid to subdivide a depth sequence into a 
set of space-time cells. Polynormal Fisher Vectors from these 
cells are combined as the final representation of a depth video. 
Experimental results demonstrate that our method achieves the 
state-of-the-art results on the two public benchmark datasets, i.e., 
MSRAction3D and MSRGesture3D.  
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2. Introduction 
 
Human activity recognition has a number of real-world 
applications including telepresence, video surveillance, human-
computer interaction, etc. As the imaging techniques advance, the 
availability of low-cost depth sensors (e.g., Microsoft Kinect) has 
facilitated various visual recognition tasks including object 
recognition, indoor place segmentation, as well as human gesture 
and action recognition. Compared to conventional color images in 
activity recognition, depth maps have the following merits: (1) 
additional shape cues to provide more informative geometric 
description; (2) precluded color and texture to ease human 
detection and segmentation; and (3) independence of visible 
lighting to benefit monitoring in dark environments. These 
advantages have motivated recent research to explore a set of 
representations of depth sequences ranging from skeleton joints, 
cloud points, depth projections, local depth points, to surface 
normals.  

Additional body shape information provided by depth maps has 
been successfully applied to recover skeleton joints [Shotton et al. 
2011]. EigenJoints [Yang and Tian 2014] employed joint 
differences to characterize static posture, consecutive motion, and 

overall dynamics. In order to reduce errors of joint estimation, the 
pose set in [Wang et al. 2013] selected the top joint configurations 
by using segmentation cues and temporal constraints. Actionlet 
ensemble was proposed in [Wang et al. 2012] to model a subset of 
skeleton joints associated with a specific action.  However, the 
estimated skeleton joints could be quite noisy or even completely 
wrong if severe occlusion occurs. Compared to skeleton joints, 
cloud points are more robust to noise and occlusion. The local and 
random occupancy patterns proposed in [Wang et al. 2012; Wang 
et al. 2012] represented depth appearance by counting the number 
of cloud points falling into a local spatio-temporal grid. 

Depth projection transforms the recognition problem from 3D to 
2D. Li et al. [Li et al. 2010] sampled points from silhouettes of 
projected depth maps on three orthogonal planes and employed an 
action graph to model action dynamics. The depth motion maps 
[Yang et al. 2012] stacked differences between consecutive 
projected depth maps from three orthogonal views and computed 
HOG from the stacked motion maps. Following the low-level 
feature extraction in traditional videos, several local interest point 
detectors specifically designed for depth videos were recently 
proposed. Hadfield and Bowden [Hadfield and Bowden 2013] 
extended the algorithms of Harris and Hessian detectors and 
separable filters to 3.5D and 4D space in depth sequences. DSTIP 
introduced in [Xia and Aggarwal 2013] localized more robust and 
stable motion-related foreground interest points through 
suppressing the frequent flip noise in depth sequences. 

It was recently shown in [Tang et al. 2012] that surface normals 
can provide more informative geometric cues of an object in 3D. 
Oreifej and Liu [Oreifej and Liu 2013] proceeded along with this 
observation to impose the temporal gradient on surface normals in 
a depth sequence. The extended normal was quantized by regular 
and discriminative learned polychorons. Our Polynormal Fisher 
Vector (PFV) also follows this direction. It is based on the 
polynormal proposed in [Yang and Tian 2014] which clustered 
the local neighboring extended surface normal. We employ Fisher 
vector to aggregate the low-level polynormals and spatio-temporal 
pyramid to globally capture the spatial layout and temporal order. 
We concatenate the feature vectors from all the space-time cells 
as the final representation of a depth sequence. 

2. Polynormal 
 
To make this paper more self-contained, we briefly introduce the 
concept of polynormal in this section. A normal to a surface in 3-
dimensional space can be extended to a hypersurface in � -
dimensional space. We define a hypersurface in �-dimensional 
space as a function ℝ��� → ℝ�:�� = �(��,… ,����), which 
describes a set of local points satisfying �(��,… ,��)=
�(��,… ,����)− �� = 0. A normal vector to the hypersurface at 
a � -dimensional point can be computed by the gradient 
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,− 1�. In a depth sequence, the 

hypersurface is with � = 4  dimensions, i.e., each cloud point 
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satisfies �(�,�,�,�)= �(�,�,�)− � = 0 . So we define the 
hypersurface normal in a depth sequence as 
 

� = ∇� = �
��

��
,
��

��
,
��

��
,−1�

�

. (1) 

 
It was recently shown in [Oreifej and Liu 2013] that the 
distribution of normal orientations is more informative in terms of 
describing object shapes than the distribution of gradient 
orientations. In addition to the geometric cues, the motion 
information is also incorporated in the normal vector of Eq. (1). 
Polynormal is a cluster of normals from a local hypersurface. This 
is motivated by the jointly encoded spatial neighborhood of low-
level features in macrofeatures [Boureau et al. 2010]. Compared 
to each individual normal, polynormal is more robust to noise and 
retains the correlation between neighboring normals.  

We concatenate the hypersurface normals from the local 
neighborhood ℒ  of a cloud point as the polynormal associated 

with this point, i.e., � = ���
�,… ,�|ℒ|

� �
�
,��,… ,�|ℒ|∈ ℒ. The local 

neighborhood ℒ  is a spatio-temporal subvolume determined by 
ℒ� × ℒ� × ℒ� , where ℒ� , ℒ� , and ℒ�  denote the number of 

neighboring points in �, �, and � axes, respectively. 

3. Depth Video Representation 
 
We employ PFV combined with a spatio-temporal pyramid to 
represent depth videos. Fisher vector has been successfully 
applied in the large-scale image classification and retrieval 
[Perronnin et al. 2010; Sanchez et al. 2013]. Here we employ 
Fisher vector to aggregate polynormals based on the Fisher kernel 
which shares the benefits of both generative and discriminative 
models. Each polynormal is represented by its deviation with 
respect to the parameters of a generative model. The spatio-
temporal pyramid is then used to globally capture the spatial 
layout and temporal orders.  

3.1 Polynormal Fisher Vector 
 
Polynormal Fisher Vector employs the Gaussian mixture model 
(GMM) to describe the distribtion of polynomals as ��(�)=
∑ ����(�)
�
��� , and �� denotes the �th Gaussian component: 
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where the polynormal � ∈ ℝ� ; �  is the number of Gaussian 
components; ��, ��, and �� are the prior mode probability, mean 
vector, and covariance matrix. We assume ��  to be a diagonal 
matrix with the variance vector ��

� . To better fit the diagonal 
covariance matrix assumption, we first apply PCA to decorrelate 
polynormals and reduce the dimensions. The GMM parameters 
� = {��,��,��,� = 1,… ,�}  can be estimated by using the 
Expectation-Maximization (EM) algorithm to optimize the 
Maximum Likelihood (ML) from a large number of polynormals. 
For a set of polynormals � = {��,… ,��} extracted from a depth 
video or a spatio-temporal cell, the soft assignment of �� to the 
�th Gaussian component is: 
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The PFV of �  is represented as �(�)= (��

�,��
�,… ,��
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�)� , 

where ��and ��  are �-dimensional gradients with respect to the 
mean vector ��  and standard deviation ��  of the � th Gaussian 
component: 
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In comparison to the Bag-of-Words (BoW) based methods, Fisher 
vector representation has the following advantages. (1) Gradients 
with respect to mean vectors and standard deviations provide 
extra feature distribution information in the polynormal space. (2) 
Fisher vector can be computed from a much smaller vocabulary 
which significantly reduces the computational complexity. (3) 
Simple linear classifiers perform very well with Fisher vectors 
which are efficient in both training and testing.   

We follow the two normalization schemes introduced in 
[Perronnin et al. 2010], i.e., signed square rooting (SSR) and ℓ� 
normalization. As the number of Gaussian components increases, 
Fisher vector could become quite peaky around zero in a certain 
dimension. In order to reduce this sparsified effect, SSR �(�)=
sign(�)|�|� with 0 < � ≤ 1 is applied to each dimension � in the 
vector. ℓ� normalization is employed to mitigate the dependence 
on the proportion of activity specific cues contained in each video. 
In other words, it is used to reduce the effect of different amount 
of foreground/background information contained in different 
depth videos.  

3.2 Spatio-Temporal Pyramid 
 
We employ the spatio-temporal pyramid to roughly capture the 
spatial geometry and temporal order of a depth video. In the 
spatial dimensions, we use a �� × �� grid to capture the geometry 
layout as illustrated in Fig. 1. By making use of the depth 
information for human segmentation, we enforce the spatial grid 
onto the largest bounding box of the human body from a depth 
sequence, which is different from the spatial division on the entire 
frame as widely used in [Oreifej and Liu 2012; Wang et al. 2012]. 
We further adopt the temporal pyramid to incorporate the global 
temporal order. Here a video sequence is repeatedly and evenly 
subdivided into a set of temporal segments where PFVs are 

 
 
Figure 1: Illustration of the spatio-temporal pyramid with 4×3×7 
space-time cells. 
 



pooled. In this paper, we use a 3-level temporal pyramid as shown 
in Fig. 1. In together with the spatial grid, the spatio-temporal 
pyramid generates �� × �� × 7 space-time cells in total.     

 
4. Experiments and Discussions 
 
The proposed method is evaluated on two public benchmark 
datasets: MSRAction3D [Li et al. 2010] and MSRGesture3D 
[Wang et al. 2012]. In all experiments, we set a 3×3×3 local 
neighborhood ℒ of each cloud point to form the polynormal and 
100 components in GMM if not specified. The spatio-temporal 
pyramid consists of 4×3×7 space-time cells in height, width, and 
time, respectively. LIBLINEAR [Fan et al. 2008] is used as the 
linear SVM solver. The proposed PFV is extensively compared to 
a set of depth-based recognition methods. Experimental results 
show that our approach significantly outperforms the previous 
methods on the two datasets.  

4.1 MSRAction3D Dataset 
 
MSRAction3D is a human action dataset of depth sequences 
captured by a RGB-D camera. It contains 20 actions (Fig. 3) 
performed by 10 subjects facing the camera. Each action was 
performed 2 or 3 times by each subject. The 20 actions are chosen 
in the context of gaming and cover a wide range of motions 
related to arms, legs, torso, etc. In order to facilitate a fair 
comparison, we follow the same experimental settings as [Wang 
et al. 2012]. 

We first evaluate the size of local neighborhood ℒ  to form a 
polynormal. As discussed in Section 2, the size of ℒ is determined 
by ℒ� × ℒ� × ℒ�. Fig. 2 shows the recognition accuracy of PFV 

with different sizes of ℒ  under �  Gaussian components. If no 
local temporal cue is encoded (ℒ� = 1), increasing the spatial size 
of ℒ lowers the recognition accuracy, e.g., from 1×1×1, 3×3×1, 
to 5×5×1. When ℒ� and ℒ� are fixed, the accuracy based on ℒ� >

1 is much higher than the one with ℒ� = 1, e.g., the results of 
3×3×3 significantly outperforms the ones of 3×3×1. In addition, 
the overall performance of ℒ� > 1 is superior to that of 1×1×1. 
This shows the local temporal information embedded in 
polynormal helps to characterize the low-level motion cues. In the 
following experiments, we use the 3×3×3 local neighborhood ℒ to 
form the polynormal and 100 components in computing GMM. 

We compare the performance of PFV with other results in Table 
1. Our method obtains the recognition accuracy of 92.73%, which 
is comparable to the most recent state-of-the-art SNV and 

significantly outperforms previous approaches. The joint-based 
methods [Xia et al. 2012; Yang and Tian 2014] are prone to errors 
of joint estimation when serious self-occlusion presents. In order 
to mitigate the joint error, models in [Wang et al. 2012; Wang et 
al. 2013] are proposed to learn a set of joint configurations which 
largely remove inaccurate estimations and therefore significantly 
improve the results. Compared to joints-based methods, the 
approaches [Vieira et al. 2012; Wang et al. 2012; Wang et al; 
2012] using cloud points to model body shapes are more robust to 
occlusions and noises. While both methods are based upon 
hypersurface normals, PFV outperforms HON4D [Oreifej and Liu 
2013] by 3.84%. This is mainly because polynormals are more 
informative than individual normals and the encoding scheme of 
Fisher vector is more representative than the polychoron or 
learned projectors. The confusion matrix of our method is 
demonstrated in Fig. 3. PFV performs pretty well on most actions. 
The confusions occur in recognizing quite similar actions, e.g., 
hand catch to high throw and draw circle to draw tick. 

 
Table 1. Comparison of recognition accuracy of our proposed 
PFV and other methods on the MSRAction3D dataset. 
 

Method  Accuracy 

Bag of 3D Points [Li et al. 2010] 74.70% 

HOJ3D [Xia et al. 2012] 79.00% 

EigenJoints [Yang and Tian 2014] 82.30% 

STOP [Vieria et al. 2012] 84.80% 

ROP [Wang et al. 2012] 86.50% 

Actionlet Ensemble [Wang et al. 2012] 88.20% 

Depth Motion Maps [Yang et al. 2012] 88.73% 

HON4D [Oreifej and Liu 2013] 88.89% 

DSTIP [Xia and Aggarwal 2013] 89.30% 

Pose Set [Wang et al. 2013] 90.00% 

SNV [Yang and Tian 2014] 93.09% 

Ours 92.73% 

 
Figure 2. Recognition accuracy (%) of PFV with different sizes 
ℒ�ℒ�ℒ� of ℒ under various numbers of Gaussian components � 

= 50, 100, 150, 200.     

 
 
Figure 3. The confusion matrix of our proposed PFV on the 
MSRAction3D dataset. 
 



4.2 MSRGesture3D Dataset 
 

MSRGesture3D is a dynamic hand gesture dataset captured by a 
RGB-D camera. There are 12 dynamic hand gestures (Fig. 4) 
defined by the American Sign Language (ASL) in this dataset. 
Each dynamic gesture was performed 2 or 3 times by each one of 
10 subjects. We use the leave-one-out cross-validation as in 
[Wang et al. 2012].  

PFV achieves the state-of-the-art accuracy of 95.83% which 
significantly outperforms all previous methods in Table 2. The 
confusion matrix of our method is shown in Fig. 4. PFV works 
very well on most dynamic gestures. The recognition errors 
concentrate on quite similar gestures, e.g., green and j. The two 
gestures share similar hand motions but only with different 
fingers. The joint-based methods cannot be used in this 
application because the joint estimation of hands is not available. 
 

Table 2. Comparison of recognition accuracy of our proposed 
PFV and other methods on the MSRGesture3D dataset. 
 

Method  Accuracy 

Action Graph on Occupancy [Kurakin et al. 2012] 80.50% 

Action Graph on Silhouette [Kurakin et al. 2012] 87.70% 

ROP [Wang et al. 2012] 88.50% 

Depth Motion Maps [Yang et al. 2012] 89.20% 

HON4D [Oreifej and Liu 2013] 92.45% 

SNV [Yang and Tian 2014] 94.72% 

Ours 95.83% 

 

5. Conclusions 
 
We have presented an effective feature representation PFV for 
activity recognition from depth sequences. The polynormal 
assembled by hypersurface normals jointly characterizes local 
shape and motion information. We employ Fisher vector to 
aggregate polynormals into a representative feature. The spatio-
temporal pyramid roughly captures the global geometric layout 
and temporal order of an activity sequence. Our proposed method 
is evaluated on two public benchmark datasets and achieves the 
state-of-the-art performance by using efficient linear classifiers. 
This also makes PFV well suited for large-scale activity 

recognition tasks. The future work will focus on a comprehensive 
evaluation of polynormal-based feature representations computed 
by different feature coding and pooling schemes. 
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Figure 4. The confusion matrix of our proposed PFV on the 
MSRGesture3D dataset. 

 


