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In this paper, we propose a texture represe ntation framework to map local texture patches into a low- 
dimensional texture subspace. In natural texture images, textons are entangled with multiple factors,
such as rotation, scaling, viewpoint variation, illumination change, and non-rigid surface deformation.
Mapping local texture patches into a low-dimensiona l subspace can alleviate or eliminate these unde- 
sired variation factors resulting from both geometric and photometric transformat ions. We observe that 
texture representations based on subspace embeddings have strong resistance to image deformat ions,
meanwhile, are more distinctive and more compact than traditional representatio ns. We investigate both 
linear and non-linear embedding methods including Principle Componen t Analysis (PCA), Linear 
Discriminant Analysis (LDA), and Locality Preserving Projections (LPP) to compute the essential texture 
subspace. The experiments in the context of texture classification on benchmark datasets demon strate 
that the proposed subspace embedding representations achieve the state-of-the-art results while with 
much few er feature dimensions.

� 2013 Elsevier B.V. All rights reserved.
1. Introductio n

The automate d analysis of texture is widely applied in a number 
of real-worl d applications, e.g., image and video retrieval, object 
recognition and segmentation, and natural scene classification
(Bouguila, 2012; Caputo et al., 2010; Mailing and Cernuschi -Frias,
1982; Nguyen et al., 2012; Yang et al., 2011 ). However, it is a chal- 
lenging problem to represent texture images due to scaling 
changes, affine deformation s, and lighting variations. A desired 
texture representat ion is thus supposed to handle both geometric 
and photometric variations. There has been extensive research in 
the literature on designs of robust texture representat ions. Early 
work for modeling texture includes filter banks (Randen and 
Husoy, 1999 ) and co-occurrence features (Haralick. Statistica l
et al., 1979 ). They mainly concentrate on global 2D transforma- 
tions such as rotation and scaling. Most recent work further cap- 
tures the effects of 3D transformation s such as viewpoint change 
and non-rigid surface deformation. The representation methods 
based on fractal analysis (Varma and Garg, 2007; Xu et al., 2009 )
have also been proposed to model spatial distribution properties 
of textons with impressive recognition performance. In addition,
most recent state-of-the-ar t results in texture recogniti on are ob- 
tained by using histograms of local image features as distributions 
of textons (Csurka et al., 2004; Lazebnik et al., 2005; Zhang et al.,
ll rights reserved.

ng), ytian@ccny.cuny.edu (Y.
2007). Therefore, the effective computations of textons are crucial 
for robust texture representat ions.

It is common to define texture as a visual pattern with the rep- 
etition of a set of basic primitives named textons. Accordingly , a
histogram or distribution of textons can be used as an effective 
representat ion of texture images. For nature textures, textons can 
be approximated by the prototypes from clustering local texture 
patches. However , natural texture images are generated from 
interactio n of multiple factors related to rotation, scaling, lighting,
viewpoin t, and non-rigid surface deformation , as illustrated in 
Fig. 1. The multiple factor variation s result in severe difficulties
for accurately capturing the essential factor, i.e., textons. In this pa- 
per, we propose to employ both linear and non-linear embedding 
approach es to map normalized local texture patches into a texture 
subspace for analysis. In our framewor k, the low-dimension al 
structure s hidden in high-dimensio nal texture observations corre- 
spond to the essential factor for texture representation . In this way,
the unwanted variation modes resulting from geometri c and pho- 
tometric transformat ions can be reduced or removed from the 
essential factor.

The approach es of subspace embedding have been demon- 
strated effectivenes s in mining meaningful low-dimens ional struc- 
tures hidden in original high-dimensio nal feature space (Roweis
et al., 2000; Tenenbaum et al., 2000 ). They are based upon the bio- 
logical observati on that human brain extracts a manageably small 
amount of perceptually relevant features from high-dimensio nal 
sensory inputs (about 10 4 auditory nerve fibers or 10 6 optic nerve 
fibers) (Tenenbaum et al., 2000 ). On the other hand, it also has 
been explored to transfer the design of local image descriptors to 

http://dx.doi.org/10.1016/j.patrec.2013.03.009
mailto:xyang02@ccny.cuny.edu
mailto:ytian@ccny.cuny.edu
http://dx.doi.org/10.1016/j.patrec.2013.03.009
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


Fig. 1. Texture images are generated from interactions of multiple factors including textons, geometric transformations, and photometric transformations, among which,
textons are the essential factor for texture representation.
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a dimensional ity reduction problem in the context of image match- 
ing (Hua et al., 2007; Ke and Sukthankar, 2004 ). Our proposed 
method of subspace embedding textons is mainly inspired by the 
appearance- based face recognition. As discussed in Belhumeur
et al. (1997), He et al. (2005), Martinez and Kak (2001), Turk and 
Pentland (1991), face images varying in rotation, pose, illumina- 
tion, and expression reside in a manifold of original data space.
Mapping face images into a face subspace is able to conserve the 
essential factors of person identity but suppresses other factor 
variations. Eigenfaces, Fisherfaces, and Laplacianfaces are the state- 
of-the-art embedding algorithms in face recognition literature 
(Belhumeur et al., 1997; He et al., 2005; Turk and Pentland,
1991). Eigenfaces and Fisherfaces are linear methods which are used 
to effectively model the Euclidean structure of original feature 
space. Laplacianfac es is a non-linear approach that is able to pre- 
serve local data relationships and to discover the subspace of 
essential factor. Motivated by the success of subspace embedding 
methods in face recognition, in this paper we explore texture 
subspaces detected by PCA, LDA, and LPP, and then evaluate our 
approach in the context of texture classification. Following 
the conventi ons in face recogniti on, we name textons embedded 
by PCA, LDA, and LPP as EigenTexton s, FisherTextons, and 
LaplacianTex tons .

The remainder of this paper is organized as follows. Section 2
reviews existing approaches for texture representation and sub- 
space embeddings. Section 3 describes PCA, LDA, and LPP methods.
In Section 4, we provide the detailed procedures of representing 
texture images using the proposed methods. A variety of experi- 
mental results and discussions are presente d in Section 5. Finally,
Section 6 summarizes the remarks of this paper.
2. Related work 

A major challenge of texture representation is to achieve invari- 
ance under a wide range of geometric and photometric variation s.
Early research work (Haralick. Statistical et al., 1979; Randen and 
Husoy, 1999 ) in this domain mainly focused on the analysis of 
global 2D image transformat ions including in-plane rotation and 
scaling. Because of lacking invariance to general geometric trans- 
formations, these approaches however cannot effectively model 
texture images with large 3D transformat ions such as viewpoin t
change and non-rigid surface deformation . Multi-fracta l analysis 
has recently been proposed and achieves good resilience to 3D 
deformat ions (Varma and Garg, 2007; Xu et al., 2006; Xu et al.,
2009). Texture representat ions based on this method benefit from 
the invariance of fractal dimension to geometric transformat ions.
For example, MFS proposed by Xu et al. (2006, 2009) combined
fractal dimensions of pixel sets grouped by density functions and 
orientati on templates.

In order to make texture representation s more robust to 3D im- 
age transformat ions (e.g., viewpoint change and non-rigid surface 
deformat ion) as well as illumination variation s, most of recent 
methods on texture representat ion rely on extracting local features 
by local image detectors and descriptors (Csurka et al., 2004;
Lazebnik et al., 2005; Zhang et al., 2007 ). A textons dictionary is 
then generated by clustering the extracted local features. For 
example, Lazebnik et al. (2005) proposed a texture representation 
method based on affine-invariant detectors (Harris and Laplacian)
and descriptors (RIFT and SPIN). Zhang et al. (2007) represented
textures by combining multiple local image features (SIFT, RIFT,
and SPIN). Extensive experiments in texture classification and re- 
trieval have demonst rated that histogram of local image feature 
is well adapted for texture representat ion. This is mainly because 
these textons inherit the resistance to geometric and photometric 
transformat ions of local image detectors and descriptors. However,
computati ons of most local image descriptors (Ambai and Yoshida,
2011; Bay et al., 2008; Fan et al., 2011; Lowe, 2004; Rublee et al.,
2011; Winder et al., 2009 ) are complicated and some choices be- 
hind their specific designs are not clear. Most descriptors are care- 
fully crafted by hand with many parameters to be manually tuned,
such as the number of orientation bins, the number of grids in each 
support region, and grids sampling schemes (e.g., Cartesian or log- 
polar). Another limitatio n is their high dimensions that result in 
expensive computati ons in the clustering process to generate tex- 
tons dictionary. Instead of using manually designed local image 
descripto rs, some research work attempted to employ the data- 
driven approach to compute texture representat ions. You et al.
(2009) applied a family of PCA subspace decompositi ons to recog- 
nize the very specified wood texture. A null-space based LDA in 
Liao and Chung (2010) was used in the frequency domain to per- 
form texture recognition.

Similar to texture images resulting from multiple factors of geo- 
metric and photometric transformation s, facial images are also 
formed by interactio ns of multiple modes related to facial geome- 
try (e.g., person identity and expression), pose, and illuminat ion. In 
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order to disentangle and extract the essential factor, i.e., person 
identity, for robust and fast face recognition, face images are usu- 
ally mapped into a face manifold by subspace embedding tech- 
niques. Turk and Pentland (1991) proposed to use PCA to 
represent face images. Belhumeur et al. (1997) used LDA with 
the class specific linear projection to compute a face subspace.
Both PCA and LDA are linear embedding methods . A number of re- 
search efforts have developed to discover the non-linear structure 
hidden in original image space, e.g., Isomap (Tenenbaum et al.,
2000), Local Linear Embedding (LLE) Roweis et al. (2000), and 
Lapacian Eigenmap (Belkin and Niyogi, 2001 ). However, these 
non-linear approaches suffer the out-of-sampl e problem, i.e., a
subspace yielded by such techniques is only defined on training 
data but is not able to extend to new testing data. LPP proposed 
by He et al. (2005) explicitly addressed this problem. LPP models 
a subspace by a nearest-neig hbor graph where the local structure 
of original image space is preserved.

Motivated by the similarity of image formation between texture 
images and face images, we propose to use subspace embedding 
methods to map texture images into a texture subspace. This en- 
ables us to disentangle and extract essential factors of texture 
images. Compared to representation s of local image descriptors,
the data-driven textons based upon subspace embeddings are 
more distinctive, more compact, and with less parameters to tune.
3. Subspace embedding methods 

We investigate both linear and non-linear embedding methods 
to compute a texture subspace . PCA effectively models the Euclid- 
ean structure and the variance of entire data. LDA incorporates 
class specific information and finds the projection that actively dis- 
criminates between different categories . LPP preserves intrinsic lo- 
cal structure and detects a non-linea r subspace hidden in original 
data space.

As an illustration, Fig. 2 shows the distribution s of normalized 
local texture patches mapped into a texture subspace with the 
top three dimensions . In this figure, (a)–(c) correspond to subspac- 
es obtained by PCA, LDA, and LPP, respectively . The mapping of PCA 
tends to spread data to capture the factor of the maximum vari- 
ance. The projection of LDA is based on the factor of texture iden- 
tities, i.e., to cluster texture patches from the same class close 
while to separate the ones from different classes far from each 
other. The embedding of LPP also forms reasonably separated clus- 
ters. It maintains the similarities of local patches in the texture 
subspace and in the original data space.

Let us consider a set of n d-dimension al local texture patches 
X = x1,x1, . . . ,xn belonging to l classes. a 2Rd�k represents the 
Fig. 2. Visualization of normalized texture patches in texture subspaces with top three di
to one texture class. For figure clarity, four texture classes from UIUC Texture dataset a
embedding that maps original data to a new k<<d,-dimension al 
texture subspace , where new data yi 2Rk are defined by yi = aT xi,
i = 1,2, . . . ,n.

3.1. EigenTexton s of PCA 

PCA is an eigenvector approach to model linear variations in the 
data with high dimensions. The goal of PCA is to construct a series 
of mutually orthogonal basis that are able to capture the maximum 
variance directions. It performs embedding by projecting original 
feature vectors with d dimensions to a k-dimension al linear sub- 
space spanned by k leading eigenvec tors of the covariance matrix.
The objective function J(a) is defined as following:

JðaÞ ¼
Xn

i¼1

ðyi � �yÞ2; �y ¼
Xn

i¼1

yi; ð1Þ

a� ¼ arg max 
a

JðaÞ: ð2Þ

The optimal embeddin g a⁄ in Eq. (2) is the EigenT extons, which cor- 
respond to the basis that maximizes the above objective function.

3.2. FisherTexton s of LDA 

LDA is a supervised linear subspace embedding algorithm. By 
encoding class specific information, LDA seeks a projection basis 
on which data points of different classes are separated far from 
each other while simultaneou sly clustering feature points of the 
same class close to each other. Therefore, the subspace yielded 
by LDA is efficient for discrimin ation. The objective function of 
LDA is:

JðaÞ ¼ aT SBa
aT SW a

; ð3Þ

SB ¼
Xl

i¼1

niðmi �mÞðmi �mÞT ; ð4Þ

SW ¼
Xl

i¼1

Xni

j¼1

ðxj
i �miÞðxj

i �miÞT
 !

; ð5Þ

where m is the mean vector of local texture patche s in training set,
mi is the average feature vector of the ith class, ni is the number of 
local texture patches in the ith class, xj

i is the jth local texture patch 
in the ith class, l is the number of classes. SB and SW are betwee n- 
class scatter matrix and within-cla ss scatter matrix, where the class 
specific information is incorporat ed. The optimal mapping basis a⁄
mensions computed by PCA (a), LDA (b), and LPP (c). Each color is encoded according 
re visualized.



Table 1
Texture representa tions based upon different combi nations of embeddings and 
feature channe ls.

Embeddings Image channel Gradient channel 

EigenTextons PCA-Img PCA-Grad 
FisherTextons LDA-Img LDA-Grad 
LaplacianTextons LPP-Img LPP-Grad 
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is the maximi zer of the objective function in Eq. (3). It can be solved 
by a generalized eigenvalue problem defined in Eq. (6). Note the 
upper bound of reduced dimension k = l � 1 as there are at most 
l � 1 nonzero generalized eigenvalues .

SBa� ¼ kSW a�: ð6Þ

In the case of face recognition, SW usually becomes singular.
This stems from the fact that the rank of SW is less than or equal 
to n � l, but the number of training images n is much smaller than 
the number of pixels d in each image. In texture representation ,
this difficulty however can be avoided. In our framework, n is the 
number of local patches in texture images of training set. This 
number is much larger (103) than the amount of images. In addi- 
tion, the dimension d of each local texture patch is far smaller than 
the dimension of the entire image.

It was observed in Cai et al. (2007) that the coefficients of a⁄ used
to map spatially smooth features (e.g., local texture patches) tend to 
become spatially rough. We take the scheme of spatially smooth 
regularization in Cai et al. (2007) to smooth and stabilize the map- 
ping coefficients. Spatially smooth regularization takes advantage 
of the spatial relationship s between pixels within each local texture 
patch and makes the embedding coefficients smoother and more 
stable. The regularized optimal embedding a⁄ is the FisherTextons.

3.3. LaplacianTextons of LPP 

LPP is a non-linear subspace embedding approach that aims to 
preserve intrinsic geometry of original data space. It concentrates 
on discoveri ng the manifold structure hidden in original space by 
modeling an adjacency graph. LPP addresse s the out-of-sampl e
problem of most non-linear embedding techniques. The embed- 
ding obtained by LPP is defined on both training and testing data.
The objective function of LPP is defined as:

JðaÞ ¼
X

i;j

ðyi � yjÞ
2Sij; ð7Þ

Sij ¼
expð�kxi � xjk2

=cÞ; kxi � xjk2
< e

0; otherwise

(
ð8Þ

where S is the adjacenc y matrix that measures the similarity be- 
tween each pair of local texture patches (xi,xj). e defines the range 
of local neighbo rhood. c is a constant scalar value. The intrinsic 
geometry of original data space is captured by S. The objective func- 
tion incurs heavy penalty if a pair of neighbo ring texture patches 
are mapped far apart. So it seeks to obtain such an embedding that,
if xi and xj are close, they will be mapped to a subspac e where yi and
yj are close as well. The optimal embedding a⁄ that minimize s Eq.
(7) can be solved by the general ized eigenvalue problem:

XLXT a ¼ kXDXT a ð9Þ

where D is a diagonal matrix with Dii =
P

jSji. L = D � S is the Lapla- 
cian matrix. The minimum eigenv alue solution a⁄ of Eq. (9) is the 
Laplacia nTextons.

4. Texture representati on framework 

Our proposed framework to build effective texture representa- 
tions is described in this section. A keypoint detector is first used 
to localize texture regions. We then normalize detected regions 
to make local texture patches invariant to scaling and rotation.
The normalized texture patches are then mapped to a texture sub- 
space using the embedding approaches described in Section 3. A
textons dictionary generated from training set is employed to 
quantize embedded normalized texture patches. A texture image 
is in the end represented as a histogram of textons.
4.1. Region detection and normalization 

We begin with a keypoint detector to search salient local image 
structure s. The keypoint detector provides support regions of local 
texture patches. In this paper we adopt Harris–Laplace detector 
and Hessian–Laplace detector (Mikolajczyk and Schmid, 2005 ) as 
keypoint detectors. Both of them are rotation and scaling invariant.
Harris–Laplace detector responses to corner-like structures, and 
Hessian–Laplace detects blob-like structures. They provide salient,
complim entary, and sufficient local texture regions.

The support regions are three times larger than the detected re- 
gions in order to include more signal changes. All the support re- 
gions are first smoothed to reduce noise and aliasing and then 
normalized to a fixed patch size of 41 � 41 that provides sufficient
resolution. A similar patch size was used in Mikolajczyk and 
Schmid (2005). As most state-of-the-ar t local image descriptors 
(Bay et al., 2008; Fan et al., 2011; Ke and Sukthankar, 2004; Lowe,
2004), a dominant orientati on of a patch is computed based on gra- 
dient information. The dominant orientation corresponds to the 
largest bin of a histogram of gradient orientation weighted by gra- 
dient magnitudes and smoothed by a Gaussian window. A patch is 
then rotated to align its dominan t orientation to a canonica l direc- 
tion. This normalization process simplifies the subspace modeling 
problem for embedding algorithms as variations of rotation and 
scaling are significantly suppressed.
4.2. Offline computation of embeddings 

We compute embeddings a⁄ using the algorithms described in 
Section 3. For texture recogniti on, the embeddings can be pre-com- 
puted once and stored. It is important to note that the embeddings 
are computed based upon normalized local image patches rather 
than the entire images as used in face recognition. We explore 
two channels of normalized texture patches to compute 
embeddings: (1) image channel, i.e., local image patch with 
41 � 41 = 1681 dimensions ; (2) gradient channel, i.e., horizontal 
and vertical gradients with 2 � 39 � 39 = 3042 dimensio ns. By 
using two channels of training set, we learn three embeddings:
EigenTexto ns , FisherTextons, and LaplacianTextons. As discussed in 
Section 3, the upper bound of reduced dimension of LDA is l � 1.
We make this number as the reduced dimensio n for LDA. To keep 
good performanc e and consistency with LDA, we also use the first
l � 1 dimensions of PCA and LPP.
5. Experim ents and discussions 

The proposed texture representat ion approach es are evaluated 
in the context of texture classification. As discussed in Sections 3
and 4, we have three embedding methods and two feature chan- 
nels. So there are 6 different combinations of texture representa- 
tions that are investigated in our experiments as shown in 
Table 1. We extensively compare the performanc es of our pro- 
posed methods with the existing state-of-the- arts. They are tested 
on two public available datasets: UIUC Texture (Lazebnik et al.,
2005) and UMD Texture (Xu et al., 2009 ). In addition to in-plane 
rotation and scaling change presented in traditional datasets 
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(Brodatz, 1996; Caputo et al., 2010; Varma and Zisserma n, 2009 ),
the two datasets as shown in Fig. 3 capture more challenging vari- 
ations including viewpoint, illumination , and non-rigid surface 
deformation .

5.1. Experimental setup 

The UIUC dataset includes 25 texture classes and 40 images 
with the resolution of 640 � 480 in each class. These images pres- 
ent strong rotation, scaling, viewpoin t variation, non-rigid surface 
deformation , and lighting change. The UMD dataset consists of 
1000 uncalibrated and unregistered images with the resolution 
of 1280 � 960 pixels. It contains 25 texture categories with 40 
images for each class. These images are also taken under significant
geometric and photometric transformat ions. We downsample ori- 
ginal images of UMD dataset to the resolution of 640 � 480.

In order to facilitate a fair comparison, we follow the standard 
experimental setting to randomly select a portion of images from 
each class as the training set. The remaining images are used as 
the testing set. The training process is based on each correspondi ng 
Fig. 3. Two sample images of 25 texture categ
randomly generated training set. The reported recogniti on accu- 
racy rates in the following experiments are the average results over 
50 runs by the random generated training and testing sets. K-
means clustering (K = 100) is employed to build the textons dictio- 
nary. We employ Support Vector Machines (SVMs) with RBF ker- 
nels as the classifier. The optimal parameters of RBF kernels are 
obtained by 5-fold cross-validati on. The SVMs classifier in essence 
finds the hyperplane that separates two-class data with maximal 
margin. In order to apply SVMs for multi-cla ss problem, we take 
the one-versu s-one strategy.

We compare the proposed methods against the state-of-the- art 
approach es including VG (Varma and Garg, 2007 ), MFS (Xu et al.,
2009), Lazebnik et al. (2005), (Zhang et al. (2007), SIFT (Lowe,
2004), SURF (Bay et al., 2008 ), DAISY (Winder et al., 2009 ), ORB 
(Rublee et al., 2011 ), CARD (Ambai and Yoshida, 2011 ), and 
MROGH (Caputo et al., 2010 ). VG makes use of local density func- 
tion propertie s of a set of image measure ments. MFS combines the 
fractal dimensions of pixel sets grouped by three local density 
functions. Lazebnik extracts local image features by RIFT and SPIN 
from affine regions. Zhang combines local features by multiple 
ories in UIUC and UMD Texture Datasets.
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local image detectors and descriptors. SIFT, SURF, DAISY, ORB,
CARD, and MROGH are the most recent developed local image 
descriptors. They achieve the state-of-the- art performanc es in 
the context of object, texture, and scene classification.

5.2. Evaluations of different combinati ons of embeddin gs and feature 
channels

The classification accuracies for different combinations of 
embeddings and feature channels on UIUC dataset and UMD data- 
set are shown in Fig. 4. The numbers of training images for each 
class are from 1 to 20 and the rest images are used for testing.
Similar conclusions can be drawn from experime nts on the two 
datasets.

As shown in the two figures, for each embedding method, the 
performanc es based on gradient channel outperform the ones 
based on image channel. This is probably because gradient is more 
resistant to lighting variations and preserves relative changes in 
intensity. Thus, gradient feature simplifies embedding methods 
to model the essential factor of texture images. The difference be- 
tween two channels of LPP is more evident. As shown in Eq. (8),
LPP measures pair-wise similarities of local texture patches. So 
the adjacency matrix S is more sensitive to illumination, which re- 
sults in that LPP is relatively less robust to handle lighting change.

LDA-Grad dominate s the recognition rates when the training 
number is small. By explicitly encoding class labels in computin g
the texture subspace, LDA is forced to concentrate on the essential 
factor of texture identities, i.e., textons. PCA-Grad and LPP-Grad 
also demonstrate impressive performanc es. When the training 
images are sufficient (e.g., >10), the performanc es of PCA-Grad 
and LPP-Grad are compara ble to LDA-Grad. But LPP-Grad is more 
sensitive to the number of training images because non-linear 
methods require denser sampling of a manifold to reasonably re- 
cover the intrinsic structure.

5.3. Comparisons with the state-of-the- arts 

Based on the evaluation results from different combinations of 
embedding methods and feature channels, we choose LDA-Grad 
to compare with the state-of-the- art methods for texture recogni- 
tion on UIUC dataset and UMD dataset. The experimental results 
are shown in Table 2. Nt denotes the number of training images 
Fig. 4. Recognition accuracy for different combinations of embedding met
in each class. The best recognition rates of various training 
numbers are the numbers in bold. We can also obtain similar 
conclusio ns on both datasets.

The results in the two tables show that our proposed method 
outperfor ms the state-of- the-art approaches in most cases. For 
example, our method significantly and consistently outperform s
ORB and CARD, both of which are the most recent state-of- the- 
art local image descriptors. The performanc e of our method is also 
much better than texture representat ions based on fractal analysis,
i.e., VG and MFS. In most cases, our approach achieves better per- 
formances than the remaining methods that are based on the 
state-of- the-art local image descripto rs. The impressi ve perfor- 
mances based on sophisticated descriptors originate from the 
resistance to photometric and geometri c transformat ions of local 
image descriptors. Compared to local image descriptors that are 
carefully crafted by hand, out methods are totally data-driven. It 
is based on the constructi on of a texture subspace where the essen- 
tial factor (textons) is manifested but unwanted variation factors 
are reduced or removed. Our method is inferior to SIFT when 
Nt = 5. This is probably due to the fact that only 5 training images 
cannot provide sufficiently dense sampling of a texture subspace .
The computation of embeddings is therefore biased by the rough 
sampling .

5.4. Computational cost of textons 

The experime ntal results have demonstrated that textons- 
based methods are well-adapted for texture representat ion. In nat- 
ural texture images, textons can be generated by clustering local 
texture features. However , the clustering process is always time 
consumin g. If the clustering problem is exactly solved, the compu- 
tational cost of K-means is O(ndc+1 logn) (Inaba et al., 1994 ), where 
n is the number of local texture features to be clustered; c is the 
number of centers; and d is the dimension of feature. So when n
and c are fixed, feature with fewer dimensions are able to reduce 
the computati onal cost and speed up clustering process.

The local image features computed by most descriptors are with 
high dimensions which result in expensive computations . As dis- 
cussed in Section 3.2, the upper bound of reduced dimensio n of 
FisherTex tons is l � 1, where l is the number of classes. Both UIUC 
dataset and UMD dataset contains 25 classes. So we use 24 as the 
reduced dimension of textons. Fig. 5 compares the running time in 
hods and feature channels on (a) UIUC dataset and (b) UMD dataset.



Table 2
Recognition rates of proposed meth od compared with the state-of-the-art approaches on (top) UIUC dataset and (bottom) UMD dataset. Nt is the number of training images in 
each class.

Nt VG MFS Lazebnik Zhang SIFT SURF DAISY ORB CARD MROGH Our method 

5 82.86 82.24 91.12 88.62 91.96 90.73 86.80 79.03 73.99 88.76 90.86 
10 87.85 88.36 94.42 93.17 95.42 95.15 92.54 86.26 83.00 94.13 95.55
15 90.62 91.38 96.64 95.33 96.87 96.14 94.16 89.40 87.18 95.93 97.07
20 92.31 92.74 97.02 96.67 97.84 96.75 95.21 90.73 89.69 96.82 97.91

5 90.92 85.63 90.71 91.56 91.68 90.41 90.81 81.85 84.38 90.39 91.23 
10 94.09 90.82 94.54 96.00 96.01 94.49 94.92 87.87 90.41 94.54 96.06
15 96.22 92.67 96.29 96.79 97.21 96.13 96.47 90.87 93.05 96.01 97.59
20 96.36 93.93 96.95 97.62 97.64 96.98 97.58 92.84 94.23 97.03 98.20

Fig. 5. The running times of different methods in each iteration of K-means clustering. The numbers in parenthesis under each method denote corresponding feature 
dimensions.
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each iteration of clustering on UIUC dataset on an Intel Core2 CPU 
2.13 GHz computer. We use 20 images of each class as the training 
set and extract approximat ely 3000 local patches from each image.
We set the number of clustering centroids c = 100. In the experi- 
ments, our method significantly reduces the running time com- 
pared with most state-of-the-ar t descripto rs. Note the running 
time difference can become huge when a clustering needs a large 
number (e.g., 1000) of iterations.
5.5. Discussions 

The experimental results in the context of texture recognition 
have validated the effectivenes s of our proposed texture represen- 
tation methods. They also reveal a number of interesting points:

First, in all embedding methods, gradient channel consistently 
performs better than image channel, especiall y for LPP. These 
experimental results demonstrat e that gradient channel is more 
suitable for embedding approaches to model the texture subspace 
as gradients suppress lighting variation but preserve relative inten- 
sity change.

Second, both of the linear embedding methods with gradient 
channel achieve the state-of-the- art classification results. PCA pro- 
vides the benefits of capturing the maximum variance of original 
data space but reducing noisy variations. This also confirms that 
the major factors, i.e., the leading eigenvector s, of texture images 
correspond to texture identities even though significant variations 
are presente d. LDA encodes the class specific information in the 
texture subspace which enables the mapping actively discrimi- 
nates between different texture classes.
Third, the non-linea r embedding method, i.e., LPP-Grad , also 
achieves impressive performance on both datasets but is inferior 
to LDA-Grad when the training samples are insufficient. This is dif- 
ferent from the observati on in face recognition domain where non- 
linear methods consistently outperfor m linear ones. This might be 
explained by the differenc e of data sampling . Facial images are al- 
ways densely sampled, which forms smooth variations in terms of 
pose and expression. The smooth changes make the Euclidean dis- 
tance ||xi � xj|| in Eq. (8) more accurate as they are small enough to 
preserve the geodesic distance or the intrinsic geometry hidden in 
a facial manifold. In contrast, images in texture datasets always 
present drastic changes which are not smooth enough to capture 
local structure s in original texture manifold.
6. Conclusi on 

In this paper, we have proposed several texture representat ions 
by subspace embeddings. To the best of our knowledge, this is the 
first work on texture representat ion that systematical ly and 
explicitly considers the texture subspace using both linear and 
non-linea r embedding algorithms. The experime ntal results on 
benchma rk texture datasets have demonstrated the texture sub- 
space computed by embedding methods is effective to disentan gle 
and extract the essential factor of texture images from the interac- 
tions of multiple factors resulting from geometric and photometr ic 
transformat ions. The experimental results also show that the state- 
of-the-ar t performanc es on existing texture classification datasets 
are now near ceiling (e.g., >97%). But in addition to classification
accuracy, our methods significantly improve the computati onal 
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costs and are totally data-driven with much fewer parameters to 
tune. The experiments have validated that textons mapped into a
texture subspace have strong resistance to image deformations,
meanwhile, are more distinctive and more compact. The future 
work will focus on effective combinations (e.g., through Multiple 
Kernel Learning) of texture representat ions computed from differ- 
ent embedding methods.
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