
 

 
Abstract 

 
In this paper, we propose an effective method to 

recognize human actions from 3D positions of body joints. 
With the release of RGBD sensors and associated SDK, 
human body joints can be extracted in real time with 
reasonable accuracy. In our method, we propose a new 
type of features based on position differences of joints, 
EigenJoints, which combine action information including 
static posture, motion, and offset. We further employ the 
Naïve-Bayes-Nearest-Neighbor (NBNN) classifier for 
multi-class action classification. The recognition results 
on the Microsoft Research (MSR) Action3D dataset 
demonstrate that our approach significantly outperforms 
the state-of-the-art methods. In addition, we investigate 
how many frames are necessary for our method to 
recognize actions on the MSR Action3D dataset. We 
observe 15-20 frames are sufficient to achieve comparable 
results to that using the entire video sequences.      

1. Introduction 
Automatic human action recognition has been widely 

applied in a number of real-world applications, e.g. video 
surveillance, content-based video search, human-computer 
interaction, and health-care. Traditional research mainly 
concentrates on action recognition from video sequences 
captured by a single camera. In this case, a video is a 
sequence of 2D frames with RGB channels in 
chronological order. There has been extensive research in 
the literature on action recognition for such videos. The 
spatio-temporal volume-based method is extensively used 
by measuring the similarity between two action volumes. 
In order to compute accurate similarity measurement, a 
variety of spatio-temporal volume detection and 
representation approaches have been proposed [2, 4-7]. 
Trajectory-based methods have also been widely explored 
for recognizing human activities [11, 14]. In these 
methods, human actions can be interpreted by a set of 
body joints or other interesting points. However, it is not 
trivial to quickly and reliably extract and track body joints 
from traditional 2D videos. On the other hand, as the 
imaging technique advances, especially the launch of 

Microsoft Kinect, it has become practical to capture RGB 
sequences as well as depth maps in real time. Depth maps 
are able to provide additional body shape information to 
differentiate actions that have similar 2D projections from 
a single view. Li et al. [8] sampled 3D representative 
points from the contours of depth maps of a body surface 
projected onto three orthogonal Cartesian planes. An 
action graph was then used to model the sampled 3D 
points for recognition. Their promising recognition results 
on the MSR Action3D dataset [15] validated the 
superiority of 3D silhouettes over 2D silhouettes that are 
from a single view. However, in their experiments depth 
maps incurred a great amount of data which resulted in 
prohibitively expensive computations in clustering 
training samples of all classes. 

The biological observation from Johansson [9] 
suggested that human actions could be modeled by the 
motion of a set of key joints. With the release of RGBD 
sensors and the associated SDK, we are able to obtain 3D 
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Figure 1: The sequences of depth maps and body joints for 
actions of (a) Tennis Serve, (b) Draw Circle, and (c) Side Kick. 
Each depth map includes 20 joints. The joint of each body part 
is encoded in corresponding color.  



 

positions of body joints in real time with reasonable 
accuracy [13]. In this paper, we focus on recognizing 
human actions using body joints extracted from sequences 
of depth maps. Fig. 1 demonstrates the depth sequences 
with 20 extracted body joints of each depth map for 
actions Tennis Serve, Draw Circle, and Side Kick. As 
shown in Fig. 1, the perception of actions can be reflected 
by the motions of individual joints and the configuration 
of different joints (i.e. static postures). Compared to the 
original depth data of human body, these joints are more 
compact and more distinctive. We propose a type of 
features by adopting the differences of joints in both 
temporal and spatial domains to explicitly model the 
dynamics of individual joints and the configuration of 
different joints. We then apply Principal Component 
Analysis (PCA) to joint differences to obtain EigenJoints 
by reducing redundancy and noise. We employ non-
parametric Naïve-Bayes-Nearest-Neighbor (NBNN) [3] as 
a classifier to recognize multiple action categories. In 
accordance with the principles behind NBNN-based image 
classification, we avoid quantization of frame descriptors 
and compute Video-to-Class distance, instead of Video-to-
Video distance. In addition, most existing methods [2, 4-7, 
11-14] perform action recognition by operating on entire 
video sequences. We further explore how many frames are 
sufficient for action recognition in our framework. The 
experimental results on the MSR Action3D dataset show 
that a short sub-sequence (15-20 frames) is sufficient to 
perform action recognition, with quite limited gains as 
more frames are added in. This observation is important 
for making online decisions and reducing observational 
latency when humans interact with computers. 

The remainder of this paper is organized as follows. 
Section 2 reviews existing methods for action recognition. 
In Section 3, we provide detailed procedures of extracting 
EigenJoints features for each frame. Section 4 describes 
the NBNN classifier. A variety of experimental results and 
discussions are presented in Section 5. Finally, Section 6 
summarizes the remarks of this paper. 

2. Related Work 
In traditional 2D videos captured by a single camera, 

action recognition mainly focuses on analyzing spatio-
temporal volumes. The core of these approaches is in the 
detection and representation of space-time volumes. For 
example, Bobick and Davis [2] stacked foreground regions 
of a person to explicitly track shape changes. The stacked 
silhouettes formed Motion History Images (MHI) and 
Motion Energy Images (MEI), which served as action 
descriptors for template matching. In most recent work, 
local spatio-temporal features have been widely used. 
Similar to object recognition using sparse local features in 
2D images, an action recognition system first detects 
interesting points (e.g. STIPs [6] and Cuboids [4]) and 

then computes descriptors (e.g. HOG/HOF [7] and 
HOG3D [5]) based on the detected local motion volumes. 
These local features are then combined (e.g. bag-of-
words) to model different activities. The trajectory-based 
approaches are more similar to our method that models 
actions by the motion of a set of points. For instance, Rao 
and Shah [11] used skin color detection to track a hand 
position to record its 3D (XYT) space-time trajectory 
curve. They represented actions by a set of peaks of 
trajectory curves and intervals between the peaks. Sun et 
al. [14] extracted trajectories through pair-wise SIFT 
matching between neighboring frames. The stationary 
distribution of a Markov chain model was then used to 
compute a velocity description.           

As RGBD sensors becomes available, research of action 
recognition based on depth information has been explored. 
Li et al. [8] proposed a Bag-of-3D-Points model for action 
recognition. They sampled a set of 3D points from a body 
surface to characterize the posture being performed in 
each frame. In order to select the representative 3D points, 
they first sampled 2D points at equal distance along the 
contours of projections formed by mapping the depth map 
onto three orthogonal Cartesian planes, i.e. XY, XZ, and 
YZ planes. The 3D points were then retrieved in the 3D 
depth map. Their experiments showed that this approach 
considerably outperformed the methods only using 2D 
silhouette and were more robust to occlusion.   

Motivated by the robust joints extraction of RGBD 
sensors and associated SDK, we propose to compute 
EigenJoints for action recognition. In contrast to 
traditional trajectory-based methods, EigenJoints are able 
to model actions by more informative and more accurate 
body joints without background noisy points. Compared to 
the 3D silhouette based recognition, EigenJoints are more 
discriminative and much more compact. 

3. Representation of EigenJoints 
The proposed framework to compute EigenJoints is 

demonstrated in Fig. 2. We employ 3D position 
differences of joints to characterize action information 
including posture feature ���, motion feature ���, and 
offset feature ��� in each frame-�. We then concatenate the 
three features channels as �� � ���� � ���� ���	. According to 
different experimental settings in Section 5.1, two 
normalization schemes are introduced to obtain �
�� . In 
the end, PCA is applied to �
��  to compute EigenJoints.     

As shown in Fig. 2, the 3D coordinates of � joints are 
available in each frame: � � ���� ��� � � ���. To 
characterize the static posture information of current 
frame-�, we compute pair-wise joints differences within 
the current frame: 

 

��� � ��� � ����� � � ���� � � �� �  �� (1) 
 



 

To capture the motion property of current frame-�, the 
pair-wise joints differences are computed between the 
current frame-� and the preceding frame-!: 
 

 
 
Figure 2: The framework of representing EigenJoints. In each 
frame, we compute three feature channels ��� , ��� , and ��� to 
capture the information of  offset, posture, and motion. The 
normalization and PCA are then applied to obtain EigenJoints 
descriptor for each frame.    
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To represent the offset feature or the overall dynamics of 
the current frame-� with respect to the initial frame-�, we 
calculate the pair-wise joints differences between frame-� 
and frame-�: 
 

��� � ���� � ������� " ��� ��� " ��� (3) 
 

The initial frame tends to approximate the neutral posture. 
The combination of the three feature channels forms the 
preliminary feature representation for each frame: 
�� � ����� ���� ���	. 

However, the 3 attributes #$� %� &' of a joint � might be 
of inconsistent coordinates, e.g. #$� %' are screen 
coordinates and & is world coordinate. So the 
normalization is then applied to �� to avoid attributes in 
greater numeric ranges dominating those in smaller 
numeric ranges. We use linear normalization scheme to 
scale each attribute in �� to the range (��� )�*. The other 
advantage of normalization is to reduce intra-class 
variations under different test sets. So we normalize �� 
based on a single video for cross-subject test and based on 
entire training videos for non-cross-subject test.  

As shown in Fig. 1, in each frame we use � � �+ joints 
which result in a huge feature dimension. ���, ���, and ��� 
contains 190, 400, and 400 pair-wise comparisons, 
respectively. Each comparison generates 3 attributes 
#,$� ,%� ,&'. In the end, �
��  is with the dimension of 
#�-+) .++) .++' / 0 � �-1+. We employ PCA to 
reduce redundancy and noise in �
�� , and to obtain the 
compact EigenJoints representation for each frame. In the 
experimental results of Section 5.2, we observe that most 

energy is covered in a first few leading eigenvectors, e.g. 
the first 128 eigenvalues weight over 95%. 

4. Naïve-Bayes-Nearest-Neighbor Classifier 
We employ the Naïve-Bayes-Nearest-Neighbor 

(NBNN) [3] as the classifier for action recognition. The 
Nearest-Neighbor (NN) is a non-parametric classifier 
which has some advantages over most learning-based 
classifiers: (1) naturally deal with a large number of 
classes; (2) avoid the overfitting problem; (3) require no 
learning process. Boiman et al. [3] argued that the 
effectiveness of NN was largely undervalued by the 
quantization of local image descriptors and the 
computation of Image-to-Image distance. Their 
experiments showed that frequent descriptors had low 
quantization error but rare descriptors had high 
quantization error. However, discriminative descriptors 
tend to be rare. So quantization significantly degrades the 
discriminative power of descriptors. In addition, they 
observed that Image-to-Class that made use of the 
descriptor distribution over an entire class provided better 
generalization capacity than Image-to-Image.      
 We extend these concepts of NBNN-based image 
classification to NBNN-based video classification (action 
recognition). We directly use the frame descriptors of 
EigenJoints without quantization, and compute Video-to-
Class distance rather than Video-to-Video distance. In the 
context of NBNN, the action recognition is performed by: 
 

23 � 456789� :;&� � ���#&�';�
<

�=�
 (4) 

 

where &� � � � ���� � �> is an EigenJoints descriptor of 
frame-� in a testing video; > is the number of frames; 
���#&�' is the nearest neighbor of &� in class-2. The 
experimental results in Section 5.3 show that the 
recognition accuracy based on NBNN outperforms that 
based on SVM. The efficient approximate-?-nearest-
neighbours algorithm and KD-tree [1] can be used to 
reduce the computational cost in NBNN classification. 

5. Experiments and Discussions 
We evaluate our proposed method on the MSR 

Action3D dataset [8, 15]. We extensively compare the 
state-of-the-art methods to our approach under different 
experimental settings. In addition, we investigate how 
many frames in a testing video are sufficient to perform 
action recognition in our framework.    

5.1. Experimental Setup 
The MSR Action3D [15] is a public dataset that 

provides sequences of depth maps and skeletons captured 
by a RGBD camera. It includes 20 actions performed by 



 

10 subjects facing the camera during performance. Each 
subject performed each action 2 or 3 times. The depth 
maps are with the resolution of 0�+/ �.+. For each 
skeleton joint, the horizontal and vertical positions are 
stored in screen coordinates, and depth value is stored in 
world coordinate. The 20 actions are chosen in the context 
of interactions with game consoles. As shown in Fig. 1, 
actions in this dataset reasonably capture a variety of 
motions related to arms, legs, torso, and their 
combinations.  

In order to facilitate a fair comparison, we follow the 
same experimental settings as [8] to split 20 actions into 
three subsets as listed in Table 1. In each subset, there are 
three different tests: Test One (One), Test Two (Two), and 
Cross Subject Test (CrSub). In Test One, 1/3 of the subset 
is used as training and the rest as testing; in Test Two, 2/3 
of the subset is used as training and the rest as testing. 
Both of them are non-cross-subject tests. In Cross Subject 
Test, 1/2 of subjects are used as training and the rest ones 
used as testing. 
 

Table 1: The three action subsets used in our experiments. 
 

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3) 
Horizontal Wave(HoW) 

Hammer(H) 
Forward Punch(FP) 
High Throw(HT) 
Hand Clap(HC) 

Bend(B) 
Tennis Serve(TSr) 
Pickup Throw(PT) 

High Wave(HiW) 
Hand Catch(HC) 

Draw X(DX) 
Draw Tick(DT) 

Draw Circle(DC) 
Hands Wave(HW) 
Forward Kick(FK) 
Side Boxing(SB) 

High Throw(HT) 
Forward Kick(FK) 

Side Kick(SK) 
Jogging(J) 

Tennis Swing(TSw) 
Tennis Serve(TSr) 
Golf Swing(GS) 

Pickup Throw(PT) 

 

5.2. Evaluations of EigenJoints and NBNN 
We first evaluate the energy distributions of joints 

differences to determine the dimensionality of 
EigenJoints. Fig. 3 shows the ratios between the sum of 
first few eigenvalues and the sum of all eigenvalues of 
�
��  under different test sets. As shown in this figure, the 
first 128 eigenvalues (out of 2970) occupy over 95% 
energy for all experimental settings. The distributions 
concentrate more in the first few leading eigenvalues for 
Test One and Test Two, where the first 32 eigenvalues 
have already weighted over 95%. The distribution scatters 
relatively more for Cross Subject Test, where the leading 
32 eigenvalues cover about 85% of overall energy. 

Fig. 4 demonstrates the action recognition rates of 
EigenJoints-based NBNN with different dimensions under 
different test sets. It’s interesting to observe that the 
overall recognition rates of various test sets are very 
similar across different dimensions. As for each 
dimensionality, our method performs very well for Test 
One and Test Two which are non-cross-subject tests. 
While the performance in AS3CrSub is promising, the 

accuracies in AS1CrSub and AS2CrSub are relatively low. 
This is probably because actions in AS1 and AS2 are with 
similar movements, but AS3 groups complex but distinct 
actions. For example, in AS1 Hammer tends to be 
confused with Forward Punch and Pickup Throw consists 
of Bend and High Throw. Furthermore, in Cross Subject 
Test, different subjects perform actions with considerable 
variations but the number of subjects is small. For 
example, some subjects perform action of Pickup Throw 
using only one hand whereas others using two hands, 
which result in great intra-class variations. The cross 
subject performance can be improved by adding more 
subjects.  
 Considering the recognition accuracy and the 
computational cost in NBNN classification, we choose 32 
as the dimensionality for EigenJoints in all of our 
experiments. As high accuracies of Test One and Test 
Two (over 95%, see Table 2), we only show the confusion 
matrix of our method under Cross Subject Test in Fig. 5. 
Because of the considerable variations in actions 
performed by different subjects, cross subjects generate 
much larger intra-class variance than non-cross subjects. 
In AS1CrSub, most actions are confused with Pickup 
Throw, especially for Bend and High Throw. In 
AS2CrSub, Draw X, Draw Tick, and Draw Circle are 

Figure 3: The ratios (%) between the sum of the first few (8, 16, 
32, 64, 128, and 256) leading eigenvalues and the sum of all 
eigenvalues of �
��  under different test sets.   

Figure 4: The recognition rates (%) of NBNN-based EigenJoints 
with different dimensionalities under various test sets. 
 



 

mutually confused, as they contain highly similar 
movements. As actions in AS3 are with significant 
differences, the recognition results are greatly improved in 
AS3CrSub. 

5.3. Comparison with State-of-the-art 
SVM has been extensively used in computer vision to 

achieve the state-of-the-art performances in image and 
video classifications. We employ bag-of-words to 
represent an action video by quantizing EigenJoints of 
each frame. K-means clustering is employed to build the 
codebook. We empirically choose K = 100 and RBF 
kernels to perform classification. The optimal parameters 
of RBF kernels are obtained by 5-fold cross-validation. 
Fig. 6 compares the recognition results based on NBNN 
and SVM. As shown in this figure, NBNN consistently 
outperforms SVM in all test sets. This result validates the 
superiority of the two schemes used in NBNN, i.e. non-
quantization of EigenJoints and Video-to-Class distance. 

 

 
Figure 6: The comparison of action recognition rates (%) based 
on NBNN and SVM.  
 

We further compare our approach with the state-of-the-
art method [8] for action recognition on the MSR 

Action3D dataset [15] in Table 2. The results of Bag-of-
3D-Points or 3D silhouettes are obtained from paper [8]. 
The best recognition rates of various test sets are 
highlighted in bold. As shown in Table 2, our method 
consistently and significantly outperforms 3D silhouettes. 
For example, the average accuracies of our method in Test 
One, Test Two, and Cross Subject Test are 95.8%, 97.8%, 
and 81.4%, which outperform the average accuracies of 
using 3D silhouettes [8] by 4.2%, 3.6%, and 6.7% 
respectively. In non-cross subject tests, our method 
achieves over 95% accuracies in most cases. While the 
accuracy of AS3CrSub is 96.4%, the recognition rates of 
cross subject tests in AS1CrSub (74.5%) and AS2CrSub 
(76.1%) are relatively low. This is probably because 
similar actions in AS1CrSub and AS2CrSub are more 
sensitive to the larger intra-class variations generated in 
cross subject tests. In addition to recognition accuracy, our 
method is much more compact than the Bag-of-3D-Points. 
 
Table 2: Recognition rates (%) of our method compared to the 
state-of-the-art approach on the MSR Action3D dataset. 
 

 3D Silhouettes [8] our method 
AS1One 89.5 94.7 
AS2One 89.0 95.4 
AS3One 96.3 97.3 
AS1Two 93.4 97.3 
AS2Two 92.9 98.7 
AS3Two 96.3 97.3 

AS1CrSub 72.9 74.5 
AS2CrSub 71.9 76.1 
AS3CrSub 79.2 96.4 

5.4. How Many Frames Are Sufficient 
Li et al. [8] recognized actions using entire video 

sequences (about 50 frames) in the MSR Action3D 
dataset. We perform experiments to investigate how many 

Figure 5: Confusion matrix of EigenJoints-based NBNN in different action sets of Cross Subject Test. Each row corresponds to
ground truth label and each column denotes the recognition results.  



 

frames are sufficient for action recognition in our 
framework. The recognition accuracies using different 
number of frames under a variety of test sets are given in 
Fig. 7. The sub-sequences are extracted from the first @ 
frames of a given video. As shown in this figure, in most 
cases 15-20 frames are sufficient to achieve comparable 
recognition accuracies to the ones using entire sequences. 
There are rapid diminishing gains as more frames are 
added in. This result is also in accordance with the 
observations in [10] that a 66% reduction in frames only 
results in a 6.6% reduction in classification accuracy. 
These results are highly relevant for action recognition 
systems where decisions have to be made on line.   

6. Conclusion 
In this paper, we have proposed an EigenJoints-based 

action recognition system using an NBNN classifier. The 
compact and discriminative frame representation of 
EigenJoints is able to capture the properties of posture, 
motion, and offset of each frame. The comparisons 
between NBNN and SVM show that non-quantization of 
descriptors and Video-to-Class distance computation are 
more effective for action recognition. The experimental 
results on the MSR Action3D dataset demonstrate our 
approach significantly outperforms the state-of-the-art 
method based on 3D silhouettes. In addition, we observe 
that 15-20 frames are sufficient to perform action 
recognition with reasonably accurate results. Future work 
will focus on incorporating more subjects to improve 
recognition in the cross subject test.      
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Figure 7: The recognition accuracies using different number of frames in Test One (left), Test Two (middle), and Cross Subject 
Test (right). 15-20 frames are sufficient to enable action recognition in most test sets.    


