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Abstract

We present a compact but effective CNN model for op-
tical flow, called PWC-Net. PWC-Net has been designed
according to simple and well-established principles: pyra-
midal processing, warping, and the use of a cost volume.
Cast in a learnable feature pyramid, PWC-Net uses the cur-
rent optical flow estimate to warp the CNN features of the
second image. It then uses the warped features and fea-
tures of the first image to construct a cost volume, which
is processed by a CNN to estimate the optical flow. PWC-
Net is 17 times smaller in size and easier to train than the
recent FlowNet2 model. Moreover, it outperforms all pub-
lished optical flow methods on the MPI Sintel final pass and
KITTI 2015 benchmarks, running at about 35 fps on Sintel
resolution (1024×436) images. Our models are available
on our project website.

1. Introduction

Optical flow estimation is a core computer vision prob-
lem and has many applications, e.g., action recognition [44],
autonomous driving [26], and video editing [8]. Decades
of research efforts have led to impressive performances on
challenging benchmarks [4, 12, 18]. Most top-performing
methods adopt the energy minimization approach intro-
duced by Horn and Schunck [19]. However, optimizing a
complex energy function is usually computationally expen-
sive for real-time applications.

One promising approach is to adopt the fast, scal-
able, and end-to-end trainable convolutional neural network
(CNN) framework [31], which has largely advanced the
field of computer vision in recent years. Inspired by the
successes of deep learning in high-level vision tasks, Doso-
vitskiy et al. [15] propose two CNN models for optical flow,
i.e., FlowNetS and FlowNetC, and introduce a paradigm
shift. Their work shows the feasibility of directly estimating
optical flow from raw images using a generic U-Net CNN
architecture [40]. Although their performances are below
the state of the art, FlowNetS and FlowNetC models are the
best among their contemporary real-time methods.

Recently, Ilg et al. [24] stack several FlowNetC and

Figure 1. Left: PWC-Net outperforms all published methods on
the MPI Sintel final pass benchmark in both accuracy and running
time. Right: among existing end-to-end CNN models for flow,
PWC-Net reaches the best balance between accuracy and size.

FlowNetS networks into a large model, called FlowNet2,
which performs on par with state-of-the-art methods but
runs much faster (Fig. 1). However, large models are more
prone to the over-fitting problem, and as a result, the sub-
networks of FlowNet2 have to be trained sequentially. Fur-
thermore, FlowNet2 requires a memory footprint of 640MB
and is not well-suited for mobile and embedded devices.

SpyNet [38] addresses the model size issue by combin-
ing deep learning with two classical optical flow estima-
tion principles. SpyNet uses a spatial pyramid network and
warps the second image toward the first one using the initial
flow. The motion between the first and warped images is
usually small. Thus SpyNet only needs a small network
to estimate the motion from these two images. SpyNet
performs on par with FlowNetC but below FlowNetS and
FlowNet2 (Fig. 1). The results by FlowNet2 and SpyNet
show a clear trade-off between accuracy and model size.

Is it possible to both increase the accuracy and reduce
the size of a CNN model for optical flow? In principle,
the trade-off between model size and accuracy imposes a
fundamental limit for general machine learning algorithms.
However, we find that combining domain knowledge with
deep learning can achieve both goals simultaneously.

SpyNet shows the potential of combining classical prin-
ciples with CNNs. However, we argue that its performance
gap with FlowNetS and FlowNet2 is due to the partial use of
the classical principles. First, traditional optical flow meth-
ods often pre-process the raw images to extract features that
are invariant to shadows or lighting changes [4, 48]. Fur-
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Figure 2. PWC-Net results on Sintel final pass (top) and KITTI 2015 (bottom) test sets. It outperforms all published flow methods to date.

ther, in the special case of stereo matching, a cost volume
is a more discriminative representation of the disparity (1D
flow) than raw images or features [20, 42, 59]. While con-
structing a full cost volume is computationally prohibitive
for real-time optical flow estimation [55], this work con-
structs a “partial” cost volume by limiting the search range
at each pyramid level. We can link different pyramid levels
using a warping layer to estimate large displacement flow.

Our network, called PWC-Net, has been designed to
make full use of these simple and well-established princi-
ples. It makes significant improvements in model size and
accuracy over existing CNN models for optical flow (Figs. 1
and 2). At the time of writing, PWC-Net outperforms all
published flow methods on the MPI Sintel final pass and
KITTI 2015 benchmarks. Furthermore, PWC-Net is about
17 times smaller in size and provides 2 times faster infer-
encing than FlowNet2. It is also easier to train than SpyNet
and FlowNet2 and runs at about 35 frames per second (fps)
on Sintel resolution (1024×436) images.

2. Previous Work

Variational approach. Horn and Schunck [19] pioneer
the variational approach to optical flow by coupling the
brightness constancy and spatial smoothness assumptions
using an energy function. Black and Anandan [7] introduce
a robust framework to deal with outliers, i.e., brightness
inconstancy and spatial discontinuities. As it is computa-
tionally impractical to perform a full search, a coarse-to-
fine, warping-based approach is often adopted [11]. Brox
et al. [9] theoretically justify the warping-based estimation
process. Sun et al. [45] review the models, optimization,
and implementation details for methods derived from Horn
and Schunck and propose a non-local term to recover mo-
tion details. The coarse-to-fine, variational approach is the
most popular framework for optical flow. However, it re-
quires solving complex optimization problems and is com-
putationally expensive for real-time applications.

One conundrum for the coarse-to-fine approach is small
and fast moving objects that disappear at coarse levels.
To address this issue, Brox and Malik [10] embed feature
matching into the variational framework, which is further
improved by follow-up methods [50, 56]. In particular,
the EpicFlow method [39] can effectively interpolate sparse

matches to dense optical flow and is widely used as a post-
processing method [1, 3, 14, 21, 55]. Zweig and Wolf [60]
use CNNs for sparse-to-dense interpolation and obtain con-
sistent improvement over EpicFlow.

Most top-performing methods use CNNs as a component
in their system. For example, DCFlow [55], the best pub-
lished method on MPI Sintel final pass so far, learns CNN
features to construct a full cost volume and uses sophis-
ticated post-processing techniques, including EpicFlow, to
estimate the optical flow. The next-best method, FlowField-
sCNN [3], learns CNN features for sparse matching and
densifies the matches by EpicFlow. The third-best method,
MRFlow [53] uses a CNN to classify a scene into rigid and
non-rigid regions and estimates the geometry and camera
motion for rigid regions using a plane + parallax formula-
tion. However, none of them are real-time or end-to-end
trainable.

Early work on learning optical flow. Simoncelli and
Adelson [43] study the data matching errors for optical flow.
Freeman et al. [16] learn parameters of an MRF model for
image motion using synthetic blob world examples. Roth
and Black [41] study the spatial statistics of optical flow us-
ing sequences generated from depth maps. Sun et al. [46]
learn a full model for optical flow, but the learning has been
limited to a few training sequences [4]. Li and Hutten-
locker [32] use stochastic optimization to tune the param-
eters for the Black and Anandan method [7], but the num-
ber of parameters learned is limited. Wulff and Black [52]
learn PCA motion basis of optical flow estimated by GPU-
Flow [51] on real movies. Their method is fast but produces
over-smoothed flow.

Recent work on learning optical flow. Inspired by the
success of CNNs on high-level vision tasks [29], Dosovit-
skiy et al. [15] construct two CNN networks, FlowNetS and
FlowNetC, for estimating optical flow based on the U-Net
denoising autoencoder [40]. The networks are pre-trained
on a large synthetic FlyingChairs dataset but can surpris-
ingly capture the motion of fast moving objects on the Sin-
tel dataset. The raw output of the network, however, con-
tains large errors in smooth background regions and re-
quires variational refinement [10]. Mayer et al. [35] apply
the FlowNet architecture to disparity and scene flow esti-



mation. Ilg et al. [24] stack several basic FlowNet mod-
els into a large one, i.e., FlowNet2, which performs on
par with state of the art on the Sintel benchmark. Ranjan
and Black [38] develop a compact spatial pyramid network,
called SpyNet. SpyNet achieves similar performance as the
FlowNetC model on the Sintel benchmark, which is good
but not state-of-the-art.

Another interesting line of research takes the unsuper-
vised learning approach. Memisevic and Hinton [36] pro-
pose the gated restricted Boltzmann machine to learn image
transformations in an unsupervised way. Long et al. [34]
learn CNN models for optical flow by interpolating frames.
Yu et al. [58] train models to minimize a loss term that com-
bines a data constancy term with a spatial smoothness term.
While inferior to supervised approaches on datasets with
labeled training data, existing unsupervised methods can be
used to (pre-)train CNN models on unlabeled data [30].

Cost volume. A cost volume stores the data matching
costs for associating a pixel with its corresponding pixels
at the next frame [20]. Its computation and processing are
standard components for stereo matching, a special case of
optical flow. Recent methods [14, 15, 55] investigate cost
volume processing for optical flow. All build the full cost
volume at a single scale, which is both computationally ex-
pensive and memory intensive. By contrast, our work shows
that constructing a partial cost volume at multiple pyramid
levels leads to both effective and efficient models.

Datasets. Unlike many other vision tasks, it is extremely
difficult to obtain ground truth optical flow on real-world se-
quences. Early work on optical flow mainly relies on syn-
thetic datasets [5], e.g., the famous “Yosemite”. Methods
may over-fit to the synthetic data and do not perform well
on real data [33]. Baker et al. [4] capture real sequences un-
der both ambient and UV lights in a controlled lab environ-
ment to obtain ground truth, but the approach does not work
for outdoor scenes. Liu et al. [33] use human annotations to
obtain ground truth motion for natural video sequences, but
the labeling process is time-consuming.

KITTI and Sintel are currently the most challenging
and widely-used benchmarks for optical flow. The KITTI
benchmark is targeted for autonomous driving applica-
tions and its semi-dense ground truth is collected using LI-
DAR [18]. The 2012 set only consists of static scenes. The
2015 set is extended to dynamic scenes via human anno-
tations and more challenging to existing methods because
of the large motion, severe illumination changes, and oc-
clusions [37]. The Sintel benchmark [12] is created using
the open source graphics movie “Sintel” with two passes,
clean and final. The final pass contains strong atmospheric
effects, motion blur, and camera noise, which cause se-
vere problems to existing methods. All published, top-
performing methods [3, 53, 55] rely heavily on traditional

techniques. By embedding the classical principles into
the network architecture, we show that a fully end-to-end
method can outperform all published methods on both the
KITTI 2015 and Sintel final pass benchmarks.

CNN models for dense prediction tasks in vision. The
denoising autoencoder [47] has been commonly used for
dense prediction tasks in computer vision, especially with
skip connections [40] between the encoder and decoder. Re-
cent work [13, 57] shows that dilated convolution layers can
better exploit contextual information and refine details for
semantic segmentation. Here we use dilated convolutions to
integrate contextual information for optical flow and obtain
moderate performance improvement. The DenseNet archi-
tecture [22, 27] directly connects each layer to every other
layer in a feedforward fashion and has been shown to be
more accurate and easier to train than traditional CNN lay-
ers in image classification tasks. We test this idea for dense
optical flow prediction.

3. Approach

Figure 3 summarizes the key components of PWC-Net
and compares it side by side with the traditional coarse-
to-fine approach [7, 9, 19, 45]. First, as raw images are
variant to shadows and lighting changes [9, 45], we replace
the fixed image pyramid with learnable feature pyramids.
Second, we take the warping operation from the traditional
approach as a layer in our network to estimate large motion.
Third, as the cost volume is a more discriminative represen-
tation of the optical flow than raw images, our network has a
layer to construct the cost volume, which is then processed
by CNN layers to estimate the flow. The warping and cost
volume layers have no learnable parameters and reduce the
model size. Finally, a common practice by the traditional
methods is to post-process the optical flow using contex-
tual information, such as median filtering [49] and bilateral
filtering [54]. Thus PWC-Net uses a context network to ex-
ploit contextual information to refine the optical flow. Com-
pared with energy minimization, the warping, cost volume,
and CNN layers are computationally light.

Next, we will explain the main ideas for each compo-
nent, including pyramid feature extractor, optical flow esti-
mator, and context networks. Please refer to the supplemen-
tary material for details of the networks.

Feature pyramid extractor. Given two input images I1

and I2, we generate L-level pyramids of feature representa-
tions, with the bottom (zeroth) level being the input images,
i.e., c0

t = It. To generate feature representation at the lth
layer, clt, we use layers of convolutional filters to downsam-
ple the features at the l−1th pyramid level, cl−1

t , by a factor
of 2. From the first to the sixth levels, the number of feature
channels are respectively 16, 32, 64, 96, 128, and 196.



Figure 3. Traditional coarese-to-fine approach vs. PWC-Net. Left: Image pyramid and refinement at one pyramid level by the energy
minimization approach [7, 9, 19, 45]. Right: Feature pyramid and refinement at one pyramid level by PWC-Net. PWC-Net warps features
of the second image using the upsampled flow, computes a cost volume, and process the cost volume using CNNs. Both post-processing
and context network are optional in each system. The arrows indicate the direction of flow estimation and pyramids are constructed in the
opposite direction. Please refer to the text for details about the network.

Warping layer. At the lth level, we warp features of the
second image toward the first image using the×2 upsam-
pled flow from the l+1th level:

clw(x) = cl2
(
x + up2(wl+1)(x)

)
, (1)

where x is the pixel index and the upsampled flow
up2(wl+1) is set to be zero at the top level. We use bi-
linear interpolation to implement the warping operation
and compute the gradients to the input CNN features and
flow for backpropagation according to [24, 25]. For non-
translational motion, warping can compensate for some ge-
ometric distortions and put image patches at the right scale.

Cost volume layer. Next, we use the features to construct
a cost volume that stores the matching costs for associating
a pixel with its corresponding pixels at the next frame [20].
We define the matching cost as the correlation [15, 55] be-
tween features of the first image and warped features of the
second image:

cvl(x1,x2)=
1

N

(
cl1(x1)

)T
clw(x2), (2)

where T is the transpose operator and N is the length of the
column vector cl1(x1). For an L-level pyramid setting, we
only need to compute a partial cost volume with a limited
range of d pixels, i.e., |x1−x2|∞≤d. A one-pixel motion at
the top level corresponds to 2L−1 pixels at the full resolution
images. Thus we can set d to be small. The dimension of
the 3D cost volume is d2×H l×W l, whereH l andW l denote
the height and width of the lth pyramid level, respectively.

Optical flow estimator. It is a multi-layer CNN. Its input
are the cost volume, features of the first image, and upsam-
pled optical flow and its output is the flow wl at the lth level.
The numbers of feature channels at each convolutional lay-
ers are respectively 128, 128, 96, 64, and 32, which are kept
fixed at all pyramid levels. The estimators at different lev-
els have their own parameters instead of sharing the same

parameters. This estimation process is repeated until the
desired level, l0.

The estimator architecture can be enhanced with
DenseNet connections [22]. The inputs to every convolu-
tional layer are the output of and the input to its previous
layer. DenseNet has more direct connections than tradi-
tional layers and leads to significant improvement in image
classification. We test this idea for dense flow prediction.

Context network. Traditional flow methods often use
contextual information to post-process the flow. Thus we
employ a sub-network, called the context network, to effec-
tively enlarge the receptive field size of each output unit at
the desired pyramid level. It takes the estimated flow and
features of the second last layer from the optical flow esti-
mator and outputs a refined flow.

The context network is a feed-forward CNN and its de-
sign is based on dilated convolutions [57]. It consists of
7 convolutional layers. The spatial kernel for each convo-
lutional layer is 3×3. These layers have different dilation
constants. A convolutional layer with a dilation constant k
means that an input unit to a filter in the layer are k-unit
apart from the other input units to the filter in the layer,
both in vertical and horizontal directions. Convolutional
layers with large dilation constants enlarge the receptive
field of each output unit without incurring a large compu-
tational burden. From bottom to top, the dilation constants
are 1, 2, 4, 8, 16, 1, and 1.

Training loss. Let Θ be the set of all the learnable pa-
rameters in our final network, which includes the feature
pyramid extractor and the optical flow estimators at differ-
ent pyramid levels (the warping and cost volume layers have
no learnable parameters). Let wl

Θ denote the flow field at
the lth pyramid level predicted by the network, and wl

GT the
corresponding supervision signal. We use the same multi-
scale training loss proposed in FlowNet [15]:



L(Θ)=

L∑
l=l0

αl

∑
x

|wl
Θ(x)−wl

GT(x)|2+γ|Θ|2, (3)

where | · |2 computes the L2 norm of a vector and the second
term regularizes parameters of the model. For fine-tuning,
we use the following robust training loss:

L(Θ)=

L∑
l=l0

αl

∑
x

(
|wl

Θ(x)−wl
GT(x)|+ε

)q
+γ|Θ|2 (4)

where | · | denotes the L1 norm, q < 1 gives less penalty to
outliers, and ε is a small constant.

4. Experimental Results

Implementation details. The weights in the training
loss (3) are set to be α6 = 0.32, α5 = 0.08, α4 = 0.02, α3 =
0.01, and α2 = 0.005. The trade-off weight γ is set to be
0.0004. We scale the ground truth flow by 20 and down-
sample it to obtain the supervision signals at different lev-
els. Note that we do not further scale the supervision signal
at each level, the same as [15]. As a result, we need to scale
the upsampled flow at each pyramid level for the warping
layer. For example, at the second level, we scale the upsam-
pled flow from the third level by a factor of 5 (= 20/4) be-
fore warping features of the second image. We use a 7-level
pyramid and set l0 to be 2, i.e., our model outputs a quarter
resolution optical flow and uses bilinear interpolation to ob-
tain the full-resolution optical flow. We use a search range
of 4 pixels to compute the cost volume at each level.

We first train the models using the FlyingChairs dataset
in Caffe [28] using the Slong learning rate schedule intro-
duced in [24], i.e., starting from 0.0001 and reducing the
learning rate by half at 0.4M, 0.6M, 0.8M, and 1M itera-
tions. The data augmentation scheme is the same as that
in [24]. We crop 448× 384 patches during data augmenta-
tion and use a batch size of 8. We then fine-tune the mod-
els on the FlyingThings3D dataset using the Sfine sched-
ule [24] while excluding image pairs with extreme motion
(magnitude larger than 1000 pixels). The cropped image
size is 768 × 384 and the batch size is 4. Finally, we fine-
tune the models using the Sintel and KITTI training set and
will explain the details below.

4.1. Main Results

MPI Sintel. When fine-tuning on Sintel, we crop 768 ×
384 image patches, add horizontal flip, and remove additive
noise during data augmentation. The batch size is 4. We
use the robust loss function in Eq. (4) with ε = 0.01 and
q = 0.4. We test two schemes of fine-tuning. The first one,
PWC-Net-ft, uses the clean and final passes of the Sintel
training data throughout the fine-tuning process. The sec-
ond one, PWC-Net-ft-final, uses only the final pass for the

second half of fine-tuning. We test the second scheme be-
cause the DCFlow method learns the features using only the
final pass of the training data. Thus we test the performance
of PWC-Net when the final pass of the training data is given
more weight.

At the time of writing, PWC-Net has lower average
end-point error (EPE) than all published methods on the
final pass of the MPI-Sintel benchmark (Table 1). It is
the first time that an end-to-end method outperforms well-
engineered and highly fine-tuned traditional methods on
this benchmark. Further, PWC-Net is the fastest among all
the top-performing methods (Fig. 1). We can further reduce
the running time by dropping the DenseNet connections.
The resulting PWC-Net-small model is about 5% less accu-
rate but 40% faster than PWC-Net.

PWC-Net is less accurate than traditional approaches on
the clean pass. Many traditional methods use image edges
to refine motion boundaries, because the two are perfectly
aligned in the clean pass. However, image edges in the fi-
nal pass are corrupted by motion blur, atmospheric changes,
and noise. Thus, the final pass is more realistic and chal-
lenging. The results on the final and clean sets suggest that
PWC-Net may be better suited for real images, where the
image edges are often corrupted.

PWC-Net has higher errors on the training set but lower
errors on the test set than FlowNet2, suggesting that PWC-
Net may have a more appropriate capacity for this task.
Table 2 summarizes errors in different regions. PWC-Net
performs relatively better in regions with large motion and
away from the motion boundaries, probably because it has
been trained using only data with large motion. Figure 4
shows the visual results of different variants of PWC-Net
on the training and test sets of MPI Sintel. PWC-Net can
recover sharp motion boundaries but may fail on small and
rapidly moving objects, such as the left arm in “Market 5”.

KITTI. When fine-tuning on KITTI, we crop 896 × 320
image patches and reduce the amount of rotation, zoom, and
squeeze during data augmentation. The batch size is 4 too.
The large patches can capture the large motion in the KITTI
dataset. Since the ground truth is semi-dense, we upsample
the predicted flow at the quarter resolution to compare with
the scaled ground truth at the full resolution. We exclude
the invalid pixels in computing the loss function.

At the time of writing, PWC-Net outperforms all pub-
lished two-frame optical flow methods on the 2015 set, as
shown in Table 3. It has the lowest percentage of flow out-
liers (Fl-all) in both all and non-occluded pixels (Table 4).
PWC-Net has the second lowest percentage of outliers in
non-occluded regions (Fl-noc) on the 2012 set, only infe-
rior to SDF that assumes a rigidity constraint for the back-
ground. Although the rigidity assumption works well on the
static scenes in the 2012 set, PWC-Net outperforms SDF in
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Figure 4. Results on Sintel training and test sets. Context network, DenseNet connections, and fine-tuning all improve the results.
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Figure 5. Results on KITTI 2015 training and test sets. Fine-tuning fixes large regions of errors and recovers sharp motion boundaries.

the 2015 set which mainly consists of dynamic scenes and
is more challenging. The visual results in Fig. 5 qualita-
tively demonstrate the benefits of using the context network,
DenseNet connections, and fine-tuning respectively. In par-
ticular, fine-tuning fixes large regions of errors in the test
set, demonstrating the benefit of learning when the training
and test data share similar statistics.

As shown in Table 4, FlowNet2 and PWC-Net have the
most accurate results in the foreground regions, both out-
performing the best published scene flow method, ISF [6].

Scene flow methods, however, have much lower errors in
the static background region. The results suggest that syn-
ergizing advances in optical flow and scene flow could lead
to more accurate results.

4.2. Ablation Experiments

Feature pyramid extractor. PWC-Net uses a two-layer
CNN to extract features at each pyramid level. Table 5a
summarizes the results of two variants that use one layer (↓)
and three layers (↑) respectively. A larger-capacity feature



Table 1. Average EPE results on MPI Sintel set. “-ft” means fine-
tuning on the MPI Sintel training set and the numbers in the paren-
thesis are results on the data the methods have been fine-tuned on.
ft-final gives more weight to the final pass during fine-tuning.

Methods Training Test Time
Clean Final Clean Final (s)

PatchBatch [17] - - 5.79 6.78 50.0
EpicFlow [39] - - 4.12 6.29 15.0
CPM-flow [21] - - 3.56 5.96 4.30
FullFlow [14] - 3.60 2.71 5.90 240
FlowFields [2] - - 3.75 5.81 28.0
MRFlow [53] 1.83 3.59 2.53 5.38 480
FlowFieldsCNN [3] - - 3.78 5.36 23.0
DCFlow [55] - - 3.54 5.12 8.60
SpyNet-ft [38] (3.17) (4.32) 6.64 8.36 0.16
FlowNet2.0 [24] 2.02 3.14 3.96 6.02 0.12
FlowNet2.0-ft [24] (1.45) (2.01) 4.16 5.74 0.12
PWC-Net-small 2.83 4.08 - - 0.02
PWC-Net-small-ft (2.27) (2.45) 5.05 5.32 0.02
PWC-Net 2.55 3.93 - - 0.03
PWC-Net-ft (1.70) (2.21) 3.86 5.13 0.03
PWC-Net-ft-final (2.02) ( 2.08) 4.39 5.04 0.03

Table 2. Detailed results on the Sintel benchmark for different re-
gions, velocities (s), and distances from motion boundaries (d).
Final matched unmatched d0−10 d10−60 d60−140 s0−10 s10−40 s40+

PWC-Net 2.44 27.08 4.68 2.08 1.52 0.90 2.99 31.28
FlowNet2 2.75 30.11 4.82 2.56 1.74 0.96 3.23 35.54
SpyNet 4.51 39.69 6.69 4.37 3.29 1.40 5.53 49.71
Clean
PWC-Net 1.45 23.47 3.83 1.31 0.56 0.70 2.19 23.56
FlowNet2 1.56 25.40 3.27 1.46 0.86 0.60 1.89 27.35
SpyNet 3.01 36.19 5.50 3.12 1.72 0.83 3.34 43.44

Table 3. Results on the KITTI dataset. “-ft” means fine-tuning
on the KITTI training set and the numbers in the parenthesis are
results on the data the methods have been fine-tuned on.

Methods
KITTI 2012 KITTI 2015

AEPE AEPE Fl-Noc AEPE Fl-all Fl-all
train test test train train test

EpicFlow [39] - 3.8 7.88% - - 26.29 %
FullFlow [14] - - - - - 23.37 %
CPM-flow [21] - 3.2 5.79% - - 22.40 %
PatchBatch [17] - 3.3 5.29% - - 21.07%
FlowFields [2] - - - - - 19.80%
MRFlow [53] - - - - 14.09 % 12.19 %
DCFlow [55] - - - - 15.09 % 14.83 %
SDF [1] - 2.3 3.80% - - 11.01 %
MirrorFlow [23] - 2.6 4.38% - 9.93% 10.29%
SpyNet-ft [38] (4.13) 4.7 12.31% - - 35.07%
FlowNet2 [24] 4.09 - - 10.06 30.37% -
FlowNet2-ft [24] (1.28) 1.8 4.82% (2.30) (8.61%) 10.41 %
PWC-Net 4.14 - - 10.35 33.67% -
PWC-Net-ft (1.45) 1.7 4.22% (2.16) (9.80%) 9.60%

pyramid extractor leads to consistently better results on both
the training and validation datasets.

Optical flow estimator. PWC-Net uses a five-layer CNN
in the optical flow estimator at each level. Table 5b shows
the results by two variants that use four layer (↓) and seven
layers (↑) respectively. A larger-capacity optical flow esti-
mator leads to better performance. However, we observe in
our experiments that a deeper optical flow estimator might

Table 4. Detailed Results on the KITTI 2015 benchmark for the
top three optical flow and two scene flow methods (below).

Methods Non-occluded pixels All pixels
Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

MirrorFlow [23] 6.24% 12.95% 7.46% 8.93% 17.07% 10.29%
FlowNet2 [24] 7.24% 5.60% 6.94% 10.75% 8.75% 10.41%
PWC-Net 6.14% 5.98% 6.12% 9.66% 9.31% 9.60%
OSF [37] 4.21% 15.49% 6.26% 5.62% 18.92% 7.83%
ISF [6] 4.21% 6.83% 4.69% 5.40% 10.29% 6.22%

get stuck at poor local minima, which can be detected by
checking the validation errors after a few thousand itera-
tions and fixed by running from a different random initial-
ization.

Removing the context network results in larger errors on
both the training and validation sets (Table 5c). Removing
the DenseNet connections results in higher training error
but lower validation errors when the model is trained on
FlyingChairs. However, after the model is fine-tuned on
FlyingThings3D, DenseNet leads to lower errors.

We also test a residual version of the optical flow esti-
mator, which estimates a flow increment and adds it to the
initial flow to obtain the refined flow. As shown in Table 5f,
this residual version slightly improves the performance.

Cost volume. We test the search range to compute the
cost volume, shown in Table 5d. A larger range leads to
lower training error. However, all three settings have similar
performance on Sintel, because a range of 2 at every level
can already deal with a motion up to 200 pixels at the input
resolution. A larger range has lower EPE on KITTI, likely
because the images from the KITTI dataset have larger dis-
placements than those from Sintel. A smaller range, how-
ever, seems to force the network to ignore pixels with ex-
tremely large motion and focus more on small-motion pix-
els, thereby achieving lower Fl-all scores.

Warping. Warping allows for estimating a small optical
flow (increment) at each pyramid level to deal with a large
optical flow. Removing the warping layers results in a sig-
nificant loss of accuracy (Table 5e). Without the warping
layer, PWC-Net still produces reasonable results, because
the default search range of 4 to compute the cost volume is
large enough to capture the motion of most sequences at the
low-resolution pyramid levels.

Dataset scheduling. We also train PWC-Net using differ-
ent dataset scheduling schemes, as shown in Table 6. Se-
quentially training on FlyingChairs, FlyingThings3D, and
Sintel gradually improves the performance, consistent with
the observations in [24]. Directly training using the test data
leads to good “over-fitting” results, but the trained model
does not perform as well on other datasets.

Model size and running time. Table 7 summarizes the
model size for different CNN models. PWC-Net has about



Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
Feature ↑ 1.92 3.03 4.17 4.57 26.73% 11.64 39.80%
Feature ↓ 2.18 3.36 4.56 5.75 30.79% 14.05 44.92%

(a) Larger-capacity feature pyramid extractor has better performance.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
Estimator ↑ 1.92 3.09 4.50 4.64 25.34% 12.25 39.18%
Estimator ↓ 2.01 3.37 4.58 4.82 26.35% 12.83 40.53%

(b) Larger-capacity optical flow estimator has better performance.

Trained on FlyingChairs Fine-tuned on FlyingThings
Chairs Clean Final Chairs Clean Final

Full model 2.00 3.33 4.59 2.34 2.60 3.95
No DenseNet 2.06 3.09 4.37 2.48 2.83 4.08
No Context 2.23 3.47 4.74 2.55 2.75 4.13

(c) Context network consistently helps; DenseNet helps after fine-tuning.

Max. Chairs Sintel Sintel KITTI 2012 KITTI 2015
Disp. Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
2 2.09 3.30 4.50 5.26 25.99% 13.67 38.99%
6 1.97 3.31 4.60 4.96 27.05% 12.97 40.94%

(d) Cost volume. PWC-Net can handle large motion with small search range.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
No warping 2.17 3.79 5.30 5.80 32.73% 13.74 44.87%

(e) Warping layer is a critical component for the performance.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
Residual 1.96 3.14 4.43 4.87 27.74% 12.58 41.16%

(f) Residual connections in the optical flow estimator are helpful.

Table 5. Ablation experiments. Unless explicitly stated, the models have been trained on the FlyingChairs dataset.

Table 6. Training dataset schedule leads to better local minima.
() indicates results on the dataset the method has been trained on.

Data Chairs Sintel (AEPE) KITTI 2012 KITTI 2015
AEPE Clean Final AEPE Fl-all AEPE Fl-all

Chairs (2.00) 3.33 4.59 5.14 28.67% 13.20 41.79%
Chairs-Things 2.30 2.55 3.93 4.14 21.38% 10.35 33.67%
Chairs-Things-Sintel 2.56 (1.70) (2.21) 2.94 12.70% 8.15 24.35%
Sintel 3.69 (1.86) (2.31) 3.68 16.65% 10.52 30.49%

17 times fewer parameters than FlowNet2. PWC-Net-small
further reduces this by an additional 2 times via dropping
DenseNet connections and is more suitable for memory-
limited applications.

The timings have been obtained on the same desktop
with an NVIDIA Pascal TitanX GPU. For more precise tim-
ing, we exclude the reading and writing time when bench-
marking the forward and backward inference time. PWC-
Net is about 2 times faster in forward inference and at least
3 times faster in training than FlowNet2.

Table 7. Model size and running time. PWC-Net-small drops
DenseNet connections. For training, the lower bound of 14 days
for FlowNet2 is obtained by 6(FlowNetC) + 2×4 (FlowNetS).

Methods FlowNetS FlowNetC FlowNet2 SpyNet PWC-Net PWC-Net-small
#parameters (M) 38.67 39.17 162.49 1.2 8.75 4.08
Parameter Ratio 23.80% 24.11% 100% 0.74% 5.38% 2.51%
Memory (MB) 154.5 156.4 638.5 9.7 41.1 22.9
Memory Ratio 24.20% 24.49% 100% 1.52% 6.44% 3.59%
Training (days) 4 6 >14 - 4.8 4.1
Forward (ms) 11.40 21.69 84.80 - 28.56 20.76
Backward (ms) 16.71 48.67 78.96 - 44.37 28.44

Discussions. Both PWC-Net and SpyNet have been in-
spired by classical principles for flow and stereo but have
significant differences. SpyNet uses image pyramids while
PWC-Net learns feature pyramids. SpyNet feeds CNNs
with images, while PWC-Net feeds a cost volume. As the
cost volume is a more discriminative representation of the

search space for optical flow, the learning task for CNNs
becomes easier. Regarding performance, PWC-Net out-
performs SpyNet by a significant margin. Additionally,
SpyNet has been trained sequentially, while PWC-Net can
be trained end-to-end from scratch.

FlowNet2 [24] achieves impressive performance by
stacking several basic models into a large-capacity model.
The much smaller PWC-Net obtains similar or better per-
formance by embedding classical principles into the net-
work architecture. It would be interesting to use PWC-Net
as a building block to design large networks.

5. Conclusions

We have developed a compact but effective CNN model
for optical flow using simple and well-established princi-
ples: pyramidal processing, warping, and the use of a cost
volume. Combining deep learning with domain knowledge
not only reduces the model size but also improves the per-
formance. PWC-Net is about 17 times smaller in size, 2
times faster in inference, and easier to train than FlowNet2.
It outperforms all published optical flow methods to date on
the Sintel final pass and KITTI 2015 benchmarks, running
at about 35 fps on Sintel resolution (1024×436) images.

Given the compactness, efficiency, and effectiveness of
PWC-Net, we expect it to be a useful component of many
video processing systems. To enable comparison and fur-
ther innovations, we make our models available on our
project website.
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