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Abstract

Nowadays tremendous amounts of visual data including images and
videos are explosively increasing with the rapid development of digital
cameras and the Internet. As one of the most active and promising
research areas in computer vision, recognition of human activity has
demonstrated great capacity and potential for automatic and intel-
ligent analysis of visual information. Motivated by this trend and
demand, this dissertation is dedicated to developing effective and effi-
cient feature representation techniques to recognize human activities
in both color and depth modalities. We first present a general surveil-
lance event detection system which explores motion feature extrac-
tion, video clip representation, and detection model learning to handle
the large-scale noisy and imbalanced data learning problem. We then
propose a novel framework of super sparse coding vector to jointly
model and aggregate low-level motion features and spatio-temporal
cues into a discriminative and compact representation. Along with
the advance of imaging techniques, the recent emergence of cost-
effectiveness and easy-operation depth sensors greatly facilitates the
task of human activity recognition. Our first approach using depth
cameras is to employ the skeleton joints recovered from depth maps
to capture the action information of static posture, motion property,
and overall dynamics. Based on the projected depth maps, we also
introduce the approach of depth motion maps to characterize the ac-
cumulated motion intensity and distribution in a global manner. In
order to explicitly capture the 3-dimensional shapes and motion cues,
we extend the surface normal to polynormal which is used to jointly
encode the local geometric and temporal information. We then pro-
pose a novel scheme of super normal vector to aggregate the low-level
polynormal into a discriminative representation. Extensive experi-
ments demonstrate that the feature representation techniques devel-
oped in this dissertation achieve the state-of-the-art performances on
various activity recognition tasks.
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Chapter 1

Introduction

In the current era of data divulgence, we are now facing a flourishing of vi-
sual information including images and videos than ever before. As one of the
most promising research areas in computer vision, recognizing human activity
has caught the interest from both academia and industry in the past decades.
Automatic human activity recognition has been widely applied to a number of
real-world applications, e.g., surveillance event detection, human-computer inter-
action, content-based video search and summarization, etc. Most research work
on activity recognition focuses on the videos captured by conventional visible
light cameras. Recent emergence of cost-effective depth sensors facilitates a va-
riety of visual recognition tasks including activity recognition as well. Then how
to effectively represent and efficiently exploit human activities from large-scale
video sequences is an open problem. This dissertation is dedicated to developing
effective feature representations for human activity recognition in both color and
depth sequences.

Recognition of human activity can be performed at various abstract levels.
Here we adopt the taxonomies proposed in [49]. A movement is a primitive
motion pattern that can be depicted at the limb level, e.g., right leg forward.
An action contains a series of atomic movements, e.g., running. An activity
consists of complex sequence of actions, e.g., a football team scoring a goal. These
three levels roughly correspond to the low-level, mid-level, and high-level vision
tasks. However, there is no hard boundary but a significant gray area among the
three levels. In this dissertation, human activity is used to indicate the general
categories if not specified. It can involve hand gestures, single person, multiple
people, and human-object interactions.

Recent years have witnessed the growing popularity in applications of human
activity recognition. With the relentless growth of online videos, it has become
necessary to develop effective content-based video summarizing and searching
methods [8] to improve video storage and indexing. Along with the deployment of
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huge amounts of surveillance cameras, security agencies are also seeking intelligent
solutions [15] to assist or replace human operators for traditional surveillance
systems that are with heavy demand of human monitors. As one of the most
important modes in nonverbal communication, understanding human activity
is able to enable computers and environments to better interact with humans
[17]. Similar to physical attributes (e.g., fingerprint), human activity (e.g., gait)
can also function as important behavioral biometrics [57] to recognize human
identity with the advantage that subject cooperation is not required in collection.
Moreover, motion synthesis [16] is widely applied in gaming and movie industry
to produce a large variety of realistic human actions.

It is of great challenge to recognize human activity from video sequences in the
wild due to large variations caused by the factors such as viewpoint, occlusion,
scaling, motion style, performance duration, cluttered background, etc. To repre-
sent human activity in a global way, the spatio-temporal volume based methods
[4] [20] [78] are proposed by describing the region of interest of a person as a
whole. These features usually originate from either edges, silhouettes, or optical
flow. Similar to other global representations, they are sensitive to noise, occlu-
sion, and viewpoint change. Most recent approaches of human activity recogni-
tion hinge on the bag-of-visual-words (BOV) representations [38] [43] [71] which
consist in computing and aggregating statistics from local space-time features
[72] [73]. In this framework, a video representation can be obtained by extracting
low-level features, coding them over a visual dictionary, and pooling the codes
in some well-chosen spatio-temporal cells which are used to globally capture the
spatial layout and temporal order. A significant progress has been made in the
development of local space-time features [12] [32] [37] [79]. After low-level feature
extraction, the approaches similar to those used in image classification [39] [53]
[82] are generally employed.

As the imaging technique advances, the advent of depth sensors (e.g., Mi-
crosoft Kinect and Asus Xtion Pro) brings great benefits to a variety of visual
recognition tasks including object recognition [36], indoor place segmentation
[61], environment reconstruction [54], as well as human activity recognition [51]
[75] [87]. Compared to conventional color frames in activity recognition, depth
sequences provide the following merits: (1) additional shape cues to provide more
informative geometric description, which has been successfully applied to recover
skeleton joints from a single depth map; (2) precluded color and texture, which
significantly eases the problems of human detection and segmentation; (3) ro-
bustness to visible lighting, which greatly benefits to the systems monitoring in
the dark environment. A number of representations of human activity in depth
sequences have been explored, ranging from skeleton joints [75] [84], cloud points
[74], projected depth maps [42] [89], local interest points [23] [80], to surface
normals [51] [87].
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The main contributions of this dissertation focus on developing effective fea-
ture representations for human activity recognition in both color and depth se-
quences. We present a set of low-level features (e.g., ActionHOG, depth motion
map, polynormal) to jointly characterize the motion and appearance cues. We
also introduce effective models to capture the spatial layout and temporal or-
der (e.g., super location vector, adaptive spatio-temporal pyramid). Moreover,
we propose novel schemes to aggregate low-level features into the discriminative
representations (e.g., super sparse coding vector, super normal vector).

The remainder of this dissertation is organized as follows. We divide the
whole dissertation into two main parts, i.e., feature representations in color videos
(Chapters 2 and 3) and depth sequences (Chapters 4 to 6). Chapter 2 presents a
general surveillance event detection system. We introduce an efficient method to
extract spatio-temporal features and an effective algorithm to handle the highly
imbalanced large-scale data learning. In Chapter 3, we propose a novel framework
of super sparse coding vector (SSCV) to aggregate low-level motion features and
model spatio-temporal information in a discriminative and compact representa-
tion. Chapter 4 describes an effective approach of EigenJoints based on skeleton
joints to recognize human activities in depth sequences. A global representation
of human activity using depth motion maps (DMM) is presented in Chapter 5.
In Chapter 6, we propose a novel scheme of super normal vector (SNV) based on
the extended surface normals. Finally, Chapter 7 concludes the remarks of this
dissertation.
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Chapter 2

Human Activity Recognition in
Surveillance Event Detection

Automatic event detection of surveillance videos has many real-world security
applications for public areas e.g., airports, banks, supermarkets, etc. [29] [83].
In comparison to some constrained scenarios with limited people and definite
activities, real-world surveillance videos encounter various challenges including
large variances of viewpoint, scaling, lighting, and highly cluttered background.
We develop a general surveillance event detection system which is evaluated by the
TRECVID Surveillance Event Detection (SED) [62]. This task provides a corpus
of 144-hour surveillance videos under five camera views captured from the London
Gatwick International Airport. In this dataset, 99-hour videos can be used as the
training set with annotations of temporal extents and event labels. Our system is
evaluated on all the seven events defined by this task, i.e., CellToEar, Embrace,
ObjectPut, PeopleMeet, PeopleSplitUp, PersonRuns, and Pointing.

In this chapter, we present a general surveillance event detection system, one
of the most important and challenging applications in human activity recogni-
tion. In the proposed system, a sliding temporal window is used as the detection
unit, which is represented by a histogram of low-level spatio-temporal features
including ActionHOG and STIP. We estimate the spatial priors of a variety of
events through the spatial distributions of activities under different camera views
in the training set. Compared to the linear kernel in SVM, non-linear kernels tend
to have superior accuracy but with significantly increased computational cost in
both training and testing. The explicit feature mapping is therefore employed
to approximate non-linear kernels to facilitate the large-scale linear SVM learn-
ing. In order to deal with the highly imbalanced nature (i.e., negative samples
are far more than positive samples) of surveillance data, we introduce the Cas-
cadeSVMs algorithm which contains a set of cascaded linear SVM corresponding
to the specific events and camera views.
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Figure 2.1: Overview of the proposed surveillance event detection system.

The remainder of this chapter is organized as follows. Section 2.1 introduces
the overall system architecture. In Section 2.2 and 2.3, we provide detailed pro-
cedures of feature extraction and video representation. Section 2.4 describes the
CascadeSVMs algorithm and post processing. A variety of experimental results
and discussions are presented in Section 2.5. Finally, Section 2.6 summarizes the
remarks of our system.

2.1 System Overview

Figure 2.1 demonstrates the surveillance event detection system which includes
four main components: (1) low-level feature extraction, (2) video (temporal slid-
ing window) representation, (3) event learning and prediction by CascadeSVMs,
(4) post-processing to localize temporal extents of a detected event.

Most recent work on human activity recognition demonstrates that local
spatio-temporal features are more robust to posture, occlusion, illumination, and
cluttered background compared to global features. A spatio-temporal feature
usually includes two phases: detection (i.e., a feature detector localizes interest
points in a spatio-temporal space) and description (i.e., a feature descriptor com-
putes representations of detected points). The space-time interest point (STIP)
[37] employs extended Harris corner detector to localize interest points with large
gradient magnitude in both spatial and temporal domains. Each interest point is
described by the combination of histogram of gradients (HOG) and histogram of
optical flow (HOF). However, it is quite restrictive to have large intensity changes
in both spatial and temporal dimensions, which often results in insufficient de-
tections. Instead of using spatio-temporal volumes, we propose to extract spatial
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and temporal information separately as in [67]. An efficient detector, e.g., speed
up robust features (SURF) [2], is first applied to extract salient points in the spa-
tial domain. These points are then filtered by temporal or motion constraints,
e.g., motion history image (MHI) [4], to remove the static background points. To
characterize the appearance and motion information, we compute HOG features
for each interest point from both image and motion channels. In addition, because
of specific camera views and scenes in the surveillance scenario, the occurrence of
specific events is usually biased to a certain spatial range [88]. We further exploit
this spatial prior to eliminate a large amount of points from unrelated regions.

After local feature extraction, feature coding and pooling are used to aggregate
the low-level spatio-temporal features to represent each video clip. We employ
the bag-of-visual-words (BOV) to represent each temporal sliding window. In our
system, a visual dictionary with the size of 3,000 is first learned through K-means.
The local soft assignment [45] is used to encode low-level features. The local
soft assignment coding is able to achieve comparable classification accuracy but
with much less computational cost compared to other more complicated coding
methods such as sparse coding [46] and locality-constrained linear coding [76].
After feature coding, we choose the max pooling to aggregate the coded features.
Before learning event models, the explicit feature mapping [68] is applied to the
BOV features. This is motivated by approximating large-scale non-linear SVM
through the linear one which enjoys much more computational efficiency in both
training and testing.

Having obtained the video clip representations, the event models can be
learned by a linear SVM solver [14]. However, the surveillance data is highly
imbalanced because positive events are far less frequent than negative ones, e.g.,
the sequences of the event CellToEar are only 0.31% of the entire video. We
therefore introduce the CascadeSVMs algorithm to handle this difficulty. In each
stage of this algorithm, positive and negative samples with the same amount are
used to train a classifier that favors to the positive class. This leads each indi-
vidual classifier to have a high detection rate but also a high false alarm rate.
By cascading multiple classifiers (e.g., 5-7), we are able to filter out considerable
false alarms but maintain a reasonable detection rate. The feature-level fusion is
then employed to combine multiple features.

A simple post processing is performed over the detections to determine the
temporal localization of each event and further remove false alarms. It is observed
that most positive samples continuously last for a certain number of frames be-
cause temporal extents of most events could cover several sliding windows. We
therefore merge neighboring positive predictions into a single positive detection.
Based on our empirical observation, we also remove those isolated positive pre-
dictions or other positive ones mixed with too many negative predictions.
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2.2 Low-Level Feature Extraction

We extract two types of low-level features including STIP and ActionHOG in our
system. STIP [37] detects spatio-temporal interest points by searching significant
variations in both space and time. HOG/HOF descriptors are then computed
based on the space-time neighborhoods of detected interest points to capture
the local appearance and motion information. STIP detector combined with
HOG/HOF descriptors has been widely used in human activity recognition and
detection tasks [85] [90]. However, it suffers insufficiency due to the rigorous
assumptions of large gradients in space and time, as well as inefficiency because
of computational cost in its detector and descriptor. In order to provide com-
plementary motion features, we propose an efficient local spatio-temporal feature
ActionHOG which detects interest points with spatially distinctive shapes and
temporally sufficient motions.

An efficient interest point detector (e.g., Harris corner detector [25] or SURF
detector [2]) is first employed to localize spatial interest points. Motion informa-
tion is then used to remove the spatial interest points from static background,
i.e., only those spatial interest points with sufficient motion are retained as the
spatio-temporal interest points. We provide two motion channels including mo-
tion history image (MHI) and optical flow to eliminate the static spatial interest
points. MHI [4] is a real-time motion template generated by stacking consecutive
frame differences. As shown in Figure 2.2, the brighter pixels on MHI correspond
to more recent motion. MHI gradients also reflect the action direction cues. We
can use MHI as a motion mask to filter the static spatial interest points that are
with lower intensities on the MHI channel. Moreover, the magnitude of optical
flow associated with each spatial interest point can be utilized as a motion filter
as well.

Figure 2.2: The spatio-temporal interest points detected by STIP and Action-
HOG. Brighter pixels on MHI correspond to more recent motion. Gradients on
MHI also provide motion direction information.
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We compute HOG descriptor to characterize the local appearance information
from the image channel and local motion cues from the MHI and dense optical
flow channels. In our system, SURF detector is used to localize spatial interest
points because it is able to generate scale information and maintain computational
efficiency. The dominant orientations of interest points are removed as motion
directions also provide important clues for activity recognition. MHI is employed
as the motion channel to eliminate static spatial interest points and compute
motion descriptors.

Figure 2.2 demonstrates the spatio-temporal interest points detected by SITP
and ActionHOG. As shown in this figure, ActionHOG provides denser and com-
plementary interest points to STIP. In addition, ActionHOG detects fewer points
from background. Table 2.1 compares the computational costs and detected num-
ber of spatio-temporal interested points of STIP and ActionHOG. The statistics
are based on a subset of the training data in TRECVID SED. We report the
run time using C++ on a desktop with a single 2.13GHz CPU. As shown in this
table, ActionHOG is over 10 times faster in terms of processing each frame and
about 20 times faster in terms of computing each interest point than STIP. The
number of detected points per frame of ActionHOG is about 2 times as that of
STIP. Our source code for computing ActionHOG is available online.1

Table 2.1: Comparisons between STIP and ActionHOG. SURF detector is used
as the spatial interest point detector and MHI is used as the motion channel in
ActionHOG.

Feature Speed (frm/sec) Speed (ms/pnt) Number (pnt/frm)

STIP 0.6 29.9 56
ActionHOG 6.4 1.5 107

2.3 Event Spatial Priors

Due to the highly cluttered background in surveillance videos, a significant amount
of interest points are detected from the irrelevant activities. In order to get rid of
these noisy points, we build hot region masks to model the spatial priors according
to the specific events and camera views. Since the surveillance videos are cap-
tured by fixed cameras in a certain public area, we observe that the occurrence of
certain events is biased or concentrates in some specific regions as shown in Figure
2.3. In order to capture the spatial priors, we manually annotate the bounding

1http://yangxd.org/code
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Figure 2.3: Examples of spatial priors, i.e., hot region maps, of event ObjectPut
(top) and event PersonRuns (bottom) corresponding to the five camera views
from left to right.

boxes of people performing activities to build the hot regions. A hot region map
Hc,e of camera view c and event e is obtained by Hc,e =

(∑
iA

i
c,e

)
/Nc,e, where

Ai
c,e is the ith annotated frame (a binary map) in camera view c and event e with

foreground or activity region in a bounding box and Nc,e is the total number of
annotated frames for camera view c and event e. This spatial prior can be utilized
to differentiate activity and non-activity regions by thresholding Hc,e > µc,e. The
interest points from the non-activity regions are removed in the following process
as illustrated in Figure 2.1.

2.4 Video Clip Representation

We employ BOV combined with the spatial pyramid to represent each sliding
window. The spatial pyramid [39] is applied to globally and roughly capture
the spatial geometry of a video scene. It subdivides a video into a set of spatial
cells in a coarse-to-fine manner. Each cell is represented independently and the
cell-level histograms are finally concatenated as the video-level histogram. The
temporal pyramid introduced in [38] is not used due to the explosion of feature
dimension and memory cost.

A visual dictionary Dm×n = (d1 . . .dn) for each low-level features is obtained
by K-means. The dictionary size n is empirically set to 3,000 and dk ∈ Rm is a
visual word. The local soft assignment [45] is used to code each feature xi ∈ Rm

to ui:

ui,k =
exp

(
−βd̂ (xi,dk)

)
∑n

j=1 exp
(
−βd̂ (xi,dj)

) , (2.1)
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Figure 2.4: The spatial pyramid of 2 levels with 1× 1 and 2× 2 spatial grids in
each level. A camera and event dependent spatial prior map is used to remove
feature points from background.

d̂ (xi,dk) =

{
‖xi − dk‖2 if dk ∈ NK (xi) ,
∞ otherwise,

(2.2)

where ui,k denotes the kth coefficient of code ui, d̂ (xi,dk) is a local version of the
original distance ‖xi − dk‖2, NK(xi) are the K nearest neighboring descriptors
of xi, and β is a smoothing factor. In our system, we empirically set K = 200
and β = −1.

The max pooling is then used to aggregate ui from a spatial grid wj of a
temporal sliding window by:

hj,k = max
i∈wj

ui,k, for k = 1, . . . , n, (2.3)

where hj,k denotes the kth coefficient in hj and wj (j = 1, . . . ,W ) is the jth
spatial grid. We use two levels of grids (1× 1 and 2× 2) so each sliding window
generates W = 5 spatial pyramid grids as shown in Figure 2.4. We concatenate
the histograms hj into h as the BOV representation for each temporal sliding
window. Note: in the coding and pooling process, we only use the features xi

within the activity regions in the corresponding spatial prior maps, as illustrated
in Figure 2.4.

In our system, a sliding window with the size of 60 frames strides in every 15
frames. This generates a large amount of data, e.g., 600K samples from training
set. It could be very inefficient for SVM with non-linear kernels to learn and
predict on such scale data. On the other hand, SVM with the linear kernel
is in general much more efficient in both training and testing. However, linear
SVM tends to have inferior recognition accuracy compared to the non-linear ones.
In order to deal with this difficulty, we approximate non-linear kernels by the
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Figure 2.5: Proportions (%) of video sequences containing positive events in the
training set.

explicit feature mapping [68] to enable more efficient linear SVM with little loss in
accuracy. In feature mapping, each feature vector h ∈ Rh is mapped to a feature
space with moderately higher dimensionality through an explicit feature mapping
ψ : Rh → R(2r+1)h such that the inner product in this space can approximate the

non-linear kernel distance K, i.e.,
〈
ψ(h), ψ(h

′
)
〉
≈ K(h,h

′
). We set r = 3 in our

system to approximate the χ2 kernel.

2.5 Event Model Learning

The temporal sliding window scheme (e.g., 60-frame window strides in every 15
frames) used in the system generates quite imbalanced data (i.e., negative samples
are far more than positive samples) as shown in Figure 2.5. Most positive events
are less than 2% of the entire video sequences. For example, CellToEar and
PeopleSplitUp are the least and most frequent events which are only 0.3% and
4.4% of the whole training video sequences, respectively. In order to overcome
this imbalance, we introduce the CascadeSVMs algorithm. In each stage of this
algorithm, the same-amount positive and negative samples are employed to train
a classifier that favors to the positive class. This leads the classifier in each
stage to a high detection rate but a high false alarm rate as well. We then mine
the hard negative samples for training in the next stage. By cascading multiple
classifiers, it is able to remove a significant amount of false alarms but maintain a
reasonable detection rate. In order to reduce the intra-class variance and memory
requirement, the event models are learned according to each specific event and
camera view. This system therefore contains 35 models of 7 events under 5 camera
views.
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Algorithm 1: CascadeSVMs algorithm for learning event models

Input: training set S := {S+, S−}
maximum iteration number c
initialization C0 := {} and S−1 := random |S+| samples from S−

Output: event and camera view dependent model C
1 for i := 1 to c do
2 w+ := 1.0 and w− := 1.0
3 for j := 1 to t do
4 Mi := LIBLINEAR(S+, S−i , w

+, w−)
5 positive accuracy := Mi(S

+)
6 if positive accuracy > θ then
7 break
8 end
9 w+ := w+ + τ

10 end
11 Ci := Ci−1 ∪Mi

12 S− := {s | s ∈ S−and Ci(s) = positive}
13 SORTSAMPLES(S−)
14 S−i+1 := S−(1, . . . , num),where num := min(|S+|, |S−|)
15 if |S−i+1| < |S+| then
16 break
17 end

18 end

Suppose we have a training set S = {S+, S−} for each event under each
camera view. The CascadeSVMs algorithm adaptively subdivides the negative
set into a series of partitions S−i with the same size of |S+| according to the ranked
prediction scores and iteratively learns a group of binary linear SVM classifiers Mi

that favors to positive samples. These classifiers are cascaded as the event model
C =

{
M1, . . . ,M|C|

}
. The outline of our proposed learning process is shown in

Algorithm 1.
The classifier Mi in the ith stage is learned by an adaptive weighting method.

This is used to ensure a classifier in each stage could correctly predict most
positive samples. We initialize both positive and negative weights as 1.0. After
training a classifier by LIBLINEAR [14], we evaluate this classifier only on the
positive samples. If the classification accuracy is greater than a threshold θ = 0.9,
this classifier is assigned to Mi. Otherwise, the positive weight is increased by τ =
0.05 and the classifier is retrained with the updated class weights. This process
is repeated until the accuracy on positive samples is up to θ or the maximum
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Figure 2.6: Red regions demonstrate the events defined in the TRECVID SED.
From top to bottom and left to right: PersonRuns, Pointing, CellToEar, Object-
Put, Embrace, PeopleMeet, and PeopleSplitUp.

iteration number t is reached. As the positive samples are much less than the
negative ones, we employ all the positive samples for training. In each stage,
we keep the negative samples S−i as the same amount of the positive ones. To
update S−i , we first filter S− by only preserving those negative samples that
cannot be correctly classified by using the current classifier pool Ci. We then
sort the left negative samples from S− in descending order based on their scores
and choose the first |S+| samples (more confusing ones) as S−i+1. This cascading
process terminates if the maximum iteration number c = 10 is reached or the left
negative samples are fewer than the positive ones. In our system, the size |C| of
event models is between 5 and 10. Our source code of CascadeSVMs is available
online.1

1http://yangxd.org/code
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Figure 2.7: Comparisons between our results and the best results in 2011.

Figure 2.8: Comparisons between our system (MediaCCNY) and best systems in
TRECVID SED 2012.

2.6 Experimental Results

As illustrated in Figure 2.6, we experiment on all the 7 events defied by NIST.
They correspond to the three-level categories, i.e., single-person event (Person-
Runs, Pointing), person-object event (CellToEar, ObjectPut), multiple-people
event (Embrace, PeopleMeet, PeopleSplitUp). In TRECVID SED 2012, 15-hour
of videos with the frame resolution of 720 × 576 at 25 fps captured by 5 fixed
cameras are provided as the evaluation set. Because of the temporal sliding win-
dow scheme used in the system, a continuous event could be chopped into several
detected windows. Therefore after classifier predictions, we employ a post pro-
cessing to group the continuous positive windows to determine the final temporal
location of a detected event. In the merging process, we use a tolerance λt (3
used in our system) which means two positive predictions disconnected by less
than λt negative predictions can still be merged together. The other benefit of
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post processing is to further remove false alarms. After the merging process, a
group will be removed from positive detections if the ratio of negative predictions
(holes) in a merged group is greater than λh (0.3 used in our system).

We fist compare our results to the best results of 2011 in Figure 2.7 by the
detection cost rate (DCR) which is a linear combination of miss detections and
false alarms. A perfect system has 0 DCR meaning 0 miss detection and 0 false
alarm. Therefore the lower DCR is, the more robust a system is. Actual DCR
and Minimum DCR are the primary and secondary metrics, respectively. As
shown in Figure 2.7, we achieve the best ADCR in the event of CellToEar. The
performances of our system evaluated in all 7 events are among the top 3 com-
pared to other systems. Figure 2.8 presents the comparison between our system
and the best systems in 2012. The rank column indicates our rankings among all
participants in terms of Actual DCR. Our system achieves top 3 performance in
CellToEar, ObjectPut, PeopleMeet, PeopleSplitUp, and PersonRuns.

In general, the number of correct detections is still much lower than the num-
ber of missed ones in CellToEar and ObjectPut. From a high lever observation,
the performance of single person events (e.g., PersonRuns) and multiple people
events (e.g., PeopleMeet) have relatively better results than the person-object
events (e.g., ObjectPut). The detection error tradeoff (DET) curves of our sys-
tem and other participants in all events are demonstrated in Figure 2.9. These
curves plot event-averaged miss detection probabilities vs. false alarm rates by
varying a detection threshold.

2.7 Summary

In this chapter, we have presented the detailed implementations of a general
surveillance event detection system. Our system starts from extracting low-level
features of STIP-HOG/HOF and ActionHOG from each temporal sliding window.
The camera and event dependent spatial priors are applied to remove detected
features from the non-activity regions. We employ local soft assignment and max
pooling to aggregate the filtered low-level features. The final representation is
further augmented by feature mapping and spatial pyramid. We combine multiple
features through feature-level fusion. The CascadeSVMs algorithm is introduced
to handle the large-scale noisy and imbalanced data learning. In the evaluation
of 7 event detection tasks of TRECVID SED 2012, our system achieves top 3
performances in 5 events.
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Figure 2.9: The detection error tradeoff (DET) curves of our system and other
systems in each event.
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Chapter 3

Super Sparse Coding Vector with
Spatio-Temporal Awareness

In this chapter, a novel framework for human activity recognition is proposed
based on sparse coding. We introduce an effective coding scheme to aggregate
low-level descriptors into the super descriptor vector (SDV). In order to incorpo-
rate the spatio-temporal information, we present a novel approach of the super
location vector (SLV) to model the space-time locations of local interest points in
a much more compact way compared to the spatio-temporal pyramid representa-
tions. SDV and SLV are in the end combined as the super sparse coding vector
(SSCV) which jointly models the motion, appearance, and location cues. This
representation is computationally efficient and yields superior performance while
using linear classifiers. In the extensive experiments, our approach significantly
outperforms the state-of-the-art results on the public benchmark datasets.

As introduced in the previous chapter, most recent recognition approaches of
human activity are based on the bag-of-visual-words (BOV) representations. In
the basic BOV framework, a visual dictionary is learned by K-means and used
to quantize low-level features through hard-assignment [38]. A number of coding
variants have been proposed and reported to achieve the state-of-the-art results
in image and video recognition, e.g., local soft assignment [45], sparse coding [82],
and locality-constrained linear coding [76]. These approaches reduce information
loss by relaxing the restrictive cardinality constraint in coding descriptors. Ac-
cordingly, average pooling can be replaced by max pooling [82]. Recently, several
coding schemes have emerged to encode descriptors with respect to the visual
words that they are assigned to, e.g., Fisher vector [53], super vector coding [93],
and vector of locally aggregated descriptors [28]. These methods usually retain
high order statistics and yield noticeably better results [56].

The basic BOV aggregates the assignments over an entire video sequence to
generate the final representation. This obviously incurs a loss of information
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Figure 3.1: Frameworks of STP (up) and SSCV (bottom). STP represents a
video by concatenating BOVs from the entire sequence and spatio-temporal cells.
SSCV jointly models the motion, appearance, and location information. (a) A
visual dictionary of descriptors is learned by sparse coding. (b) 3D space-time
locations are associated to each visual word in (a) according to the assignments
of descriptors. (c) A visual dictionary of locations is learned by sparse coding for
each set in (b). SSCV is obtained by the combination of (d) SDV and (e) SLV.

by discarding all the spatio-temporal locations of local space-time features. An
extension to the completely orderless BOV is the spatio-temporal pyramid (STP)
[38], inspired by the spatial pyramid matching (SPM) [39] for image classification.
In this approach, a video sequence is repeatedly and evenly subdivided into a set
of spatial and temporal cells where descriptor-level statistics are pooled. It can
be used to roughly capture the spatial layout and temporal order of an action
sequence. However, the concatenation of BOV histograms over a number of
subvolumes of a video dramatically increases feature dimensions, which further
increase the learning and memory costs.

In this chapter, we propose a novel recognition framework on low-level feature
coding and spatio-temporal information modeling, as illustrated in Figure 3.1.
We first employ a sparse coding method [46] to compute the visual dictionary
and coefficients of local descriptors. Each descriptor is coded by recording the
difference of the local descriptor to all visual words. The coefficient-weighted
difference vectors are then aggregated for each visual word through the whole
video. These vectors of all visual words are in the end concatenated as the
representation of super descriptor vector (SDV), which is used to characterize the
motion and appearance cues. We further model the spatio-temporal information
by computing the super location vector (SLV) of the space-time coordinates of
local descriptors assigned to each visual word. We combine SDV and SLV as the

18



super sparse coding vector (SSCV) which jointly models the motion, appearance,
and spatio-temporal information.

The main contributions of this chapter are summarized as follows. First, we
provide an effective coding scheme to aggregate low-level features into a discrimi-
native representation, which hinges on a much smaller visual dictionary. Second,
we propose a novel approach to incorporate the spatio-temporal information in
a much more compact representation, which correlates and models the motion,
appearance, location cues in a unified way. Third, we perform a systematic evalu-
ation of the state-of-the-art coding and pooling methods in the context of human
activity recognition.

The remainder of this chapter is organized as follows. Section 3.1 introduces
the related work of feature aggregation and spatio-temporal models. Section 3.2
describes the detailed procedures to compute SDV, SLV, and SSCV. A variety of
experimental results and discussions are presented in Section 3.3. Finally, Section
3.4 summarizes the remarks of this chapter.

3.1 Related Work

In this section, we introduce the notations used throughout this chapter and
summarize the related work on aggregating local descriptors and modeling spatial
(temporal) information. We represent a video sequence V by a set of low-level
descriptors X = {x1, . . . ,xn} in Rm×n and associated locations L = {l1, . . . , ln}
in R3×n. C indicates the space-time cells defined in a spatio-temporal pyramid
with Cj denoting the jth cell. D = {d1, . . . ,dK} is a visual dictionary with K
visual words dk ∈ Rm.

3.1.1 Feature Aggregation

Let F and G denote the coding and pooling operators, respectively. The final
representation of V is the vector z obtained by sequentially coding, pooling, and
concatenating over all space-time cells:

αi = F(xi), i = 1, . . . , n, (3.1)

hj = G
(
{αi}i∈Cj

)
, j = 1, . . . , |C|, (3.2)

zT =
[
hT

1 . . .h
T
|C|
]
. (3.3)
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In the basic BOV framework, hard assignment F minimizes the distance of xi

to D which is usually learned by K-means. G performs the averaging over each
pooling cell Cj:

αi ∈ {0, 1}K , αi,j = 1 iff j = arg min
k
‖xi − dk‖22, (3.4)

hj =
1

|Cj|
∑
i∈Cj

αi. (3.5)

In order to enhance the probability density estimation, soft assignment was
introduced in [18]. It codes a descriptor xi by multiple visual words in D using
a kernel function (e.g., the Gaussian function) of the distance between xi and
dk. Liu et al. proposed the local soft assignment in [45] to further improve the
membership estimation to visual words. By taking account of the underlying
manifold structure of local descriptors, F in local soft assignment only employs
the K nearest visual words NK (xi) to code a descriptor xi and sets its distances
of the remaining visual words to infinity:

αi,k =
exp

(
−βd̂ (xi,dk)

)
∑K

j=1 exp
(
−βd̂ (xi,dj)

) , (3.6)

d̂ (xi,dk) =

{
‖xi − dk‖2 if dk ∈ NK (xi) ,
∞ otherwise,

(3.7)

where β is a smoothing factor to control the softness of assignment. As for G

in the local soft assignment, it was observed that max pooling in the following
equation outperformed average pooling:

hj,k = max
i∈Cj

αi,k, for k = 1, . . . , K. (3.8)

Parsimony has been widely employed as a guiding principle to compute sparse
representation with respect to an overcomplete visual dictionary. Sparse coding
[46] approximates xi by using a linear combination of a limited number of visual
words. It is well known that the `1 penalty yields a sparse solution. So the sparse
coding problem can be solved by:

min
D,α

1

n

n∑
i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
, (3.9)

subject to dT
k dk ≤ 1,∀k = 1, . . . , K,

20



where λ is the sparsity-inducing regularizer to control the number of non-zero
coefficients in αi. It is customary to combine sparse coding with max pooling as
shown in Eq. (3.8).

Fisher vector [53] extends the BOV representation by recording the deviation
of xi with respect to the parameters of a generative model, e.g., the Gaussian
mixture model (GMM) characterized by {πk,µk,σk, k = 1, . . . , K}. πk, µk, and
σk are the prior mode probability, mean vector, and covariance matrix (diagonal),
respectively. Let γki be the soft assignment of xi to the kth Gaussian component.
We obtain the Fisher vector of X by concatenating the gradient vectors from K
Gaussian components:

ρk =
1

n
√
πk

n∑
i=1

γki

(
xi − µk

σk

)
, (3.10)

τ k =
1

n
√

2πk

n∑
i=1

γki

[
(xi − µk)2

σ2
k

− 1

]
, (3.11)

where ρk and τ k are m-dimensional gradient vectors with respect to µk and
σk of the kth Gaussian component. The relative displacements of descriptors
to the mean and variance in Eq. (3.10-3.11) retain more information lost in the
traditional coding process. The superiority of Fisher vector was recently identified
in both image classification [56] and activity recognition [77].

3.1.2 Spatial and Temporal Information

The orderless representation of a video completely ignores the spatial and tem-
poral information, which could have conveyed discriminative cues for activity
recognition. We briefly outline the relevant representative work that attempts to
account for the spatial and temporal locations of low-level features.

The dominant approach to incorporate spatial and temporal information is
the spatio-temporal pyramid (STP), as illustrated in Figure 3.1. Inspired by the
spatial pyramid matching (SPM) [39], Laptev et al. [38] proposed to partition a
video into a set of space-time cells in a coarse-to-fine manner. Each cell is rep-
resented independently and the cell-level histograms hj are finally concatenated
into the video-level histogram z as in Eq. (3.2-3.3). This representation has been
proven to be effective when the action categories exhibit characteristic spatial
layout and temporal order.

In image classification, the feature augmentation based methods were pro-
posed in [48] [55] to append a weighted location li to the corresponding descriptor
xi. As opposed to SPM, this approach does not increase the feature dimension-
ality thus makes the learning more efficient. Krapac et al. [33] introduced the
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spatial Fisher vector to encode the spatial layout of local image features. The
location model can be learned by computing per visual word the mean and vari-
ance of spatial coordinates of the assigned local image patches. While these
representations are more compact, the evaluation results only showed marginal
improvements over SPM in terms of classification accuracy.

3.2 Super Sparse Coding Vector

We describe the detailed procedures of computing SSCV in this section. We pro-
pose a novel feature coding scheme based on sparse coding to aggregate descrip-
tors and locations into discriminative representations. The space-time locations
are included as part of the coding step, instead of only coding motion and ap-
pearance cues and leaving the spatio-temporal coherence to be represented in the
pooling stage. This enables SSCV to jointly characterize the motion, appearance,
and location information.

3.2.1 Modeling Space-Time Features

We represent each local feature as the descriptor-location tuple f i = (xi, li). By
employing a generative model (e.g., GMM) over descriptors and locations, we
model f i as:

p(f i) =
K∑
k=1

p(w = k)p(xi|w = k)p(li|w = k), (3.12)

where p(w = k) indicates the prior mode probability of the kth Gaussian com-
ponent in the descriptor mixture model, and w is the assignment index. We
assume the prior mode probabilities are equal, i.e., p(w = k) = 1/K, ∀k. The kth
Gaussian of descriptors is defined by:

p(xi|w = k) = N (xi;µk,σk) , (3.13)

where µk and σk are the mean and covariance (diagonal) of the kth Gaussian.
As illustrated in Figure 3.1, we jointly model the spatio-temporal information
by associating the locations of descriptors to the corresponding visual descriptor
word, i.e., the Gaussian of descriptors in this context. We define the spatio-
temporal model by using a GMM distribution over the locations associated with
the kth visual word:

p(li|w = k) =
G∑

g=1

πkgN
(
li;µkg ,σkg

)
, (3.14)
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where πkg , µkg , and σkg are the prior mode probability, mean, and covariance
(diagonal) of the gth Gaussian of locations in the kth visual descriptor word. We
again assume the prior mode probabilities are equal, i.e., πkg = 1/G,∀k, g.

3.2.2 Computing Super Descriptor Vector

We utilize sparse coding to learn a visual dictionary and code descriptors. We
aggregate the coefficient-weighted differences between local descriptors and visual
words into a vector, rather than directly pooling the coefficients.

The likelihood or generation process of xi is modeled by the probability den-
sity function in Eq. (3.13). The gradient of the log-likelihood of this function
with respect to its parameters describes the contribution of the parameters to the
generation process [26]. Here we focus on the gradient with respect to the mean:

∂ ln p(xi|w = k)

∂µk

= ρkiσ
−1
k (xi − µk) , (3.15)

where ρki denotes the posterior p(w = k|xi). If we make the three approximations:

1. the posterior is estimated by the sparse coding coefficient, i.e., ρki = αk
i ,

2. the mean is represented by the visual word in sparse coding, i.e., µk = dk ,

3. the covariance is isotropic, i.e., σk = εI with ε > 0 ,

Eq. (3.15) can be simplified to αk
i (xi − dk), where αk

i is the coefficient of the ith
descriptor xi to the kth visual word dk in Eq. (3.9).

We choose sparse coding in the approximation because it is much cheaper
to compute the means (dictionary) compared to the Expectation Maximization
(EM) algorithm in training GMM. Especially, it was recently shown in [10] that a
reasonably good dictionary can be created by some simple methods, e.g., random
sampling in a training set. Moreover, our empirical evaluations show the ap-
proximations based on sparse coding improves the recognition accuracy. We then
apply average pooling to aggregate the coefficient-weighted difference vectors for
each visual word:

uk =
1

n

n∑
i=1

αk
i (xi − dk) . (3.16)

The final vector representation U of SDV is the concatenation of uk from K
visual words and is therefore with the dimensionality of mK:

U =
[
uT

1 . . .u
T
K

]T
. (3.17)
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SDV has several remarkable properties: (1) the relative displacements of de-
scriptors to visual words retain more information lost in the traditional coding
process; (2) we can compute SDV upon a much smaller dictionary which reduces
the computational cost; (3) it performs quite well with simple linear classifiers
which are efficient in terms of both training and testing.

3.2.3 Computing Super Location Vector

The descriptors quantized to the same visual word exhibit characteristic spatio-
temporal layout. In order to capture this correlation between motion, appearance,
and location, we associate space-time locations to the visual descriptor words
that corresponding descriptors are assigned to. We also employ sparse coding to
learn a visual location dictionary to code the location set associated with each
visual descriptor word, as illustrated in Figure 3.1(c). The coefficient-weighted
differences between locations and visual location words are aggregated as the
spatio-temporal representation.

To describe the contribution of the parameters to the generation process of li,
we take the gradient of the log-likelihood of Eq. (3.14) with respect to the mean:

∂ ln p (li|w = k)

∂µkg

= ρ
kg
i σ

−1
kg

(
li − µkg

)
, (3.18)

where ρ
kg
i denotes the posterior p (t = g|li, w = k) and t is the assignment index.

We can interpret ρ
kg
i as a spatio-temporal soft assignment of a descriptor location

li associated with the kth visual descriptor word to the gth Gaussian component
in the location mixture model.

If we enforce the three similar approximations as in Section 3.2.2, Eq. (3.18)

can be simplified to α
kg
i

(
li − dkg

)
, where α

kg
i is the sparse coding coefficient of

the ith location li to the gth visual location word dkg associated with the kth
visual descriptor word dk. As illustrated in Figure 3.1(b), let Lk indicate the set
of locations that are associated to the kth visual descriptor word according to the
positive assignments of their descriptors, i.e., Lk =

{
li|αk

i > 0
}

. We then employ
the average pooling to aggregate the coefficient-weighted difference vectors for
each visual location word:

vkg =
1

|Lk|
∑
li∈Lk

α
kg
i

(
li − dkg

)
. (3.19)

The concatenation of vkg from G visual location words associated with K
visual descriptor words forms the final representation V of SLV:

V =
[
vT11 . . .v

T
1G
. . .vTK1

. . .vTKG

]T
. (3.20)

24



SLV shares the same remarkable properties as SDV. Moreover, SLV can be
computed on the much smaller visual descriptor dictionary (e.g., K = 100) and
visual location dictionary (e.g., G = 5). If we combine SDV and SLV, the resulting
vector is of (m+ 3G)K dimensions, where the descriptor dimensionality m (e.g.,
162 in STIP [38]) is normally much larger than 3G. So another major benefit
is that, as opposed to STP, SLV only slightly increases feature dimensions thus
makes the learning and predicting more efficient.

We adopt the two normalization schemes introduced in [53] on SDV and SLV,
i.e., signed square rooting and `2 normalization. As illustrated in Figure 3.1, each
visual word in (a) is in the end characterized by two parts, i.e., uk in (d) and
[vk1 . . .vkG ] in (e). They are used to model the motion (appearance) and location
cues, respectively. We summarize the outline of computing SSCV of an action
sequence in Algorithm 2.

Algorithm 2: Computation of SSCV

Input: a video sequence V

a visual descriptor dictionary Dx = {dk}
a visual location dictionary Dl =

{
dkg

}
Output: SSCV Z

1 compute spatio-temporal features X = {xi} and L = {li} from V

2 compute coefficients
{
αk
i

}
of X on {dk}Kk=1 by sparse coding

3 for visual descriptor word k = 1 to K do
4 uk := average pooling αk

i (xi − dk), xi ∈X
5 associate locations to the kth visual descriptor word: Lk =

{
li|αk

i > 0
}

6 compute coefficients
{
α
kg
i

}
of Lk on

{
dkg

}G
g=1

by sparse coding

7 for visual location word g = 1 to G do

8 vkg := average pooling α
kg
i

(
li − dkg

)
, li ∈ Lk

9 end

10 Zk :=
[
uT

k ,v
T
k1
. . .vTkG

]T
11 end

12 Z :=
[
ZT

1 . . .Z
T
K

]T
13 signed square rooting and `2 normalization

3.3 Experiments and Discussions

In this section, we extensively evaluate the proposed method on the two public
benchmark datasets: HMDB51 [34] and YouTube [43], as shown in Figure 3.2 and
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Figure 3.2: Frames of the sampled categories from the HMDB51 dataset [34].

Figure 3.3, respectively. In all experiments, we employ LIBLINEAR [14] as the
linear SVM solver. Experimental results show that our algorithm significantly
outperforms the state-of-the-art methods. Our source code for computing SSCV
is available online.1

3.3.1 Experimental Setup

Datasets The HMDB51 dataset (Figure 3.2) [34] is collected from a wide range
of sources from digitized movies to online videos. It contains 51 action categories
and 6,766 video sequences in total. This dataset includes the original videos and
the stabilized version. Our evaluations are based on the original ones. We follow
the same experimental setting as [34] using three training/testing splits. There are
70 videos for training and 30 videos for testing in each class. The average accuracy
over the three splits is reported as the performance measurement. The YouTube

1http://yangxd.org/code
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Figure 3.3: Frames of the sampled categories from the YouTube dataset [43].

dataset (Figure 3.3) [43] contains 11 action classes collected under large variations
in scale, viewpoint, illumination, camera motion, and cluttered background. This
dataset contains 1,168 video sequences in total. We follow the evaluation protocol
as in [43] by using the leave-one-out cross validation for a pre-defined set of
25 groups. We report the average accuracy over all classes as the performance
measurement.

Low-Level Feature Extraction We evaluate our approach on five low-level
visual contents using appearance and motion features. STIP is used to detect
sparse interest points and compute HOG/HOF as the descriptor [38]. Motivated
by the success of dense sampling in image classification and action recognition, we
also employ the dense trajectories [71] to densely sample and track interest points
from several spatial scales. Each tracked interest point generates four descriptors:
HOG, HOF, trajectory (TRA), and motion boundary histogram (MBH). HOG fo-
cuses on static appearance cues, whereas HOF captures local motion information.
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Figure 3.4: Recognition accuracy (%) of FV and SDV using different descriptors
with a variety of visual dictionary size K on the HMDB51 dataset. The bars in
light color and dark color denote the results of FV and SDV, respectively. This
figure is better viewed on screen.

TRA characterizes the geometric shape of a trajectory. MBH computes gradient
orientation histograms from horizontal and vertical spatial derivatives of optical
flow. It has been proven effective to represent motion information and suppress
camera motion. So for each action sequence, we compute five features: STIP
(162), HOG (96), HOF (108), TRA (30), and MBH (192), where the number in
parentheses denotes the descriptor dimensionality.

3.3.2 Evaluation of Feature Aggregation Schemes

In this section, we compare and analyze the performance of a variety of feature
aggregation schemes. We focus on the HMDB51 dataset for a detailed evaluation
of the coding and pooling parameters. Note: the spatio-temporal information is
discarded in the experiments of this section.

The baseline aggregation method is the hard assignment (Hard) paired with
average pooling in Eq. (3.4-3.5). The local soft assignment (LocalSoft) and max
pooling in Eq. (3.6-3.8) are employed with K = 10 nearest neighbors and β = 1.
We also adopt the sparse coding (SC) with max pooling in Eq. (3.8-3.9) and
set the regularizer λ = 1.2/

√
m as suggested in [46]. As a successful feature

aggregation scheme, Fisher vector (FV) in Eq. (3.10-3.11) is compared as well.
Before computing FV, we follow the preprocess in [53] to apply PCA to project
the descriptors to half dimensions. This step is mainly used to decorrelate the
data and make it better fit the diagonal covariance matrix assumption in GMM,
and meanwhile reduce computational complexity.

SDV is compared to other feature aggregation schemes in Table 3.1. We set
the visual dictionary size K = 4, 000 for Hard, LocalSoft, SC, and K = 500 for FV
and SDV. As shown in this table, LocalSoft consistently outperforms Hard due
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Table 3.1: Recognition accuracy (%) of different aggregation schemes using a
variety of descriptors on the HMDB51 dataset.

Hard LocalSoft SC FV SDV

STIP 19.2 24.5 28.6 32.8 34.2
TRA 17.3 18.7 21.9 22.1 23.9
HOG 21.0 25.3 31.5 33.3 33.1
HOF 22.0 25.8 34.5 36.9 37.3
MBH 31.1 32.6 36.1 44.6 44.3

to the enhanced membership estimation of descriptors to visual words. While
still inferior to our method, SC largely improves the accuracy over Hard and
LocalSoft by introducing the sparsity in coding descriptors. SDV outperforms
FV in STIP, TRA, and HOF, and yields comparable results to FV in HOG and
MBH. We further conduct a more detailed evaluation of FV and SDV as shown in
Figure 3.4. SDV systematically outperforms FV in STIP and TRA, irrespective
of the visual dictionary size. For HOG, HOF, and MBH, SDV achieves higher
recognition accuracy than FV in a relatively small size. SDV and FV tend to
have comparable results as the visual dictionary size increases. In addition to
the superior recognition accuracy, SDV is computationally more efficient. This
is because more information is stored per visual word, which enables SDV to
perform quite well by using a much more compact visual dictionary. We use
K = 500 to compute SDV in the following experiments if not specified.

3.3.3 Evaluation of Spatio-Temporal Models

Here we evaluate different approaches on modeling the spatio-temporal informa-
tion and report results for the HMDB51 dataset.

STIP is first used to investigate the impact of the size of visual location
dictionary on SLV. As shown in Figure 3.5, the results of SLV ranges from 22.4%
to 25.0% as G increases from 5 to 40. The performance of SDV is plotted as a
reference. When SDV and SLV are combined to SSCV, it is not very sensitive to
the size and achieves the best result using only 5 visual location words. In the
following experiments, we use G = 5 to compute SLV. Figure 3.6 demonstrates
the results of SLV, SDV, and SSCV for a variety of features. SSCV consistently
and significantly outperforms SDV for all features. This shows SLV is effective to
model and provide the complementary spatio-temporal information to the motion
and appearance cues in SDV. It is interesting to observe that SLV based on the
pure space-time information even outperforms SDV for the feature TRA.
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Figure 3.5: Recognition accuracy (%) of SLV and SSCV using STIP with a variety
of visual location dictionary size G on the HMDB51 dataset

SSCV is then compared to the widely used spatio-temporal pyramid (STP) on
modeling the space-time information. We use in our experiments four different
spatio-temporal grids. For the spatial domain we employ a 1 × 1 whole spatial
block and a 2 × 2 spatial grid. For the temporal domain we apply the entire
sequence and two temporal segments. The combination of these subdivisions in
both spatial and temporal domains generates 15 space-time cells in total. We
compute a separate SDV from each cell and concatenate them as the final rep-
resentation of STP. As shown in Table 3.2, both STP and SSCV improve the
results because of the spatio-temporal cues complemented to SDV. However, for
all features SSCV achieves more significant improvements than STP, while with
much more compact representation. In our experimental setting, the dimensions
of STP and SSCV are 15mK and (15 + m)K, where m is the descriptor dimen-
sionality. So in comparison to STP, our approach can also considerably reduce
the computation and memory costs in both training and testing.

3.3.4 Comparison to State-of-the-Art Results

In this section, we compare our performance to the state-of-the-art results on
the two benchmark datasets: HMDB51 and YouTube. SSCV is first compared
to the results in [71] for each individual feature as demonstrated in Table 3.3,
SSCV significantly outperforms the approach in [71], though both methods are
based upon the same features. This is mainly because SDV is more representative
than BOV to capture the motion and appearance information, and SLV is more
effective than STP to model the spatio-temporal cues. Moreover, SSCV employs
the linear SVM which is more efficient than the non-linear SVM with χ2 kernel
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Figure 3.6: Recognition accuracy (%) of SLV, SDV, and SSCV using a variety of
low-level features on the HMDB51 dataset.

used in [71]. We combine all the features and compare with the most recent
results in the literature as displayed in Table 3.4. We can observe that SSCV
outperforms the state-of-the-art results on the two datasets.

Table 3.2: Recognition accuracy (%) of STP and SSCV on modeling the spatio-
temporal information for a variety of features on the HMDB51 dataset.

STIP TRA HOG HOF MBH

SDV 34.2 23.9 33.1 37.3 44.3
STP 35.4 (+1.2) 28.8 (+4.9) 34.4 (+1.3) 38.1 (+0.8) 46.9 (+2.6)
SSCV 37.4 (+3.2) 29.9 (+6.0) 36.9 (+3.8) 39.7 (+2.4) 48.0 (+3.7)

3.4 Summary

In this chapter, we have presented a novel framework for human activity recog-
nition in conventional color videos. An effective coding scheme SDV is proposed
to capture motion and appearance cues by sparse coding low-level descriptors
and average pooling coefficient-weighted difference vectors between descriptors
and visual words. A novel approach SLV is introduced to incorporate the spatio-
temporal cues in a compact and discriminative manner. The combination of SDV
and SLV constitutes the final representation of SSCV which jointly models the
motion, appearance, and location information in a unified way. Our approach is
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extensively evaluated on two public benchmark datasets and compared to a num-
ber of most recent results. Experimental results demonstrate that our approach
significantly outperforms the state-of-the-art methods.

Table 3.3: Comparison of SSCV and the state-of-the-art method for each indi-
vidual feature on the HMDB51 and YouTube datasets.

HMDB51 STIP TRA HOG HOF MBH

WKSL’13 [71] - 28.0 27.9 31.5 43.2
SSCV 37.4 29.9 36.9 39.7 48.0

YouTube STIP TRA HOG HOF MBH

WKSL’13 [71] 69.2 67.5 72.6 70.0 80.6
SSCV 77.4 70.9 80.4 77.0 83.2

Table 3.4: Comparison of SSCV to the state-of-the-art results as reported in the
cited publications on the HMDB51 and YouTube datasets.

HMDB51 % YouTube %

GGHW’12 [21] 29.2 ICS’10 [50] 75.2
WWQ’12 [77] 31.8 LZYN’11 [40] 75.8
JDXLN’12 [30] 40.7 BSJS’11 [3] 76.5
WKSL’13 [71] 48.3 BT’10 [7] 77.8
PQPQ’13 [52] 49.2 WKSL’13 [71] 85.4
JJB’13 [27] 52.1 PQPQ’13 [52] 86.6
SSCV 53.9 SSCV 88.0
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Chapter 4

Effective 3D Activity Recognition
Using EigenJoints

In this chapter, we propose an effective method to recognize human activities us-
ing skeleton joints recovered from depth sequence captured by RGB-D cameras.
We design a novel feature representation for activity recognition based on differ-
ences of skeleton joints, i.e., EigenJoints, which combines the information of static
posture, motion property, and overall dynamics. The accumulated motion energy
(AME) is then proposed to perform informative frame selection. This is able to
preclude noisy frames and reduce computational complexity. We employ the non-
parametric Naive-Bayes-Nearest-Neighbor (NBNN) to classify multiple activity
categories. The experimental results on several challenging datasets demonstrate
that our approach outperforms the previous methods. In addition, we investigate
how many frames are necessary for our method to perform classification in the
scenario of online activity recognition. We observe that the first 30% frames are
sufficient to achieve comparable results to that using the entire video sequence.

Most conventional research on human activity recognition mainly concentrates
on the video sequences captured by traditional RGB cameras [37] [71] [85]. In this
case, a video is a sequence of 2D frames of RGB images arranged in chronological
order. There has been extensive research in the literature on activity recognition
for such videos. The spatio-temporal volume-based methods have been widely
used to measure the similarity between subsequence volumes of videos. In order
to enable an accurate similarity measurement, a variety of spatio-temporal vol-
ume detection and representation methods have been proposed [12] [32] [37] [67]
[71]. On the other hand, the trajectory-based approaches have been explored for
recognizing human activities as well [9] [63]. In these approaches, human activi-
ties can be interpreted by a set of key joints or detected interest points. However,
it is not trivial to quickly and reliably extract and track skeleton joints from tra-
ditional RGB videos. Along with the advance of the imaging techniques, such as
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Figure 4.1: Sampled sequences of depth maps and skeleton joints in actions of (a)
tennis serve and (b) golf swing. Each depth map includes 20 joints. The joints
of each body part are encoded in corresponding colors.

the emergence of RGB-D cameras, e.g., Microsoft Kinect and ASUS Xtion Pro
Live, it has become practical to capture color frames as well as depth maps in
real time. Depth maps are able to provide additional body shape information to
differentiate the actions with similar 2D projections from a single view. It has
therefore motivated recent research work to investigate activity recognition using
the depth information.

The biological observation [31] suggests that human actions could be modeled
by the motion of a set of skeleton joints. The MoCap system [24] is employed
to extract 3D joint positions by using markers and high precision camera array.
With the emergence of RGB-D cameras, we are able to recover 3D positions of
skeleton joints in real time and with reasonable accuracy [60]. In this chapter,
we focus on recognizing human activities using skeleton joints extracted from
sequence of depth maps. Figure 4.1 demonstrates the depth sequences with 20
extracted skeleton joints from each depth map in the actions of tennis serve
and golf swing. As illustrated in this figure, the perception of each action can
be reflected by the motions of individual joints (i.e., motion property) and the
configuration of different joints (i.e., static postures). Compared to the cloud
points of human body in depth maps, the skeleton joint representation is more
compact.
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In this chapter, we propose a novel feature representation by adopting the
differences of skeleton joints in both temporal and spatial domains to explicitly
model the dynamics of each individual joint and the configuration of a group of
joints. We then apply principal component analysis (PCA) to the joint differ-
ences to obtain the EigenJoints to reduce noise and redundancy. Similar to the
affect recognition in [22], the temporal segments of an action can be intuitively
approximated by the status of neutral, onset, apex, and offset. The discrimina-
tive information is however not evenly distributed in these status. We propose a
measurement of accumulated motion energy (AME) to quantize the distinctive-
ness of each frame. The less distinctive frames are then pruned to remove noise
and reduce computational complexity. We employ the non-parametric Naive-
Bayes-Nearest-Neighbor (NBNN) [5] as the classifier to recognize multiple action
categories. In accordance with the principles behind NBNN based image classi-
fication, we avoid quantization of descriptor and compute the video-to-class dis-
tance, instead of the video-to-video distance. In addition, most existing methods
perform activity recognition by operating on the entire video sequence. However,
this is not practical to the online systems which require as few frames as possi-
ble for recognition. We therefore investigate how many frames are sufficient to
obtain reasonably accurate action recognition in our framework. Experimental
results on the MSRAction3D dataset [42] demonstrate that a short sub-sequence
(e.g., the first 30% frames) of the entire video is sufficient to perform activity
recognition, with quite limited gains as more frames added in. This observa-
tion is important for making online decisions and reducing latency when humans
interact with machines.

The remainder of this chapter is organized as follows. Section 2.1 reviews
the existing methods for human activity recognition. In Section 2.2, we provide
detailed procedures to compute EigenJoints from each depth map. Section 2.3
briefly introduces NBNN classifier. Section 2.4 describes the informative frame
selection by using accumulated motion energy (AME). A variety of experimental
results and discussions are presented in Section 2.5. Finally, Section 2.6 summa-
rizes the remarks of this chapter.

4.1 Related Work

In traditional RGB videos, human activity recognition mainly focuses on ana-
lyzing spatio-temporal volumes. The core of these approaches is to detect and
represent space-time volumes. Bobick and Davis [4] stacked foreground regions
of a person to explicitly track shape changes. The stacked silhouettes formed
motion history images (MHI) and motion energy images (MEI), which served as
an action descriptor for template matching. In most recent work, local spatio-
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temporal features are widely used. Similar to object recognition using sparse
local features in 2D images, an activity recognition system first detects interest
points (e.g., STIP [37]) and then computes descriptors (e.g., HOG/HOF [38])
based on the detected local spatio-temporal volumes. These local features are
then aggregated (e.g., bag-of-visual-words) to represent activities. The trajec-
tory based approaches are more similar to our method which models activities
by the motion and configuration of a set of points extracted from human body.
Sun et al. [63] extracted trajectories through pair-wise SIFT matching between
neighboring frames. The stationary distribution of a Markov chain model was
then used to compute a velocity description.

The availability of depth sensors has recently made it possible to capture
depth maps in real time. This facilitates a variety of visual recognition tasks,
such as human pose estimation and activity recognition. Shotton et al. [60] pro-
posed an object recognition method to predict 3D positions of body joints from a
single depth image. This scheme was further extended in [19] and [64] by aggre-
gating votes from a regression forest and incorporating dependency relationships
between body part locations, respectively. Li et al. [42] proposed a Bag-of-3D-
Points model for activity recognition. They sampled 3D representative points
from the contours of depth maps of a body surface projected onto three orthog-
onal Cartesian planes. An action graph was then used to model the sampled 3D
points for recognition. Their experimental results validated the superiority of 3D
silhouettes over 2D silhouettes from a single view. However, the sampling of 3D
points incurred a great amount of data which resulted in expensive computations
in clustering training samples from all classes. In [81] Xia et al. used histogram
of 3D joint locations (HOJ3D) to represent posture. They transferred skeleton
joints into a spherical coordinate to achieve view-invariance. The temporal in-
formation was then encoded by a discrete hidden Markov model (HMM). Sung
et al. [65] employed both visual and depth channels to recognize human daily
activities. The skeleton joints were used to model body pose, hand position, and
motion information. They also extracted histogram of oriented gradients (HOG)
features from regions of interest in gray images and depth maps to characterize
the appearance cues. A hierarchical maximum entropy Markov model (MEMM)
was used to decompose an activity to a set of sub-activities.

Most of the above systems hinge on the entire video sequence to perform action
recognition. In the online scenario, a system is however supposed to require as
few observations as possible. Schindler and Gool [58] first investigated how many
frames were required to enable action classification in RGB videos. They found
that short action snippets with a few frames (e.g., 1 to 7 frames) were almost as
informative as the whole video. In order to reduce the observational latency, i.e.,
the time a system takes to observe sufficient information for a good classification,
Ellis et al. [13] proposed to recognize actions based upon an individual canonical
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Figure 4.2: The framework of representing EigenJoints. In each frame, we com-
pute three features of fci, fcc, and fcp to capture the information of offset, posture,
and motion. The normalization and PCA are then applied to obtain the descrip-
tor of EigenJoints for each frame.

pose from a sequence of postures. The canonical pose covered the information
of posture, motion, and overall variance by using skeleton joints. They used a
classifier based on logistic regression to minimize the observational latency.

Motivated by the robust extraction of skeleton joints using RGB-D cameras,
we propose a novel feature representation, EigenJoints, for activity recognition.
In contrast to the traditional trajectory-based methods, EigenJoints are able to
model actions through more informative and more accurate body joints without
background points. Compared to the previous features using skeleton joints or
depth maps, EigenJoints are more discriminative, more compact, and easier to
compute.

4.2 Representation of EigenJoints

The proposed framework to compute EigenJoints is demonstrated in Figure 4.2.
We employ the differences of 3D positions of skeleton joints to capture the infor-
mation of static posture feature fcc, consecutive motion feature fcp, and overall
dynamics feature fci in each frame-c. We then concatenate the three feature chan-
nels as fc = [fcc, fcp, fci]. According to different experimental settings (e.g., cross-
subject test or non-cross-subject test), two normalization schemes are introduced
to obtain fnorm. In the end, PCA is applied to fnorm to generate EigenJoints.

As shown in Figure 4.2, the 3D coordinates of n joints can be obtained from
the human pose estimation [60] in each frame: X = {x1, . . . , xn}, X ∈ R3×n. To
characterize the static posture information of the current frame-c, we compute
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the pair-wise joint differences within the current frame:

fcc = {xi − xj | i, j = 1, . . . , n; i 6= j} . (4.1)

To capture the motion property of current frame-c, the joint differences are com-
puted between the current frame-c and its preceding frame-p:

fcp =
{
xci − x

p
j | xci ∈ Xc;x

p
j ∈ Xp

}
. (4.2)

To represent the offset feature or the overall dynamics of the current frame-c with
respect to the initial frame-i, we calculate the joint differences between frame-c
and frame-i:

fci =
{
xci − xij | xci ∈ Xc;x

i
j ∈ Xi

}
. (4.3)

The initial frame tends to approximate the neutral posture. Combination of
the three feature channels forms the preliminary feature representation for each
frame: fc = [fcc, fcp, fci].

In Eq. (4.1-4.3) the orders of joints are in accordance to the specified joint
index. However, the three elements (u, v, d) of a joint x might be of inconsistent
coordinates, e.g., (u, v) are in the screen coordinate and d is in the world coor-
dinate. So normalization is applied to fc to avoid those elements in a greater
numeric range dominating the ones in a smaller numeric range. We use a linear
normalization scheme to scale each dimension in fc to the range [−1,+1]. The
other benefit of normalization is to reduce the intra-class variations from diverse
people. In our experiments, we normalize fc based on a single video sequence
for the cross-subject test and based on whole training video sequences for the
non-cross-subject test.

As illustrated in Figure 4.1, in each frame we use n joints which could result in
a big feature dimension. fcc, fcp, and fci contain n(n− 1)/2, n2, and n2 pair-wise
comparisons, respectively. Each comparison generates 3 elements (∆u,∆v,∆d).
In the end, fnorm is with the dimension of 3× (n(n− 1)/2 + n2 + n2). For exam-
ple, if 20 skeleton joints are extracted in each frame, fnorm is with the dimension of
2,970. As skeleton joints are already high level information recovered from depth
maps, this large dimension could be redundant and include noise, as illustrated in
Figure 4.5. We therefore apply PCA to reduce the redundancy and noise in the
centralized fnorm. The final compact feature representation is the EigenJoints,
which is the descriptor of each frame. In the experiments, we observe that most
eigenvalues are covered by the first few leading eigenvectors, e.g., the leading 128
eigenvalues weight over 95%.
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4.3 Naive-Bayes-Nearest-Neighbor Classifier

We employ the Naive-Bayes-Nearest-Neighbor (NBNN) [5] as the classifier in
activity recognition. The nearest-neighbor (NN) is a non-parametric classifier
which has several advantages over most learning based classifiers: 1) naturally
deals with a large number of classes; 2) avoids the overfitting problem; and 3)
requires no learning process. Boiman et al. [5] argued that the effectiveness of
NN was largely undervalued by the quantization of local image descriptors and
the computation of image-to-image distance. Their observations showed that the
frequent descriptors tend to have lower quantization error but the rare descriptors
tend to have higher quantization error. However, most discriminative cues are
contained in the rare descriptors. So the quantization used in bag-of-visual-words
scheme degrades the discriminative power of descriptors. Moreover, the kernel
matrix used by SVM computes image-to-image distance. But they observed that
the distance computation of image-to-class distance which makes use of descriptor
distributions over the whole class provided better generalization than the image-
to-image distance.

We follow these conclusions in image classification and apply them to video
classification, i.e., activity recognition. We directly utilize the frame descriptor of
EigenJoints without quantization, and compute the video-to-class distance rather
than video-to-video distance. In the context of NBNN, the activity recognition
is performed by:

C∗ = arg min
C

m∑
i=1

‖di −NNC(di)‖2, (4.4)

where di, i = 1, . . . ,m is the EigenJoints descriptor of frame-i in a testing video;
m is the number of frames in this testing video; NNC(di) is the nearest neighbor
of di in class-C. Experimental results show that the recognition accuracy based
on NBNN outperforms that based on SVM. The approximate NN algorithm, such
as k-d tree [1] or local NBNN [47] can be employed to reduce the computational
complexity in the NBNN classification.

4.4 Informative Frame Selection

As in the affect recognition [22], temporal segments of an activity sequence can
be intuitively approximated by the status of neutral, onset, apex, and offset. The
discriminative information is not evenly distributed in these status, but concen-
trates more on the frames from onset and apex status. Moreover, motions of
neutral and offset status are usually similar across different actions. So the in-
formative frame selection corresponds to extracting the frames from onset and
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Figure 4.3: Computation of the accumulated motion energy (AME). (a) illustrates
the motion energy maps associated with each projected view. (b) shows the
normalized AME and selected informative frames.

apex but preclude the frames from neutral and offset. This process enables us to
remove confusing frames and reduce computational cost in the nearest neighbor
searching. We propose to use the accumulated motion energy (AME) to measure
the distinctiveness of each frame:

δ(i) =
3∑

v=1

i∑
j=1

(
|f j

v − f j−1
v | > ε

)
. (4.5)

For frame-i, its depth map is first projected onto three orthogonal planes to gen-
erate three projected maps fv, v ∈ 1, 2, 3. We compute δ(i) as the summation
of motion energy maps. The motion energy maps of each frame are obtained
by thresholding and accumulating the differences between consecutive projected
maps, as shown in Figure 4.3(a). AME is then normalized by the `1-norm. Fig-
ure 4.3(b) illustrates the normalized AME of the action tennis serve from the
MSRAction3D dataset. As shown in this figure, when the normalized AME is
less than 0.1 or larger than 0.9, it increases slowly because motions in these frames
are weak. It is also observed that most of these frames correspond to the status of
neutral and offset. As for the frames whose normalized AME are between 0.1 and
0.9, they present significant motions and make the curve dramatically increase.
Accordingly, these frames are from the status of onset and apex and cover more
discriminative information. In our experiment, we therefore choose frames with
the normalized AME between 0.1 and 0.9 as the informative frames.
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4.5 Experiments and Discussions

We evaluate our proposed approach on three challenging datasets including MSRAc-
tion3D [42], Cornell Human Activity [65], and UCF Kinect [13]. We extensively
compare with the existing methods to our approach under a variety of experi-
mental settings.

4.5.1 Experiments on MSRAction3D Dataset

The MSRAction3D [42] is a benchmark dataset for 3D action recognition with
sequences of depth maps and skeleton joints. It includes 20 action categories
performed by 10 subjects facing the camera. Each subject performs each action 2
or 3 times. The depth maps are with the resolution of 320×240. For each skeleton
joint, the horizontal and vertical locations are stored in the screen coordinate, and
depth position is stored in the world coordinate. The 20 actions are selected in
the context of gaming. As shown in Figure 4.4, the actions in this dataset capture
a variety of motions related to arms, legs, torso, and their combinations.

In order to facilitate a fair comparison with the previous methods, we follow
the same experimental settings as [42] [81] to split the 20 action categories into
three subsets as listed in Table 4.1. In each subset, there are further three different
tests: Test One (One), Test Two (Two), and Cross-Subject Test (CrSub). In Test
One, one third of the subset is used as training and the rest as testing; in Test
Two, two thirds of the subset is used as training and the rest as testing. Both of
them are non-cross-subject tests. In cross-subject test, half of subjects are used
for training and the rest ones used for testing.

Table 4.1: Three action subsets of MSRAction3D dataset used in our experiments.

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3)

Horizontal Wave (HoW) High Wave (HiW) High Throw (HT)
Hammer (H) Hand Catch (HC) Forward Kick (FK)
Forward Punch (FP) Draw X (DX) Side Kick (SK)
High Throw (HT) Draw Tick (DT) Jogging (J)
Hand Clap (HC) Draw Circle (DC) Tennis Swing (TSw)
Bend (B) Hands Wave (HW) Tennis Serve (TSr)
Tennis Serve (TSr) Forward Kick (FK) Golf Swing (GS)
Pickup Throw (PT) Side Boxing (SB) Pickup Throw (PT)
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Figure 4.4: Examples of depth maps and skeleton joints associated with sampled
frames in the MSRAction3D dataset.

4.5.1.1 Evaluation of EigenJoints and NBNN

We first evaluate energy distributions of joint differences to determine the di-
mensionality of EigenJoints. Figure 4.5(a) shows ratios between the sum of first
few leading eigenvalues and the sum of all eigenvalues of fnorm under different
test sets. As demonstrated in this figure, the first 128 eigenvalues (out of 2,970)
occupy over 95% energy for all experimental settings. The distributions concen-
trate more in the first few leading eigenvalues for Test One and Test Two, where
the first 32 eigenvalues have already weighted over 95%. The distribution scat-
ters relatively more for cross-subject test, where the leading 32 eigenvalues cover
about 85% of overall energy.

Figure 4.5(b) shows the recognition accuracies of EigenJoints based NBNN
with different dimensions under various test sets. It is interesting to observe that
the overall recognition rates under a variety of test sets are stable across different
dimensions. For each dimensionality, our method performs well for Test One and
Test Two which are non-cross-subject tests. While the performance in AS3CrSub
is promising, the accuracies in AS1CrSub and AS2CrSub are relatively low. This
is probably because actions in AS1 and AS2 are with similar motions, but AS3
groups complex but pretty distinct actions. For example, in AS1 Hammer tends
to be confused with Forward Punch, and Pickup Throw consists of Bend and
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Figure 4.5: Left: ratios (%) between the sum of first few (8, 16, 32, 64, 128, 256)
leading eigenvalues and the sum of all eigenvalues of fnorm under different test
sets. Right: recognition accuracy (%) of NBNN based EigenJoints with different
dimensions under various test sets.

High Throw. In cross-subject test, different subjects also perform actions with
considerable variations but the number of subjects is limited. For example, some
subjects perform action of Pickup Throw using only one hand whereas others
using two hands. This results in great intra-class variations. The cross-subject
performance can be improved by adding in more subjects.

Considering recognition accuracy and computational cost in NBNN classifica-
tion, we choose 32 as the dimensionality for EigenJoints in all of our experiments.
As high accuracies of Test One and Test Two (over 95%, see Figure 4.5), we only
show the confusion matrix of our method under cross-subject test in Figure 4.6.
Due to the considerable variations in the same actions performed by different
subjects, cross-subject generates much larger intra-class variance than non-cross-
subject. In AS1CrSub, most actions are confused with Pickup Throw, especially

Figure 4.6: Confusion matrix of EigenJoints based NBNN in different action sets
under cross-subject test. Each row corresponds to the ground truth label and
each column indicates the recognition results.
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Table 4.2: Comparisons of the overall recognition accuracies under three test sets.

Methods Test One Test Two Cross Subject Test

Bag-of-3D-Points [42] 91.6 94.2 74.4
HOJ3D [81] 96.2 97.2 79.0
Ours 95.8 97.8 83.3

for Bend and High Throw. In AS2CrSub, Draw X, Draw Tick, and Draw Circle
are mutually confused, as they contain highly similar motions. Although actions
in AS3 are complex, they are with significant differences. So the recognition
results are largely improved in AS3CrSub.

4.5.1.2 Comparisons to the State-of-the-Art Methods

SVM has been extensively used in computer vision to achieve the state-of-the-art
performances in image and video classifications. We employ the bag-of-visual-
words to represent a depth video by quantizing EigenJoints of each frame. K-
means clustering is employed to compute the visual dictionary. We empirically
choose K = 500 and RBF kernels to perform classification. The optimal pa-
rameters of RBF kernels are obtained by 5-fold cross-validation. Figure 4.7(a)
compares the recognition accuracies based on NBNN and SVM. As shown in this
figure, NBNN outperforms SVM in most testing sets. This observation also vali-
dates the superiority of the two schemes used in NBNN, i.e., non-quantization of
EigenJoints and computation of video-to-class distance.

We further compare our approach with previous methods including Bag-of-
3D-Points [42] and HOJ3D [81] under different testing sets in Figure 4.7(b). The
overall accuracies are shown in Table 4.2. As shown in Figure 4.7(b), HOJ3D
and our method significantly outperform Bag-of-3D-Points in most cases. The
performance of our method is comparable to that of HOJ3D in non-cross-subject
tests. However, under cross-subject tests, HOJ3D and our method behave quite
differently. Our method performs much better than HOJ3D in AS3CrSub, but is
inferior to HOJ3D in AS1CrSub and AS2CrSub. This is probably because AS1
and AS2 group similar actions which are more sensitive to the larger intra-class
variations generated in cross-subject tests. So the leading factors computed by
PCA might be biased by the large intra-class variations. But complex actions in
AS3 present considerable inter-class variations which overweight intra-class vari-
ations. So the leading factors of PCA still correspond to variations of different
action classes. As for the overall accuracies in Table 4.2, our method and HOJ3D
achieve comparable results in Test One and Test Two. But our method signif-
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Figure 4.7: Left: comparison of the recognition accuracy (%) between SVM
and NBNN based on EigenJoints. Right: recognition accuracy (%) of different
methods under a variety of testing sets.

icantly outperforms HOJ3D under cross-subject test. This is more desirable in
real-world applications. In addition to recognition accuracy, our method is more
compact than Bag-of-3D-Points and HOJ3D.

4.5.1.3 How Many Frames Are Sufficient

Most existing methods recognize human activity using entire video sequences.
We perform another experiment to investigate how many frames are sufficient to
enable accurate action recognition in our framework. The recognition accuracies
using different number of first few frames under a variety of test sets are illustrated
in Figure 4.8. The sub-sequence is extracted from the first T frames of a given
video. As shown in this figure, in most cases 15 to 20 frames, i.e., the first 30%
to 40% frames are sufficient to achieve comparable recognition accuracies to the
ones using the whole video sequence. There are rapid diminishing gains as more
frames are added in. These results are highly relevant for activity recognition

Figure 4.8: Recognition accuracy (%) with different number of first few frames
in Test One (left), Test Two (middle), and Cross-Subject Test (right) on the
MSRAction3D dataset.
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Figure 4.9: Examples of depth maps and skeleton joints associated with each
frame of the 12 activities in the Cornell Human Activity dataset.

systems where decisions have to be made on line. An online system generally
requires short latency that is mainly affected by two factors, i.e., 1) the time a
system takes to observe sufficient frames for making a reasonable prediction and
2) the time a system takes to compute on the observations. Therefore cutting
down the number of frames that a system reads in helps to reduce the costs in
both of the two factors.

4.5.2 Experiments on Cornell Human Activity Dataset

The Cornell Human Activity [65] is a public dataset providing video sequences of
RGB images with aligned depth maps captured by a Microsoft Kinect camera. In
each frame, 15 skeleton joints in the world coordinate are available. These videos
are with the resolution of 640× 480 and at the frame rate of 30 Hz. This dataset
includes 12 activities and 1 random action performed by 4 subjects in 5 different
environments (i.e., office, kitchen, bedroom, bathroom, and living room). The 12
activities are selected in the context of human daily activities. As illustrated in
Figure 4.9, activities in this dataset are captured in uncontrolled environments
with quite cluttered households and involve extensive human-object interactions.
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Figure 4.10: Comparison of the precision (%) and recall (%) of MEMM and our
method under a variety of test sets.

Since neutral postures are removed in this dataset, we only employ fcc and
fcp in Eq. (4.1-4.2) to compute EigenJoints. We follow the same experimental
settings (subject-independent test) as [65] to split the 13 activities (with one
extra background activity) into five different environments under cross-subject
tests. Experimental results are reported as the average accuracy of the leave-one-
out tests in Figure 4.10. The features used in hierarchical MEMM include visual
frames, depth maps, and skeleton joints, which are much more complex than
EigenJoints only using skeleton joints. However EigenJoints still significantly
outperforms hierarchical MEMM, e.g., the overall precision and recall of our
method are 71.9% and 66.6% which improves the results of hierarchical MEMM
by 4.0% and 11.1%.

4.5.3 Experiments on UCF Kinect Dataset

We also evaluate our proposed method on the UCF Kinect dataset [13]. This
dataset is collected by Microsoft Kinect and OpenNI. In each frame only 15 skele-
ton joints are available, RGB images and depth maps are not stored. It includes
16 actions performed by 16 subjects, as shown in Figure 4.11. Comparisons of
recognition accuracy of our method and the latency aware learning (LAL) [13]
are shown in Figure 4.11. Since depth maps are not available in this dataset,
we do not perform frame selection but operate on the whole video sequences. In
order to reduce observational latency, the LAL method searches a single canoni-
cal posture for recognition. But to facilitate a fair comparison, we only compare
to their results based on the full video sequences. It can be seen from Figure
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Figure 4.11: Top: the 16 actions and skeleton joints associated with each frame
in the UCF Kinect dataset. Bottom: comparisons of recognition accuracy (%) of
our method to LAL on this dataset.

4.11 that our method achieves better or equal accuracies in 12 out of 16 action
categories. The average accuracy of all the 16 actions of our method is 97.1%
which outperforms LAL by 1.2%.

4.6 Summary

In this chapter, we have presented an EigenJoints based activity recognition
method using the NBNN classifier. The compact and discriminative frame rep-
resentation of EigenJoints is effective to capture the properties of static posture,
motion between consecutive frames, and overall dynamics with respect to the
neutral status. The proposed measurement of AME quantizes the distinctiveness
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of each frame. By using AME to prune less discriminative frames, we can remove
noisy and ambiguous frames and reduce computational complexity. Comparisons
between NBNN and SVM show that the non-quantization of descriptors and com-
putation of video-to-class distance are more effective for activity recognition. In
addition, we observe that the first 30% to 40% frames are sufficient to enable
recognition with reasonably accurate results. This observation is relevant to the
systems where recognition has to be made online. Experimental results on the
three challenging datasets of MSRAction3D, Cornell Human Activity, and UCF
Kinect demonstrate that our approach outperforms the previous methods.
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Chapter 5

Depth Motion Maps based
Histogram of Oriented Gradients

In this chapter, we propose an effective approach to recognize human activities
in depth videos, where depth maps provide additional body shape and motion
cues. In our approach, we project depth maps onto three orthogonal planes
and accumulate global actions through the entire video sequence to generate the
depth motion maps (DMM). We then compute histogram of oriented gradients
(HOG) from DMM as the action representation of a depth video. Experimental
results on the MSRAction3D dataset demonstrate that our approach outperforms
the previous methods, although our representation is much more compact. In
addition, we also investigate how many frames are required in this framework for
activity recognition. We observe that a short sub-sequence of 30 to 35 frames on
the MSRAction3D dataset is sufficient to achieve comparable recognition results
to that operating on the whole video sequence.

Automatic human activity recognition has many real-world applications in-
cluding content based video search, human-computer interaction, video surveil-
lance, health care, and etc. As introduced in the preceding chapters, research
of human activity recognition mainly concentrates on color video sequences cap-
tured by traditional RGB cameras. The representation methods based on spatio-
temporal volumes have been extensively studied for activity recognition through
measuring the similarities between local spatio-temporal volumes. In order to
facilitate the accurate similarity measurements, a variety of detection and repre-
sentation methods of spatio-temporal volumes have been proposed [12] [37] [38]
[71]. Meanwhile, the trajectory based approaches have also been explored for
recognizing human activities as well [24] [63]. In this case, human activities are
interpreted by the combined motions of a set of key joints extracted from human
body. However, in traditional videos it is nontrivial to quickly and reliably detect
and track human body joints.
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As the imaging technique advances, it has become feasible to capture color
frames as well as depth maps in real time by RGB-D sensors. The depth maps
are able to provide additional body shape and motion information to distinguish
actions with similar projections from a single view. This greatly motivates recent
research to explore activity recognition based on depth maps [42] [86]. In this
chapter, we also focus on recognizing human activities using sequence of depth
maps. We propose an effective and efficient approach to recognize human activ-
ities by extracting histograms of oriented gradients (HOG) from depth motion
maps (DMM). DMM is generated by stacking motion energy of depth maps pro-
jected onto three orthogonal planes. The stacked motion energy of each action
category produces a specific appearance and shape on DMM. This can be used
to characterize the corresponding action categories. Motivated by the success of
HOG in human detection [11], we adopt HOG descriptors to represent DMM.
Compared to original depth data, the proposed DMM-HOG representation is
more compact and more discriminative. Similar to the experiment in Chapter 4,
we also investigate how many frames are sufficient to perform action recognition
using DMM-HOG. Experimental results demonstrate that a short sub-sequence
(e.g., 35 frames) is sufficient to obtain reasonably accurate recognition results.
This result is also in consistence to the observation in Chapter 4. It provides
important reference for the online systems to reduce the observational latency.

5.1 Related Work

The global representations of actions have been widely used in traditional videos
captured by RGB cameras. For example, Bobick and Davis [4] accumulated the
foreground motion region as the motion history image (MHI) to explicitly model
the motion change. Tian et al. [67] employed Harris detector and HOG descriptor
on MHI to detect and represent local motion information. Similar to MHI, our
proposed DMM also stacks the foreground motion region to record where and
how actions are evolved. However, there are the following main differences: 1)
MHI only keeps most recent motions to capture the recency of action, while DMM
accumulates global activities through the entire video sequence to represent the
motion intensity; 2) DMM stacks motion regions from front, side, and top views,
i.e., the three orthogonal projections of depth maps, while only a single view is
available in MHI. In essence, the fundamental difference of previous methods to
our approach is that they represent features based on 2D color frames, instead of
3D depth maps which capture additional shape and motion cues.

With the release of RGB-D sensors, research of activity recognition based on
depth information has been actively explored. Li et al. [42] sampled a set of
representative 3D points from depth maps to characterize the posture being per-
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Figure 5.1: The framework of computing DMM-HOG. HOG descriptors extracted
from depth motion map of each projection view are combined as DMM-HOG,
which is used to represent the entire action video.

formed in each frame. They first projected depth maps onto three orthogonal
planes and sampled 2D points at equal distance along the contours on the three
projections. The sampled 3D points were then retrieved in depth maps according
to the contour points. However, the sampled 3D points of each frame could gen-
erate a considerable amount of data which resulted in expensive computations
in clustering training data of all classes. In Chapter 4, we have proposed an
EigenJoints based activity recognition method by using a NBNN classifier. The
compact representation of EigenJoints employed joints differences to capture ac-
tion information of static postures, consecutive motions, and overall dynamics.
However, the 3D positions of skeleton joints could be unstable or even complete
wrong if there are sever occlusions [60].

5.2 Computation of DMM-HOG

Our framework to compute the representation of DMM-HOG is demonstrated in
Figure 5.1. We project each depth map onto three planes and compute associated
motion energy, which are then stacked to obtain DMM. Global HOG descriptors
are extracted from the three depth motion maps and concatenated as the final
representation of DMM-HOG.
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5.2.1 Depth Motion Maps (DMM)

In order to make use of the additional shape and motion information provided
by the 3D depth maps, we project each depth map onto three orthogonal planes.
We set the region of interest of each projected map as the bounding box of
foreground, i.e., non-zero region, which is further normalized to a fixed size. The
normalization process is able to reduce intra-class variations, e.g., subject heights
and motion extents of different subjects. So each 3D depth map generates three
2D maps according to the front, side, and top views, i.e., mapf , maps, and
mapt. As for each projected map, we obtain its motion energy by computing and
thresholding the difference between two consecutive projected maps. The binary
map of motion energy indicates the motion region or where motion happens in
each temporal interval. It provides a strong clue of the action category being
performed. We then stack the motion energy through the whole video sequence
to generate the depth motion map DMMv for each projection view:

DMMv =
n−1∑
i=1

(
|mapi+1

v −mapiv| > ε
)

(5.1)

where v ∈ {f, s, t} denotes the projection view; mapiv is the projected map of the
ith frame under projection view v; n is the number of frames; |mapi+1

v −mapiv| > ε
is the binary map of motion energy; and ε is the threshold. We empirically set
ε = 50 in our experiments. As shown in Figure 5.1, DMM generated from a
video of Pickup Throw demonstrates a specific appearance and shape, which
characterizes the accumulated motion distribution and intensity of this action.
DMM representation encodes the 4D information of body shape and motion in
the three projected planes, meanwhile significantly reduces the data of a depth
sequence to only three 2D projection maps.

5.2.2 DMM-HOG Descriptor

HOG is able to characterize the appearance and shape on DMM by the distribu-
tion of local intensity gradients. The basic idea is to compute gradient orientation
histograms on a dense grid of uniformly spaced cells. In each cell, 4 different nor-
malizations, i.e., `1-norm, `2-norm, `1-sqrt, and `2-hys [11], are computed based
on adjacent histograms. As for each depth motion map, we evenly sample 23×10
non-overlapping cells and 8 gradient orientation bins. So each DMMv generates
a descriptor HOGv with a dimension of 4×23×10×8 = 7, 360. As illustrated in
Figure 5.1, we concatenate [HOGf , HOGs, HOGt] as the DMM-HOG descriptor
which is the input to a linear SVM classifier to recognize human activities.
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Figure 5.2: Recognition rates (%) of DMM with different normalization sizes
under a variety of test sets.

5.3 Experiments and Discussions

The proposed method is evaluated on the MSRAction3D dataset [42]. We ex-
tensively compare our approach to the previous methods under a variety of ex-
perimental settings. We further investigate how many frames are sufficient to
recognize actions using DMM-HOG.

5.3.1 Experimental Setup

As introduced in Section 4.5.1, MSRAction3D contains 20 action categories per-
formed by 10 subjects. These action categories are chosen in the context of
interactions with game consoles. We follow the same experimental settings as
[42] to split the 20 categories into three subsets as listed in Table 4.1. For each
subset, there are three different tests, i.e., Test One (One), Test Two (Two), and
Cross-Subject Test (CrSub). In Test One, one third of the subset is used as train-
ing the rest as testing; in Test Two, two thirds of the subset is used as training
and the rest as testing; in Cross-Subject Test, half subjects are used for training
and the rest ones used for testing.

5.3.2 Evaluation of DMM-HOG

We first evaluate the effect of normalization size of DMM. As discussed in Sec-
tion 5.2.1, we normalize the three depth motion maps to a fixed size. Figure 5.2
demonstrates recognition accuracy of DMM with different normalization sizes
under a variety of test sets. The overall recognition rates of most test sets are
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Figure 5.3: Recognition accuracy (%) with different numbers of first few frames
in Test One (left), Test Two (middle), and Cross-Subject Test (right) on the
MSRAction3D dataset. 30−35 frames are sufficient to enable reasonably accurate
recognition in most test cases.

similar across different DMM normalization sizes. For AS1One and AS1Two, the
size of 200× 100 achieves the best result, while for AS2CrSub the size of 50× 25
outperforms others. Although lower resolutions are able to reduce computational
cost in calculating HOG, we extract HOG descriptors only from the three depth
motion maps, instead of each depth map. So for each video, the difference of
computation time between different sizes is quite limited. The following experi-
mental results are based on the size of 200×100. As shown in Figure 5.2, while the
performance in AS1CrSub is promising, the recognition accuracy in AS2CrSub
and AS3CrSub are relatively low. In Cross-Subject Test, different subjects per-
form actions with great variations but the amount of subjects is limited, which
results in considerable intra-class variations. Furthermore, some actions in AS2
are quite similar, e.g., Draw X, Draw Tick, and Draw Circle, which also generates
small inter-class variations. The performances on Cross-Subject Test might be
improved by having more subjects.

5.3.3 How Many Frames Are Sufficient

Most existing systems recognize human activity by operating on the entire video
sequence. Similar to EigenJoints in Chapter 4, we also conduct experiments to
investigate how many frames are sufficient for action recognition with reasonably
accurate results in the DMM-HOG framework. The recognition rates using dif-
ferent amount of frames under a variety of test sets are demonstrated in Figure
5.3. The sub-sequence is chosen from the first K frames in a given video. As
shown in this figure, in most cases 30 to 35 frames are sufficient to achieve com-
parable results to the ones using the entire sequence, with quite limited gains or
even some loss when more frames are added in. As affect recognition in [22], the
temporal segments of an action can be intuitively approximated by the status of
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Table 5.1: Comparisons of recognition accuracy (%) of different methods on the
MSRAction3D dataset.

Test Set 3D Silhouettes [42] EigenJoints [86] DMM-HOG

AS1One 89.5 94.7 97.3
AS2One 89.0 95.4 92.2
AS3One 96.3 97.3 98.0
AS1Two 93.4 97.3 98.7
AS2Two 92.9 98.7 94.7
AS3Two 96.3 97.3 98.7
AS1CrSub 72.9 74.5 96.2
AS2CrSub 71.9 76.1 84.1
AS3CrSub 79.2 96.4 94.6

neutral, onset, apex, and offset. The most discriminative information is contained
in the status of apex and onset, which are probably covered by the first 30 to 35
frames of the MSRAction3D dataset. The sequence after apex contributes little
or even incurs noise. This observation is in consistence with the one in Eigen-
Joints and provides important guides to reduce latency of an action recognition
system where decisions have to be made on line. The following results are based
on the sub-sequence of the first 35 frames.

5.3.4 Comparisons to the State-of-the-Art Methods

We compare our DMM-HOG approach with the previous methods including 3D
Silhouettes [42] and EigenJoints [86] on the MSRAction3D dataset in Table 5.1.
Recognition accuracy of 3D Silhouettes and EigenJoints are obtained from [42]
and [86]. The best results under different test sets are highlighted in bold. As
shown in this table, our method consistently and significantly outperforms 3D
Silhouettes in all testing cases. The overall accuracy under non-cross-subject
tests of our method is comparable to that of EigenJoints. But our method greatly
outperforms EigenJoints for cross-subject tests. The significant improvement of
our method in cross-subjects tests is probably because the normalization process
in computing depth motion maps helps to reduce variations of different subjects,
as well as the robust representation of DMM-HOG. In addition to recognition
accuracy, out approach is much more compact than 3D Silhouettes. Moreover,
our recognition result is achieved by using a short sub-sequence (35 frames), while
3D Silhouettes relied on the entire video sequences.
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5.4 Summary

In this chapter, we have proposed an effective action recognition method by using
DMM-HOG. The compact and discriminative representation is able to capture
the global activities from front, side, and top views. Experimental results on the
MSRAction3D dataset demonstrate that our approach significantly outperforms
the previous methods. In addition, we observe that in our framework a short
sub-sequence of 30 to 35 frames is sufficient to perform action recognition with
reasonably accurate results.
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Chapter 6

Super Normal Vector for Activity
Recognition in Depth Videos

This chapter presents a new framework for human activity recognition from video
sequences captured by a depth camera. We cluster hypersurface normals in a
depth sequence to form the polynormal which is used to jointly characterize the
local motion and shape information. In order to globally capture the spatial and
temporal orders, an adaptive spatio-temporal pyramid is introduced to subdivide
a depth video into a set of space-time cells. We then propose a novel scheme to
aggregate the low-level polynormals into the super normal vector (SNV) which
can be seen as a simplified version of the Fisher kernel representation. In the
extensive experiments, we achieve classification results superior to all previous
published results on the four public benchmark datasets, i.e., MSRAction3D,
MSRDailyActivity3D, MSRGesture3D, and MSRActionPairs3D.

In the past decades, research on activity recognition mainly focused on recog-
nizing actions from videos captured by conventional visible light cameras. As the
imaging techniques advance, the recent emergence of low-cost and easy-operation
depth sensors facilitates a variety of visual recognition tasks including activity
recognition. Depth maps have several advantages with respect to traditional
color frames in the context of activity recognition. First, they provide additional
body shape and structure information, which has been successfully applied to
recover skeleton joints from a single depth map. Second, color and texture are
removed in depth maps, which eases the problems of human detection and seg-
mentation. Third, depth sensors are insensitive to lighting change, which brings
great benefits to the system monitoring in the dark environment.

It was recently shown in [51] [80] that conventional approaches based upon
color sequences could not perform well on depth maps due to a large amount of
false point detections fired on the spatio-temporally discontinuous regions. On the
other hand, depth maps and color frames have quite different properties. The
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3D Activity Dataset Previous Best Results Our Results

MSRAction3D 91.70% [91] 93.45%
MSRGesture3D 92.45% [51] 94.72%
MSRActionPairs3D 96.67% [51] 98.89%
MSRDailyActivity3D 85.75% [75] 86.25%

Table 6.1: Our results compared to the best published results so far on the four
datasets (more detailed comparisons in Table 6.2-6.5).

descriptors based on brightness, gradient, and optical flow in traditional color
sequences might be unsuited to represent depth maps. It is therefore intuitive to
design action features according to the specific characteristics of depth sequences,
e.g., cloud points [74] [75] and surface normals [51] [92].

In this chapter, we propose a novel activity recognition framework based upon
the polynormal which is a group of hypersurface normals in depth sequences. A
polynormal clusters the extended surface normals from a local space-time sub-
volume. It can be used to jointly capture the local motion and geometry cues.
A sparse coding approach [46] is employed to compute the polynormal dictio-
nary and coefficients. We record the differences between polynormals and visual
words. The coefficient-weighted difference vectors are aggregated through spatial
average pooling and temporal max pooling for each visual word. The vectors
of all visual words are in the end concatenated as a feature vector, which can
be viewed as a non-probabilistic simplification of the Fisher kernel representa-
tion [53]. We further subdivide a depth video into a set of space-time cells. An
adaptive spatio-temporal pyramid is proposed to capture the spatial layout and
temporal order in a global way. We concatenate the vectors extracted from all
the space-time cells as the final representation of super normal vector (SNV).

We evaluate our method according to the standard experimental protocols on
the four public benchmark datasets: MSRAction3D [42], MSRDailyActivity3D
[75], MSRGesture3D [74], and MSRActionPairs3D [51]. Our results outperform
the previous published ones as shown in Table 6.1.

The main contributions of this chapter is summarized as follows. First, we
group hypersurface normals from a local space-time volume to polynormal which
reserves correlations between local normals and is more robust against noise than
individual normal [51]. Second, a novel approach is proposed to aggregate low-
level polynormals into the discriminative representation of SNV. Third, our adap-
tive spatial-temporal pyramid is better adapted to retain the space-time orders
than the widely used uniform cells [38] [51] [71] [75]. Moreover, our framework is
flexible to combine with skeleton joints to compute SNV for each joint trajectory.
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The remainder of this chapter is organized as follows. Section 6.1 introduces
the related work on activity recognition using depth sequences. Section 6.2 de-
scribes the concept of polynormal. In Section 6.3, we provide detailed procedures
to compute SNV. A variety of experimental results and discussions are presented
in Section 6.4. Finally, Section 6.5 summarizes the remarks of this chapter.

6.1 Related Work

Research on activity recognition has explored a number of representations of
depth sequences, ranging from skeleton joints [86], cloud points [74], projected
depth maps [89], local interest points [23], to surface normals [51].

As introduced in Chapter 4, human actions can be modeled by the move-
ments of skeleton joints. The moving pose descriptor was recently proposed in
[91] by using the configuration, speed, and acceleration of joints. To reduce joint
estimation errors, the pose set [70] selected the best-k joint configurations by
segmentation and temporal constraints. The relative positions of pairwise joints
were also used in [75] as a complementary feature to characterize the motion in-
formation. Compared to skeleton joints, cloud points are more robust to noise
and occlusion. Wang et al. [74] [75] introduced local and random occupancy pat-
terns to describe depth appearance. In local occupancy patterns, they subdivided
the local 3D subvolumes associated with skeleton joints into a set of spatial grids
and counted the number of cloud points falling into each grid. Similar represen-
tation based on cloud points was also applied to the 4D subvolumes sampled by
a weighted sampling scheme in random occupancy patterns.

Approaches based on projected depth maps usually transform the problem in
3D to 2D. In Chapter 5, we stacked differences between projected depth maps as
the depth motion maps where HOG was extracted as the global representation of
a depth video. Several local interest point detectors specifically designed for depth
data were recently proposed. DSTIP was introduced in [80] to localize activity-
related interest points from depth videos by suppressing flip noise. Hadfield et
al. [23] extended the detection algorithms of Harris corners, Hessian points, and
separable filters to the 3.5D and 4D for depth sequences. As shown in [66], surface
normal provides most geometric shape information of an object in 3D. HON4D
[51] followed this observation to extend the surface normal to the 4D space and
quantized them by the regular and discriminative learned polychorons.

Our method presented in this chapter proceeds along with this direction. It
relies on the polynormal which is a local cluster of extended surface normals.
We propose a novel approach to aggregate the low-level polynormals in each
adaptive spatio-temporal cell. The concatenation of feature vectors extracted
from all space-time cells forms the final depth video representation.
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Figure 6.1: Illustration of generating polynormal of the cloud point pt. (a) shows a
depth sequence of tennis serve and normal vectors associated with cloud points.
For figure clarity, only a few normal vectors are visualized. The three white
squared regions correspond to the neighborhood L. (b) indicates the extended
surface normal vector. (c) If ns = 9 and nt = 3, the polynormal of pt is consisted
of the 27 neighboring normals.

6.2 Polynormal

The concept of a normal to a surface in 3-dimensional space can be extended
to a hypersurface in m-dimensional space. The hypersurface can be viewed as a
function Rm−1 → R1 : xm = f (x1, . . . , xm−1), which is represented by a set of m-
dimensional points that locally satisfy F (x1, . . . , xm) = f (x1, . . . , xm−1)−xm = 0.
The normal vectors to the hypersurface at these points can be computed by

the gradient ∇F (x1, . . . , xm) =
(

∂f
∂x1
, . . . , ∂f

∂xm−1
,−1

)
. In the context of depth

sequences, i.e., m = 4, each point satisfies F (x, y, t, z) = f(x, y, t) − z = 0. We
therefore obtain the extended surface normal by

n = ∇F =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂t
,−1

)T

. (6.1)

The distribution of normal orientations is able to provide more informative
geometric cues than the traditional gradient orientations [51]. Moreover, the
motion cues are also embedded in the normal vector of Eq. (6.1). In order to
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retain the correlation between neighboring normals and make them more robust
to noise, we propose polynormal to cluster normals from a local spatio-temporal
neighborhood. Similar schemes have been validated in other fields. For example,
the spatial neighborhoods of low-level features are jointly encoded in deep learning
[41] and macrofeatures [6].

A polynormal p associated with each cloud point in a depth video concatenates
L normals in the local neighborhood L of this point:

p =
(
nT

1 , . . . ,n
T
L

)T
, n1, . . . ,nL ∈ L. (6.2)

The neighborhood L is a spatio-temporal depth subvolume determined by
two parameters ns and nt, where ns denotes the number of neighboring points in
spatial and nt indicates the number of neighboring maps in temporal. Figure 6.1
illustrates the concept of polynormal. A short sequence of the tennis serve action
is shown in Figure 6.1(a). If we set ns = 9 and nt = 3, then the polynormal of
the white point pt concatenates the 27 normals from the three adjacent depth
maps as shown in Figure 6.1(c).

6.3 Computing Super Normal Vector

In this section, we describe the detailed procedures to compute SNV based on the
low-level polynormals. We utilize the sparse coding to learn a dictionary and code
polynormals. Instead of directly pooling the coefficients of coded polynormals, we
aggregate the weighted differences between polynormals and visual words into a
vector. A depth video is subdivided into a set of space-time cells by our proposed
adaptive spatio-temporal pyramid. The feature vectors extracted from each cell
are then concatenated as the final representation of SNV.

6.3.1 Aggregating Polynormals

In visual recognition, the global representation of an image or a video is usually
obtained by extracting low-level features, coding them over a learned dictionary,
and then pooling the distribution of codes in some well-chosen support regions.
After the coding step, low-level features are discarded in the recognition pipeline.
In our framework, we keep the low-level features by recording the differences
between them and visual words. As shown in [28], [53], [93] the relative displace-
ments can provide extra distribution information of low-level features.

We employ sparse coding to learn the dictionary and code polynormals. It
is well known that the `1 penalty yields a sparse solution. Given a training set
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of whitened polynormals P = (p1, . . . ,pN) in RM×N , the sparse coding problem
can be solved by

min
D,α

1

N

N∑
i=1

(
1

2
‖pi −Dαi‖22 + λ‖αi‖1

)
, (6.3)

subject to dT
k dk ≤ 1,∀k = 1, . . . , K,

where D in RM×K is the dictionary, each column (dk)Kk=1 representing a visual
word; α in RK×N is the coefficients of sparse decomposition; λ is the sparsity
inducing regularizer.

We `1-normalize each column (αi)
N
i=1 to obtain the soft assignment αk,i of

polynormal pi to the kth visual word. The size of the volume (depth sequences)
where we perform the aggregation is H ×W pixels and T frames. The volume
corresponds to either the entire video sequence or a subsequence defined by a
space-time cell. We denote by Nt the set of indices within the frame t. For
each visual word, the spatial average pooling is first applied to aggregate the
coefficient-weighted differences:

uk(t) =
1

|Nt|
∑
i∈Nt

αk,i (pi − dk) , (6.4)

where uk(t) represents the pooled difference vector of the kth visual word in the
tth frame. The temporal max pooling is then used to aggregate the vectors from
T frames:

uk,i = max
t=1,...,T

uk,i(t), for i = 1, . . . ,M, (6.5)

where uk is the vector representation of the kth visual word in the whole volume;
i indicates the ith component in corresponding vectors. The final vector repre-
sentation U is the concatenation of the uk vectors from the K visual words and
is therefore of KM dimensions:

U =
(
uT

1 , . . . ,u
T
K

)T
. (6.6)

In order to capture the global spatial layout and temporal order, a depth se-
quence is subdivided into a set of space-time cells. We extract a feature vector
U from each cell and concatenate them as SNV. This representation has several
remarkable properties. (1) The displacements to visual words retain some infor-
mation lost in traditional feature quantization process. (2) We can compute SNV
upon a much smaller dictionary (e.g., 100) which reduces computational cost.
(3) SNV performs quite well with simple linear classifiers (e.g., SVM with linear
kernel) which are efficient in terms of both training and testing.
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6.3.2 Relationship with Fisher Kernel

We now demonstrate that our proposed SNV is a simplified non-probabilistic
version of the Fisher kernel representation which has been successfully applied in
the image classification tasks [56]. Fisher kernel assumes low-level features are
distributed according to Gaussian mixture model (GMM).

In the framework of Fisher kernel, each feature descriptor is described by its
deviations with respect to the GMM parameters β = {πk,µk,σk, k = 1, . . . , K},
where πk, µk, and σk are the mixture weight, mean vector, and covariance ma-
trix (diagonal) of the kth Gaussian component ϕk. The soft assignment of the
descriptor pi to the component ϕk is defined as:

γk,i =
πkϕk (pi)∑K
j=1 πjϕj (pi)

. (6.7)

We denote by pi a general descriptor and Nt a general pooling region in this
context. We focus on the gradient gk with respect to the mean vector µk of the
kth Gaussian:

gk =
1

|Nt|
√
πk

∑
i∈Nt

γk,iσ
−1
k (pi − µk) . (6.8)

If making the two hypotheses: (1) mixture weights are equal, i.e., πk = 1/K
and (2) covariance matrices are isotropic, i.e., σk = εI with ε > 0, we can simplify
Eq. (6.8) to

gk ∝
1

|Nt|
∑
i∈Nt

γk,i (pi − µk) , (6.9)

where γk,i is simplified to ϕk (pi) /
∑K

j=1 ϕj (pi). The two representations in Eq.
(6.4) and Eq. (6.9) have the same form except the ways to obtain the weight
(αk,i and γk,i) and the center (dk and µk). We utilize sparse coding to compute
the weight and center, while GMM clustering is used in the Fisher kernel.

We choose sparse coding over GMM in our aggregation scheme because it is
cheaper to compute the centers (dictionary), especially it was recently shown in
[10] that a reasonably good dictionary can be created by some simple methods,
e.g., random sampling a training set. In addition, our empirical evaluations show
our method based on sparse coding improves the recognition accuracy.

6.3.3 Adaptive Spatio-Temporal Pyramid

In the spatial dimensions, we use a nH×nW grid to capture the geometry layout.
As the depth information greatly facilitates human detection and segmentation,
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Figure 6.2: Comparison between the traditional (top) and our proposed (bottom)
spatial grids. We put the 4×3 spatial grid on the largest bounding box of human
body rather than on the entire frame.

we enforce the spatial grid on the largest bounding box of the human body,
instead of on the entire frame as widely used in [51] [71]. Figure 6.2 illustrates
the comparison between the two schemes of spatial grids.

The temporal pyramid was introduced by Laptev et al. [38] to take into
account the rough temporal order of a video. It was also employed in depth
sequences [51] [75] to incorporate cues from the temporal context. In these meth-
ods, a video sequence (either color or depth) is repeatedly and evenly subdivided
into a set of temporal segments where descriptor-level statistics are pooled. How-
ever, different people could have varied motion speed or frequency when they are
performing the same activity. It is therefore inflexible to handle this variance by
evenly subdividing a video along the time axis. In addition, it is more desirable
to pool low-level features within the similar activity status, e.g., neutral, onset,
apex, and offset. In order to handle these difficulties, we propose an adaptive
temporal pyramid based on the motion energy.

Given a depth sequence, we first project the ith frame I i onto three orthogonal
planes to obtain the projected maps I iv, v ∈ {1, 2, 3}. The difference between two
consecutive projected maps is then thresholded to generate a binary map. We
compute the motion energy by accumulating summations of non-zero elements of
binary maps as:

ε(i) =
3∑

v=1

i−1∑
j=1

sum
(∣∣Ij+1

v − Ijv
∣∣ > ε

)
, (6.10)
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Figure 6.3: The frame index and associated motion energy used to build the
adaptive temporal pyramid. The temporal segments are obtained by repeatedly
and evenly subdividing the normalized motion energy vector instead of the time
axis.

where ε(i) is the motion energy of the ith frame; ε is the threshold; sum(·) returns
the number of non-zero elements in a binary map. The motion energy of a frame
reflects its relative motion status with respect to the entire activity.

Our proposed adaptive temporal pyramid is built upon this measurement as
shown in Figure 6.3. We evenly subdivide the normalized motion energy vector
into a set of segments, whose corresponding frame indices are used to partition
a video. In the experiments, we use a 3-level temporal pyramid as illustrated
in this figure: {t0t4}, {t0t2, t2t4}, and {t0t1, t1t2, t2t3, t3t4}. In together with the
spatial grid, our adaptive spatio-temporal pyramid in total generates nH×nW ×7
space-time cells.

We summarize the outline of computing SNV of a depth video in Algorithm 3.
The set of space-time cells V are chosen by the proposed adaptive spatio-temporal
pyramid.

6.3.4 Joint Trajectory Aligned SNV

While the framework discussed above operates on the entire depth sequence, our
method is flexible to combine with skeleton joints [60] to compute SNV based on
each joint trajectory. This is useful in the scenarios where people significantly
change their spatial locations in a depth video. The aggregation process is the
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Algorithm 3: Computation of SNV

Input: a depth sequence
a dictionary D = (dk)Kk=1

a set of space-time cells V = {vi}
Output: SNV

1 compute polynormals {pi} from the depth sequence
2 compute coefficients {αi} of {pi} by sparse coding
3 for cell i = 1 to |V | do
4 for visual word k = 1 to K do
5 uk

i := spatial average pooling and temporal max pooling of
αk,i (pi − dk), where pi ∈ vi

6 end

7 U i :=
(
u1

i , . . . ,u
K
i

)
8 end

9 SNV :=
(
U 1, . . . ,U |V |

)
same as the earlier discussion, except the pooling region is based on the space-
time volume aligned around each joint trajectory. It was also shown in dense
trajectories [71] that descriptors aligned with trajectories were superior to those
computed from straight cuboids.

As shown in Figure 6.4, the volume aligned with a joint trajectory can be
viewed as a single video sequence with H×W pixels and T frames. We apply the
adaptive spatio-temporal pyramid on this volume to obtain nH × nW × 7 space-
time cells. In each cell, we use the same aggregation scheme, i.e., spatial average
pooling and temporal max pooling of the coefficient-weighted difference vectors
as in Eq. (6.4-6.5). The vectors from all the space-time cells are concatenated as
the joint trajectory aligned SNV. We in the end combine the SNVs aligned with
all the joint trajectories as the final representation of a depth sequence.

6.4 Experiments

In this section we extensively evaluate our proposed method on four public bench-
mark datasets: MSRAction3D [42], MSRGesture3D [74], MSRActionPairs3D
[51], and MSRDailyActivity3D [75]. In all experiments, we set a 9 × 3 neigh-
borhood for each cloud point to form the polynormal. We use 100 visual words in
the sparse coding. The adaptive spatio-temporal pyramid is typically of 4×3×7
space-time cells in height, width, and time, respectively. We employ LIBLIN-
EAR [14] as the linear SVM solver. Our method is extensively compared to the
existing depth-based approaches. The methods designed for color videos are not
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Figure 6.4: SNV based on the skeleton joint trajectory. A trajectory-aligned
volume is subdivided into a set of space-time cells according to the adaptive
spatio-temporal pyramid. Each cell generates a feature vector by the spatial
average pooling and temporal max pooling.

included in our comparisons because they have been widely shown to be unsuited
for depth maps. Experimental results show that our algorithm significantly out-
performs the state-of-the-art methods on these datasets. Our source code for
computing SNV is available online.1

6.4.1 Evaluation of SNV Parameters

Here we focus on the MSRAction3D dataset for the detailed evaluations of pa-
rameters and settings in SNV. Figure 6.5(a) compares the recognition accuracies
of SNV with different number of visual words K. Though SNV achieves the
best result using K = 100 visual words, the general accuracy is very stable with
respect to K. We then evaluate the size of local neighborhood L to form a poly-
normal. As discussed in Section 6.2, the size of L is determined by Lx×Ly×Lt.
Figure 6.5(b) shows the recognition accuracies of SNV with different sizes of L.
If no local temporal cue is encoded, i.e., Lt = 1, increasing the spatial size of L
improves the recognition accuracy, e.g., from 1 × 1 × 1, 3 × 3 × 1, to 5 × 5 × 1.
When Lx and Ly are fixed, the accuracy based on Lt > 1 is much higher than the

1http://yangxd.org/code
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Figure 6.5: Recognition accuracies (%) of SNV with (a) different numbers of
visual words and (b) various sizes LxLyLt of L to form the polynormal.

ones with Lt = 1, e.g., the result of 3× 3× 3 significantly outperforms the one of
3×3×1. In addition, the overall performance of a polynormal is superior to that
of an individual normal. This shows the local temporal information embedded
in polynormal helps to characterize the low-level motion cues. In the following
experiments, we use the 3× 3× 3 local neighborhood L to form the polynormal
and 100 visual words.

As described in Eq. (6.4-6.5), we apply spatial average pooling and temporal
max pooling to aggregate polynormals. This design can be validated from our
empirical observation. Figure 6.6(a) compares recognition accuracies of different
combinations of spatial/temporal and average/max pooling. We observe the ap-
propriate choice of pooling in spatial and temporal is critical to the performance
of final representation. Figure 6.6(b) demonstrates the comparisons between tra-
ditional temporal pyramid and our adaptive temporal pyramid. In level-1, both
methods have the same temporal segment (i.e., the entire video sequence), so they
have the same recognition accuracy. But in level-2 and level-3, our approach based
on motion energy largely outperforms traditional method based on time. When
we combine the 3 levels into a temporal pyramid, our adaptive pyramid achieves
1.81% improvement to the traditional pyramid.

To analyze the computational complexity of SNV, we compute SNV from 567
depth videos with the resolution of 320 × 240. We report the run time using
MATLAB on a desktop with a single 2.13GHz CPU and 24G RAM. The average
computational speed is 0.13 frame per second. Figure 6.7 shows the percentage
of time spent on each step of computing SNV. The coding process takes most of
the time with 53%. The pooling process is the second most time-consuming step
with 37%. The computation of polynormal only takes 4%. The run time can be
improved by parallel computing and reducing densely sampled cloud points.
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Figure 6.6: Recognition accuracies (%) of SNV with different combinations of
spatial/temporal and average/max pooling in (a). Comparisons between our
proposed adaptive temporal pyramid based on motion energy and the traditional
pyramid based on time in (b).

6.4.2 MSRAction3D Dataset

The MSRAction3D [42] is a dataset of depth sequences captured by a RGB-D
camera. It contains 20 action categories performed by 10 subjects facing the
camera. Each action is performed 2 or 3 times by each subject. The 20 actions
are selected in the context of gaming and cover a variety of movements related
to arms, legs, torso, etc., as illustrated in Figure 4.4.

In order to facilitate a fair comparison, we follow the same experimental set-
ting as [75]. SNV achieves the accuracy of 93.45% which significantly outperforms
the previous methods. If we only keep the first level (i.e., {t0t4} in Figure 6.3) of
the adaptive temporal pyramid, the accuracy goes down to 91.64%. This decrease
shows action recognition benefits from the cues in the global temporal order. The
confusion matrix of our method is demonstrated in Figure 6.11. As shown in the
confusion matrix, our method works very well on most actions. The recognition
errors concentrate on those quite similar actions, e.g., hand catch to high throw
and draw circle to draw tick.

We compare the performance of SNV with other results in Table 6.2. The
approaches based on joints are vulnerable to the errors of joint estimation due to
severe self-occlusions. So the model in [70] selects the best-k joint configurations
which largely remove inaccurate joints. The method in [91] utilizes pose, speed,
and acceleration of joints. While still inferior to our method, the approaches
in [69] [74] [75] improve the results in [81] [84] because cloud points are more
resistant to occlusions and provide additional shape cues compared to skeleton
joints. SNV outperforms HON4D [51] by 4.56%, though both methods are based
upon hypersurface normals. This is probably because (1) polynormals obtain
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Figure 6.7: Percentage of time spent on each major step of computing SNV with
default parameter setting.

more discriminative local motion and shape information than individual normals;
(2) sparse coding is more robust than the polychoron and learned projectors; (3)
our aggregation scheme, i.e., spatial average pooling and temporal max pooling of
weighted difference vectors, is more representative than the sum pooling of inner
production values; (4) the adaptive pyramid is more flexible than the uniform
cells to capture the global spatio-temporal cues.

6.4.3 MSRGesture3D Dataset

The MSRGesture3D [74] is a dynamic hand gesture dataset of depth sequences
captured by a depth camera. As illustrated in Figure 6.8, it contains 12 dy-
namic hand gestures defined by the American Sign Language (ASL). There are
10 subjects, each one performing each dynamic gesture 2 or 3 times. This dataset
presents more self-occlusions than MSRAction3D.

The leave-one-out cross-validation scheme as [74] is used in our evaluation.
SNV obtains the state-of-the-art accuracy of 94.74% which outperforms the pre-
vious methods as shown in Table 6.3. The confusion matrix of SNV is shown in
Figure 6.12. Our method performs pretty well on most dynamic gestures. The
most confusion occurs in recognizing the gestures green which shares similar mo-
tions to j but with different fingers. As joint estimation is not available for hands,
the joint-based methods [70] [75] [81] [84] [91] cannot be used in this application.
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Figure 6.8: Examples of depth maps associated with sampled frames in the
MSRGesture3D dataset.

6.4.4 MSRActionPairs3D Dataset

The MSRActionPairs3D [51] is a paired-activity dataset of depth sequences cap-
tured by a depth camera. It contains 12 activities (i.e., 6 pairs in Figure 6.9) of
10 subjects with each subject performing each activity 3 times. This dataset is
collected to investigate how the temporal order affects activity recognitions.

The same evaluation setup as [51] is used in our experiment. SNV achieve
the state-of-the-art accuracy of 98.89%. The detailed comparison to other ap-
proaches is demonstrated in Table 6.4. The skeleton feature [75] only involves
pair-wise difference of joint positions within each frame. The LOP feature [75] is
used to characterize the depth appearance. It counts the number of cloud points
falling into each spatial grid of a depth subvolume. There is no temporal infor-
mation encoded in the two features. In depth motion maps [89], depth sequences
are collapsed onto three projected maps where temporal orders are eliminated.
These methods therefore suffer the inner-paired confusion. The skeleton and LOP
features equipped with a uniform temporal pyramid improves the recognition re-
sult as the global temporal order is incorporated. However, this result is still
significantly inferior to ours.

It is therefore crucial to capture the spatio-temporal orders to distinguish the
activities with similar motion and shape cues. In our method, the space-time
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Figure 6.9: Examples of depth maps associated with sampled frames in the
MSRActionPairs3D dataset.

orders are embedded in two levels, i.e., polynormals and the adaptive pyramid,
which characterize the local and global spatio-temporal orders, respectively. It is
interesting to observe that SNV achieves an accuracy of 97.78% if no temporal
pyramid is used. This promising result demonstrates the local motion cues en-
closed in the polynormals reflect the temporal orders pretty well. Because of the
high recognition accuracy, the confusion matrix on this dataset is omitted.

6.4.5 MSRDailyActivity3D Dataset

The MSRDailyActivity3D [75] is a daily activity dataset of depth sequences cap-
tured by a depth camera. As shown in Figure 6.10, there are 16 daily activities
which are performed by 10 subjects. Each subject performs each activity twice,
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Figure 6.10: Examples of depth maps associated with sampled frames in the
MSRDailyActivity3D dataset.

one in standing position and the other in sitting position. Compared to the other
three datasets, people in this dataset present large spatial and scaling changes.
Moreover, most activities involve human-object interactions.

In order to handle the significant spatial and scaling changes, we employ
the joint trajectory aligned SNV on this dataset. Each joint is tracked through
the entire depth sequence. A patch is associated with each joint in each frame.
Because depth values inversely vary with an object size, we set an adaptive size
s/z to each patch, where s = 300K is a scale factor and z is the depth value of a
joint in the current frame. Unlike the fixed patch size used in [51], the adaptive
size is more robust to handle the scaling change. So the patch size in Figure 6.4
is not necessary to be consistent. We compute SNV and joint position difference
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feature for each joint trajectory. The actionlet ensemble model [75] is then used
to combine the features from multiple joints.

We follow the same experimental setting as [75] and obtain the accuracy
of 86.25%. The confusion matrix is shown in Figure 6.13. Most recognition
errors occur in the almost still activities, e.g., read book, write, and use laptop.
Since most activities involve human-object interactions, this dataset can be used
to evaluate how the motion and shape information are correlated. It could be
insufficient to capture motion and shape independently because some activities
share quite similar motion cues but present distinct shape properties. SNV jointly
encodes local motion and shape information in polynormals which in the high level
reflect the co-occurrence of hand motion and object shape.

Table 6.5 demonstrates the performance of our method compared to the pre-
vious approaches. Note: an accuracy of 88.20% was reported in [80], however,
four activities with less motion (i.e., sit or stand still, read books, write on paper,
and use laptop) were removed in their experiment. The holistic approach [89]
suffers the non-aligned sequences. The methods [44] [59] [84] [91] based on either
motion or shape information alone are significantly inferior to our method and
the ones [51] [75] that jointly model the two cues.

6.5 Summary

We have presented a novel framework to recognize human activities from depth
sequences. The polynormal based on extended surface normals jointly encodes
local motion and shape cues. A new aggregation scheme is proposed by sparse
coding polynormals, as well as spatial average pooling and temporal max pool-
ing of the coefficient-weighted difference vectors between polynormals and visual
words. We have introduced the adaptive spatial-temporal pyramid which is shown
to be better adapted to retain the spatial and temporal orders. Our proposed
framework is also flexible to be combined with the joint trajectory aligned depth
sequence, which is well suited in the scenarios where significant spatial and scaling
changes present. Our method is extensively evaluated on four public benchmark
datasets and compared to a number of state-of-the-art approaches. Experimen-
tal results demonstrate that our method outperforms all previous approaches on
these datasets.
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Figure 6.11: Confusion matrix of SNV on the MSRAction3D dataset. This figure
is better viewed on screen.

Method Accuracy

Bag of 3D Points [42] 74.70%
HOJ3D [81] 79.00%
EigenJoints [86] 82.30%
STOP [69] 84.80%
Random Occupancy Pattern [74] 86.50%
Actionlet Ensemble [75] 88.20%
Depth Motion Maps [89] 88.73%
HON4D [51] 88.89%
DSTIP [80] 89.30%
Pose Set [70] 90.00%
Moving Pose [91] 91.70%
Ours 93.45%

Table 6.2: Recognition accuracy comparison of our method and previous ap-
proaches on the MSRAction3D dataset.
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Figure 6.12: Confusion matrix of SNV on the MSRGesture3D dataset. This figure
is better viewed on screen.

Method Accuracy

Action Graph on Occupancy [35] 80.50%
Action Graph on Silhouette [35] 87.70%
Random Occupancy Pattern [74] 88.50%
Depth Motion Maps [89] 89.20%
HON4D [51] 92.45%
Ours 94.74%

Table 6.3: Recognition accuracy comparison of our method and previous ap-
proaches on the MSRGesture3D dataset.

Method Accuracy

Skeleton + LOP [75] 63.33%
Depth Motion Maps [89] 66.11%
Skeleton + LOP + Pyramid [75] 82.22%
HON4D [51] 96.67%
Ours 98.89%

Table 6.4: Recognition accuracy comparison of our method and previous ap-
proaches on the MSRActionPairs3D dataset.
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Figure 6.13: Confusion matrix of SNV on the MSRDailyActivity3D dataset. This
figure is better viewed on screen.

Method Accuracy

LOP [75] 42.50%
Depth Motion Maps [89] 43.13%
EigenJoints [84] 58.10%
Joint Position [75] 68.00%
NBNN + Parts + Time [59] 70.00%
RGGP [44] 72.10%
Moving Pose [91] 73.80%
Local HON4D [51] 80.00%
Actionlet Ensemble [75] 85.75%
Ours 86.25%

Table 6.5: Recognition accuracy comparison of our method and previous ap-
proaches on the MSRDailyActivity3D dataset.
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Chapter 7

Conclusion

This dissertation is dedicated to developing effective feature representations for
human activity recognition on the two visual sequences including color frames
and depth maps. We have demonstrated both in theory and practice with clear
performance gains in a variety of experiments. Specifically, we have developed
the following methodologies for human activity recognition.

Surveillance Event Detection We present a general surveillance event detec-
tion system using a temporal sliding windows as the detection unit. ActionHOG is
developed to compute low-level motion features in a very efficient way. We take
advantage of the event spatial priors to remove a large amount of background
features. The CascadeSVMs algorithm is introduced to deal with the highly
imbalanced large-scale data learning problem in the context of video surveillance.

Super Sparse Coding Vector We propose an effective feature coding method
to aggregate descriptors and locations of low-level features into the discrimina-
tive representation of super descriptor vector (SDV). We incorporate the spatio-
temporal locations as part of the coding step to generate the compact represen-
tation of super location vector (SLV). The combination of SDV and SLV is the
super sparse coding vector (SSCV) which jointly models the motion, appearance,
and location information in a unified, discriminative, and compact way. Com-
pared to the widely used spatio-temporal pyramid based methods, SSCV greatly
improves recognition accuracy, and meanwhile significantly reduces memory cost
and computational complexity.

EigenJoints We propose an effective approach of EigenJoints to recognize hu-
man activities based on skeleton joints. EigenJoints encodes the information of
static posture, motion property, and overall dynamics. We also introduce the ac-
cumulated motion energy (AME) to select informative depth maps, which helps
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to reduce ambiguous features and computational complexity. We adopt NBNN
as the classifier to recognize multiple activity categories. Experimental results
demonstrate EigenJoints outperforms the previous methods on three benchmark
datasets.

Depth Motion Maps We propose the depth motion maps (DMM) for action
recognition in depth sequences by accumulating projected depth maps from three
orthogonal views. DMM characterizes the specific appearances and shapes, i.e.,
the accumulated motion intensity and distribution, of different action categorizes.
We then compute HOG from DMM as a global representation of the entire depth
sequence. We also investigate how many frames are necessary for our method
to perform classification in the scenario of online recognition. We observe that a
short sub-sequence is sufficient to achieve comparable recognition results to that
using the whole video sequence, with quite limited gains as more frames added
in.

Super Normal Vector We present a novel and effective framework of super
normal vector (SNV) to recognize human activities in depth videos. We extend
the concept of surface normal to polynormal to jointly characterize the local
motion and shape cues. We then propose a novel scheme to aggregate low-
level polynormals based on the coefficient weighted difference vectors between
polynormals and visual words. By making use of the depth information, we
introduce an adaptive spatio-temporal pyramid which is more adapted and precise
to capture the geometric layout and temporal order. Experimental results on the
four benchmark datasets demonstrate SNV achieves the performance superior to
all previous published methods.

To look into the future, we will proceed to our research on several open exciting
challenges for human activity recognition. I believe multiple feature fusion is cru-
cial for more robust activity recognition. One promising direction is to exploit
the complementary information from both color and depth channels in computing
different levels of representations. In addition, it is an interesting issue to model
and recognize group activity for analyzing complex social interactions. I also ex-
pect to explore the deep learning techniques to obtain more powerful and generic
feature representations in large-scale video recognition. Moreover, it is of great
potential to incorporate parallel processing and cloud computing in developing
real-world vision systems.
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Appendix A

Publications During Ph.D. Study

1. X. Yang and Y. Tian. Super Normal Vector for Activity Recognition Us-
ing Depth Sequences. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

2. X. Yang and Y. Tian. Action Recognition Using Super Sparse Coding Vec-
tor with Spatio-Temporal Awareness. European Conference on Computer
Vision (ECCV), 2014.

3. S. Chen, X. Yang, and Y. Tian. Discriminative Hierarchical K-Means Tree
for Large-Scale Image Classification. IEEE Transactions on Neural Net-
works and Learning Systems (TNNLS), 2014.

4. X. Rong, C. Yi, X. Yang, and Y. Tian. Scene Text Recognition in Mul-
tiple Frames based on Text Tracking. IEEE International Conference on
Multimedia & Expo (ICME), 2014.

5. X. Yang, S. Yuan, and Y. Tian. Assistive Clothing Pattern Recognition for
Visually Impaired People. IEEE Transactions on Human-Machine Systems
(THMS), 44(2), 234-243, 2014.

6. X. Yang and Y. Tian. Polynormal Fisher Vector for Activity Recognition
from Depth Sequence. SIGGRAPH ASIA Workshop on Autonomous Vir-
tual Humans and Social Robots, 2014.

7. Y. Xian, X. Rong, X. Yang, and Y. Tian. CCNY at TRECVID 2014:
Surveillance Event Detection. NIST TRECVID Workshop, 2014.

8. X. Yang and Y. Tian. Effective 3D Action Recognition Using EigenJoints.
Journal of Visual Communication and Image Representation (JVCIR), 25(1),
2-11, 2014.

81



9. X. Yang, Z. Liu, E. Zavesky, D. Gibbon, B. Shahraray, and Y. Tian.
AT&T Research at TRECVID 2013: Surveillance Event Detection. NIST
TRECVID Workshop, 2013.

10. C. Zhang, X. Yang, and Y. Tian. Histogram of 3D Facets: A Characteristic
Descriptor for Hand Gesture Recognition. IEEE International Conference
on Automatic Face and Gesture Recognition (FG), 2013. (Oral)

11. C. Mazuera, X. Yang, and Y. Tian. Visual Speech Learning Using Dy-
namic Lip Movement based Video Segmentation and Comparison. IEEE
International Conference on Bioinfomatics and Biomedicine (BIBM), 2013.
(Oral)

12. X. Yang and Y. Tian. Texture Representations Using Subspace Embed-
dings. Pattern Recognition Letters (PRL), 34(10), 1130-1137, 2013.

13. X. Yi, X. Yang, and Y. Tian. Feature Representations for Scene Text
Character Recognition: A Comparative Study. International Conference
on Document Analysis and Recognition (ICDAR), 2013.

14. C. Zhang, X. Yang, C. Yi, Y. Tian, Q. Yu, A. Tamrakar, A. Divakaran.
CCNY-SRI at TRECVID 2013 intED: A Human Interactive Event Detec-
tion System. NIST TRECVID Workshop, 2013.

15. Y. Tian, X. Yang, C. Yi, and A. Arditi. Toward A Computer Vision based
Wayfinding Aid for Blind Persons to Access Unfamiliar Indoor Environ-
ments. Machine Vision and Applications (MVA), 24(3), 521-535, 2013.

16. F. Zaman, X. Yang, and Y. Tian. Monitoring Activity of Taking Medicine
by Incorporating RFID and Video Analysis. Network Modeling Analysis in
Health Informatics and Bioinformatics, 2(2), 61-70, 2013.

17. S. Wang, X. Yang, and Y. Tian. Detecting Sinage and Doors for Blind Nav-
igation and Wayfinding. Network Modeling Analysis in Health Informatics
and Bioinformatics, 2(2), 81-93, 2013.

18. X. Yang, C. Zhang, and Y. Tian. Recognizing Actions Using Depth Motion
Maps based Histograms of Oriented Gradients. ACM Multimedia (MM),
2012.

19. X. Yang, C. Yi, L. Cao, and Y. Tian. MediaCCNY at TRECVID 2012:
Surveillance Event Detection. NIST TRECVID Workshop, 2012.
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20. X. Yang and Y. Tian. EigenJoints based Action Recognition Using Naive-
Bayes-Nearest-Neighbor. IEEE CVPR Workshop on Human Activity Un-
derstanding from 3D Data, 2012.

21. F. Zaman, X. Yang, and Y. Tian. Robust and Effective Component based
Banknote Recognition for the Blind. IEEE Transactions on System, Man,
and Cybernetics (TSMC) Part C, 42(6), 1021-1030, 2012.

22. X. Yang, S. Yuan, and Y. Tian. Recognizing Clothes Patterns for Blind
People by Confidence Margin based Feature Combination. ACM Multime-
dia (MM), 2011.

23. F. Zaman, X. Yang, Y. Tian. Robust and Effective Component based Ban-
knote Recognition by SURF Features. IEEE Wireless and Optical Commu-
nications Conference (WOCC), 2011.

24. X. Yang, Y. Tian, C. Yi, and A. Arditi. Context based Indoor Object
Detection as An Aid to Blind Persons Accessing Unfamiliar Environments.
ACM Multimedia (MM), 2010.

25. X. Yang and Y. Tian. Robust Door Detection in Unfamiliar Environments
by Combining Edge and Corner Features. IEEE CVPR Workshop on Com-
puter Vision Applications for Visually Impaired, 2010.

26. Y. Tian, X. Yang, and A. Arditi. Computer Vision based Door Detection for
Accessibility of Unfamiliar Environments to Blind Persons. International
Conference on Computers Helping People with Special Needs (ICCHP),
2010.
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