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ABSTRACT
Recent studies have demonstrated that the implementation
of local space-time interest points has good competence and
robustness in the area of human action recognition, which
has become one of the challenging problems in multimedia
analysis. While most research focuses on the techniques of
detecting feature points or capturing spatial and temporal
information around those points, there has been very lim-
ited research on delving into the pooling strategies which
are also important components of action recognition algo-
rithms. In this paper, we propose a novel pooling frame-
work by categorizing the interest points with respect to their
idiosyncrasies. Specifically, we discuss three pooling strate-
gies based on the optical flow orientation, foreground weight
and spatio-temporal locations respectively and further in-
vestigate the fusion of different pooling strategies. For the
encoding process, instead of the popular bag-of-visual words
(BoV) method, we adopt the improved Fisher Vector (FV)
approach. Our proposed methods are evaluated on a bench-
mark dataset with controlled settings (KTH), and two more
challenging datasets with realistic background (HMDB51
and UCF101). The experimental results demonstrate that
pooling strategies based on the appropriate idiosyncrasies
of individual interest points can improve the performance of
action classification.
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1. INTRODUCTION
Recent years, action recognition has drawn more and more

attentions in the area of multimedia analysis. Among many
approaches developed to solve this challenging problem, lo-
cal space-time features have demonstrated good robustness
and competence since they can describe relatively indepen-
dent representation of actions with respect to their spatio-
temporal shifts. These features are usually detected directly
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Figure 1: An illustration of three pooling strategies
we evaluate in this paper: spatio-temporal pyra-
mid pooling strategy (top row), the optical flow
orientation-based pooling strategy (middle row) and
foreground weight-based pooling strategy (bottom
row). In the first column, the circles in the figure
represent different detected interest points, and dif-
ferent colors represent the distinct properties asso-
ciated with them. Second column shows the pro-
cedure of the interest points categorized according
to their idiosyncrasies. Third column illustrates the
vectors of different channels after sum pooling and
normalization procedures respectively.

from videos and therefore without pre-processing procedures
such as motion segmentation and tracking [30].

1.1 Related Work
Various local feature detectors have been proposed in the

past years. These detectors are usually obtained by max-
imizing a certain saliency function with respect to given
spatio-temporal scales.

By extending the Harris corner detector to the 3D do-
main, Laptev and Lindeberg first proposed the STIPs for
action recognition [14] by extracting sparse interest points in
the space-time domain. Cuboid detector [6] and 3D-Hessain
detector [31] were proposed by Dollár et al. and Willems
et al. respectively. Chakraborty et al. proposed selective
spatio-temporal interest points [5]. By employing state-of-
art optical flow fields, Wang et al. [28, 29] introduced dense



Figure 2: A traditional pipeline of action recognition
algorithms instead of what this paper presents.

trajectories.
To capture the unique appearance and motion informa-

tion around interest points, a number of descriptors have
been proposed [21]. Schüldt et al. [23] tried to tackle ac-
tion recognition problems by applying high-order derivatives
to compute local N-jets descriptors. Laptev [15] introduced
HOG/HOF based on the distribution of image gradients and
optical flow around the neighborhood of interest points. Dol-
lár and his colleagues proposed cuboid descriptor along with
the cuboid feature detector [6]. 3D-SIFT [24] and HOG3D
[12] descriptors both were introduced by extending success-
ful 2D image descriptors into 3D domain. In particular,
the paper [30] conducted exhaustive experiments to evalu-
ate the performance of different feature detectors and feature
descriptors.

In the literatures of human action recognition, bag-of-
visual words (BOV) method is a common encoding strategy
to compute the representation of action videos. It entails
codebook vocabularies usually computed by the K-means
algorithm. The number of clusters is set empirically to ob-
tain the best results. Additionally, to achieve a good clas-
sification performance, a non-linear support vector machine
(SVM) is usually necessary. However as underlined in the
work of Boiman et al., the descriptor quantization is a lossy
process which is one of the main shortcomings of the BOV
representation [2]. Recent research has demonstrated that
the improved Fisher Vector (FV) encoding approach con-
sistently outperforms the traditional BOV method [22] by
implementing the `2 normalization and power normaliza-
tion [11]. The FV representation works well with linear
SVM which makes the action recognition tasks possible for
large-scale datasets while achieving comparable or even bet-
ter results than the BOV encoding approach with non-linear
SVM.

Pooling process often follows the encoding procedure in
action recognition algorithms [17]. Two aggregating strate-
gies are commonly used: sum pooling and max pooling. The
paper [3] conducted an extensive theoretical analysis of fea-
ture pooling strategies, and as it pointed out that sparse fea-
tures prefer max pooling approach [20]. These two pooling
strategies are performed on a global scale, therefore may ne-
glect the discriminative properties of intra-descriptors in the
same video. In our paper, instead of pooling all descriptors
without prejudice, we prove that pooling strategies based
on the idiosyncrasies of local interest points can improve
the discriminative ability of video representations.

1.2 Our Proposed Framework
As discussed above, a classical action recognition algo-

rithm usually comprises of four main components: feature
extraction, feature encoding, pooling and normalization, and
classification as shown in Figure 2. Although many studies
have been done on feature extraction and feature encoding,
there is limited research delving into the pooling strategies

based on the idiosyncrasies of individual interest points.
Most action recognition algorithms employ sum pooling or

max pooling strategy depending on the encoding process im-
plemented. Specifically, sparse coding employs max pooling
while traditional BoV encoding algorithm uses sum pool-
ing. These two standard pooling strategies are based on the
elements of descriptors and they are more likely regarded
as the integrating procedures. However, as demonstrated
by our experiments, the discernability provided by appro-
priate properties-based pooling strategies can have positive
influence on the classification performance. As one of the
most commonly implemented pooling strategies based on
the properties of interest points, spatio-temporal pyramid
pooling method [16], which can be shown to be a special
pooling case in our framework, categorizes detected feature
points by their space-time positions in video clips. Many
previous studies have demonstrated that this approach con-
spicuously improves recognition results. Most literature re-
gards the spatio-temporal pyramid pooling strategy merely
as a special implementation of pyramid match kernel [7].
However we argue that it can also be regarded as a specific
pooling strategy based on the positions of interest points.

Inspired by the spatio-temporal pyramid pooling strat-
egy, which capitalizes the location information of individual
interest points, we propose two other idiosyncrasies-based
pooling strategies to improve the discernability of video rep-
resentations: the optical flow orientation-based and fore-
ground weight-based pooling strategies. The purpose of the
first pooling strategy is to utilize the optical flow orientation
information, while the second is to decide whether the point
belonging to the foreground scenes. Figure 1 illustrates the
three pooling strategies we discussed in this paper. As with
the location information, we argue that optical flow orienta-
tion and foreground weight information of interest points are
also informative properties that could be applied to pooling
procedures.

In addition to the specific pooling strategies we evaluate in
this paper, we generalize a new pooling framework based on
the idiosyncrasies of individual interest points. In our new
framework, interest points are pooled according to their dis-
tinct properties. As demonstrated by our experiments, more
discriminative power can be rendered to the representation
by implementing our pooling framework.

1.3 Contributions and Paper Organization
In this paper, we propose a novel pooling framework by

exploring the idiosyncrasies of individual interest points.
Specifically, we study two novel pooling strategies based on
the interest points properties of optical flow orientation and
foreground weight respectively and further integrate these
two new pooling methods with the popular spatio-temporal
pyramid strategy to achieve better recognition results on dif-
ferent datasets of human action recognition. As presented
in Figure 3, we first conduct three pooling strategies re-
spectively, and then to integrate the performance of these
pooling strategies, we employ a decision-level fusion to fur-
ther improve the results. Our experiments demonstrate that
pooling strategies based on categorizing interest points with
respect to their appropriate and reasonable properties can
improve the action recognition performance.

The rest of the paper is organized as follows. Section 2 dis-
cusses the general idiosyncrasies-based pooling framework
and two novel pooling strategies: the optical flow orientation-



Figure 3: The pipeline of our proposed methods. The main contribution of this paper is denoted by the
dashed box which represents our proposed idiosyncrasies of interest points-based pooling framework. Spatio-
temporal pyramid, optical flow orientation-based strategy and foreground weight-based strategy are all the
specific examples of our new pooling framework.

based and foreground weight-based methods. Spatio-temporal
pyramid pooling strategy is also briefly discussed from a dif-
ferent point of view. Section 3 presents the experimental
setup details and results on different datasets. We conclude
the paper in Section 4.

2. IDIOSYNCRASIES OF INTEREST POINTS-
BASED POOLING STRATEGIES

Two popular encoding frameworks are commonly employed
in action recognition algorithms: BOV words and Fisher
Vector (FV) [32]. Recent research has demonstrated that
the Fisher Vector encoding procedure consistently achieves
more accurate results with appropriate setups. In order to
clearly present our proposed pooling framework, we firstly
simply introduce the FV encoding process.

Let χ = {x1, x2, . . . , xT } be the descriptors in an action
video, assuming our GMMs have the form:

uλ(xt) =

K∑
j=1

ωjuj(xt), t = 1, 2, . . . , T, (1)

in which λ = {ωi, µi,Σi, i = 1 . . .K}, and ωi, µi and Σi
are the mixture weight, mean vector and covariance matrix
of Gaussian ui respectively. Here K is the number of the
GMMs components. We also assume that the covariance
matrices are diagonal and then denote the variance vector by
σ2
i . γt(i) is the soft assignment of descriptor xt to Gaussian

component i:

γt(i) =
ωiui(xt)∑K
j=1 ωjuj(xt)

. (2)

Encoded vector of xt is then given by the concatenation of
vectors Θt

µ,i and Θt
σ,i, which are defined as follows:

Θt
µ,i =

1√
ωi
γt(i)

(
xt − µi
σi

)
, (3)

Θt
σ,i =

1√
2ωi

γt(i)

(
(xt − µi)2

σ2
i

− 1

)
. (4)

The concatenation process can then be expressed as:

ρ(xt) = [Θt
µ,1,Θ

t
σ,1, . . . ,Θ

t
µ,K ,Θ

t
σ,K ]. (5)

Suppose the dimension of the descriptor xi is D, then the
encoded descriptor ρ(xt) has the size 2DK.

After the encoding procedure, an appropriate pooling strat-
egy should be applied. The standard pooling approach is the
sum pooling procedure. Then the power normalization and
`2-normalization are performed to obtain the final represen-
tation. Since sum pooling strategy is based on the elements
of vectors respectively on a global scale, it does not dis-
criminate descriptors in the same video. Therefore it may
neglect some discernabilities intrinsic among descriptors. To
underline the different properties of interest points, spatio-
pyramid pooling strategy is usually applied before standard
sum pooling process.

Grauman et al. first introduced pyramid kernel to clas-
sify different features [7]. Inspired by this work, Lazebnik
et al. [16] proposed a simple but effective spatial pyramid
technique of pooling feature points into different bins based
on their positions in an image. By extending this pooling
strategy into 3D domain, the spatio-temporal pyramid pool-
ing strategy was employed in the paper [27]. This approach
consistently improves recognition performance on different
datasets.

Inspired by the success of spatio-pyramid pooling strat-
egy, we propose a general pooling framework in this paper
which projects interest points based on their distinct prop-
erties. Let η = {y1, y2, . . . , yT } be the set of locations of
detected interest points. Assuming the projection proce-
dure is denoted as ϕ, the mathematical expression of our
idiosyncrasies-based pooling process is defined as:

Cn = ϕ({yt}), (6)

where Cn is an element of the pooling set {C1, C2, . . . , CN}
whose components are the feature indices. The aggregated
vector hn belonging to the pooling component Cn then can
be expressed as:

hn =
1

|Cn|
∑
xt∈Cn

ρ(xt). (7)

Finally, the normalized aggregated vectors are concatenated
to form the video representation:

z = [h′
1, h

′
2, . . . , h

′
N ]T . (8)



Figure 4: An intuitive illustration of optical flow
orientation-based pooling strategy. According to
their optical flow orientation information, interest
points are projected into five categories: −90o ∼
−45o,−45o ∼ 0o, 0o ∼ 45o, 45o ∼ 90o and static.

where h′
n, n = 1, 2, . . . , N, denotes the normalized and trans-

posed form of the aggregated vector hn.
One main contribution of this paper is to evaluate the ef-

fectiveness of the discernability of video representation by
carefully applying reasonable pooling procedure ϕ. In our
proposed framework, interest points are categorized accord-
ing to their properties, and then encoded descriptors are
computed respectively. After that standard pooling and
normalization procedures are operated on each category. Fi-
nally a representation is formed by concatenating vectors of
different categories.

Like the spatio-temporal pyramid pooling strategy, the
pooling procedure ϕ groups interest points into different cat-
egories and therefore increases the discriminative power of
final representation. As implementations of our proposed
pooling framework based on the idiosyncrasies of interest
points, two novel pooling strategies are presented in our pa-
per: optical flow orientation-based and foreground weight-
based pooling strategies.

2.1 Optical Flow Orientation-based Pooling
Strategy

Optical flow is commonly used for tracking, motion esti-
mation, etc. The paper [1] discussed several most commonly
used optical flow algorithms. Since optical flow encodes the
motion information of points in a frame relative to the next
frames, it is an intuitive source to describe action motion.
We incorporate the optical flow orientation information in
the pooling process ϕ to project interest points into different
categories.

As illustrated in Figure 4, the detected interest points are
associated with different optical flow angles. These opti-
cal flow angles indicate the orientations where those interest
points will be in the next frame. Interest points with dif-
ferent optical flow angles contain different information. By
pooling interest points according to optical flow orientations,
more discriminative information is represented for video ac-
tions.

At first, by discarding the interest points without optical
flow value, we compute the optical flow angles by the arctan
function of the projections of amplitudes on X-coordinate
and Y-coordinate, and divide the angles into four categories:
−90o ∼ −45o,−45o ∼ 0o, 0o ∼ 45o, 45o ∼ 90o. The catego-

rization process is the implementation of the pooling proce-
dure ϕ in Eq.(6). However, results on action recognition are
even worse than the baseline. The main reason is that, as
shown in Figure 4, there are many interest points associated
with relatively small or even zero amplitudes of optical flow.
A straightforward intuition is that these interest points are
on the background settings and should be eliminated for fur-
ther action recognition. However the experiment results do
not support this conjecture.

Actually there are many existing literatures discussing
the discernability of background scenes. Furthermore, those
static interest points may also be generated by temporary ac-
tion pause which still provide rich information about action
movement. Neglecting these points will inevitably deterio-
rate the performance. Therefore, we add a static category to
accommodate for this situation, which helps to improve the
performance. This phenomenon of many detected interest
points falling in the static background settings inspires us to
separate the feature points into foreground and background
bins, which will be discussed in next Section.

2.2 Foreground Weight-based Pooling Strategy
Recently, an interesting experiment discussing the back-

ground discriminativity demonstrated that comparable recog-
nition results can be achieved by dealing with the features
points extracted only on the background regions [26]. In-
spired by this work, we employ the value of foreground
weight to measure the confidence of how likely a point be-
longs to the foreground scenes based on the information of
optical flow gradients, color gradients, and visual saliency.

The optical flow gradients-based foreground confidence,
fm, can be calculated as follows:

fm(x, y) =
√
µ2
x + µ2

y + υ2
x + υ2

y ∗ g, (9)

where µx and υx are the gradients of the projection of optical
flow magnitude on the X-coordinate, and correspondingly µy
and υy are the gradients on the Y-coordinate. g represents
the 2D Gausian filter with a fixated variance and the symbol
∗ denotes the convolution process. A visualization of the
confidence map computed by optical flow gradients is shown
in Figure 5(a).

The Frobenius form of the color gradients, fc, is:

fc(x, y) =
√
L2
x + L2

y + a2x + a2y + b2x + b2y ∗ g, (10)

where (Lx, ax, bx) and (Ly, ay, by) are the horizontal and ver-
tical color gradients of the pixel at the position (x, y). Figure
5(b) presents the heatmap of the foreground confidence map
calculated by color gradients.

For the visual saliency, we implement the graph-based vi-
sual saliency (GBVS) algorithm, which was originally pro-
posed by Harel [8].

Assuming that the dissimilarity of two points M(i, j) and
M(p, q) is defined as:

d((i, j) ‖ (p, q)) =

∣∣∣∣log M(i, j)

M(p, q)

∣∣∣∣ . (11)

Considering all pixels in a frame as connecting nodes in a
graph, the GBVS algorithm attempts to assign a weight to
every directed edge from the node (i, j) to the node (p, q):

w((i, j) ‖ (p, q)) = d((i, j) ‖ (p, q)) · F (i− p, j − q). (12)



Figure 6: An illustration of spatio-temporal grids
distributions in our experiments. Top row: 1× 1× 1,
1× 3× 1, 2× 2× 1. Bottom row: 1× 1× 2, 1× 3× 2 and
2× 2× 2. Total of 24 grids are used.

The function F (a, b) is defined as below:

F (a, b) = exp

(
−a

2 + b2

2σ2

)
, (13)

where σ is a user defined parameter, usually in the domain
of one tenth to one fifth of the video width.

After assigning every edge a saliency weight, the outbound
edges are then normalized and the graph is treated as a
Markov chain. The equilibrium distribution of this chain can
be computed as the saliency measure, fs(x, y), of each pixel.
A visualization of visual saliency heatmap is demonstrated
by Figure 5(c).

By incorporating all of three confidence weights, the final
foreground confidence map can be obtained:

fconf = log(fm(fc + fs) + 1). (14)

Figure 5(d) shows the heatmap of final foreground confi-
dence map.

The foreground weight-based pooling strategy is an imple-
mentation of our pooling framework ϕ. It takes into account
the discernability of background and foreground by decid-
ing whether an interest point belonging to the foreground
scenes to improve the discriminative power of video repre-
sentations.

2.3 Spatio-Temporal Pyramid-based Pooling
Strategy

As a successful pooling strategy, spatio-temporal pyra-
mid has been used in many existing action recognition al-
gorithms. It groups interest points according to their posi-
tions in action videos belonging into corresponding geomet-
ric grids and calculate their descriptors respectively. Ag-
gregated vectors are obtained after conducting pooling and
normalization process on each category. The concatenation
of these vectors is presented as the final representation. Al-
though spatio-pyramid approach is evolved from pyramid
classification kernel, it can be regarded as a specific example
of the idiosyncrasies-based pooling strategies which catego-
rizes interest points with respect to their geometric infor-
mation. Therefore by applying other reasonable properties

Methods baseline 4-bins 5-bins
Lucas–Kanade 92.7 91.3 92.2
Horn–Schunck 92.7 92.4 93.2

Table 1: Average accuracies (%) of optical flow
orientation-based pooling strategies on the KTH
dataset. Baseline column represents the results with
standard Fisher Vector method.The 5-bins column
presents the results of our final approach which
projects STIPs into four angle bins and one static
bin, while the column of 4-bins lists the outcomes
only with four angle bins.

of interest points, recognition performance can also be im-
proved due to more discriminative power of representations.

In our paper, we also evaluate how the other two proper-
ties, i.e., optical flow orientation and foreground weight, can
be applied to our proposed pooling framework to improve
the action recognition results. In addition to be an inte-
grating process, the pooling procedure ϕ, can also improve
the discernability of representations by applying appropriate
properties.

3. EXPERIMENTS

3.1 Experimental Setup
Our experiments focus on the pooling strategies based

on the distinct properties of individual detected interest
points. In our implementation, we employ the STIPs devel-
oped by Laptev et al. as the interest points and the popular
HOG/HOF as the descriptors.

HOG/HOF descriptor divides the neighborhood of each
interest point into 18 grids and for each grid 4-bin histograms
of gradient orientations (HOG) and 5-bin histograms of op-
tical flow (HOF) are computed. Therefore for each interest
point, the dimension of the descriptor is 162. After that, a
principal component analysis (PCA) procedure is performed
for the purpose of decorrelation. The dimension of PCA ma-
trix is set to reserve 98% energy of the original descriptor,
which reduces primitive vector size of HOG/HOF from 162
to 126 for all the datasets. Our Gaussian Mixture Mod-
els (GMMs) are trained using the VLFeat library and the
number of components K is set to 256. Therefore for each
interest point, a Fisher Vector is formed with dimension
2× 256× 126 = 64512.

3.1.1 Datasets
Experiments have been conducted on the following datasets:
KTH dataset [23] consists of six action classes: walking,

jogging, running, boxing, waving and clapping. There are
total of 2391 videos under controlled background settings.
Following the original experimental setup of the authors,
video samples are divided into training set and test set ac-
cording to different subjects.

HMDB51 dataset [13] is collected from various sources.
It consists of 51 action categories and 6766 video sequences.
We follow the original protocol using three train-test splits.
For each action class, there are 70 video samples for training
and 30 video samples for testing. This dataset provides both
original and stabilized videos, our results are based on the
original videos.

UCF101 dataset [25] is the newest and largest dataset



Figure 5: The illustrative pipeline of foreground weight-based pooling strategy. (a) The confidence heatmap
computed by optical flow gradients, while (b) and (c) are computed from color gradients and visual saliency
respectively. (d) The final foreground confidence map. (e) An illustration of detected interest points in the
foreground (blue points) and background (brown points) scenes. (f) The concatenation of encoded vectors
of interest points pooling into the foreground and background bins respectively.

which is the extension of the UCF50 dataset. It contains 101
action classes that can be divided into five types: human-
object interaction, body-motion, human-human interaction,
playing musical instruments, and sports. There are total
of 13320 video clips, with fixed frame rate of 25 FPS and
resolution of 320 × 240. Our algorithm is evaluated based
on the three train/test splits provided by the authors.

3.1.2 Optical Flow Orientation-based Pooling Strat-
egy

For the optical flow orientation-based method, we com-
pare two optical flow algorithms on the KTH dataset: 1)
Horn–Schunck [9] and 2) Lucas–Kanade [19]. As observed
in Table 1, the outcomes with Horn–Schunck algorithm out-
perform that with Lucas–Kanade method. The reason may
be that Lucas–Kanade method is a local approach, the op-
tical flow computed for each interest point can differ very
much from others. In contrast, the Horn–Schunck optical
flow algorithm is a global approach and the optical flow in-
formation of each interest point is relatively continuous with
each other. Because STIPs extracted by feature detectors
are sparsely scattered in the whole video, the global Horn–
Schunck optical flow algorithm is more suitable for our al-
gorithm.

At first we divide the optical flow angles into four bins
and categorize detected STIPs accordingly. However the
performance decreases. As discussed in the Section 2.1, the
static STIPs also provide discernable information. By only
using four bins, many STIPs with relative small or even zero
optical flow magnitudes are very likely ignored. Discarding
this information inevitably results in inferior outcomes.

To accommodate for those static STIPs, we categorize the
interest points into five bins by adding a static category:
−90o ∼ −45o,−45o ∼ 0o, 0o ∼ 45o, 45o ∼ 90o and static.
Fisher Vectors are computed for each interest points and
then standard sum pooling is performed on each bin. Af-
ter that power normalization and `2 normalization are con-
ducted to these five vectors respectively. Finally they are
concatenated into one representation with a dimension of
322560. Linear SVMs are used as the classifiers. Our exper-
iments demonstrate that by categorizing the STIPs accord-

ing to the angles of optical flow, the recognition performance
can be improved, which confirms our primitive conjecture
about pooling strategies.

3.1.3 Foreground Weight-based Pooling Strategy
In addition to the optical flow orientation-based pooling

strategy, we also propose a foreground weight-based pool-
ing strategy inspired by [26]. According to Cao et al. [4],
there are only 18% of all the STIPs detected by Laptev’s de-
tector corresponding to the actions performed in the MSR
I dataset, while the rest of the STIPs belong to the back-
ground. However, based on the discussion in [26], the infor-
mation of STIPs associated with the background can also
benefit action classification. For example the action of rid-
ing a bike, the background of a road is most likely associated
with the action. Indeed, the background discriminativity
can achieve comparable performance as well, which inspires
us to categorize the STIPs into foreground and background
bins respectively.

We compute the foreground weight by taking into account
of motion gradients, color gradients and visual saliency. To
cancel out the effect of camera motion, instead of directly
using optical flow magnitudes, we compute the derivatives of
the horizontal and vertical amplitudes of optical flow respec-
tively, and then the Frobenius form of these gradients. Color
information is also an important cue for the foreground. In
this paper, we employ the LAB color space to compute the
color gradients of each pixel. Then visual saliency is con-
ducted to compute the areas capturing most human atten-
tions. All these three kinds of information are integrated to
obtain the final foreground confidence map fconf .

Unlike the approach employed by [26], which applied max-
normalization directly to the confidence map fconf , we per-
form power normalization prior to the max-normalization.
This technique is also employed in [22] to reduce the peak
phenomenon and improve the performance of Fisher Ker-
nel. Figure 5 illustrates the foreground weight-based pool-
ing strategy and presents visualizations of the confidence
maps computed from optical flow gradients (fm), color gra-
dients (fc) and visual saliency (fs). We can observe that
optical flow and color gradients are computed with respect



Methods KTH HMDB51 UCF101

BoV 91.8 24.5 43.9
FV 92.7 36.2 64.3
OFA 93.2 37.8 66.4
ForeW 92.5 38.0 65.8
Pyramid 93.0 40.2 69.2

Fusion 93.6 (+0.9) 41.5 (+5.3) 71.8 (+7.5)

Table 2: Average accuracies (%) of optical flow
orientation-based (OFA) and foreground weight-
based (ForeW) pooling strategies compared with
BoV, FV, and spatio-temporal pyramid (Pyramid)
method on the KTH, HMDB51, and UCF101
datasets. The average accuracies of decision-level fu-
sion of OFA, ForeW and Pyramid are also presented.
Improvements compared with the FV method are
shown in the parentheses.

to motion and spatial edges, while visual saliency providing
complementary information about the areas capturing main
focus of human attention. The outlines of the heatmap fconf
are thicker than that of optical flow gradients and color gra-
dients heatmaps. Therefore, more STIPs are incorporated in
the foreground to improve the robustness of our algorithm.

We project the STIPs into two different bins according to
a threshold of foreground weight. Fisher Vectors are com-
puted for these interest points respectively. And then same
pooling and normalization procedures are conducted as the
optical flow orientation-based approach. These two bins are
concatenated to form the final representation with a dimen-
sion of 129024.

3.1.4 Spatio-Temporal Pyramid-based Pooling Strat-
egy

We also implement spatio-temporal pyramid approach with
Fisher Vector encoding procedure on all of three datasets.
Six spatio-temporal grids distributions are employed: 1 ×
1× 1, 1× 3× 1, 2× 2× 1, 1× 1× 2, 1× 3× 2 and 2× 2× 2.

A visualization of our spatio-pyramid approach is pre-
sented in Figure 6. How to divide grids distributions to
achieve best results is an engineering trick depending on dif-
ferent datasets. Since our paper focuses on a generalized
pooling approach, we apply the same parameters of pooling
strategies to all the datasets.

By decision-level fusion of spatio-temporal pyramid, opti-
cal flow orientation-based and foreground weight-based pool-
ing methods, an improved performance is achieved compared
with the baseline.

3.2 Experimental Results and Analysis
As shown in Table 2, the Fisher Vector encoding pro-

cedure outperforms BOV words approach on all datasets.
The reason is that Fisher Vector is based on a generative
model which encodes more higher order information, while
BOV words method is based on hard assignments to gen-
erated codewords [18]. In following analysis, we choose the
results of Fisher Vector encoding procedure with standard
sum pooling strategy as the baseline.

The performance of the foreground weight-based pool-
ing strategy is slightly lower than the baseline on the KTH
dataset, since the background is relatively clean for the KTH
dataset while the majority of the STIPs lay on the fore-

Figure 7: The average accuracies of foreground
weight-based pooling strategy on the HMDB51
dataset according to different foreground thresholds.

ground scenes, which makes the static bin relatively re-
dundant. For the other two datasets, both optical flow
orientation-based and foreground weight-based methods have
positive influence on the recognition performance. Specifi-
cally, for the HMDB51 dataset, OFA method improves per-
formance from 36.2% to 37.8% and ForeW method improves
to 38.0%. For the dataset UCF101, OFA achieves an im-
provement of 2.1% compared with the baseline outcome 64.3%
and ForeW method has 1.5% increase.

However, except for the KTH dataset, the spatio-temporal
pyramid approach consistently outperforms other methods.
It improves 4.0% and 4.9% respectively for the HMDB51
dataset and the UCF101 dataset. Since the dimension of
the representation of spatio-temporal pyramid approach is
24 × 64512 = 1548288, it is an unwise idea to fuse spatio-
temporal method with the other two in the descriptor level
or representation level [10]. Decision-level fusion approach
is applied to produce a better recognition performance. In
our experiments, we apply a geometric mean approach to
the KTH and UCF101 datasets and an arithmetical mean
method to the HMDB51 dataset to achieve a better perfor-
mance.

As shown in the last row of Table 2, for the KTH dataset
there is 0.9% boost after fusion compared with the base-
line results. As for the HMDB51 and UCF101 datasets, the
improvements are 5.3% and 7.5% respectively.

We also explore the influence of the selection of threshold
of foreground weight on the HMDB51 dataset. As shown
in Figure 7, the best result is achieved with 0.05 threshold
among four thresholds: 0.4, 0.1, 0.05, 0.01. All the results of
ForeW method presented in the Table 2 are obtained with
the threshold 0.05.

4. CONCLUSION
In this paper, we have explored the importance of pooling

strategies based on the idiosyncrasies of individual STIPs.
Specifically three pooling approaches are discussed: spatio-
temporal pyramid, optical flow orientation-based and fore-
ground weight-based methods.

Unlike the commonly used sum pooling and max pooling
strategies which are performed on the elements of vectors re-
spectively in the global domain and may neglect the discrim-
inative power of different descriptors of STIPs, our proposed



pooling framework emphasizes the distinct properties of in-
dividual STIPs and therefore renders more discernability to
video representations. For the local space-temporal interest
points-based action recognition algorithms, the appropriate
pooling strategies based on the peculiar idiosyncrasies of in-
dividual interest points can provide important complemen-
tary information to improve the final performance.
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