
J. Vis. Commun. Image R. 25 (2014) 2–11
Contents lists available at SciVerse ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate / jvc i
Effective 3D action recognition using EigenJoints
1047-3203/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jvcir.2013.03.001

⇑ Corresponding author.
E-mail addresses: xyang02@ccny.cuny.edu (X. Yang), ytian@ccny.cuny.edu

(Y. Tian).
Xiaodong Yang, YingLi Tian ⇑
Department of Electrical Engineering, The City College of New York (CUNY), NY, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 14 March 2013

Keywords:
Action recognition
RGBD camera
Depth data
Skeleton joints
3D action feature representation
Accumulated motion energy
Informative frame selection
Naïve-Bayes-Nearest-Neighbor
In this paper, we propose an effective method to recognize human actions using 3D skeleton joints recov-
ered from 3D depth data of RGBD cameras. We design a new action feature descriptor for action recog-
nition based on differences of skeleton joints, i.e., EigenJoints which combine action information
including static posture, motion property, and overall dynamics. Accumulated Motion Energy (AME) is
then proposed to perform informative frame selection, which is able to remove noisy frames and reduce
computational cost. We employ non-parametric Naïve-Bayes-Nearest-Neighbor (NBNN) to classify multi-
ple actions. The experimental results on several challenging datasets demonstrate that our approach out-
performs the state-of-the-art methods. In addition, we investigate how many frames are necessary for
our method to perform classification in the scenario of online action recognition. We observe that the first
30–40% frames are sufficient to achieve comparable results to that using the entire video sequences on
the MSR Action3D dataset.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Automatic human action recognition has been widely applied in
a number of real-world applications, e.g., video surveillance, con-
tent-based video search, human–computer interaction, and
health-care [5,16,18,27,29,31]. Traditional research mainly con-
centrates on action recognition of video sequences captured by
RGB cameras [2,3,6,9,10,12,30]. In this case, a video is a sequence
of 2D frames with RGB images in chronological order. There has
been extensive research in the literature on action recognition
for such 2D videos. The spatio-temporal volume-based methods
have been extensively used by measuring the similarity between
two action volumes. In order to enable accurate similarity
measurement, a variety of spatio-temporal volume detection and
representation methods have been proposed [3,6,9,10,27]. Trajec-
tory-based approaches have been widely explored for recognizing
human activities as well [5,12,22]. In these methods, human ac-
tions can be interpreted by a set of key joints or other interesting
points. However, it is not trivial to quickly and reliably extract
and track skeleton joints from traditional RGB videos. On the other
hand, as imaging techniques advance, such as RGBD cameras of
Microsoft Kinect and ASUS Xtion Pro Live, it has become practical
to capture RGB sequences as well as depth maps in real time.
Depth maps are able to provide additional body shape information
to differentiate actions that have similar 2D projections from
a single view. It has therefore motivated recent research work to
investigate action recognition using the 3D information. Li et al.
[11] sampled 3D representative points from the contours of depth
maps of a body surface projected onto three orthogonal Cartesian
planes. An action graph was then used to model the sampled 3D
points for recognition. Their experimental results validated the
superiority of 3D silhouettes over 2D silhouettes from a single
view. Xia et al. [25] mapped 3D joints to a spherical coordinate sys-
tem and used histogram of modified 3D joint positions to achieve
view-invariant posture representation. Sung et al. [23] made use of
features extracted from RGB images, depth maps, and skeleton
joints to recognize human activities in multiple indoor environ-
ments. Ellis et al. [14] employed a Latency Aware Learning method
for action recognition and studied the trade-off between recogni-
tion accuracy and observational latency.

The biological observation from Johansson [13] suggested that
human actions could be modeled by the motion of a set of skeleton
joints. The MoCap system [17] was used to extract 3D joint posi-
tions by using markers and high precision camera array. With
the release of RGBD cameras and the associated SDK, we are able
to recover 3D positions of skeleton joints in real time and with rea-
sonable accuracy [7,20,21]. In this paper, we focus on recognizing
human actions using skeleton joints extracted from sequences of
depth maps. Fig. 1 demonstrates the depth sequences with 20 ex-
tracted skeleton joints in each depth map of actions Tennis Serve
and Golf Swing. As illustrated in this figure, the perception of each
action can be reflected by the motions of individual joints (i.e., mo-
tion property) and the configuration of different joints (i.e., static
postures). Compared to point cloud of human body in depth maps,
these skeleton joints are much more compact.
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Fig. 1. Sampled sequences of depth maps and skeleton joints in actions of (a) Tennis Serve and (b) Golf Swing. Each depth map includes 20 joints. The joints of each body part
are encoded in corresponding colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In this paper, we design a novel action feature descriptor by
adopting the differences of skeleton joints in both temporal and
spatial domains to explicitly model the dynamics of each individ-
ual joint and the configuration of different joints. We then apply
Principal Component Analysis (PCA) to the joint differences to ob-
tain EigenJoints by reducing redundancy and noise. Similar to the
affect recognition in [8], the temporal segments of an action can
be intuitively approximated by the statuses of neutral, onset, apex,
and offset. The discriminative information is however not evenly
distributed in the four statuses. We propose a measurement of
Accumulated Motion Energy (AME) to quantize the distinctiveness
of each frame. The less distinctive frames are then pruned to re-
move noise and reduce computational cost. We employ non-para-
metric Naïve-Bayes-Nearest-Neighbor (NBNN) [4] as the classifier
to recognize multiple action categories. In accordance with the
principles behind NBNN-based image classification, we avoid
quantization of frame descriptors and compute Video-to-Class dis-
tance, instead of Video-to-Video distance. In addition, most existing
methods perform action recognition by operating on entire video
sequences. However, this is not practical to online systems which
require as few frames as possible for recognition. So we further
investigate how many frames are sufficient to obtain reasonably
accurate action recognition in our framework. Experimental results
on the MSR Action3D dataset [11,32] demonstrate that a short sub-
sequence (e.g., the first 30–40% frames) of the entire video is suffi-
cient to perform action recognition, with quite limited gains as
more frames are added in. This observation is important for mak-
ing online decisions and reducing latency when humans interact
with computers.

An earlier version of this paper can be found in [26]. Compared
to our previous work, there are three major extensions that merit
being highlighted: (1) selection of informative frames based on
Accumulated Motion Energy (AME); (2) extensive experiments
on more challenging datasets including the MSR Action3D
[11,32], the Cornell Human Activity [23,33], and the UCF Kinect
[14,34]; and (3) more comparisons with the state-of-the-art work.
The remainder of this paper is organized as follows. Section 2
reviews existing methods for human action recognition. In Sec-
tion 3, we provide detailed procedures of extracting EigenJoints
from each frame. Section 4 briefly introduces NBNN classifier. Sec-
tion 5 describes informative frame selection by using Accumulated
Motion Energy (AME). A variety of experimental results and discus-
sions are presented in Section 6. Finally, Section 7 summarizes the
remarks of this paper.
2. Related work

In traditional RGB videos, human action recognition mainly fo-
cuses on analyzing spatio-temporal volumes. The core of these ap-
proaches is the detection and representation of space-time
volumes. Bobick and Davis [3] stacked foreground regions of a per-
son to explicitly track shape changes. The stacked silhouettes
formed Motion History Images (MHI) and Motion Energy Images
(MEI), which served as action descriptors for template matching.
In most recent work, local spatio-temporal features have been
widely used. Similar to object recognition using sparse local fea-
tures in 2D images, an action recognition system first detects inter-
esting points (e.g., STIPs [10], Cuboids [6], and SURF + MHI [27])
and then computes descriptors (e.g., HOG/HOF [10] and HOG3D
[9]) based on the detected local motion volumes. These local fea-
tures are then combined (e.g., bag-of-words) to represent actions.
The trajectory-based approaches are more similar to our method
that model actions by the motion of a set of points of human body
parts. Sun et al. [22] extracted trajectories through pair-wise SIFT
matching between neighboring frames. The stationary distribution
of a Markov chain model was then used to compute a velocity
description.

The availability of 3D sensors has recently made it possible to
capture depth maps in real time, which has facilitated a variety
of visual recognition tasks, such as human pose estimation and
human action recognition. Shotton et al. [20] proposed an object
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recognition method to predict 3D positions of body joints from a
single depth image. This scheme was further extended in Ref.
[7,21] by aggregating votes from a regression forest and incorpo-
rating dependency relationships between body part locations,
respectively. With the release of RGBD cameras and associated
SDK, research of action recognition based on depth information
and skeleton joints has also been explored as well. Li et al. [11] pro-
posed a Bag-of-3D-Points model for action recognition. They sam-
pled a set of 3D points from a body surface to characterize the
posture being performed in each frame. In order to select the rep-
resentative 3D points, they first sampled 2D points at equal dis-
tance along the contours of projections formed by mapping the
depth map onto three orthogonal Cartesian planes, i.e., XY, XZ,
and YZ planes. The 3D points were then retrieved in the point cloud
of depth maps. Their experiments on the MSR Action3D dataset
[11] showed that this approach considerably outperformed the
methods only using 2D silhouette and were more robust to occlu-
sion. However, in their experiments sampling of 3D points incurred
a great amount of data which resulted in expensive computations
in clustering training samples of all classes. In Ref. [25] Xia et al.
used Histogram of 3D Joint Locations (HOJ3D) to represent posture.
They transferred skeleton joints into a spherical coordinate to
achieve view-invariance. The temporal information was then
coded by discrete Hidden Markov Models (HMM). Sung et al.
[23] employed both visual (RGB) and depth (D) channels to recog-
nize human daily activities. The skeleton joints were used to model
body pose, hand position, and motion information. They also ex-
tracted Histogram of Oriented Gradients (HOG) features from re-
gion of interest in gray images and depth maps to characterize
the appearance information. A hierarchical Maximum Entropy
Markov Model (MEMM) was then used to decompose an activity
to a set of sub-activities and perform action recognition on the Cor-
nell Human Activity dataset [23]. Yang et al. [28] projected 3D
depth maps onto three 2D orthogonal planes that were stacked
as Depth Motion Maps (DMM). HOG was then computed from
DMM as a global representation of human action. An actionlet min-
ing algorithm was proposed in Ref. [24] to perform selection of
skeleton joints. In addition to joint-based feature, they also made
use of depth maps to characterize object shape and appearance.

Most of the above systems relied on entire video sequences
(RGB or RGBD) to perform action recognition. As for an online sce-
nario, a system is however supposed to require as few observations
as possible. Schindler and Gool [19] first investigated how many
frames were required to enable action classification in RGB videos.
They found that short action snippets with a few frames (e.g., 1–7
Fig. 2. The framework of representing EigenJoints. In each frame, we compute three featu
The normalization and PCA are then applied to obtain EigenJoints descriptor for each fr
frames) were almost as informative as the entire video. In order to
reduce the observational latency that is the time a system takes to
observe sufficient information for a good classification, Ellis et al.
[14] proposed to recognize actions based upon an individual
canonical pose from a sequence of postures. The canonical pose
covered the information of posture, motion, and overall variance
by using skeleton joints. They used a classifier based on logistic
regression to minimize observational latency and classify actions
on the UCF Kinect dataset [14].

Motivated by the robust extraction of skeleton joints using RGBD
cameras and the associated SDK, we propose a new action feature
descriptor, EigenJoints, for action recognition. In contrast to tradi-
tional trajectory-based methods, EigenJoints are able to model ac-
tions through more informative and more accurate body joints
without background or noisy points. Compared to the state-of-the-
art features using skeleton joints or depth maps, EigenJoints are
more discriminative, more compact, and easier to compute.

3. Representation of EigenJoints

The proposed framework to compute EigenJoints is demon-
strated in Fig. 2. We employ 3D position differences of skeleton
joints to characterize action information including static posture
feature fcc, consecutive motion feature fcp, and overall dynamics
feature fci in each frame-c. We then concatenate the three features
channels as fc = [fcc, fcp, fci]. According to different experimental set-
tings (e.g., cross subject test or non-cross subject test), two normal-
ization schemes are introduced to obtain fnorm. In the end, PCA is
applied to fnorm to generate EigenJoints.

As shown in Fig. 2, the 3D coordinates of N joints can be ob-
tained from human pose estimation [20] in each frame: X = {x1,x2, -
. . . ,xN}, X 2 R3�N . To characterize the static posture information of
current frame-c, we compute pair-wise joints differences within
the current frame:

fcc ¼ fxi � xjji; j ¼ 1;2; . . . ;N; i–jg ð1Þ

To capture the motion property of current frame-c, the joint dif-
ferences are computed between the current frame-c and its pre-
ceding frame-p:

fcp ¼ fxc
i � xp

j jx
c
i 2 Xc; xp

j 2 Xpg ð2Þ

To represent the offset feature or the overall dynamics of the
current frame-c with respect to the initial frame-i, we calculate
the joint differences between frame-c and frame-i:
re channels of fci, fcc, and fcp to capture the information of offset, posture, and motion.
ame.



Fig. 3. Computation of Accumulated Motion Energy (AME). (a) Motion energy maps associated with each projection view. (b) Normalized AME and selected informative
frames.
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fci ¼ fxc
i � xi

jjxc
i 2 Xc; xi

j 2 Xig ð3Þ

The initial frame tends to approximate the neutral posture. The
combination of the three feature channels forms the preliminary
feature representation of each frame: fc = [fcc, fcp, fci].

In Eqs. (1)–(3) the orders of joints are in accordance to the spec-
ified joint indices. However, the three elements (u,v,d) of a joint x
might be of inconsistent coordinates, e.g., (u,v) are in screen coor-
dinates and d is in world coordinate. So normalization is then ap-
plied to fc to avoid elements in greater numeric ranges
dominating those in smaller numeric ranges. We use linear nor-
malization scheme to scale each element in fc to the range
[�1,+1]. The other benefit of normalization is to reduce intra-class
variations of the same action performed by different subjects. In
our experiments, we normalize fc based on a single video for
cross-subject test and based on entire training videos for non-
cross-subject test.

As illustrated in Fig. 1, in each frame we use N joints which
might result in a huge feature dimension. fcc, fcp, and fci contain
N(N � 1)/2, N2, and N2 pair-wise comparisons, respectively. Each
comparison generates 3 elements (Du,Dv,Dd). In the end, fnorm is
with the dimension of 3 � (N(N � 1)/2 + N2 + N2). For example, in
our method we extract 20 skeleton joints in each frame, fnorm is
with the dimension of 2970. As skeleton joints are already high le-
vel information recovered from depth maps, this large dimension
might be redundant and include noise, which can be illustrated
in Fig. 5. We therefore apply PCA to reduce redundancy and noise
in the centralized fnorm. The final compact representation is Eigen-
Joints, which is the action descriptor of each frame. In the experi-
mental results of Section 6.2, we observe that most eigenvalues
are covered by the first few leading eigenvectors, e.g., the leading
128 eigenvalues weight over 95% on the MSR Action3D dataset.
4. Naïve-Bayes-Nearest-Neighbor classifier

We employ the Naïve-Bayes-Nearest-Neighbor (NBNN) [4] as
the classifier for action recognition. The Nearest-Neighbor (NN) is
a non-parametric classifier which has several advantages over
most learning-based classifiers: (1) naturally deal with a large
number of classes; (2) avoid the overfitting problem; and (3) re-
quire no learning process. Boiman et al. [4] argued that the effec-
tiveness of NN was largely undervalued by the quantization of
local image descriptors and the computation of Image-to-Image
distance. Their experiments showed that frequent descriptors
had low quantization error but rare descriptors had high quantiza-
tion error. However, most discriminative descriptors tend to be
rare. So the quantization used in Bag-of-Words scheme signifi-
cantly degrades the discriminative power of descriptors. In addi-
tion, kernel matrix used by SVM computes Image-to-Image
distance. But they observed that the distance computation of Im-
age-to-Class that made use of descriptor distributions over entire
class provided better generalization than the Image-to-Image
distance.

We follow these concepts of NBNN-based image classification
to NBNN-based video classification (i.e., action recognition). We di-
rectly use frame descriptors of EigenJoints without quantization,
and compute Video-to-Class distance rather than Video-to-Video
distance. In the context of NBNN, the action recognition is per-
formed by:

C� ¼ argmin
c

XM

i¼1

kdi � NNcðdiÞk2 ð4Þ

where di, i = 1,2, . . . ,M is an EigenJoints descriptor of frame-i in a
testing video; M is the number of frames; NNc(di) is the nearest
neighbor of di in class-C. The experiments in Section 6.2 show that
the recognition accuracy based on NBNN outperforms that based on
SVM. The approximate-r-Nearest-Neighbor algorithm, k–d tree [1],
and local NBNN [15] can be used to reduce the computational cost
in NBNN classification.
5. Informative frame selection

As in the affect recognition [8], temporal segments of an action
can be intuitively approximated by the statuses of neutral, onset,
apex, and offset. The discriminative information is not evenly



Fig. 4. Examples of depth maps and skeleton joints associated with each frame of twenty actions in the MSR Action3D dataset.

Fig. 5. (a) Ratios (%) between the sum of the first few (8, 16, 32, 64, 128, and 256) leading eigenvalues and the sum of all eigenvalues of fnorm under different test sets. (b)
Recognition accuracies (%) of NBNN-based EigenJoints with different dimensions under various test sets.
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distributed in the four statuses, but concentrates more on the
frames from onset and apex statuses. On the other hand, motions
of neutral and offset statuses are usually similar across different
action categories. So informative frame selection corresponds to
extract frames from onset and apex but discard frames from neu-
tral and offset. This process enables us to remove confusing frames
and reduce computational cost in the nearest neighbor searching.
We propose to use Accumulated Motion Energy (AME) to measure
the distinctiveness of each frame:

AMEðiÞ ¼
X3

m¼1

Xi

j¼1

jf j
m � f j�1

m j >2
� �

ð5Þ

For a frame-i, its 3D depth map is first projected onto three
orthogonal planes which generate three projected frames fv,
v 2 {1,2,3}. AME(i) is then computed as the summation of motion
energy maps. The motion energy maps of each frame are obtained
by thresholding and accumulating differences between two
consecutive projected frames, as shown in Fig. 3(a). AME vector
is then normalized by L1-norm. Fig. 3(b) illustrates a normalized
AME of action Tennis Serve from the MSR Action3D dataset. As
we can see, when normalized AME is less than 0.1 or larger than
0.9, it increases very slowly as motions in these frames are weak.
It is observed that most of these frames correspond to the statuses
of neutral and offset. As for the frames whose normalized AME are
between 0.1 and 0.9, they present significant motions and make
the curve increase dramatically. Accordingly, these frames come
from the statuses of onset and apex and cover more discriminative
information. In our experiment, we therefore choose frames with
normalized AME between 0.1 and 0.9 as the informative frames.
6. Experiments and discussions

We evaluate our proposed method on three challenging data-
sets including the MSR Action3D [11], the Cornell Human Activity
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[23], and the UCF Kinect [14]. We extensively compare the state-
of-the-art methods to our approach under a variety of experimen-
tal settings.

6.1. Experiments on the MSR Action3D dataset

The MSR Action3D [11] is a benchmark dataset for 3D action
recognition that provides sequences of depth maps and skeleton
joints captured by a RGBD camera. It includes 20 actions performed
by 10 subjects facing the camera during performance. Each subject
performed each action 2 or 3 times. The depth maps are with the
resolution of 320 � 240. For each skeleton joint, the horizontal
and vertical locations are stored in screen coordinates, and depth
position is stored in world coordinates. The 20 actions are chosen
in the context of interactions with game consoles. As shown in
Fig. 4, actions in this dataset reasonably capture a variety of mo-
tions related to arms, legs, torso, and their combinations.

In order to facilitate a fair comparison with the state-of-the-
arts, we follow the same experimental settings as [11,25,26] to
split 20 actions into three subsets as listed in Table 1. In each sub-
set, there are further three different tests: Test One (One), Test Two
(Two), and Cross Subject Test (CrSub). In Test One, 1/3 of the subset
is used as training and the rest as testing; in Test Two, 2/3 of the
subset is used as training and the rest as testing. Both of them
are non-cross-subject tests. In Cross Subject Test, 1/2 of subjects
are used for training and the rest ones used for testing.

6.1.1. Evaluations of EigenJoints and NBNN
We first evaluate energy distributions of joint differences to

determine the dimensionality of EigenJoints. Fig. 5(a) shows ratios
between the sum of first few leading eigenvalues and the sum of all
eigenvalues of fnorm under different test sets. As demonstrated in
this figure, the first 128 eigenvalues (out of 2970) occupy over
95% energy for all experimental settings. The distributions concen-
trate more in the first few leading eigenvalues for Test One and
Test Two, where the first 32 eigenvalues have already weighted
over 95%. The distribution scatters relatively more for Cross Sub-
ject Test, where the leading 32 eigenvalues cover about 85% of
overall energy.

Fig. 5(b) shows recognition accuracies of EigenJoints-based
NBNN with different dimensions under various test sets. It is inter-
esting to observe that the overall recognition rates under a variety
of test sets are stable across different dimensions. For each dimen-
sionality, our method performs well for Test One and Test Two
which are non-cross-subject tests. While the performance in AS3-
CrSub is promising, the accuracies in AS1CrSub and AS2CrSub are
relatively low. This is probably because actions in AS1 and AS2
are with similar motions, but AS3 groups complex but pretty dis-
tinct actions. For example, in AS1 Hammer tends to be confused
with Forward Punch, and Pickup Throw consists of Bend and High
Throw. In Cross Subject Test, different subjects also perform actions
with considerable variations but the number of subjects is limited.
For example, some subjects perform action of Pickup Throw using
Table 1
Three action subsets used in our experiments.

Action set 1 (AS1) Action set 2 (AS2) Action set 3 (AS3)

Horizontal wave (HoW) High wave (HiW) High throw (HT)
Hammer (H) Hand Catch (HC) Forward Kick (FK)
Forward punch (FP) Draw X (DX) Side kick (SK)
High throw (HT) Draw tick (DT) Jogging (J)
Hand clap (HC) Draw circle (DC) Tennis swing (TSw)
Bend (B) Hands wave (HW) Tennis serve (TSr)
Tennis serve (TSr) Forward kick (FK) Golf swing (GS)
Pickup throw (PT) Side boxing (SB) Pickup throw (PT)
only one hand whereas others using two hands, which result in
great intra-class variations. The cross subject performance can be
improved by adding in more subjects.

Considering recognition accuracy and computational cost in
NBNN classification, we choose 32 as the dimensionality for Eigen-
Joints in all of our experiments. As high accuracies of Test One and
Test Two (over 95%, see Fig. 5), we only show the confusion matrix
of our method under Cross Subject Test in Fig. 6. Because of the
considerable variations in the same actions performed by different
subjects, cross subjects generate much larger intra-class variance
than non-cross subjects. In AS1CrSub, most actions are confused
with Pickup Throw, especially for Bend and High Throw. In AS2-
CrSub, Draw X, Draw Tick, and Draw Circle are mutually confused,
as they contain highly similar motions. Although actions in AS3
are complex, they are with significant differences. So the recogni-
tion results are greatly improved in AS3CrSub.

6.1.2. Comparisons with the state-of-the-arts
SVM has been extensively used in computer vision to achieve

the state-of-the-art performances in image and video classifica-
tions. We employ bag-of-words to represent an action video by
quantizing EigenJoints of each frame. K-means clustering is em-
ployed to build the codebook. We empirically choose K = 500 and
RBF kernels to perform classification. The optimal parameters of
RBF kernels are obtained by 5-fold cross-validation. Fig. 7(a) com-
pares the recognition accuracies based on NBNN and SVM. As
shown in this figure, NBNN outperforms SVM in most testing sets.
This observation also validates the superiority of the two schemes
used in NBNN, i.e., non-quantization of EigenJoints and computa-
tion of Video-to-Class distance.

We further compare our approach with the state-of-the-art
methods including Bag-of-3D-Points [11] and HOJ3D [25] under
different testing sets in Fig. 7(b). The overall accuracies are shown
in Table 2. The results of Bag-of-3D-Points and HOJ3D are obtained
from [11,25]. As shown in Fig. 7(b), HOJ3D and our method signif-
icantly outperform Bag-of-3D-Points in most cases. The perfor-
mances of our method are comparable to that of HOJ3D in non-
cross-subject tests. However, under Cross Subject Tests, HOJ3D
and our method behave quite differently. Our method performs
much better than HOJ3D in AS3CrSub, but is inferior to HOJ3D in
AS1CrSub and AS2CrSub. This is probably because AS1 and AS2
group similar actions which are more sensitive to the larger in-
tra-class variations generated in Cross Subject Tests. So the leading
factors computed by PCA might be biased by the large intra-class
variations. But complex actions in AS3 present considerable in-
ter-class variations which overweight intra-class variations. So
the leading factors of PCA still correspond to variations of different
action classes. As for overall accuracies in Table 2, our method and
HOJ3D achieve comparable results in Test One and Test Two. But
our method significantly outperforms HOJ3D under Cross Subject
Test, which is more desirable in real applications. In addition to
recognition accuracy, our method is more compact than Bag-of-
3D-Points and HOJ3D. We further perform a more challenging
experiment by combining subsets AS1-3 and obtain the accuracy
of 74.5%. Wang et al. [24] achieved 88.2% accuracy by using multi-
ple feature channels (skeleton joints and depth maps) and an
actionlet mining algorithm. They observed the actionlet mining
method was effective to handle noises and errors in skeleton joint
positions when sever occlusion occurred. However, the multiple
feature fusion and skeleton joint selection task are out of scope
of this paper.

6.1.3. How many frames are sufficient
Both Bag-of-3D-Points [11] and HOJ3D [25] recognized actions

using entire video sequences. We perform another experiment to
investigate how many frames are sufficient to enable accurate



Fig. 7. (a) Comparisons of recognition accuracy (%) between SVM and NBNN based on EigenJoints. (b) Recognition accuracies (%) of our method and the state-of-the-arts
under a variety of testing sets.

Fig. 6. Confusion matrix of EigenJoints-based NBNN in different action sets under Cross Subject Test. Each row corresponds to ground truth label and each column denotes
the recognition results.

Table 2
Overall recognition accuracies of our method and the state-of-the-arts under three
test sets.

Methods Test one Test two Cross subject test

Bag-of-3D-points [11] 91.6 94.2 74.7
HOJ3D [25] 96.2 97.2 79.0
Ours 95.8 97.8 83.3
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action recognition in our framework. The recognition accuracies
using different number of first few frames under a variety of test
sets are illustrated in Fig. 8. The sub-sequences are extracted from
the first T frames of a given video. As shown in this figure, in most
cases 15–20 frames, i.e., the first 30–40% frames are sufficient to
achieve comparable recognition accuracies to the ones using entire
video sequences. There are rapid diminishing gains as more frames
are added in. These results are highly relevant for action recogni-
tion systems where decisions have to be made on line. An online
system generally requires short latency that is mainly affected by
two factors, i.e., (1) the time a system takes to observe sufficient
frames for making a reasonable prediction and (2) the time a sys-
tem takes to compute on the observations. Therefore cutting down
the number of frames an online system reads in helps to reduce the
costs in both of the two factors.

6.2. Experiments on the Cornell Human Activity dataset

The Cornell Human Activity [23] is a public dataset that pro-
vides sequences of RGB images with aligned depth maps captured
by a Microsoft Kinect camera. In each frame, 15 skeleton joints in
world coordinates are available. Action videos are with the resolu-
tion of 640 � 480 and at the frame rate of 30 Hz. This dataset in-
cludes 12 activities and 1 random action performed by 4 subjects
in 5 different environments (i.e., office, kitchen, bedroom, bath-
room, and living room). The 12 actions are chosen in the context
of human daily activities. As we can see in Fig. 9, activities in this
dataset are captured in uncontrolled environments with cluttered
households and involve extensive human-object interactions.

Since neutral postures are removed in this dataset, we only
employ fcc and fcp in Eqs. (1) and (2) to compute EigenJoints.
We follow the same experimental settings (subject independent
test) as [23] to split the thirteen activities into five different
environments under Cross Subject Tests, as listed in Table 3.
Experimental results are reported as average accuracies of
leave-one-out tests, as shown in Fig. 10. The features used in hier-
archical MEMM include visual (RGB) frames, depth (D) maps, and
skeleton joints, which are much more complex than EigenJoints
that only employs joints. However EigenJoints still significantly
outperforms hierarchical MEMM, e.g., the overall precision and
recall of our method are 71.9% and 66.6% which improves hierar-
chical MEMM’s by 4.0% and 11.1%.

6.3. Experiments on the UCF Kinect dataset

We also evaluate our proposed method on the UCF Kinect data-
set [14]. This dataset was collected by Microsoft Kinect and OpenNI
platform. In each frame only 15 skeleton joints are available, RGB
images and depth maps are not stored. It includes 16 actions



Fig. 8. The recognition accuracies using different number of first few frames in Test One (left), Test Two (middle), and Cross Subject Test (right).

Fig. 9. Examples of the depth maps and skeleton joints associated with each frame for twelve activities in the Cornell Human Activity dataset.

Table 3
Activities in five different environments.

Bathroom Bedroom Kitchen Living room Office

Rinsing mouth Talking on phone Chopping Talking on phone Talking on phone
Brushing teeth Drinking water Stirring Drinking water Writing on whiteboard
Wearing contact lens Opening container Drinking water Talking on couch Drinking water
Random Random Opening container random Relaxing on couch random Working on computer random
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performed by 16 subjects, as shown in Fig. 11. The comparisons of
recognition accuracies of our method and the Latency Aware
Learning (LAL) method [14] are shown in Fig. 12. Since depth maps
are not available in this dataset, we do not perform frame selection
but operate on entire video sequences. In order to reduce observa-
tional latency, the LAL method [14] aimed to search a single
canonical posture for recognition. But to facilitate a fair compari-
son, we only compare to their results computed on full video se-
quences. It can be seen from Fig. 12 that our method achieves
better or equal accuracies in 12 out of 16 action categories. The
average accuracy of all the sixteen activities of our method is
97.1% which outperforms LAL by 1.2%.



Fig. 10. Precisions (%) and Recalls (%) of MEMM and our method under a variety of test sets.

Fig. 11. Sixteen actions and skeleton joints associated with each frame in the UCF Kinect dataset.

Fig. 12. Comparisons of recognition accuracies (%) of LAL and our method.
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7. Conclusion

In this paper, we have proposed an EigenJoints-based action
recognition method using NBNN classifier. The compact and dis-
criminative frame representation of EigenJoints is effective to cap-
ture the properties of static posture, motion between consecutive
frames, and overall dynamics with respect to the neutral status.
The proposed measurement of Accumulated Motion Energy
(AME) quantizes the distinctiveness of each frame. By using AME
to prune less discriminative frames, we can remove noisy frames
and reduce computational cost. The comparisons between NBNN
and SVM show that non-quantization of descriptors and computa-
tion of Video-to-Class distance are more effective for action recog-
nition. In addition, we observe that the first 30–40% frames are
sufficient to enable action recognition with reasonably accurate re-
sults. This observation is highly relevant to the systems where ac-
tion recognition has to be made online. The experimental results
on three challenging datasets of the MSR Action3D, the Cornell Hu-
man Activity, and the UCF Kinect demonstrate that our approach
significantly outperforms the state-of-the-art methods.
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