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In this paper, we address the challenging problem of spatial and temporal action detection in videos. We
first develop an effective approach to localize frame-level action regions through integrating static and
kinematic information by the early- and late-fusion detection scheme. With the intention of exploring
important temporal connections among the detected action regions, we propose a tracking-by-point-
matching algorithm to stitch the discrete action regions into a continuous spatio-temporal action tube.
Recurrent 3D convolutional neural network is used to predict action categories and determine temporal
boundaries of the generated tubes. We then introduce an action footprint map to refine the candidate
tubes based on the action-specific spatial characteristics preserved in the convolutional layers of
R3DCNN. In the extensive experiments, our method achieves superior detection results on the three pub-
lic benchmark datasets: UCFSports, J-HMDB and UCF101.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

Action recognition in videos embodies either two primary tasks,
i.e., action classification and action detection. Most prior studies
[1–6] focus on the task of action classification, which assigns an
action label to the whole video. By contrast, action detection not
only identifies the category of an action but also localizes where
the action happens in a video. Although a number of methods have
been successfully proposed for action classification, action detec-
tion in wild videos still remains as a challenging task and receives
far less attention.

Most methods developed for action detection consider either
only localizing actions in spatial [7,8] or only detecting temporal
boundaries of actions [9–11], which are inadequate for some more
advanced video analytic applications such as video segmentation
and events detection. Some algorithms recently proposed in [12–
20] make a further step to simultaneously detect actions in both
spatial and temporal domains. These methods typically share
two principle ingredients: (1) detecting action regions on each
individual frame and (2) linking the detected action regions
throughout the whole video sequence.

In this paper, we proceed along with this direction to perform
spatial and temporal action detection. Specifically, we develop an
effective frame-level action region detection approach by the pro-
posed early- and late-fusion of static appearances and dynamic
motions. In the early-fusion, we stack the image channels of both
static and optical flow images as an unified input, while the late-
fusion exploits two-stream networks based on static and optical
flow images separately and combines their individual outputs.
Results of both early- and late-fusion models are integrated as
our detected action regions at the frame-level. In order to establish
the important temporal connections among the detected action
regions, we propose a tracking-by-point-matching algorithm to
stitch the discrete action regions into continuous action tubes by
leveraging on the robust region proposals and accurate point
matching. To model the short-term motion cues and long-term
temporal context, we harness the recurrent 3D convolutional neu-
ral network (R3DCNN) to classify action categories and determine
temporal extents of the action tubes. Additionally, we introduce an
action footprint map to prune the candidate tubes by taking advan-
tage of the discriminative spatial attention retained in the convolu-
tional layers of R3DCNN. We refer a detected spatio-temporal
action sequence as an action tube. Fig. 1 illustrates the pipeline
of the proposed framework to generate spato-temporal action
tubes.

The main contributions of this paper are three folds. Firstly, the
early- and late-fusion models are integrated to effectively fuse
static appearances and dynamic motions to detect action regions.
Secondly, we propose a new tracking-by-point-matching
algorithm to connect detected regions in videos. At last, the action
footprint map is utilized to further prune false tubes. As shown in
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Fig. 1. An overview of the proposed action detection framework. (a): continuous static images and corresponding colorized optical flow images in a video. (b): detected action
regions on individual frames. (c): multiple candidate tubes produced by the tracking-by-point-matching algorithm, where the regions enclosed by solid lines are the detected
action regions in (b), and the ones enclosed by dash lines are predicted in the tracking process. (d): the false tube, i.e., the one enclosed by yellow lines in (c), is removed after
the scoring and pruning procedures. (e): the final action tube with refined temporal boundary. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Table 5, our method achieves superior results in comparison to the
competing algorithms. A variety of ablation studies are conducted
in the experiments for the purpose of in-depth analysis of each
component in our approach.

The rest of the paper is organized as follows. Section 2 presents
a brief review of the related work on action recognition. Section 3
introduces the early- and late-fusion schemes for action region
detection at frame-level. In Section 4, we provide the detailed pro-
cedures of the tracking-by-point-matching algorithm to transform
the detected action regions to candidate tubes. Section 5 describes
the refining procedures to produce final action tubes. Experimental
results are presented in Section 6. Finally, we summarize the
remarks of this paper in Section 7.

2. Related work

As one of the primary research directions in action recognition,
action classification has drawn far more attention than action
detection. Driven by the success of deep learning in image classifi-
cation [21], many studies have explored to use convolutional neu-
ral networks (CNNs) for video classification [4,2]. In addition to
applying the 2D convolutions to individual video frames, Tran
et al. [22] introduced the C3D model to simultaneously learn spa-
tial and temporal features using the 3D convolutions with a buffer
of video frames. Xie et al. [23] studied various 3D convolutional
networks for video understanding tasks to be more accurate and
efficient. Feichtenhofer et al. [24] proposed an effective network
architecture for spatio-temporal fusion of video snippets and stud-
ied different ways of fusing appearance and motion information.
PreRNN was proposed in [25] to transform convolutional networks
to recurrent networks for various video understanding tasks
including action classification.

For action detection in videos, most research focuses on either
spatial or temporal detection. To localize actions in spatial, Yu
and Yuan [8] integrated the actionness score with a greedy method
to generate action proposals on individual frames. Jain et al. [26]
computed spatio-temporal bounding boxes by merging a hierarchy
of supervoxels and classified the candidate boxes by motion fea-
tures. Tian et al. [27] extended the deformable part models to
videos for spatial action detection. To determine the temporal
boundaries of actions, a sliding window approach was introduced
in [28] to build pyramid representations in order to capture motion
information at multiple resolutions. Oneata et al. [29] proposed to
replace the sliding window approach with a more efficient branch-
and-bound search. Escorcia et al. [30] introduced a temporal seg-
ment proposal algorithm based on C3D and LSTM. R-C3D was pro-
posed in [10] to save computational costs by sharing convolutional
features between proposal and classification stages. A recurrent
policy network was recently developed to perform temporal action
detection within a time budget [9].

Gkioxari and Malik [13] proposed to detect spatial regions on
individual frames and then link them according to spatial overlap-
ping and classification scores. However, action consistency is not
considered in the linking process which might result in inferior
performance if there are multiple targeting actions in a video.
Weinzaepfel et al. [19] employed a standard tracking algorithm
to track the interest regions over frames to produce a bunch of
tubes. The tracking procedure in [19] depends on the constrained
neighboring windows of the detected regions and is therefore dif-
ficult to deal with the large displacements caused by humanmove-
ments, a common difficulty for action detection in wild videos.
Additionally, the tracking error can be propagated and accumu-
lated into the following tracked regions, which would adversely
impact the overall performance. Peng and Schmid [31] embedded
a multi-region scheme in the Faster R-CNN model, which provides
complementary information on body parts to refine the action
locations, and adopted a linking method to connect the frame-
level detections. Mettes et al. [16] attempted for weakly-
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supervised action detection using only points on a sparse subset of
frames instead of action boxes. Kalogeiton et al. [15] employed the
SSD framework [32] and proposed the action tubelet detector that
takes as input a sequence of frames and outputs tubelets. Hou et al.
[14] proposed a unified tube convolutional neural network to rec-
ognize and localize action based on 3D-CNN. Singh et al. [17] pre-
sented a deep-learning framework based on SSD with an efficient
online algorithm to incrementally construct and label action tubes
from the SSD frame level detections for real-time multiple spatio-
temporal action localization and classification. Zhu et al. [20] pro-
posed a spatio-temporal convolutional network which consists of a
temporal convolutional regression network and a spatial regres-
sion network by empowering convolutional LSTM with regression
capability. Escorcia et al. [12] developed an actor-supervised archi-
tecture that exploits the inherent compositionality of actions in
terms of actor transformations to localize actions. Gu et al. [33]
introduced a new dataset for human action detection called atomic
visual actions (AVA) and proposed an approach for action localiza-
tion that builds upon the current state-of-the-art methods.
3. Action region detection

In the previous studies, R-CNN [34] is widely used to detect spa-
tial regions on individual frames. Features are typically extracted
from appearance and motion models separately and concatenated
as input to a linear SVM classifier. In our framework, we employ
Faster R-CNN [35] as the backbone network for action region
detection. Faster R-CNN consists of region proposal network
(RPN) and Fast R-CNN [36]. RPN generates region proposals and
Fast R-CNN determines their categories. RPN and Fast R-CNN share
the same weights in the convolutional layers. In contrast to the
generic object region detection, temporal context and motion cues
play a critical role in detecting action regions. Therefore to better
exploit the advantages of Faster R-CNN and integrate the appear-
ance and motion information, we develop two complementary
modules including the early- and late-fusion models to detect
the frame-level action regions by effectively fusing the static and
kinematic features, as illustrated in Fig. 2.

In the early-fusion model, we concatenate the RGB channels of
both static and colorized optical flow images as a composite input
to Faster R-CNN. Accordingly we modify the filters of the first con-
volutional layer of Faster R-CNN to make the pre-trained weights
compatible to the 6-channel input image, i.e., replicating the filter
weights along the depth dimension and dividing them by 2 to
Fig. 2. An overview of the early- and late-fusion models for action region detection at t
produced by RPN. (c): region proposals pruned by motion saliency. (d): action regions d
detection results by the late-fusion. (g): the composite input to the early-fusion model by
fusion. (i): the final action region detection by integrating the early- and late-fusion mo
compensate for the numerical scaling change. The rest layers of
Faster R-CNN remain the same. By early fusing the static and opti-
cal flow images as one input, we enforce Faster R-CNN to jointly
learn the inter-related clues between appearances and motions
for detecting action regions.

In late-fusion we adopt two-stream Faster R-CNNs to process
static and dynamic information separately and then integrate the
results by non-maximum suppression (NMS). For the static stream,
both RPN and Fast R-CNN are trained on the static images. The
dynamic stream shares the RPN from the static stream to yield
action region proposals. Since a number of action regions rarely
contain any motions on the optical flow images, we apply a simple
saliency pruning to remove such motionless regions. Fast R-CNN
for the dynamic stream is then separately trained on the optical
flow images. In the end, we integrate the detection results of the
two fusion modules as in Fig. 2. Our evaluations in Table 2 demon-
strate that combining the two fusion models is effective to improve
the overall performance compared to any individual fusion mod-
ule. This suggests that merging the appearance and motion infor-
mation at different stages through Faster R-CNN is able to
provide complementary and mutually corrected action regions.
4. Tracking-by-point-matching

The detected action regions serve as the building blocks to con-
struct spatio-temporal action tubes. These regions however can be
discontinuous in temporal, moreover the action region detector
may assign different labels to the same action of different frames.
To inject the temporal connections into the detected action regions
across a whole video, most previous methods employ either link-
ing or tracking-by-detection algorithms. The linking method in
[13] connected the detected action regions by maximizing their
combination scores, while the tracking-by-detection algorithm in
[19] established action tracks through selecting regions with the
highest scores in the confined neighborhood of detected action
regions. Nevertheless, the linking method could fail if there are
multiple targeting actions in one video, and the tracking-by-
detection algorithm performs not great when an action exhibits
large motion displacements (see Fig. 3).

In order to overcome these restrictions, we propose a new
tracking-by-point-matching algorithm to impose temporal and
semantic continuity on the action sequence. Unlike the traditional
tracking paradigms that confine the tracking procedures with a
manually defined neighboring space, our algorithm can handle
he frame-level. (a): the input frame to the late-fusion model. (b): region proposals
etected in the static stream. (e): action regions detected in the dynamic stream. (f):
concatenating the static and optical flow images. (h): detection results by the early-
dels.



Fig. 3. Algorithm of the tracking-by-point-matching to connect detected action regions.
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large motion displacements by leveraging on the high recall of
action region proposals and accurate point matching.

Algorithm 1 shows the tracking-by-point-matching algorithm
between two consecutive frames in the forward direction. Let

Rn
t

� �N
n¼1 denote a set of action regions detected on frame f t , and

Pm
t

� �M
m¼1 is a set of action region proposals output by RPN of the

action region detection model on the same frame.
PointMatching f t ; f tþ1;R

n
t

� �
is a point matching function which takes

two consecutive frames and an action region as input, and outputs
a set of matched points Mtþ1 on frame f tþ1 corresponding to the
points from the action region Rn

t . Ratio Pm
tþ1;Mtþ1

� �
computes the

proportion of points of Mtþ1 contained in the region proposal
Pm
tþ1. To ensure the predicted region has enough contextual similar-

ity and spatial continuity with the action region on the previous
frame, only the proposals with sufficient matched points and over-
lapped area with the previous action region are added into the
region candidate pool ~Ptþ1.

If there is no more tracked regions or ~Ptþ1 is empty, we assume
that the targeting action vanishes in the following frames and the
tracking procedure should be terminated. Otherwise, the action is
not finished and the action region should be propagated onto the
next frame. Scnn c; rð Þ calculates the score of a region r to class c
based on the action region detection model. The region with the

highest score in the candidate pool ~Ptþ1 is denoted as eRtþ1 which

is used to replace the action region Ri
tþ1 if they are sufficiently over-

lapped, and Ri
tþ1 is removed from the pool of untracked action

regions. This process not only avoids redundant computations
but also prevents error propagation in the following tracking pro-

cedures. Finally, the region eRtþ1 is output as the tracked action
region on frame f tþ1. We empirically set the related thresholds in
our algorithm. By applying the tracking-by-point-matching algo-
rithm on each detected action region recursively in both forward
and backward directions, we can generate multiple candidate
tubes throughout a video.
5. Refinement of candidate tubes

We can roughly acquire the spatial and temporal locations of an
action after the tracking-by-point-matching process. However, if
an action region with a certain class is falsely detected by the
frame-level detection model, the resulting candidate tubes from
this action region are incorrect as well. In this section we focus
on how to prune the plausible candidate tubes and hone their tem-
poral boundaries to generate the final action tubes.
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5.1. Architecture of R3DCNN

We first measure the credibility of each candidate tube by two
sources: (1) the average score of action regions in the tube com-
puted by the frame-level detection model and (2) the average score
of short clips in the tube computed by R3DCNN. We employ
R3DCNN to explicitly take into account the local spatio-temporal
cues and the global temporal evolution in a candidate tube. The
architecture of R3DCNN consists of the pre-trained C3D on Sport-
s1M [22] for short-term spatio-temporal feature extraction and
the PreRNN structure [25] for long-term temporal modeling.

RNN is a sequence-based network to model the temporal pro-
gress through a hidden state ht at time step t, and its activations
also dependent on that of the previous time step:

ht ¼ r W ihyt þWhhht�1 þ bhð Þ; ð1Þ
where r is the activation function, W ih is the input-to-hidden
weight matrix, Whh is the hidden-to-hidden weight matrix, yt is
the input feature, and bh is the bias. In most vision tasks RNN is built
on CNNs that are pre-trained on large-scale datasets for better gen-
eralization. However in the traditional RNN, both W ih and Whh are
randomly initialized. It therefore requires to train such a recurrent
layer from scratch even if a pre-trained CNN is used for feature
extraction (e.g., the pre-trained C3D in our case). We adopt the
recently proposed PreRNN [25] to fuse the recurrent layer with
the fully connected layer of C3D to preserve the important general-
ization property.

Suppose the output of a fully connected layer of C3D at time
step t is:

yt ¼ r W ioxt þ by
� �

; ð2Þ
where W io is the pre-trained input-to-output weight matrix, xt is
the output of previous feed-forward layer, and by is the bias.
PreRNN transfers it into a recurrent layer through:

yt ¼ r W ioxt þWhhyt�1 þ by
� �

: ð3Þ
This recurrent structure, initialized by the fully connected layer of
C3D, only introduces a single hidden-to-hidden weight matrix
Whh that needs to train from scratch, while other weight matrices
have already been pre-trained and can be just fine-tuned. We
choose to use PreRNN to model the temporal connections because
of its simple structure design and superior or on par performance
to other complex variants of recurrent networks as shown in
Table 3.

5.2. Scoring and pruning action tubes

In order to take into account the local region information and
long-term temporal context, we apply both action region detection
model and R3DCNN to each candidate tube to determine the final
score to a class c:

Sctraj ¼ Scavg�cnn þ Scavg�rnn; ð4Þ

where Scavg�cnn is the average score of action regions in the tube by

the frame-level detection model and Scavg�rnn is the average score
of sliced clips in the tube by R3DCNN. Apart from the addition of
the two scores, multiplicative operation [37] can be applied as well.

The action label l of a candidate tube is l ¼ argmaxiS
i
traj, and the final

score is Sltraj.
We observe two types of false tubes—overlapped and drifted

tubes—to remove from the candidate tubes. The overlapped tubes
are mostly aroused from ambiguous classification of the frame-
level action region detection, e.g., the detection model might detect
two action regions rc1t1 and rc2t2 for the same targeting action. After
the tracking-by-point-matching algorithm, two tubes with differ-
ent action classes (c1 and c2) can be produced at the same action
area in the video. The drifted tubes are not unusual for the videos
with very complex background where the falsely matched points
can be generated from cluttered objects and people.

It is straightforward to remove the overlapped tubes in our
framework. If the spatio-temporal IOU of two tubes is greater than
a threshold (0:3 in our experiments), the candidate tube with lower

action tube score Sltraj is excluded. We define the spatio-temporal
IOU between two candidate tubes as the product of the temporal
IOU and the average of spatial IOU over all overlapped frames.

In order to prune the drifted tubes, we propose an action foot-
print map based on the convolutional layers of R3DCNN to leverage
the preserved action-specific spatial characteristics. Suppose s is
the spatial size of feature maps of a convolutional layer in R3DCNN,
and d is the number of feature maps. For a candidate tube, a
sequence of feature maps can be extracted F ¼ f t ; t ¼ 1; . . . ; Tf g,
where T is the number of sliced clips in the tube, and f t 2 Rs�s�d

represents the feature maps computed at the selected convolu-
tional layer of the t-th clip. We convert f t into s� s features each
of which is a d�dimensional descriptor so that each candidate tube
generates s� s� T feature descriptors zi 2 Rd. We aggregate these
feature descriptors on a set of pre-defined spatial neighboring cells
over the selected convolutional layer. Let C indicate the pre-
defined cells and Cj denote the j-th cell. A spatial cell on the
selected convolutional layer is then represented by:

cj ¼ H zif gi2Cj

� �
; j ¼ 1; . . . ; jCj; ð5Þ

where H is the Fisher vector coding operator [38] that aggregates zi
within a local spatial region across the whole action tube. We make
use of cj to perform action classification and the accuracy al

j associ-
ated with the spatial cell Cj (and the corresponding receptive field
on video frames) signifies how discriminative this local spatial
region is in the candidate tube for classifying this action. We in
the end transfer the classification accuracy al

j to an action footprint

factor wl
j by the softmax function: wl

j ¼ exp al
j

� �
=
PjCj

k¼1 exp al
k

� �
.

As demonstrated in Fig. 4, we can compute an action footprint
map at a selected convolutional layer of R3DCNN for each action
category. Since wl

j represents the spatial footprint in the corre-
sponding receptive field of action l or how discriminative the spa-
tial cell Cj is for classifying action l, we can take advantage of this
capability to prune the drifted action tubes. We project a candidate
tube of class l to its action footprint map and get the projected area
with a set of overlapped cells O. We denote the average footprint
factor in the projected area as Sproj ¼

P
i2Ow

l
i=jOj, and the average

footprint factor over the entire action footprint map as
Smap ¼

P
i2Cw

l
i=jCj. We argue that if Sproj of an action tube is less

than Smap, this tube is off the spatial focusing area for its action cat-
egory and therefore should be removed. Our ablation study in
Table 3 shows that the action footprint map is effective in pruning
the drifted tubes and improving the overall performance. More-
over, the features used to compute the maps come for free because
they have been already extracted during the forward pass of
R3DCNN.

5.3. Temporal localization

To decide the temporal boundaries, most previous methods
employ a set of temporal sliding windows of different sizes on
the extracted tracks with varied steps to localize actions.

Instead of using this computationally expensive approach, our
temporal localization is naturally leveraged on the temporal prop-
agating characteristic of R3DCNN. Suppose that a candidate tube



Fig. 4. Illustration of the action footprint map. The enclosed cells by yellow and red lines on the map are the projected areas of candidate tubes. The off-focusing action tube
surrounded by yellow lines with a lower average footprint factor is removed. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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with action class l is sliced into K clips, and the scores of these clips
are S1; . . . ; SKh i. If Si and Sj are the first and last entries in this score
sequence that are lower than a threshold (0:3 in our experiments),
the action tube is then temporally localized between the i-th and j-
th clips. The elements between Si and Sj are not considered because
each action tube generated by the tracking-by-point-matching
algorithm contains only a single action that spans for a continuous
period.
6. Experiments

In this section, we extensively evaluate our proposed method
on the three benchmark datasets for spatial and temporal action
detection: UCFSports [39], J-HMDB [40], and UCF101 [41]. Experi-
mental results show that our algorithm achieves superior results
on the three datasets. A variety of ablation studies are conducted
to analyze the impact of each component in our approach.
6.1. Datasets

UCFSports [39] contains 150 videos of 10 action classes with
annotated bounding boxes available on each frame. In our experi-
ments we follow the standard experimental setting as defined in
[42]. J-HMDB [40] consists of 928 videos of 21 action classes. We
use the ground truth provided by [13] and report the average
results over the three standard training and testing splits in our
experiments. UCF101 [41] is originally dedicated to action classifi-
cation with more than 13,000 videos and 101 classes. For a subset
of 24 classes and 3207 videos, the spatio-temporal extents of the
actions are annotated. As being consistent with the previous stud-
ies [31,19], we report the performance on the first split of three
training and testing splits of this dataset. We use the mean average
precision (mAP) as our evaluation metric for spatial and temporal
action detection. The comparison of our approach with other
methods is also reported by the metric of area under the curve
(AUC) on both UCFSports and J-HMDB datasets.

6.2. Implementation details

We implement the early- and late-fusion models for action
region detection in Caffe [43] and compute optical flow by Epic-
Flow [44]. The Faster R-CNN model is pre-trained on the object
detection dataset of PASCAL VOC 2012 and fine-tuned on each
action detection dataset.

In the tracking-by-point-matching algorithm, we use deep
matching algorithm [45] to match points on the static frames only
and ignore the optical flow images. For each video, a dynamic pool
of untracked regions is constructed from the detected action
regions on all frames, and the tracking procedure terminates when
the dynamic pool is empty.

The input to R3DCNN is a sequence of 16-frame clips. The C3D
network is pre-trained on the Sports1M dataset [2] and fine-tuned
together with PreRNN on the ground truth action tubes.
Considering the trade-off between spatial resolution and feature
representation capacity, we select conv4 in R3DCNN as the convo-
lutional layer to compute the action footprint map and use 2� 2 as
the size of a local spatial cell to aggregate the feature descriptors,
consequently the action footprint map is of size 7� 7 as shown
in Fig. 4.

6.2.1. Evaluation metrics
If a detected action region has an IOU value with any

ground-truth bounding boxes or tubes larger than a threshold r
and the assigned action label equals to that of the ground-truth,
then this detection is considered as correct. Moreover, the IOU
value between two action tubes is defined as the multiplication
of the temporal IOU value and the average of the spatial IOU values
over all overlapping frames. Our results are reported on all three
datasets, measured by the mean average precision (mAP).
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Both frame level and video level mAPs are reported. The area
under the curve (AUC), which measures the area under the ROC
curve, is also reported and compared with other state-of-the-art
results.
Table 1
Comparison of different linking and tracking algorithms for action detection on
UCFSports and J-HMDB.

Methods Recall-Track Video-mAP

UCFSports J-HMDB UCFSports J-HMDB

Linking [13] – – 75.8% 53.3%
Affine Tracking [46] 90.3% 86.6% 74.3% 51.7%
Tracking-by-Detection [19] 98.7% 91.7% 88.2% 54.2%
Tracking-by-Point-Matching 99.1% 92.5% 89.6% 56.3%

Table 2
Comparison of different action region detection models by the measurement of
frame-mAP.

Methods UCFSports J-HMDB

Static 73.5% 54.3%
Optical Flow 72.9% 40.6%
Late Fusion 81.2% 56.8%
Early Fusion 82.8% 57.6%
Early + Late Fusions 84.7% 59.8%

Table 3
Evaluation of different scoring and pruning methods on J-HMDB dataset.

Components

3DCNN
p p

RNN
p

LSTM
PreRNN
Footprint Map

Video-mAP 65.6% 68.7% 6

Fig. 5. Examples of the true and false action detections and the proportion
6.3. Ablation studies

In this section, we focus on the UCFSports and J-HMDB datasets
to inspect and understand the impact of each component and pre-
sent the details of different types of false detections in our method.
Combinations
p p p p

p
p p

p p

9.1% 69.4% 67.5% 73.8%

of each detection type in the final results on UCFSports and J-HMDB.

Fig. 6. AUC values for varying IOU thresholds on UCFSports dataset.



Fig. 7. AUC values on J-HMDB for a set of IOU thresholds.

Table 4
Comparison to the state-of-the-art methods on UCFSports, J-HMDB and UCF101
measured by frame-mAP.

Methods UCFSports J-HMDB UCF101

[13] 68.1% 36.2% –
[19] 71.9% 45.8% 35.8%
[31] 84.5% 58.5% 65.7%
[14] 86.7% 61.3% 41.4%
[15] 87.7% 65.7% 67.1%
Ours 86.8% 63.2% 67.0%
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6.3.1. Evaluation of action region detection
We first compare the static and optical flow images as well as

the early- and late-fusion models in Faster R-CNN for the
frame-level action region detection. As shown in Table 2, for a
single modality, static frames outperform optical flow images. By
combining the appearance and motion information in the late-
fusion, the performance is boosted from 73:5% to 81:2% on UCF-
Sports and from 54:3% to 56:8% on J-HMDB. By fusing the static
and optical flow images as one input and training the network to
jointly learn the correlation between the two modalities, the
early-fusion improves the detection results by 1:6% and 0:8% on
UCFSports and J-HMDB respectively compared against the late-
fusion. Moreover, the frame-level detection can be further
improved after merging both early- and late-fusion results. Our
final action region detection model achieves 84:7% and 59:8%
video-mAPs on UCFSports and J-HMDB. This is evident to show
the benefits of fusing the appearance and motion information at
different stages of Faster R-CNN to provide the complementary
and mutually amended action regions.

6.3.2. Evaluation of tracking algorithms
We next evaluate the effectiveness of the proposed tracking-by-

point-matching algorithm by comparing with the linking method
Table 5
Comparison to the state-of-the-art methods on UCFSports, J-HMDB and UCF101 measured

UCFSports J-HMDB

r 0.5 0.2 0.3 0.4

[13] 75.8 – – –
[19] 90.5 63.1 63.5 62.2
[47] – 73.8 – –
[31] 94.7 74.3 – –
[15] 92.7 – – –
Ours 95.0 75.8 75.2 74.6
[13], the affine tracking algorithm [46], and the traditional
tracking-by-detection paradigm [19] in the context of action detec-
tion. In order to make a fair comparison, our tracking-by-point-
matching algorithm is performed on the same action region detec-
tion method (i.e., R-CNN) as employed in [13,19]. We use the two
evaluation metrics recall-track and mAP for the comparison. The
recall-track measures how well the generated tubes of an action
class cover with the ground-truth tracks, and the mAP reflects
the impact of the corresponding tracking method to the final
detection results. As shown in Table 1, our tracking-by-point-
matching algorithm outperforms both affine tracking and
tracking-by-detection algorithms by the measurement of recall-
track. In addition, our approach achieves more significant improve-
ments compared to other methods on UCFSports and J-HMDB in
term of both frame-mAP and video-mAP.

6.3.3. Evaluation of action tube refinement
Here we evaluate the impacts of R3DCNN and the action foot-

print map for refining the candidate tubes. As observed from
Table 3, by modeling the long-term temporal evolution of a tube,
3DCNN with RNN largely improves over 3DCNN which is merely
based on individual clips of an action tube that lacks the global
temporal context. Furthermore, PreRNN provides an extra boost
over the traditional RNN and LSTM. Additionally, our proposed
action footprint map consistently improves the results by remov-
ing the spatially off-focusing tubes. This clearly shows the advan-
tage of utilizing the action-specific spatial information reserved
in the convolutional layers of R3DCNN to clean the false tubes.

6.3.4. Analysis of false detections
We also analyze the constituents of the false instances detected

by our method. There are three types of false detections: false_cls_-
frame, false_bbox_frame and false_neg_frame; where false_cls_frame
denotes a detection with a correct spatio-temporal location but
assigned a wrong action label; false_bbox_frame indicates a detec-
tion with the accurate class label but insufficient IOU (<0.5) with
the ground truth; false_neg_frame means that our approach fails
to detect a spatio-temporal sequence around the ground truth.
Fig. 5 illustrates examples of the three false detections and the pro-
portion of each type in our final results on UCFSports and J-HMDB.
From this observation, our method can handle the instances of fal-
se_bbox_frame and false_neg_frame quite well, which gives credit to
the effectiveness of our tracking-by-point-matching algorithm. The
majority of false detections in our approach is false_cls_frame, so
exploring more accurate scoring methods to evaluate the credibil-
ity of action tubes is one of our future focuses.

6.4. Comparison to state-of-the-art results

In this section we compare our approach with the state-of-the-
art methods on UCFSports, J-HMDB and UCF101. As observed from
Fig. 6, unlike many other methods, whose AUC values vary signif-
icantly at different IOU thresholds, our approach performs consis-
by video-mAP (%) under different IOU thresholds.

UCF101

0.5 0.05 0.1 0.2 0.3

53.3 – – – –
60.7 54.3 51.7 46.8 37.8
72.0 – – 73.5 –
73.1 78.8 77.3 72.9 65.7
73.7 – – 77.2 –
73.8 79.4 77.7 76.2 73.8



Fig. 8. Illustration of the action detection results by our method on (a) UCFSports,
(b) J-HMDB and (c) UCF101. For each dataset, four videos of different action classes
are shown and each of them is sampled by a sequence of three discontinuous
frames. In each video sequence, the words in white color are the predicted action
classes, and the words in green color denote the ground truth labels. Bounding
boxes with red color are the correct detections, and the ones with yellow color are
the false detections. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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tently at both low and high IOU thresholds. As discussed in the
paper [48], this phenomenon demonstrates the high spatial accu-
racy of our approach, which does not produce many easy negatives
even at the low IOU threshold. We also provide the AUC values for
a set of IOU thresholds on the J-HMDB dataset in Fig. 7.

Both frame-level and video-level mAPs are reported in our
experimental results. A detection is correct if its IoU with a
ground-truth box or tube is greater than 0.5 and the predicted
action label is correct.
frame-mAP. As shown in the Table 4, our algorithm achieves
competitive detection accuracy on the three datasets by the mea-
surement of frame-mAP. Specifically, our method outperforms pre-
vious linking based state-of-the-art method [31] by 1:9% on
UCFSports, 4:7% on J-HMDB and 1:3% on UCF101. This may owe
to our proposed tracking algorithm, which exploits the temporal
consistency to complement individual detections on each frame.

video-mAP. As shown in Table 5, our approach achieves supe-
rior results over other competing algorithms at various IOU thresh-
olds of UCF101. We note that the paper [31] achieves comparable
results to our method on UCFSports and J-HMDB datasets, but our
result significantly outperforms [31] on UCF101 which is a more
challenging dataset. We conjecture that UCF101 requires accurate
temporal localization and the linking method of [31] is not well
adapted in finding the precise temporal boundaries. By contrast,
our approach performs well in both spatial and temporal localiza-
tion tasks. Fig. 8 demonstrates some representative examples of
successes and failures of the detected actions by our method on
the three datasets. As shown in this figure, most of the false detec-
tions have close semantics to the ground truth actions, which is
also consistent to the analysis of our false detections.

7. Conclusions

In this paper, we have proposed an effective framework for
spatio-temporal action detection in videos. Specifically, we
develop the early- and late-fusion scheme to combine the static
and kinematic information through Faster R-CNN to detect action
regions at frame-level. A tracking-by-point-matching algorithm is
proposed to connect the action regions into action tubes through-
out the whole video sequence. Moreover, we employ R3DCNN to
classify the tubes and yield accurate temporal boundaries. In the
end, we introduce the action footprint map to model the action-
specific spatial focus to prune the candidate tubes. In the extensive
evaluations, our method achieves superior results on three bench-
mark datasets.
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