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ABSTRACT 
In this paper, we propose an effective method to recognize human 
actions from sequences of depth maps, which provide additional 
body shape and motion information for action recognition. In our 
approach, we project depth maps onto three orthogonal planes and 
accumulate global activities through entire video sequences to 
generate the Depth Motion Maps (DMM). Histograms of Oriented 
Gradients (HOG) are then computed from DMM as the 
representation of an action video. The recognition results on 
Microsoft Research (MSR) Action3D dataset show that our 
approach significantly outperforms the state-of-the-art methods, 
although our representation is much more compact. In addition, 
we investigate how many frames are required in our framework to 
recognize actions on the MSR Action3D dataset. We observe that 
a short sub-sequence of 30-35 frames is sufficient to achieve 
comparable results to that operating on entire video sequences.      
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1. INTRODUCTION 
Automatic human action recognition has many real-world 
applications including content-based video search, human-
computer interaction, video surveillance, health care, and etc [7-9, 
14, 15]. In the past decades, research of human action recognition 
mainly concentrates on video sequences captured by traditional 
RGB cameras. The spatio-temporal volume-based methods have 
been extensively used for recognizing actions through measuring 
similarities between action volumes. In order to facilitate accurate 
similarity measurements, various detection and representation 
methods of spatio-temporal volumes have been proposed [3, 5-6]. 
Trajectory-based approaches have been explored for recognizing 
human activities as well [10]. In this case, human actions are 

interpreted by the motions of a set of key joints of human body. 
However, in traditional videos it is nontrivial to quickly and 
reliably detect and track human body joints. 

As the imaging technique advances, e.g. the launch of Microsoft 
Kinect, it has become feasible to capture color image sequences as 
well as depth maps in real time by RGBD sensors. The depth 
maps are able to provide additional body shape and motion 
information to distinguish actions that generate similar projections 
from a single view, which motivates recent research work to 
explore action recognition based on depth maps [7, 12-14]. A 
Bag-of-3D-Points or 3D Silhouettes method was proposed in [7] 
to represent postures by sampling 3D points from depth maps. An 
action graph was then employed to model the sampled 3D points 
to perform action recognition. Their experimental results on MSR 
Action3D dataset [7] validated the superiority of 3D silhouettes 
from depth maps over 2D silhouettes from a single view.  

In this paper, we focus on recognizing human actions using 
sequences of depth maps. Fig. 1 illustrates the depth maps for 
actions Tennis Serve, Golf Swing, and Pickup & Throw. As shown 
in this figure, depth maps provide additional shape and motion 
information. However, point cloud of depth maps also incur a 
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Figure 1. The sampled sequences of depth maps for actions of 
(a) Tennis Serve, (b) Golf Swing, and (c) Pickup & Throw.  



great amount of data that might result in expensive computations. 
Here, we propose an effective and efficient approach to recognize 
human actions by extracting Histograms of Oriented Gradients 
(HOG) descriptors from Depth Motion Maps (DMM). The DMM 
are generated by stacking motion energy of depth maps projected 
onto three orthogonal Cartesian planes. The stacked motion 
energy of each action category produces specific appearances and 
shapes on DMM, which can be used to characterize corresponding 
action categories. Motivated by the success of HOG in human 
detection [2], we adopt HOG descriptors to represent DMM. 
Compared to the original depth data, the proposed DMM-HOG 
representation is more compact and more discriminative. In 
addition, we investigate how many frames are sufficient to 
perform action recognition using DMM-HOG. The experiments 
on MSR Action3D dataset [7] demonstrate that a short sub-
sequence (e.g. 35 frames) is sufficient to obtain reasonably 
accurate recognition results for human action recognition. This 
observation is important to make online decisions and to reduce 
observational latency when humans interact with computers.                                  

2. RELATED WORK 
The spatio-temporal volume-based methods are widely used in 
action recognition from videos captured by traditional RGB 
camera. These approaches mainly focus on detection and 
representation of space-time volumes. For example, Bobick and 
Davis [1] accumulated foreground regions of a person as Motion 
History Images (MHI) to explicitly track shape changes. Tian et 
al. [11] employed Harris detector and local HOG descriptor on 
MHI to perform action recognition and detection. Similar to MHI, 
the proposed DMM also stacks foreground motion regions to 
record where and how actions are performed. However, there are 
main differences: 1) MHI only keeps most recent motions to 
capture the recency of action, while DMM accumulates global 
activities through entire video sequences to represent the motion 
intensity; 2) our method stacks motion regions from front/side/top 
views, i.e. three orthogonal projections of depth maps, while only 
a single view is used in MHI. In the most recent work, local 
spatio-temporal features have been extensively used. As object 
recognition using sparse local features in 2D images, an action 
system first detects interest points [3, 5-6] and then computes 
descriptors based on the detected local spatio-temporal volumes. 
The local features are then combined (e.g. bag-of-words) to model 
different activities. The fundamental difference between those 
systems and our method is that they designed features based on 
2D video sequences, instead of 3D depth maps that include 
supplementary information of body shape and motions.   

With the release of RGBD sensors, research of action recognition 
based on depth information has been explored [7, 14]. Li et al. [7] 
used 3D Silhouettes for action recognition. They sampled a set of 
representative 3D points from depth maps to characterize the 
posture being performed in each frame. They first projected depth 
maps onto three orthogonal Cartesian planes and sampled 2D 
points at equal distance along contours of the three projections. 
The 3D points were then retrieved in depth maps according to the 
contour points. However, the sampled 3D points of each frame 
generated a considerable amount of data which resulted in 
expensive computations in clustering training videos of all 
classes. Yang and Tian [14] proposed an EigenJoints-based action 
recognition system by using a NBNN classifier. The compact 
representation of EigenJoints employed joints differences to 
capture action information of static postures, consecutive motions, 
and overall dynamics. However, the 3D positions of skeleton 
joints might be complete wrong if there are sever occlusions [9].  

 
Figure 2. The framework of computing DMM-HOG. HOG 
descriptors extracted from depth motion map of each 
projection view are combined as DMM-HOG, which is used to 
represent the entire action video sequences.    

3. COMPUTAION OF DMM-HOG 
The framework to compute action representation of DMM-HOG 
is demonstrated in Fig. 2. We project depth frames onto three 
planes and compute associated motion energy, which are then 
stacked to obtain DMM. HOG descriptors are extracted from three 
depth motion maps and concatenated as the final action 
representation of DMM-HOG. 

3.1 Depth Motion Maps (DMM) 
In order to make use of the additional body shape and motion 
information from depth maps, each depth frame is projected onto 
three orthogonal Cartesian planes. We then set the region of 
interest of each projected map as the bounding box of foreground 
(i.e. non-zero) region, which is further normalized to a fixed size. 
This normalization is able to reduce intra-class variations, e.g. 
subject heights and motion extents, of different subjects when 
they perform the same action. So each 3D depth frame generates 
three 2D maps according to front, side, and top views, i.e. ����, 
����, and ����. As for each projected map, we obtain its motion 
energy by computing and thresholding the difference between two 
consecutive maps. The binary map of motion energy indicates 
motion regions or where movement happens in each temporal 
interval. It provides a strong clue of the action category being 
performed. We then stack the motion energy through entire video 
sequences to generate the depth motion map �� � 	 for each 
projection view: 

�� � 	 
 ��
���	��� � ���	� 

���

���
� �� 

where � � ��� �� �� denotes the projection view; ���	�  is the 
projected map of the  th frame under projection view �; ! is the 
number frames; 
���	��� � ���	� 
 � � is the binary map of 
motion energy; and � is the threshold. We empirically set � 
 "# 
in our experiments. As shown in Fig. 2, the DMM generated from 
an action video of Pickup & Throw demonstrate specific 



appearances and shapes, which characterize the accumulated 
motion distribution and intensity of this action. The DMM 
representation encodes the 4D information of body shape and 
motion in three projected planes, meanwhile significantly reduces 
considerable data of depth sequences to just three 2D maps.    

3.2 DMM-HOG Descriptor 
HOG is able to characterize the local appearance and shape on 
DMM pretty well by the distribution of local intensity gradients. 
The basic idea is to compute gradient orientation histograms on a 
dense grid of uniformly spaced cells and perform local contrast 
normalization. In each cell, $ different normalizations, i.e. L1-
norm, L2-norm, L1-sqrt, and L2-Hys [2], are computed based on 
adjacent histograms. As for each depth motion map, we evenly 
sample %&' (# non-overlapping cells and ) gradient orientation 
bins. So each �� � 	 generates a descriptor *+,	 with the 
dimension of $ ' %&' (#' ) 
 -&.#. As shown in Fig. 2, we 
concatenate /*+,� � *+,�� *+,�0 as the DMM-HOG descriptor 
which is the input to a linear SVM classifier to recognize human 
actions.  

4. EXPERIMENTS AND DISCUSSIONS 
The proposed method is evaluated on the MSR Action3D dataset 
[7]. We extensively compare our approach with the state-of-the-
art methods under a variety of experimental settings. We further 
investigate how many frames are sufficient to recognize actions 
using DMM-HOG. 

4.1 Experimental Setup 
The MSR Action3D [7] is a public dataset with sequences of 
depth maps captured by a RGBD camera. It includes 20 action 
categories performed by 10 subjects facing to the camera during 
performance. Each action was performed 2 or 3 times by each 
subject. The depth maps are with the resolution of 320×240. The 
20 action categories are chosen in the context of interactions with 
game consoles. As illustrated in Fig. 1, actions in this dataset 
reasonably capture a wide range of motions related to arms, legs, 
torso, and their combinations.  

In order to facilitate a fair comparison, we follow the same 
experimental settings as [7, 14] to split 20 categories into three 
subsets as listed in Table 1. As for each subset, there are three 
different tests, i.e. Test One (One), Test Two (Two), and Cross 
Subject Test (CrSub). In Test One, 1/3 of the subset is used as 
training the rest as testing; in Test Two, 2/3 of the subset is used 
as training and the rest as testing; in Cross Subject Test, half 
subjects are used for training and the rest ones used for testing.    

Table 1. Action subsets and tests used in our experiments. 

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3) 
Horizontal Wave 

Hammer 
Forward Punch 

High Throw 
Hand Clap 

Bend 
Tennis Serve 
Pickup Throw 

High Wave 
Hand Catch 

Draw X 
Draw Tick 

Draw Circle 
Hands Wave 
Forward Kick 
Side Boxing 

High Throw 
Forward Kick 

Side Kick 
Jogging 

Tennis Swing 
Tennis Serve 
Golf Swing 

Pickup Throw 
 

4.2 Evaluations of DMM-HOG 
We first evaluate the effect of DMM normalization size to 
recognition performances. As discussed in Section 3.1, we 
normalize the three depth motion maps to a fixed size. Fig. 3 

shows action recognition accuracies of DMM with different 
normalization sizes under a variety of test sets. The overall 
recognition rates of most test sets are similar across different 
DMM normalization sizes. As for AS1One and AS1Two, the size 
of 200×100 achieves the best results, while for AS2CrSub the size 
of 50×25 outperforms the others. Although lower resolutions are 
able to reduce computational cost in computing HOG, we extract 
HOG descriptors only from the three depth motion maps, instead 
of each video frame. So for each video, the difference of 
computation time between different sizes is limited. The 
following experimental results are based on the size of 200×100. 
As shown in Fig. 3, while the performances in AS1CrSub are 
promising, the recognition accuracies in AS2CrSub and 
AS3CrSub are relatively low. In Cross Subject Test, different 
subjects perform actions with great variations but the amount of 
subjects is limited, which results in considerable intra-class 
variations. Furthermore, some actions in AS2 are quite similar, 
e.g. Draw X, Draw Tick, and Draw Circle, which generates small 
inter-class variations. The performances on cross subject test 
might be improved by adding in more subjects.        

 
Figure 3. The recognition rates (%) of DMM with different 
normalization sizes under a variety of test sets.  

4.3 How Many Frames Are Sufficient 
Most existing systems [3, 5-7] recognize actions by operating on 
entire video sequences. We perform experiments to investigate 
how many frames are sufficient for action recognition with 
reasonably accurate results in our framework. The recognition 
rates using different amount of frames under a variety of test sets 
are demonstrated in Fig. 4. The sub-sequences are chosen from 
the first 1 frames of a given video. As shown in this figure, in 
most cases 30-35 frames are sufficient to achieve comparable 
results to the ones using entire sequences, with quite limited gains 
or even some loss as more frames are added in. As affect 
recognition in [4], the temporal segments of an action can be 
intuitively approximated by the statuses of neutral, onset, apex, 
and offset. The most discriminative information is within the 
status of apex and onset, which are probably covered by the first 
30-35 frames of the MSR Action3D dataset. The sequences after 
apex contribute little or even incur more noise. This observation 
provides important guides to reduce latency of action recognition 
systems where decisions have to be made on line. The following 
results are based on the sub-sequence of first 35 frames.     

4.4 Comparisons to the State-of-the-art  
We compare our DMM-HOG approach with the state-of-the-art 
methods including 3D Silhouettes [7] and EigenJoints [14] on the 
MSR Action3D dataset in Table 2. The recognition accuracies of 
3D Silhouettes and EigenJoints are obtained from [7, 14]. The 



best results under different test sets are highlighted in bold. As 
shown in this table, our method consistently and considerably 
outperforms 3D Silhouettes in all testing cases. The overall 
accuracies under non-cross-subject tests of our method are 
comparable to that of EigenJoints. But our method largely 
outperforms EigenJoints for cross-subject tests. The significant 
improvement of our method in cross-subjects tests is probably 
because the normalization process in computing depth motion 
maps helps to reduce variations of different subjects as well as the 
robust action representation of DMM-HOG. In addition to 
recognition accuracy, out approach is much more compact than 
3D Silhouettes. Moreover, our method achieves the state-of-the-
art results using a short sub-sequence (35 frames), while 3D 
Silhouettes relied on the entire video sequences.  

Table 2. Recognition accuracies (%) of our method compared 
to the state-of-the-art methods on MSR Action3D dataset. 

 3D Silhouettes [7] EigenJoints [14] Ours 

AS1One 89.5 94.7 97.3 
AS2One 89.0 95.4 92.2 
AS3One 96.3 97.3 98.0 
AS1Two 93.4 97.3 98.7 
AS2Two 92.9 98.7 94.7 
AS3Two 96.3 97.3 98.7 

AS1CrSub 72.9 74.5 96.2 
AS2CrSub 71.9 76.1 84.1 
AS3CrSub 79.2 96.4 94.6 

 

5. CONCLUSION 
In this paper, we have proposed an effective action recognition 
method by using DMM-HOG descriptors. The compact and 
discriminative action representation is able to capture the global 
activities from front/side/top views. The experimental results on 
MSR Action3D dataset demonstrate that our approach 
significantly outperforms the existing state-of-the-art methods. In 
addition, we observe that in our framework a short sub-sequence 
of 30-35 frames is sufficient to perform action recognition with 
reasonably accurate results. The future work will focus on 
combining skeleton joints and depth maps to recognize actions, 
and incorporating more subjects to improve recognition in the 
cross subject test.       
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