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(57) ABSTRACT

A method and a device for self-supervised learning, a
storage medium, and an electronic device are provided. The
method includes: organizing real points in one column along
a vertical direction into a pillar, where the pillar is provided
with a pillar motion parameter, and each of the real points in
the pillar has a motion parameter that is the same as the pillar
motion parameter; determining a predicted point in a next
frame; determining a first loss term based on a minimum
distance among distances between predicted points in the
next frame and real points in the next frame, and generating
a loss function including the first loss term; and performing
self-supervised learning processing based on the loss func-
tion. With the method and device for self-supervised learn-
ing, the storage medium, and the electronic device, a pillar
motion parameter representing motion of a real point is
determined with the pillar as a unit, so as to enhance
correlation between point clouds. Self-supervised learning
can be realized in a case of no precise correspondence
between the predicted point and the real point, and training
is performed based on a large number of unlabeled point
clouds.
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Acquire an unlabeled dataset
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Organize real points in one column along a vertical direction into a pillar

A - 103

For each of real points in a current frame, move the real point to a next
frame based on a corresponding pillar motion parameter, and determine a
predicted point in the next frame

v L~ 104

Determine a first loss term based on a minimum distance among distances
between predicted points in the next frame and real points in the next
frame, and generate a loss function including the first loss term
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Perform self-supervised learning processing based on the loss function to
determine a pillar motion parameter of the pillar

Figure 1
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Project a real point in a target frame onto an image plane including
image data to determine a first pixel, and determine an ego-optical
flow of the first pixel based on a pose change of an ego-vehicle

Determine an overall optical flow of the first pixel based on the image
data, and determine an object optical flow of the first pixel based on
the overall optical flow and ego-optical flow

‘ _— 303

Project a pillar motion parameter corresponding to a real point in the
farget frame onto the image plane, and determine a corresponding
projected optical flow

v il 304

Determine a second loss term based on a difference between the
object optical flow and the projected optical flow, and add the second
loss term to the loss function

Figure 3
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Project a real point in a target frame onto an image plane including image data
to determine a first pixel, and determine an ego-optical flow of the first pixel
based on a pose change of an ego-vehicle

‘ 402

Determine an overall optical flow of the first pixel based on the image data,
and determine an object optical flow of the first pixel based on the overall
optical flow and the ego-optical flow

‘ 403

Determine a probability that the first pixel corresponds to a dynamic object
based on magnitude of the object optical flow, to determine a probability that
areal point in the target frame corresponding to the first pixel corresponds to

the dynamic object

Figure 4
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Generate a pillar motion field, where the pillar motion field includes
pillar motion parameters of multiple pillars

, 502

Determine a third loss term based on components and gradients of the
pillar motion field in multiple directions, and add the third loss term
to the loss function

Figure 5
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METHOD AND SYSTEM FOR
SELF-SUPERVISED LEARNING OF PILLAR
MOTION FOR AUTONOMOUS DRIVING

FIELD

[0001] The present disclosure relates to the technical field
of self-supervised learning, and in particular to a method and
a device for self-supervised learning, a storage medium, and
an electronic device.

BACKGROUND

[0002] Understanding and predicting motion of various
behavioral agents (such as vehicles, pedestrians and the like)
are crucial for self-driving vehicles to operate safely in
dynamic environments. A self-driving vehicle is usually
equipped with multiple sensors, and the most commonly
used sensor is LiDAR. How to estimate motion from point
clouds collected by LiDAR is therefore one of fundamental
research issues in autonomous driving. However, this is
challenging in the following aspects: (1) there exist behavior
agent categories and each category exhibits specific motion
behavior; and (2) the point cloud is sparse and lacks of exact
correspondence between sweeps.

[0003] At present, estimation of motion usually requires a
large amount of annotated training data from autonomous
driving scenarios. However, it is well known that manually
labeling point clouds is difficult, error-prone and time-
consuming. Although self-supervised learning for language
and vision has gained increasing attention in recent years,
self-supervised learning for point clouds still falls behind.

[0004] Another active research line is to estimate scene
flow from point clouds to understand a dense 3D motion
field. However, in current methods, hundreds of millisec-
onds are usually taken to process a partial point cloud, which
is even though significantly subsampled. Moreover, these
methods are available for synthetic data (for example,
FlyingThings3D) or densely processed data (for example,
KITTI scene flow) with an exact correspondence. However,
raw point clouds scanned by LiDAR do not have such
correspondence. Therefore, it is difficult to directly estimate
a scene flow from LiDAR.

SUMMARY

[0005] In order to solve the problem that it is difficult to
realize self-supervised learning for a point cloud, a method
and a device for self-supervised learning, a storage medium,
and an electronic device are provided according to embodi-
ments of the present disclosure.

[0006] In a first aspect, a method for self-supervised
learning is provided according to an embodiment of the
present disclosure. The method includes: acquiring an unla-
beled dataset, where the dataset includes point clouds in
multiple frames, and a point cloud in each of the multiple
frames includes multiple real points; organizing real points
in one column along a vertical direction into a pillar, where
the pillar is provided with a pillar motion parameter, and
each of the real points in the pillar has a motion parameter
that is the same as the pillar motion parameter; for each of
real points in a current frame, moving the real point to a next
frame based on a corresponding pillar motion parameter, and
determining a predicted point in the next frame; determining
a first loss term based on a minimum distance among
distances between predicted points in the next frame and real
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points in the next frame, and generating a loss function
including the first loss term; and performing self-supervised
learning processing based on the loss function to determine
a pillar motion parameter of the pillar.

[0007] In anembodiment, the determining a first loss term
based on a minimum distance among distances between
predicted points in the next frame and real points in the next
frame includes: determining the first loss term based on a
first minimum distance and/or a second minimum distance,
where the first minimum distance is a minimum distance
among distances from a predicted point in the next frame to
multiple real points in the next frame, and the second
minimum distance is a minimum distance among distances
from a real point in the next frame to multiple predicted
points in the next frame.

[0008] In an embodiment, the determining the first loss
term based on a first minimum distance and/or a second
minimum distance includes: adding a sum of first minimum
distances corresponding to the multiple predicted points in
the next frame to a sum of second minimum distances
corresponding to the multiple real points in the next frame
to obtain the first loss term according to the following
equation:

o
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[0009] where £ .., represents the first loss term, p;
represents an i-th predicted point in a t-th frame, p* repre-
sents a set of multiple predicted points in the t-th frame, p,
represents a j-th real point in the t-th frame, and p’ represents
a set of multiple real points in the t-th frame.

[0010] In an embodiment, the dataset further includes
image data of the multiple frames matching the point clouds
in the multiple frames, where the method further includes:
projecting a real point in a target frame onto an image plane
including image data to determine a first pixel, and deter-
mining an ego-optical flow of the first pixel based on a pose
change of an ego-vehicle, where the target frame is the
current frame or the next frame, and the first pixel is a pixel
in the image data of the target frame and matching a real
point in the target frame; determining an overall optical flow
of the first pixel based on the image data, and determining
an object optical flow of the first pixel based on the overall
optical flow and the ego-optical flow; projecting a pillar
motion parameter corresponding to the real point in the
target frame onto the image plane, and determining a cor-
responding projected optical flow; and determining a second
loss term based on a difference between the object optical
flow and the projected optical flow, and adding the second
loss term to the loss function.

[0011] In an embodiment, the determining a second loss
term based on a difference between the object optical flow
and the projected optical flow includes: determining the
second loss term according to the following equation:

regu[ar:ZHF(ui)vi)t_Fobj(ui)vi)tH

[0012] where £, represents the second loss term, (u,,
v,Y represents a first pixel in a t-th frame corresponding to
an i-th real point p/, F(u,, v,)’ represents a projected optical
flow of the first pixel (u;, v,)", and F,,; (u,, v,)’ represents an
object optical flow of the first pixel (u,, v,).
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[0013] In an embodiment, the dataset further includes
image data of the multiple frames matching the point clouds
in the multiple frames. The method further includes: pro-
jecting a real point in a target frame onto an image plane
including image data to determine a first pixel, and deter-
mining an ego-optical flow of the first pixel based on a pose
change of an ego-vehicle, where the target frame is the
current frame or the next frame, and the first pixel is a pixel
in the image data of the target frame and matching a real
point in the target frame; determining an overall optical flow
of the first pixel based on the image data, and determining
an object optical flow of the first pixel based on the overall
optical flow and the ego-optical flow; and determining a
probability that the first pixel corresponds to a dynamic
object based on magnitude of the object optical flow, to
determine a probability that a real point in the target frame
corresponding to the first pixel corresponds to the dynamic
object, where the probability is positively correlated to the
magnitude of the object optical flow. The determining a first
loss term based on minimum distances among distances
between predicted points in the next frame and real points in
the next frame includes: weighting, with the probability that
the real point corresponds to the dynamic object as a
weighting coefficient, minimum distances between pre-
dicted points in the next frame and real points in the next
frame, and determining the first loss term based on a
minimum distance obtained from weighting.

[0014] In an embodiment, the determining a probability
that the first pixel corresponds to a dynamic object based on
magnitude of the object optical flow includes: determining
the probability that the first pixel corresponds to the dynamic
object according to the following equation:

s{=1-exp{~ct max(|F (s v)l-7.0)}

[0015] where (u,, v,) represents a first pixel in a t-th frame
corresponding to an i-th real point, F,,,; (u,, v,)’ represents an
object optical flow of the first pixel (u,, v,), s represents a
probability that the first pixel (u,, v,)* corresponds to a
dynamic object, a is a smoothing factor, and T is a tolerance.
[0016] In an embodiment, the projecting a real point in a
target frame onto an image plane including image data to
determine a first pixel, and determining an ego-optical flow
of the first pixel based on a pose change of an ego-vehicle
includes: determining a relative pose T; _, - between LiDAR
for collecting the point cloud and a camera for collecting the
image data, and determining an inherent parameter K of the
camera; projecting the real point in the target frame onto the
image plane including the image data based on the relative
pose and the inherent parameter, to determine the first pixel;
determining the pose change T,_,,,, of the ego-vehicle in the
target frame, and determining the ego-optical flow of the
first pixel according to the following equation:

Fgoltt, V' =KT Ty D~

[0017] where p,” represents an i-th real point in the t-th
frame, (u,, v,)’ represents a first pixel in the t-th frame
corresponding to the i-th real point, and F,_,, (u,, v,)* repre-
sents an ego-optical flow of the first pixel (u;, v,)".

[0018] In an embodiment, a component of the pillar
motion parameter in the vertical direction is zero.

[0019] In an embodiment, the method further includes:
generating a pillar motion field, where the pillar motion field
includes pillar motion parameters of multiple pillars; and
determining a third loss term based on components and
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gradients of the pillar motion field in multiple directions, and
adding the third loss term to the loss function.

[0020] In an embodiment, the determining a third loss
term based on components and gradients of the pillar motion
field in multiple directions includes: determining compo-
nents and gradients of the pillar motion field in an x direction
and a y direction in a horizontal plane, and determining the
third loss term according to the following equation:

L eV M gy M oy M gy, M g

[0021]

motion field of a t-th frame in the x direction, M . repre-
sents a component of the pillar motion field of the t-th frame
in the y direction, V_ represents a gradient in the x direction,
V, represents a gradient in the x direction.

[0022] In an embodiment, the generating a loss function
including the first loss term includes: in a case of other loss
term than the first loss term, setting a balance coeflicient for
the first loss term and the other loss term, and generating the
loss function.

[0023] In a second aspect, a device for self-supervised
learning is further provided according to an embodiment of
the present disclosure. The device includes an acquisition
module, a pillar module, a prediction module, a loss deter-
mination module and a processing module. The acquisition
module is configured to acquire an unlabeled dataset, where
the dataset includes point clouds in multiple frames, and a
point cloud in each of the multiple frames includes multiple
real points. The pillar module is configured to organize real
points in one column along a vertical direction into a pillar,
where the pillar is provided with a pillar motion parameter,
and each of the real points in the pillar has a motion
parameter that is the same as the pillar motion parameter.
The prediction module is configured to, for each of real
points in a current frame, move the real point to a next frame
based on a corresponding pillar motion parameter, to deter-
mine a predicted point in the next frame. The loss determi-
nation module is configured to determine a first loss term
based on a minimum distance among distances between
predicted points in the next frame and real points in the next
frame, and generate a loss function including the first loss
term. The processing module is configured to perform
self-supervised learning processing based on the loss func-
tion to determine a pillar motion parameter of the pillar.
[0024] In a third aspect, a computer-readable storage
medium is further provided according to an embodiment of
the present disclosure. The computer-readable storage
medium stores a computer program that, when being
executed by a processor, causes steps in the method for
self-supervised learning according to any one of the above
embodiments to be implemented.

[0025] In a fourth aspect, an electronic device is further
provided according to an embodiment of the present disclo-
sure. The electronic device includes a bus, a transceiver, a
memory, a processor, and a computer program stored in the
memory and executed on the processor. The transceiver, the
memory and the processor are connected to each other via
the bus. The processor, when executing the computer pro-
gram, implements steps in the method for self-supervised
learning according to any one of the above embodiments.
[0026] In the solutions provided in the first aspect of the
embodiments of the present disclosure, real points in each
pillar have the same pillar motion parameters. Predicted
points are obtained based on the pillar motion parameters,

where M ’ represents a component of a pillar
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and the loss function is generated based on the minimum
distance among distances between the predicted points and
the real points to realize self-supervised learning. With this
method, the real points are organized into the corresponding
pillar, and the pillar motion parameter representing motion
of the real point is determined with the pillar as a unit, so as
to enhance correlation between point clouds. Self-super-
vised learning can be realized in a case of no precise
correspondence between the predicted point and the real
point, and training is performed based on a large number of
unlabeled point clouds. Moreover, in this method, it is
unnecessary to distinguish a category of an object, so that
the motion that is not related to the category is estimated
based on the point cloud.

[0027] Inorder to make the above objectives, features and
advantages of the present disclosure more comprehensible,
preferred embodiments together with the drawings are
described in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] The drawings to be used in the description of the
embodiments or the conventional technology are described
briefly as follows, so that the technical solutions according
to the embodiments of the present disclosure or according to
the conventional technology become clearer. It is apparent
that the drawings in the following description only illustrate
some embodiments of the present disclosure. For those
skilled in the art, other drawings may be obtained according
to these drawings without any creative work.

[0029] FIG. 1 shows a flow chart of a method for self-
supervised learning according to an embodiment of the
present disclosure;

[0030] FIG. 2 shows a schematic diagram of defining a
pillar in a method for self-supervised learning according to
an embodiment of the present disclosure;

[0031] FIG. 3 shows a flow chart of determining a regu-
larization loss according to an embodiment of the present
disclosure;

[0032] FIG. 4 shows a flow chart of determining a prob-
ability of a real point corresponding to a dynamic object
according to an embodiment of the present disclosure;
[0033] FIG. 5 shows a flow chart of determining a smooth-
ness loss according to an embodiment of the present disclo-
sure;

[0034] FIG. 6 shows a table comparing results of different
models according to an embodiment of the present disclo-
sure;

[0035] FIG. 7 shows a schematic structural diagram of a
device for self-supervised learning according to an embodi-
ment of the present disclosure; and

[0036] FIG. 8 shows a schematic structural diagram of a
device for self-supervised learning according to an embodi-
ment of the present disclosure.

DETAILED DESCRIPTION OF EMBODIMENTS

[0037] Hereinafter, the embodiments of the present dis-
closure are described in conjunction with the drawings in the
embodiments of the present disclosure.

[0038] A method for self-supervised learning is provided
according to an embodiment of the present disclosure to
realize self-supervised learning between point clouds in an
automatic driving scenario. FIG. 1 shows a flow chart of a
method for self-supervised learning according to an embodi-
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ment of the present disclosure. As shown in FIG. 1, the
method includes following steps 101 to 105.

[0039] Instep 101, an unlabeled dataset is obtained, where
the dataset includes point clouds of multiple frames, and a
point cloud of each of frames includes multiple real points.
[0040] In the embodiment of the present disclosure, the
dataset is obtained based on pre-collected data, and the point
clouds included in the dataset are collected by a LiDAR. The
LiDAR scans every a time period (such as 50 ms) to form
a point cloud of a frame, and a point cloud of each of frames
corresponds to a timestamp. A point cloud of each of frames
includes multiple points. Since the points included in point
clouds are actually collected, the points are called “real
points.” For example, the point cloud may be obtained by
sensors such as a LiDAR on an ego-vehicle, where the
self-vehicle may be an ego-vehicle. The point clouds of the
multiple frames included in the dataset are continuous, that
is, the point clouds of the multiple frames correspond to a
same time period, and there is no phenomenon of missing a
point cloud of a frame.

[0041] In addition, in the method, unlabeled point clouds
are used to realize self-supervised learning, thus there is no
labels for marking real points in a point cloud by manual
labeling. For example, the point cloud may be an original
point cloud that has not been processed after being collected.
[0042] In step 102, real points in one column along a
vertical direction are organized into a pillar, where the pillar
is configured with a pillar motion parameter, and each of the
real points in the pillar has a motion parameter same as the
pillar motion parameter.

[0043] The point cloud has sparsity, and objects such as
pedestrians and other vehicles scanned by LiDARs may be
moving due to that the ego-vehicles may be moving in the
automatic driving scenario, thus there is no precise corre-
sponding relationship between point clouds of two frames,
that is, it is difficult to determine a real point in a point cloud
of a frame corresponds to which real point in a point cloud
of another frame. In the embodiment of the present disclo-
sure, motion of a real point is described based on a pillar to
enhance the association between the point clouds of the two
frames.

[0044] In the embodiment of the present disclosure, the
objects in the automatic driving scenario mainly move in the
horizontal direction, and move very little or do not move in
the vertical direction. In addition, the motion of the objects
in the same pillar has consistency, that is, the objects in the
same pillar may move synchronously. Based on the consis-
tency, the self-supervision learning of point cloud is
achieved.

[0045] Specifically, a three-dimensional space is divided
into multiple pillars along a vertical direction. For example,
as shown in FIG. 2, a horizontal plane in the three-dimen-
sional space is divided into a*b squares, and for each of the
squares, a space along a vertical direction (that is, a direction
of a z-axis) corresponding to the square forms a pillar. For
a point cloud of each of frames, real points in one column
along the vertical direction are located in a pillar, thus the
real points in the column may be organized into the pillar.
Moreover, objects in a pillar have consistency, thus real
points in the pillar have consistency, that is, all the real
points in the pillar have same motion. In the embodiment of
the present disclosure, the motion of the points in a point
cloud is represented by pillar motion. In addition, a pillar
motion parameter indicates motion of a pillar, and all the real
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points in the pillar perform motion based on the pillar
motion parameter. The pillar motion parameter may be a
two-dimensional motion vector (motion vector), for
example, may include a motion speed and a motion direc-
tion. Optionally, the motion of the pillar in the vertical
direction may be ignored, that is, a component of the pillar
motion parameter in the vertical direction is equal to zero,
thereby simplifying calculation and improving processing
efficiency.

[0046] In step 103, for each of real points in a current
frame, the real point is moved to a next frame based on a
pillar motion parameter to determine a predicted point in a
next frame.

[0047] In the embodiment of the present disclosure, the
pillar motion parameter represents motion of each of real
points in a pillar. A timestamp of each of frames corresponds
to a pillar motion parameter. Each of the real points in the
current frame is located in a pillar, thus a pillar motion
parameter corresponding to the real point may be deter-
mined, and then the real point may be moved to the next
frame based on the pillar motion parameter. In the embodi-
ment of the present disclosure, that a real point “is moved to
the next frame” indicates that the real point is moved from
a timestamp of the current frame to a timestamp of the next
frame in time dimension. In addition, the real point is moved
based on the pillar motion parameter, for example, the real
point may be moved for a distance in a direction or may be
not moved, so that the position of the real point in the next
frame may be determined. The real point that is moved to the
next frame is called the predicted point in the next frame.
[0048] For example, the current frame is a t-th frame, and
areal point p in the t-th frame corresponds to a pillar motion
parameter M of the t-th frame, then the real point p is moved
to the next frame based on the pillar motion parameter M,
that is, the real point p is moved to a (t+1)th frame. Thus, the
position of the real point p of the t-th frame in the (t+1)th
frame may be determined, thereby determining the predicted
point in the (t+1)th frame.

[0049] In step 104, a first loss term is determined based on
a minimum distance between predicted points in the next
frame and real points in the next frame, and a loss function
including the first loss term is generated.

[0050] In the embodiment of the present disclosure, the
dataset includes at least a point cloud of the current frame
and a point cloud of the next frame. Based on step 103, each
of the real points in the current frame may be converted into
a predicted point in the next frame, that is, a point cloud
including multiple real points may be converted into a point
cloud including multiple predicted points, and the point
cloud including multiple predicted points is called a pre-
dicted point cloud of the next frame. The dataset includes a
point cloud of the next frame that is actually collected, that
is, a real point cloud of the next frame. In a case that the
pillar motion parameter is correct, the predicted point cloud
of the next frame is similar to or even the same as the real
point cloud of the next frame. As mentioned above, it is
difficult to determine which real point in the next frame
corresponds to a predicted point in the next frame due to that
there is no precise corresponding relationship between point
clouds of two frames. However, in the embodiment of the
present disclosure, all the real points in a pillar have the
same motion parameter, and there is a strong corresponding
relationship between a pillar corresponding to the predicted
points in the next frame and a pillar corresponding to the real
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points of the next frame, that is, there is structural consis-
tency between the predicted point cloud in the next frame
and the real point cloud in the next frame. Therefore,
self-supervised learning is performed based on the structural
consistency, the motion of the pillar can be learned, that is,
the pillar motion parameter can be learned.

[0051] In the embodiment of the present disclosure, the
next frame includes multiple predicted points and multiple
real points, and a loss term, that is, the first loss term, is
determined based on a minimum distance between the
prediction points in the next frame and the real points in the
next frame, and then a loss function required in the self-
supervised learning is generated based on the loss term.
[0052] In an embodiment, the above step in which “a first
loss term is determined based on a minimum distance
between the predicted points in the next frame and real
points in the next frame” may include a step Al.

[0053] In step Al, the first loss term is determined based
on a first minimum distance and/or a second minimum
distance. The first minimum distance is a minimum distance
between a predicted point in the next frame and multiple real
points in the next frame. The second minimum distance is a
minimum distance between a real point in the next frame and
multiple predicted points in the next frame.

[0054] In the embodiment of the present disclosure, the
next frame includes multiple predicted points and multiple
real points. For a predicted point, a minimum distance
between the predicted point and multiple real points, that is,
the first minimum distance, may be determined. For a real
point, a minimum distance between the real point and
multiple predicted points, that is, the second minimum
distance, may be determined. In the embodiment of the
present disclosure, the first loss term is determined based on
the first minimum distance or the second minimum distance;
or the first loss term is determined based on the first
minimum distance and the second minimum distance. The
first loss term may represent a structural consistency loss.
[0055] In an embodiment, in order to ensure strong cor-
respondence between predicted points and real points, in the
embodiments of the present disclosure, the first loss term is
determined based on the first minimum distance and the
second minimum distance.

[0056] A process of determining the first loss term
includes: calculating the first loss term by adding a sum of
first minimum distances respectively corresponding to the
multiple predicted points in the next frame to a sum of
second minimum distances respectively corresponding to
the multiple real points in the next frame, and the process is
expressed as:

Lepia= 3 pifl-ri+ 3 minle; - Pl o

Piep Fyeptt

[0057] where, £ .., represents the first loss term, p;
represents an (i)th predicted point in the t-th frame, p’
represents a set of multiple predicted points in the t-th frame,
p,/’ represents a (j)th real point in the t-th frame, and p’
represents a set of multiple real points in the t-th frame.

[0058] In the embodiments of the present disclosure, for
each frame, the first loss term is calculated according to the
above equation (1). Taking a case in which the t-th frame
serves as the next frame as an example, multiple real points
form the set p* and multiple predicted points form the set p’.
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The above two sets may include all points in the t-th frame.
For example, p’ includes all real points in the (t) frame.
Alternatively, the above two sets may include only part of
points in the t-th frame. For example, p’ includes all real
points in a pillar corresponding to the predicted point p,. A
minimum distance between the (i)th predicted point p,” and
the multiple real points is expressed as

i ]

and a minimum distance between the (j)th real point p; and
the multiple predicted points is expressed as

min | - P
ﬁ;eP

such that the first loss term is calculated according to the
equation (1) and a loss function including the first loss term
is determined.

[0059] In step 105, self-supervised learning is performed
according to the loss function to determine a motion param-
eter of the pillar.

[0060] In the embodiments of the present disclosure, after
the loss function is determined, training process is per-
formed with the conventional method for self-supervised
learning to finally determine the motion parameter of the
pillar, that is, a pillar motion parameter. Pillar motion
parameters of multiple pillars form a pillar motion field.
Motion of each pillar can be predicted based on the pillar
motion field, that is, motion of objects in each pillar can be
determined. In addition, even if there are different categories
of objects such as a vehicle, a pedestrian and a building, in
the embodiments of the present disclosure, these different
categories of objects respectively correspond to correspond-
ing pillars. Therefore, in the embodiments of the present
disclosure, motion of pillars is focused on and motion of
objects can be predicted without distinguishing categories of
the objects, thereby estimating class-agnostic motion based
on point clouds.

[0061] A method for self-supervised learning is provided
according to the embodiments of the present disclosure. For
each pillar, real points in the pillar have the same pillar
motion parameter. Predicted points are obtained based on
the pillar motion parameter. The loss function is established
based on minimum distances between the predicted points
and the real points, thereby realizing self-supervised learn-
ing. With the method, the real points are organized into
corresponding pillars, and the pillar motion parameter rep-
resenting motion of the real points is determined based on
the pillars, so as to enhance correlation between point
clouds. Self-supervised learning can be realized without
exact correspondence between the predicted points and the
real points. Therefore, training can be performed by means
of a large number of unlabeled point clouds. Moreover, with
the method, class-agnostic motion can be estimated based on
the point clouds without distinguish the categories of the
objects.

[0062] Although the pillars enhance structural consistency
between the point clouds, the structural consistency still
depends on correspondence between two consecutive point
clouds (for example, a point cloud in the t-th frame and a
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point cloud in the (t+1)th frame). The point cloud is sparse,
especially a distant point cloud in which points are so sparse
that real points in a current frame cannot accurately corre-
spond to real points in a next frame, that is, predicted points
in the next frame cannot accurately correspond to the real
points in the next frame. The above loss term determined
based on the minimum distances may be inaccurate (am-
biguous).

[0063] Therefore, the above structural consistency match-
ing based on pillars inevitably introduces noise. For
example, a pillar motion parameter of a static object (such
as a building) should be zero, but due to the noise, it may be
considered that the static object moves slightly. In the
embodiments of the present disclosure, the structural con-
sistency is complemented based on image data matching the
point clouds, to mitigate ambiguity caused by sparseness of
the point cloud.

[0064] The dataset in the embodiments of the represent
disclosure further includes multiple frames of image data
matching the point cloud. For example, each frame of point
cloud corresponds to corresponding image data. The image
data may be collected by an imaging device paired with a
LiDAR. The imaging device may be a camera. For example,
the ego-vehicle is provided with multiple LiDAR and cam-
era devices. The LiDAR and the imaging device perform
collection at an interval of one timestamp, for example, at an
interval of 20 ms. The LiDAR collects a point cloud at each
timestamp, that is, a point cloud in each frame. The imaging
device collects image data at each timestamp, that is, image
data in each frame.

[0065] There is a scheme of estimating a scene flow based
on an image. However, as described in the background, it is
difficult and inaccurate to estimate the scene flow directly.
Therefore, in the embodiments of the present disclosure, an
optical flow is utilized for cross-sensor self-supervised
motion regularization. Motion learning is regularized across
sensors, thereby mitigating the problem of lack of accurate
correspondence between sweeps. In the embodiments of the
present disclosure, in addition to generating the first loss
term, a second loss term corresponding to a target frame is
calculated by regarding the current frame or the next frame
as the target frame, and the second loss term serves as
regularization. As shown in FIG. 3, the regularization pro-
cess includes steps 301 to 304.

[0066] In step 301, real points of the target frame are
projected onto an image plane where the image data is
located. A first pixel point is determined, and an ego-optical
flow of the first pixel point is determined based on a pose
change of the ego-vehicle. The current frame or the next
frame serves as the target frame. The first pixel point is a
pixel point that is in the image data of the target frame and
matches the real point of the target frame.

[0067] In step 302, an overall optical flow of the first pixel
point is determined based on the image data, and an object
optical flow of the first pixel point is determined based on
the overall optical flow and the ego-optical flow.

[0068] In the embodiments of the present disclosure, the
image data is two-dimensional data and corresponds to a
plane, that is, the image plane. The pixel point in the image
plane matching the real point, that is, the first pixel point,
may be determined by projecting the real point in the target
frame onto the image data in the target frame. For example,
in a case that the t-th frame serves as the target frame and the
(i)th real point p;” in the target frame matches a pixel point
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(u,, v,)* in the image data, the pixel point (u,, v,)* is the first
pixel point. Those skilled in the art can understand that step
301 may be performed for each frame and the current frame
or the next frame may serve as the target frame in deter-
mining the first loss term based on the predicted points in the
next frame and the real points in the next frame. The first
pixel point refers to a category of pixel points, that is, pixel
points that correspond to real points. Due to sparsity of the
point cloud, some pixel points in the image data may not
correspond to the real points, and these pixel points cannot
refer to the first pixel point.

[0069] In the embodiments of the present disclosure, a
relative position of the LiDAR for collecting a point cloud
and the imaging device for collecting image data is fixed.
Therefore, the correspondence between the real point and
the first pixel point can be determined based on a relative
pose T, _, - between the LiDAR and the imaging device, and
thus a real point is corresponded to a first pixel point. For
example, the (i)th real point in the t-th frame is p,”. The point

p/ is three-dimensional, that is, p,/€ IR 3. If the relative pose
between the LiDAR and the imaging device is expressed as
T, _. - and intrinsic parameters (including an internal param-
eter, an external parameter, and the like) of the imaging
device is expressed as K, the first pixel point (u,, v,)
corresponding to the real point is calculated by:

(i) =KT; .cpf ()]

[0070] The optical flow estimation is relatively accurate.
However, the optical flow (the overall optical flow) deter-
mined based on the image data includes an optical flow
caused by motion of the ego-vehicle (that is, the ego-optical
flow) and the optical flow caused by the motion of the object
(that is, the object optical flow). Therefore, the overall
optical flow cannot directly represent the motion of the
object, and it is required to factorize the motion of the
ego-vehicle out from the overall optical flow. In the embodi-
ments of the present disclosure, when the ego-vehicle col-
lects the point cloud and image data, a pose of the ego-
vehicle changes and a change of the pose represents motion
of the ego-vehicle. Therefore, the ego-optical flow of the
first pixel point can be determined based on the change of
the pose. For example, in a case that the t-th frame serves as
the target frame and a pose change of the ego-vehicle from
the t-th frame to the (t+1)th frame serves as a pose change
T,_.,.; in the target frame, a location of the first pixel point
corresponding to the real point p,” at the t-th frame is (u,, v,)".
In the (t+1)th frame, a change caused by the ego-vehicle
causes the first pixel point to move to a location
KT, .. T, ... p/, such that the ego-optical flow F,(u,, v,
of the first pixel point is calculated by:

Fogo(tty V) =KTy TP~ () 3

ego
[0071] In addition, the overall optical flow of the first pixel
point can be determined based on image data in two con-
secutive frames. For example, the overall optical flow of the
first pixel point in the t-th frame may be determined based
on image data in the t-th frame and image data in the (t+1)th
frame. If the overall optical flow of the first pixel point (u,,
v,) in the t-th frame is expressed as F(u,, v,) and an object
optical flow of the first pixel point (u,, v,)’ in the t-th frame
is expressed as F, (u,, v, relationship between the overall
optical flow, the ego-optical flow and the object optical flow
of the first pixel point is expressed as:

F(u,v,)'=F, oot V)HF, obj(ui:vi)t 4)
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[0072] According to the above equations (3) and (4), the
object optical flow F, (u,, v,)* of the first pixel point can be
determined. The object optical flow is a remaining part after
factorizing out the ego-optical flow out from the overall
optical flow. Since only the ego-optical flow of the first pixel
point corresponding to the real point is determined, that is,
only the first pixel point is compensated to determine the
object optical flow, an object optical flow of a pixel point in
the image data other than the first pixel point cannot be
determined.

[0073] In step 303, pillar motion parameter corresponding
to the real point in the target frame is projected onto the
image plane to determine a projection optical flow.

[0074] In the embodiments of the present disclosure, as
shown in the above equation (2), there is correspondence
between the real point and the first pixel point. The pillar
motion parameter of the real point may be projected onto the
image plane according to the above equation (2), and thus
the three-dimensional pillar motion parameter may be pro-
jected onto the two-dimensional image plane. Projected
pillar motion parameter represents the motion of the pillar in
the image plane and refers to the projection optical flow in
the embodiments of the present disclosure.

[0075] In step 304, the second loss term is determined
based on a difference between the object optical flow and the
projection optical flow, and the second loss term is added to
the loss function.

[0076] In the embodiments of the present disclosure, the
projection optical flow is determined by projecting the pillar
motion parameter onto the image plane and the projection
optical flow is predicted based on the pillar motion param-
eter. The object optical flow is determined based on the
image data and the pose change of the ego-vehicle and the
object optical flow is real. Therefore, a correlation between
pillar motion and optical flow can be established based on
the difference between the object optical flow and the
projection optical flow. The difference also represents a
difference between the pillar motion parameter and the real
motion. The second loss term is determined based on the
difference. The second loss term includes losses of two
sensors, that is, losses of the LiDAR and the imaging device.
Self-supervised learning is performed based on the loss
function including the second loss term, which causes the
predicted projection optical flow to be close to the real object
optical flow.

[0077] Inanembodiment, the second loss term determined
in the above step 304 may be expressed as:

regularZEHF (14 V)= F, obj(uixvi)tH )]
[0078] where £ reguiar TEPresents the second loss term, (u,,

v,Y represents the first pixel point corresponding to the (i)th
real point p in the t-th frame, F(u, v, represents the
projection optical flow of the first pixel point (u,, v,)’, and
F,,,(u,, v,) represents the object optical flow of the first pixel
point (u,, v,)".

[0079] In the embodiments of the present disclosure, the
second loss term which is the cross-sensory loss serves as an
auxiliary regularization to complement the structural con-
sistency (that is, the first loss term) and mitigate lack of
correspondence between point clouds due to sparsity of the
point clouds. In addition, the regularization guided by the
optical flow can be regarded as motion knowledge from the
imaging device to the LiDAR during training, which
enhances effect of the self-supervised learning.
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[0080] In an embodiment, the ego-vehicle generally
moves in actual scanning of the LiDAR, and real points
included in a pillar of a static object are different in point
clouds respectively in two consecutive frames, resulting in
that noise is introduced to the static objects when the nearest
neighbor matching is enforced based on the above first loss
term. In the embodiments of the present disclosure, influ-
ence of the above noise is reduced by introducing a prob-
ability that each real point is dynamic, thereby enhancing the
first loss term. In the embodiments of the present disclosure,
the influence of the noise is reduced based on multiple
frames of image data matching the point cloud. As shown in
FIG. 4, the method further includes the following steps 401
to 403, and the process of determining the first loss term in
the above step 104 further includes the following step B1.
[0081] In step 401, a first pixel point is determined by
projecting a real point of the target frame onto an image
plane where the image data locates, and an egoistic optical
flow of the first pixel point is determined based on the
change in pose of the egoistic vehicle. The target frame is the
current frame or the next frame, and the first pixel point is
the pixel point that matches the real point of the target frame
in the image data of the target frame.

[0082] In step 402, an overall optical flow of the first pixel
point is determined based on the image data, and an object
optical flow of the first pixel point is determined based on
the overall optical flow and the egoistic optical flow.
[0083] In the embodiment of the present disclosure, the
steps 401 to 402 form a process of determining the object
optical flow, which is the same as the process indicated by
the above-mentioned steps 301 to 302 and is not repeated
hereinafter. Moreover, if the second loss term is required to
be added into the loss function, either steps 301 to 302 or
steps 401 to 402 may be executed, that is, the process of
determining the object optical flow needs to be executed
only once.

[0084] In step 403, a probability that the first pixel point
corresponds to a dynamic object is determined based on the
magnitude of the optical flow of the object, thereby deter-
mining a probability that the real point of the target frame
corresponding to the first pixel point corresponds to the
dynamic object. The probability is positively correlated with
the magnitude of the object optical flow.

[0085] In the embodiment of the present disclosure, the
object optical flow may represent a movement of an object.
If the object is static, the magnitude of the object optical flow
should be zero. In a case where the object is dynamic, the
greater the displacement of the object, the greater the
magnitude of the object optical flow. Therefore, the greater
the magnitude of the object optical flow, the greater the
probability that the corresponding object is dynamic, that is,
there is a positive correlation between the probability and
the magnitude of the object optical flow. Because of the
correspondence of the first pixel point and the real point, the
“probability that the first pixel point corresponds to a
dynamic object” is equal to the corresponding “probability
that the real point of the target frame corresponds to the
dynamic object,” and thereby both the probabilities are
positively correlated with the magnitude of the object optical
flow.

[0086] In the embodiment of the present disclosure, the
norm of the object optical flow may be taken as the mag-
nitude of the object optical flow, that is, the magnitude of the

object optical flow F,,.(u, v is equal to |[F,,(u, v)]|.
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Alternatively, since an error is unavoidable when calculating
the object optical flow, a tolerance t is preset, which may be
fixed, according to the embodiment of the present disclo-
sure. The probability is set to 0 when the magnitude of the
object optical flow is less than the tolerance t, which
indicates that the object is considered static at this time.
Specifically, the probability may be calculated as max(|[F,;
(w;, v)|-7, 0). For example, the probability that the first
pixel point corresponds to a dynamic object is calculated
with the following equation:

s/=1—exp{—0t max(|F o, v,)I-1,0)} 6

[0087] where (u, v,) represents the first pixel point cor-
responding to the i real point in the t” frame, F,,(u,, v;)’
represents the object optical flow of the first pixel point (u,,
v,¥, s, represents the probability that the first pixel point (u,,
v,¥ corresponds to a dynamic object, a represents a smooth-
ing factor, and T represents the tolerance which is generally
fixed.

[0088] When, for each real point, the probability that the
real point corresponds to a dynamic object is determined, the
above-mentioned first loss term may be adjusted. In the
embodiment of the present disclosure, the process of deter-
mining the first loss term in step 104 further includes step B1
as follows.

[0089] In step B1, the minimum distance between a pre-
dicted point of the next frame and the real point of the next
frame is weighted using the probability that the real point
corresponds to a dynamic object as a weighting coefficient,
and the first loss term is determined based on the weighted
minimum distance item.

[0090] In the embodiment of the present disclosure, a real
point to which the dynamic object corresponds has a rela-
tively high weight in training by weighting the minimum
distance using the probability that the real point corresponds
to a dynamic object as the weighting coefficient, and the
weight of a real point in the static pillar is decreased by the
probabilistic motion mask so as to reduce the influence of
noise introduced by the static pillar. In addition, in a scene
of autonomous driving, there will be more points of a static
object in the point cloud than points of a dynamic object. For
example, there are relatively few points corresponding to a
dynamic vehicle and a pedestrian, while there are relatively
many points corresponding to a static building. In other
words, the static object or static pillar dominates. Therefore,
this weighting strategy further helps to balance the contri-
butions of static pillars and dynamic pillars when calculating
the structural consistency loss (that is, the first loss term).

[0091] Forexample, if the probability that the " real point
of the t”* frame corresponds to a dynamic object is repre-
sented by s;, then the above equation (1) may be weighted
to determine the first loss term as:

Leonsist = Zﬁ:e b [ min s} 7} - p’,-ll] e [migs;-llp;- - ﬁ:||]

pieP! pleP

[0092] Based on the above embodiment, the method fur-
ther includes applying a local smoothness loss to the pillar
motion learning. As shown in FIG. 5, the process includes
steps 501 to 502.

[0093] In step 501, a pillar motion field is generated
including pillar motion parameters of multiple pillars.
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[0094] In step 502, a third loss term is determined based
on the components and gradients of the pillar motion field in
multiple directions, and the third loss term is added into the
loss function.

[0095] In the embodiment of the present disclosure, each
frame includes multiple pillars, whose pillar motion param-
eters may indicate an overall motion condition, that is, a
pillar motion field. The smoothness loss, that is, the third
loss term, is determined based on the components and
gradients of the pillar motion field in multiple directions, so
that the model is enabled to predict similar motions of pillars
belonging to a same object.

[0096] Inan embodiment, the step of determining the third
loss term based on the components and gradients of the pillar
motion field in multiple directions described in step 502
includes: determining the components and gradients of the
pillar motion field in the x direction and y direction in the
horizontal plane, and determining the third loss term using
the following equation:

L WV, M v, M v, M v, Mg %

smooth”

[0097]

motion field of a t-th frame in the x direction, M repre-
sents a component of the pillar motion field of the t-th frame
in the y direction, V, represents a gradient in the x direction,
V, represents a gradient in the x direction.

[0098] In addition, if the loss function includes multiple
loss terms, that is, if other loss terms (such as the second loss
term and the third loss term) are included in addition to the
first loss term, then the loss function is determined using a
weighting method. Specifically, when there are loss terms
other than the first loss term, balance coeflicients are set for
the first loss term and the other loss terms, and thereby
generates the loss function. For example, if the loss function
is determined comprehensively based on the first loss term,
the second loss term, and the third loss term, the loss
function may be calculated using the following equation:

3, L

total” M1

where M  represents a component of a pillar

consisitha L regudartha L smooth (8)

[0099] where A, A, and A, represent balance coefficients
of respective loss terms.

[0100] A flow of the method is described in detail through
an embodiment as follows. It should be noted that, in the
description of the embodiment, i and j in the following
equations or parameters each indicate an index, and may
have different meanings (that is, indicate different indices) in
different equations or parameters.

[0101] In the embodiment of the present disclosure, an
egoistic vehicle is equipped with a LiDAR and multiple
camera device, and a corresponding point cloud and image
data are captured at each timestamp t. The timestamp t
corresponds to the t-th frame, and the point cloud P’ of the
t* frame is expressed by P={p,},_,™, and the image data I
of the t-th frame is expressed by C'={c,/}_ ™. In the
expressions, N, represents the number of real points
included in point cloud P’, and point clouds of different
frames may have different N ; and N, represents the number
of pixels included in the image data I*. In addition, although
multiple camera devices with different orientations may be
provided on the egoistic vehicle, that is, the image data of
the t* frame may include multiple images, only one of the
images is taken as an example for illustration.

[0102] In the embodiment of the present disclosure, the
point cloud P* may be discretized into multiple non-over-
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lapping pillars {p,’},_,™* (when dividing to obtain the pillars
in practice, some of the pillars do not include any real point,
while the embodiment of the present disclosure only focuses
on non-empty pillars which include real points). Each of the
pillars is provided with a corresponding pillar motion
parameter M/. Multiple pillar motion parameters M,” may

form a pillar motion field M?* For example,
M t:{Mit}i:1N3~
[0103] For the point cloud of the t* frame, with the action

of the pillar motion parameter M/, the pillar p,/ of the t*
frame may be moved to a corresponding position in the t+1
frame, forming a predicted pillar $," in the t+1? frame,
which may be expressed by p,”"'=M,(p,"). Correspondingly,
the i” real point p; in the t* frame may be moved to a
corresponding position to form a predicted point $,** of the
t+1? frame, that is, =M, (p,). All predicted points p,**
may further form a predicted point cloud p™*', and $™'={$,*
1},_,™. In addition, the point cloud of the t+1? frame
includes the real point p,*', then the structural consistency
loss, that is, the first loss term may be determined based on
the predicted point #,”** and the real point p,/**. The first loss
term may indicate the difference between the predicted point
cloud p™** and the real point cloud p™'. The above equation
(1) indicates the calculation of the first loss term of the t*
frame, which may similarly be used to calculate the first loss
term of the t+1? frame.

[0104] In the embodiment of the present disclosure, since
the LiDAR and the camera device are paired and the image
data collected by the image device has denser information,
the real point p,” of the t* frame point cloud may correspond
to respective pixel point in the image data I of the t* frame,
that is, the first pixel point (u,, v,Y’. Furthermore, a corre-
sponding overall optical flow F(u, v)’ may be estimated
based on the image data I’ and I”** of the two frames, thereby
determining an overall optical flow F(u,, v,)’ of the first pixel
point. When an egoistic optical flow F,(u,, v,)" is deter-
mined using the above equation (3), an object optical flow
F,,(u,, v,)' may be determined.

[0105] Moreover, the pillar motion parameter M, of the
first pixel point may be projected onto the image plane to
determine a projected optical flow F(u,, v,)". The regulariza-
tion loss of a cross-sensor motion, that is, the second loss
term, may be determined using equation (5).

[0106] In addition, when the object optical flow F,, (u,,
v,) is determined, a probability s/ that the real point corre-
sponds to a dynamic object is calculated, thereby introduc-
ing a probabilistic motion mask into the first loss term so as
to optimize the structural consistency loss. In addition, the

pillar motion field M ‘ may be divided into a component

M .? in the x direction and a component M * in the y
direction. Therefore, a smoothness loss, that is, a third loss
term, is determined based on the equation (7). Finally, a loss
function is determined by weighting, details of which may
be seen in equation (8). When the loss function is deter-
mined, a self-supervised learning may be performed.

[0107] The self-supervised learning framework provided
in the embodiment of the present disclosure does not depend
on a specific backbone network, and can be widely applied.
In addition, in the embodiment of the present disclosure,
models having different combinations are compared. Non-
empty pillars are divided into three groups by velocity,
namely static, slow (=5 m/s) and fast (>5 m/s). Estimations
are made on all non-empty pillars, all foreground object
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pillars, and all moving object pillars. Reference may be
made to the table shown in FIG. 6 for average errors and
median errors of different models, in which the bolded
numbers indicate the minimum values.

[0108] In FIG. 6, a basic model (a) that is trained with

respect to only the structural consistency loss £ __,,, does
not work well for the static group, which is in line with the
previous description stating that a static pillar introduces
noise. In model (b), by using the cross-sensor motion

regularization £, ... as the only supervision, an egoistic
motion of a static point may be reliably recovered from the
optical flow. Therefore, model (b) achieves a better result for
the static group, but the result for the fast group is much
worse. This is because that it is indefinite to regularize the
motion only in an image plane of a 2D camera, and multiple
real points in a 3D point cloud may have different pillar
motion parameters but are projected as a same pixel point in
the 2D image plane.

[0109] The model (c) that combines the structural consis-
tency loss and a motion regularization loss performs well in
the fast group, but it is still not the best choice for the static
group and the slow group. This is mainly due to the
inconsistency between the two losses in the static region and
the slow motion region. The probabilistic motion mask is
integrated into model (c) using the probability s, Model (e)
realizes an improvement for the static group and the slow
group. This is because the model can less confuse the noisy
motion caused by a moving egoistic vehicle by suppressing
the static pillar, so as to better focus on the learning of real
object motion. Model (d) uses only the probabilistic motion
mask to enhance the structural consistency loss. Compared
with model (a), Model (d) achieves significant improvement
for the static group and the slow group; however, model (d)
is still inferior to model (e), which also verifies the effec-
tiveness of cross-sensor motion regularization that provides
complementary motion supervision.

[0110] The comparison result of the model trained based
on the embodiment of the present disclosure and other
models may be seen in Table 1 below.
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els, even though they are supervised. Moreover, the self-
supervised model is superior or approximate to some meth-
ods that are trained with full supervision on a benchmark
dataset. For example, for the fast group, the model in the
present embodiment performs better than FlowNet3D, HPL-
FlowNet and PointRCNN. All these comparisons clearly
show the advantages of the method for self-supervised
learning provided in the embodiments of the present disclo-
sure and the importance of self-supervised training on a
target domain. In addition, compared with other existing
models, the model provided in the present embodiment has
higher computational efficiency (about 0.02 s), so that it is
able to process large-scale point clouds in real time.

[0113] The above description has illustrated the method
for self-supervised learning provided in the embodiments of
the present disclosure. The method may be implemented by
a corresponding device. Accordingly, the device for self-
supervised learning provided by the embodiments of the
present disclosure is described in detail as follows.

[0114] FIG. 7 shows a schematic structural diagram of a
device for self-supervised learning according to an embodi-
ment of the present disclosure. As shown in FIG. 7, the
device for self-supervised learning includes an acquisition
module 71, a pillar module 72, a prediction module 73, a loss
determination module 74 and a processing module 75.

[0115] The acquisition module 71 is configured to acquire
an unlabeled dataset, where the dataset includes point clouds
in multiple frames, and a point cloud in each of the multiple
of frames includes multiple real points.

[0116] The pillar module 72 is configured to organize real
points in one column along a vertical direction into a pillar,
wherein the pillar is provided with a pillar motion parameter,
and each of the real points in the pillar has a motion
parameter that is the same as the pillar motion parameter.

[0117] The prediction module 73 is configured to, for each
of real points in a current frame, move the real point to a next
frame based on a corresponding pillar motion parameter, to
determine a predicted point in the next frame.

TABLE 1

Static Velocity = 5 m/s _Velocity > 5 m/s
Method Average Median Average Median Average Median  time
FlowNet3D (pre-trained)  2.0514 0.0000 2.2058 0.3172 9.1923 8.4923 0.434s
HPLFlowNet (pre-trained) 2.2165 1.4925 1.5477 1.1269 59841 4.8553 0.352s
In the present embodiment 0.1620 0.0010 0.6972 0.1758 3.5504 2.0844 0.020s
FlowNet3D 0.0410 0.0000 0.8183 0.1782 8.5261 8.0230 0434 s
HPLFlowNet 0.0041 0.0002 0.4458 0.0969 4.3206 24881 0.352s
PointRCNN 0.0204 0.0000 0.5514 0.1627 3.9888 1.6252 0.201s
LSTMEncoderDecoder 0.0358 0.0000 0.3551 0.1044 1.5885 1.0003 0.042s
MotionNet 0.0239 0.0000 0.2467 0.0961 1.0109 0.6994 0.019s
MotionNet (pillar-based)  0.0258 — 0.2612 — 1.0747 — 0.019 s
MotionNet + MGDA 0.0201  0.0000 0.2292 0.0952 09454 0.6180 0.019s
In the present embodiment 0.0245 0.0000 0.2286 0.0930 0.7784 0.4685 0.020s
(slightly adjusted)
[0111] Table 1 is divided into an upper part and a lower [0118] The loss determination module 74 is configured to

part. In the upper part of Table 1, the self-supervised model
provided in the embodiment of the present disclosure is
compared with the models of application scene flow, includ-
ing FlowNet3D and HPLFlowNet.

[0112] The self-supervised model provided in the present
embodiment is significantly superior to the pre-trained mod-

determine a first loss term based on a minimum distance
among distances between predicted points in the next frame
and real points in the next frame, and generate a loss
function including the first loss term.

[0119] The processing module 75 is configured to perform
self-supervised learning processing based on the loss func-
tion to determine a pillar motion parameter of the pillar.
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[0120] Based on the above embodiment, the loss determi-
nation module 74 includes a first loss term determination
unit. The first loss term determination unit is configured to:
determine the first loss term based on a first minimum
distance and/or a second minimum distance. The first mini-
mum distance is a minimum distance among distances from
a predicted point in the next frame to multiple real points in
the next frame. The second minimum distance is a minimum
distance among distances from a real point in the next frame
to multiple predicted points in the next frame.

[0121] Based on the above embodiment, the first loss term
determination unit being configured to determine a first loss
term based on a first minimum distance and/or a second
minimum distance includes the first loss term determination
unit being configured to: add a sum of first minimum
distances corresponding to multiple predicted points in the
next frame to a sum of second minimum distances corre-
sponding to multiple real points in the next frame to obtain
the first loss term according to the following equation:

7

Leonsist = Zﬁ;d,, [pr,]r_leig,IIiJ: - p’,-ll] + Zp,jep, [rr;i;llp;- - ﬁ:||]

[0122] where £ .., represents the first loss term, p,
represents an i-th predicted point in a t-th frame, p* repre-
sents a set of multiple predicted points in the t-th frame, p,
represents a j-th real point in the t-th frame, and p’ represents
a set of multiple real points in the t-th frame.

[0123] Based on the above embodiments, the dataset fur-
ther includes image data of multiple frames matching the
point clouds in the multiple frames. The loss determination
module 74 includes a second loss term determination unit.
The second loss term determination unit is configured to:
project a real point in a target frame onto an image plane
including image data to determine a first pixel, and deter-
mine an ego-optical flow of the first pixel based on a pose
change of an ego-vehicle, where the target frame is the
current frame or the next frame, and the first pixel is a pixel
in the image data of the target frame and matching a real
point in the target frame; determine an overall optical flow
of the first pixel based on the image data, and determine an
object optical flow of the first pixel based on the overall
optical flow and the ego-optical flow; project a pillar motion
parameter corresponding to the real point in the target frame
onto the image plane, and determine a corresponding pro-
jected optical flow; and determine a second loss term based
on a difference between the object optical flow and the
projected optical flow, and add the second loss term to the
loss function.

[0124] Based on the above embodiments, the second loss
term determination unit being configured to determine a
second loss term based on a difference between the object
optical flow and the projected optical flow includes deter-
mining the second loss term according to the following
equation:

:ZHF(”I') vi)t_Fobj(ui) v

regular

[0125] where £, represents the second loss term, (u,,
v,Y represents a first pixel in a t-th frame corresponding to
an i-th real point p/, F(u,, v,)’ represents a projected optical
flow of the first pixel (u;, v;)’, and F,,,(u,, v,)" represents an
object optical flow of the first pixel (u,, v,).
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[0126] Based on the above embodiments, the dataset fur-
ther includes image data of the multiple frames matching the
point clouds in the multiple frames. The loss determination
module 74 includes a dynamic probability determination
unit. The dynamic probability determination unit is config-
ured to: project a real point in a target frame onto an image
plane including image data to determine a first pixel, and
determine an ego-optical flow of the first pixel based on a
pose change of an ego-vehicle, where the target frame is the
current frame or the next frame, and the first pixel is a pixel
in the image data of the target frame and matching a real
point in the target frame; determine an overall optical flow
of the first pixel based on the image data, and determine an
object optical flow of the first pixel based on the overall
optical flow and the ego-optical flow; and determine a
probability that the first pixel corresponds to a dynamic
object based on a magnitude of the object optical flow, to
determine a probability that a real point in the target frame
corresponding to the first pixel corresponding to the
dynamic object; where the probability is positively corre-
lated with the magnitude of the object optical flow. The loss
determination module 74 determining the first loss term
based on minimum distances among distances between
predicted points in the next frame and real points in the next
frame includes the loss determination module 74 is config-
ured to: weight, with the probability that the real point
corresponds to the dynamic object as a weighting coefficient,
minimum distances between predicted points in the next
frame and real points in the next frame, and determine the
first loss term based on a minimum distance obtained from
weighting.

[0127] Based on the above embodiments, the dynamic
probability determination unit being configured to determine
a probability that the first pixel corresponds to a dynamic
object based on magnitude of the object optical flow
includes: determining the probability that the first pixel
corresponds to the dynamic object according to the follow-
ing equation:

s/=1-exp{~o max(|[F o (u, v, 1.0}

[0128] where (u;, v,)’ represents a first pixel in a t-th frame
corresponding to an i-th real point, F_, (u,, v,)’ represents an
object optical flow of the first pixel (u;, v,)’, s, represents a
probability that the first pixel (u;, v,) corresponds to a
dynamic object, o is a smoothing factor, and 7 is a tolerance.

[0129] Based on the above embodiments, the second loss
term determination unit or the dynamic probability deter-
mination unit being configured to project a real point in a
target frame onto an image plane including image data to
determine a first pixel, and determine an ego-optical flow of
the first pixel based on a pose change of an ego-vehicle,
includes the second loss term determination unit or the
dynamic probability determination unit being configured to:
determine a relative pose T, ,. between LIDAR for col-
lecting the point cloud and a camera for collecting the image
data, and determine an inherent parameter K of the camera;
project the real point in the target frame onto the image plane
including the image data based on the relative pose and the
inherent parameter, to determine the first pixel; determine
the pose change T, ,,., of the ego-vehicle in the target
frame, and determine the ego-optical flow of the first pixel
according to the following equation:

Fogoltty V'=KTy T~y i)
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[0130] where p,” represents an i-th real point in the t-th
frame, (u,, v,)* represents a first pixel in the t-th frame
corresponding to the i-th real point, and F,_,(u,, v,)" repre-
sents an ego-optical flow of the first pixel (u,, v,)".
[0131] Based on the above embodiments, a component of
the pillar motion parameter in the vertical direction is zero.
[0132] Based on the above embodiments, the loss deter-
mination module 74 includes a third loss term determination
unit. The third loss term determination unit is configured to:
generate a pillar motion field, where the pillar motion field
includes pillar motion parameters of multiple pillars; and
determine a third loss term based on components and
gradients of the pillar motion field in multiple directions, and
add the third loss term to the loss function.
[0133] Based on the above embodiments, the third loss
term determination unit being configured to determine the
third loss term based on components and gradients of the
pillar motion field in multiple directions includes the third
loss term determination unit being configured to: determine
components and gradients of the pillar motion field in an x
direction and a y direction in a horizontal plane, and
determine the third loss term according to the following
equation:

L oot= VM A4V, M f )y Moy M

[0134] where M ’ represents a component of a pillar
motion field of a t-th frame in the x direction, # ” represents
a component of the pillar motion field of the t-th frame in the
y direction, V, represents a gradient in the x direction, V,
represents a gradient in the x direction.

[0135] Based on the above embodiments, the loss deter-
mination module 74 being configured to generate the loss
function including the first loss term includes the loss
determination module 74 being configured to: set, in a case
of other loss term than the first loss item, a balance coeffi-
cient for the first loss term and the other loss term, and
generate the loss function.

[0136] In addition, an electronic device is further provided
according to an embodiment of the present disclosure. The
electronic device includes a bus, a transceiver, a memory, a
processor, and a computer program stored in the memory
and executable by the processor. The transceiver, the
memory and the processor are connected to each other via
the bus. The computer program is used to, when being
executed by the processor, implement the method for self-
supervised learning according to the above various embodi-
ments. The electronic device can achieve the same technical
effect, which is not repeated herein.

[0137] Specifically, referring to FIG. 8, an electronic
device is further provided according to an embodiment of
the present disclosure. The electronic device includes a bus
1110, a processor 1120, a transceiver 1130, a bus interface
1140, a memory 1150, and a user interface 1160.

[0138] In the embodiments of the present disclosure, the
electronic device further includes: a computer program
stored in the memory 1150 and can be run on the processor
1120. The computer program is executed by the processor
1120 to implement the method for self-supervised learning
according to the above various embodiments.

[0139] The transceiver 1130 is configured to receive and
send data under the control of the processor 1120.

[0140] In an embodiment of the present disclosure, a bus
architecture (represented by bus 1110). The bus 1110 may
include any number of interconnected buses and bridges.
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The bus 1110 connects various circuits of one or more
processors represented by processor 1120 and memory rep-
resented by memory 1150.

[0141] The bus 1110 represents one or more of any one of
several types of bus structures, including a memory bus and
a memory controller, a peripheral bus, an Accelerate Graphi-
cal Port (AGP), a processor, or a local bus of any bus
structure in various bus architectures. By way of example
and not limitation, such architectures include: Industry Stan-
dard Architecture (ISA) bus, Micro Channel Architecture
(MCA) bus, Extended ISA (Enhanced ISA, EISA) bus,
Video Electronics Standard Association (VESA) bus, and
Peripheral Component Interconnect (PCI) bus.

[0142] The processor 1120 may be an integrated circuit
chip with signal processing capabilities. In the implemen-
tation process, the steps of the foregoing method embodi-
ments may be implemented by an integrated logic circuit in
the form of hardware in the processor or instructions in the
form of software. The above processor includes: a general-
purpose processor, a Central Processing Unit (CPU), a
Network Processor (NP), a Digital Signal Processor (DSP),
an Application Specific Integrated Circuit (ASIC), a Field
Programmable Gate Array (FPGA), a Complex Program-
mable Logic Device (CPLD), a Programmable Logic Array
(PLA), a Microcontroller Unit (MCU), or other program-
mable logic devices, discrete gates, transistor logic devices,
discrete hardware components, which can implement or
execute the methods, steps, and logical block diagrams
disclosed in the embodiments of the present disclosure. For
example, the processor may be a single-core processor or a
multi-core processor, and the processor may be integrated
into a single chip or located on multiple different chips.
[0143] The processor 1120 may be a microprocessor or
any conventional processor. The method steps disclosed in
conjunction with the embodiments of the present disclosure
may be directly performed by a hardware decoding proces-
sor, or may be performed by a combination of hardware in
the decoding processor and software modules. The software
modules may be located in a Random Access Memory
(RAM), a Flash Memory (Flash Memory), a Read-Only
Memory (ROM), a Programmable Read Only Memory
(Programmable ROM, PROM), an erasable and removable
Programming read-only memory (Erasable PROM,
EPROM), registers and other readable storage mediums
known in the art. The readable storage medium is located in
the memory, and the processor reads the information in the
memory and implements the steps of the above method in
combination with its hardware.

[0144] The bus 1110 may also connect various other
circuits such as peripheral devices, voltage regulators, or
power management circuits with each other. The bus inter-
face 1140 provides an interface between the bus 1110 and the
transceiver 1130, which are well known in the art. Therefore,
it will not be further described in the embodiments of the
present disclosure.

[0145] The transceiver 1130 may be one element or mul-
tiple elements, such as multiple receivers and transmitters,
providing a unit for communicating with various other
devices via a transmission medium. For example, the trans-
ceiver 1130 receives external data from other devices, and
the transceiver 1130 is configured to send the data processed
by the processor 1120 to other devices. Depending on the
nature of the computer system, a user interface 1160 may
also be provided, which includes, for example: a touch
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screen, a physical keyboard, a display, a mouse, a speaker,
a microphone, a trackball, a joystick, and a stylus.

[0146] It should be understood that, in the embodiments of
the present disclosure, the memory 1150 may further include
memories set remotely with respect to the processor 1120,
and these remotely set memories may be connected to the
server through a network. One or more parts of the above
network may be an ad hoc network, an intranet, an extranet,
a Virtual Private Network (VPN), a Local Area Network
(LAN), a Wireless Local Area Network (WLAN), a Wide
Area Network (WAN), a Wireless Wide Area Network
(WWAN), a Metropolitan Area Network (MAN), the Inter-
net, a Public Switched Telephone Network (PSTN), a Plain
Old Telephone Service Network (POTS), a Cellular Tele-
phone Network, a wireless network, a Wireless Fidelity
(Wi-Fi) network and a combination of two or more of the
above networks. For example, the cellular telephone net-
work and the wireless network may be a Global Mobile
Communication (GSM) system, a Code Division Multiple
Access (CDMA) system, a Global Microwave Intercon-
nected Access (WiMAX) system, a General Packet Radio
Service (GPRS) system, and a Wideband Code Division
Multiple Address (WCDMA) system, a Long Term Evolu-
tion (LTE) system, an LTE Frequency Division Duplex
(FDD) system, an LTE Time Division Duplex (TDD) sys-
tem, an advanced long term evolution (LTE-A) system, an
Universal Mobile Telecommunications (UMTS) system, an
Enhanced Mobile Broadband (eMBB) system, a mass
Machine Type of Communication (mMTC) system, an ultra-
Reliable Low-Latency Communications (URLLC) system,
and the like.

[0147] It should be understood that the memory 1150 in
the embodiments of the present disclosure may be a volatile
memory or a non-volatile memory, or may include both a
volatile memory and a non-volatile memory. The non-
volatile memory includes: a Read-Only Memory (ROM), a
Programmable Read-Only Memory (Programmable ROM,
PROM), an Erasable Programmable Read-Only Memory
(Erasable PROM, EPROM), an Electronically Erasable Pro-
grammable Read Only Memory (Electrically EPROM,
EEPROM) or a Flash Memory (Flash Memory).

[0148] The volatile memory includes: a Random Access
Memory (RAM), which is used as an external cache. By way
of example but not limitation, many forms of RAM may be
used, such as: a Static Random Access Memory (Static
RAM, SRAM), a Dynamic Random Access Memory (Dy-
namic RAM, DRAM), a Synchronous Dynamic Random
Access Memory (Synchronous DRAM, SDRAM), a Double
Data Rate Synchronous Dynamic Random Access Memory
(Double Data Rate SDRAM, DDRSDRAM), an Enhanced
Synchronous Dynamic Random Access Memory (Enhanced
SDRAM, ESDRAM), a Synchronous Linked Dynamic Ran-
dom Access Memory (Synchlink DRAM, SLDRAM), and a
direct memory bus random access memory (Direct Rambus
RAM, DRRAM). The memory 1150 of the electronic device
described in the embodiments of the present disclosure
includes but is not limited to the above and any other
suitable types of memories.

[0149] In the embodiments of the present disclosure, the
memory 1150 stores the following elements of the operating
system 1151 and the application program 1152: executable
modules, data structures, a subset of the executable modules
and the structures, or an extended set of the executable
modules and the structures.
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[0150] Specifically, the operating system 1151 includes
various system programs, such as a framework layer, a core
library layer, a driver layer, and the like, for implementing
various basic services and processing hardware-based tasks.
The application 1152 includes various applications, such as
a Media Player and a Browser, which are used to implement
various application services. The program for implementing
the method of the embodiment of the present disclosure may
be included in the application 1152. The application 1152
include: applets, objects, components, logic, data structures,
and other computer system executable instructions that
perform specific tasks or implement specific abstract data
types.

[0151] In addition, according to an embodiment of the
present disclosure, a computer-readable storage medium is
provided, which stores a computer program. The computer
program is used to, when being executed by a processor,
implement the method for self-supervised learning accord-
ing to the above various embodiments. The computer-
readable storage medium can achieve the same technical
effect, which is not repeated herein.

[0152] The computer-readable storage medium includes:
permanent or non-permanent mediums, and removable or
non-removable mediums, and is a tangible device that is
capable of retaining and storing instructions for use by an
instruction execution device. The computer-readable storage
medium includes: an electronic storage device, a magnetic
storage device, an optical storage device, an electromagnetic
storage device, a semiconductor storage device, and any
suitable combination thereof. The computer readable storage
medium includes: a Phase Change Memory (PRAM), a
Static Random Access Memory (SRAM), a Dynamic Ran-
dom Access Memory (DRAM), other types of Random
Access Memories (RAM), a Read Only Memory (ROM), a
Non-Volatile Random Access Memory (NVRAM), an Elec-
trically Erasable Programmable Read-Only Memory (EE-
PROM), a flash memory or another memory technology, a
Compact Disc Read-Only Memory (CD-ROM), a Digital
Versatile Disc (DVD) or another optical storage, a magnetic
cassette storage, a magnetic tape storage or another magnetic
storage device, a memory stick, a mechanical coding device
(such as a punched card or raised structures in grooves on
which instructions are recorded) or any other non-transmis-
sion medium that can be used to store information that may
be accessed by computing devices. According to the defi-
nition in the embodiments of the present disclosure, the
computer-readable storage medium does not include the
transitory signal itself, such as radio waves or other freely
propagating electromagnetic waves, electromagnetic waves
propagating through waveguides or other transmission
media (such as optical pulses passing through fiber optic
cables), or electrical signals transmitted through wires.

[0153] In the embodiments according to the present dis-
closure, it should be understood that the disclosed apparatus,
electronic device and method may be implemented in other
ways. For example, the apparatus embodiments described
above are only schematic. For example, the units or modules
are divided based on a logic function thereof, and they may
be divided in another way in practice. For example, multiple
units or modules may be combined or integrated into another
system, or some features may be omitted or not performed.
In addition, a coupling, a direct coupling or communication
connection between displayed or discussed constitutional
components may be an indirect coupling or communication



US 2022/0351009 A1

connection via some interfaces, devices or modules, and
may be in an electrical form, a mechanical form or another
form.

[0154] The integrated unit may be stored in a computer
readable storage medium if the integrated unit is imple-
mented as a software function unit and sold or used as a
separate product. Base on such understanding, the essential
part of the technical solution of the present disclosure or the
part of the technical solution of the present disclosure
contributed to the conventional technology or all of or a part
of the technical solution may be embodied in a software
product. The computer software product is stored in a
storage medium, which includes several instructions to
make a computer device (may be a personal computer, a
server, a network device or the like) execute all or a part of
steps of the method according to each embodiment of the
present disclosure. The storage medium described above
includes various mediums listed above which can store
program codes.

[0155] In the description of the embodiments of the pres-
ent disclosure, those skilled in the art should understand that
the embodiments of the present disclosure may be imple-
mented as a method, an apparatus, an electronic device, and
a computer-readable storage medium. Therefore, the
embodiments of the present disclosure may be embodied in
the following forms: complete hardware, complete software
(including firmware, resident software, microcode, etc.), a
combination of hardware and software. In addition, in some
embodiments, the embodiments of the present disclosure
may also be implemented in the form of a computer program
product in one or more computer-readable storage mediums,
where the computer-readable storage mediums include com-
puter program codes.

[0156] In the embodiments of the present disclosure, the
provided method, apparatus, and electronic device are
described by using flowcharts and/or block diagrams.
[0157] It should be understood that each block of the
flowcharts and/or block diagrams, and combinations of
blocks in the flowcharts and/or block diagrams, may be
implemented by computer-readable program instructions.
These computer-readable program instructions may be pro-
vided to a processor of a general-purpose computer, a
special-purpose computer, or another programmable data
processing device, thereby producing a machine. These
computer-readable program instructions are executed by a
computer or another programmable data processing device
to produce an apparatus for implementing the functions/
operations specified by the blocks in the flowcharts and/or
block diagrams.

[0158] These computer-readable program instructions
may also be stored in a computer-readable storage medium
that enables a computer or another programmable data
processing device to work in a specific manner. In this way,
the instructions stored in the computer-readable storage
medium produce an instruction device product that imple-
ments the functions/operations specified in the blocks of the
flowcharts and/or block diagrams.

[0159] Computer-readable program instructions may also
be loaded onto a computer, another programmable data
processing device, or another device, such that a series of
operating steps can be performed on a computer, another
programmable data processing device, or another device to
produce a computer-implemented process. Thus, the instruc-
tions executed on a computer or another programmable data
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processing device can provide a process for implementing
the functions/operations specified by the blocks in the flow-
charts and/or block diagrams.

[0160] Specific embodiments of the present disclosure are
disclosed as described above, but the scope of protection of
the present disclosure is not limited thereto. Changes and
alteration which may be obtained in the technical scope of
the present disclosure by those skilled in the art should fall
within the scope of protection of the present disclosure.
Therefore, the scope of protection of the present disclosure
should be defined by the appended claims.

1. A method for self-supervised learning, comprising:

acquiring an unlabeled dataset, wherein the dataset com-

prises point clouds in a plurality of frames, and a point
cloud in each of the plurality of frames comprises a
plurality of real points;

organizing real points in one column along a vertical

direction into a pillar, wherein the pillar is provided
with a pillar motion parameter, and each of the real
points in the pillar has a motion parameter that is the
same as the pillar motion parameter;

for each of real points in a current frame, moving the real

point to a next frame based on a corresponding pillar
motion parameter, and determining a predicted point in
the next frame;
determining a first loss term based on a minimum distance
among distances between predicted points in the next
frame and real points in the next frame, and generating
a loss function comprising the first loss term; and

performing self-supervised learning processing based on
the loss function to determine a pillar motion parameter
of the pillar.

2. The method according to claim 1, wherein the deter-
mining a first loss term based on a minimum distance among
distances between predicted points in the next frame and real
points in the next frame comprises:

determining the first loss term based on a first minimum

distance and/or a second minimum distance, wherein
the first minimum distance is a minimum distance
among distances from a predicted point in the next
frame to a plurality of real points in the next frame, and
the second minimum distance is a minimum distance
among distances from a real point in the next frame to
a plurality of predicted points in the next frame.

3. The method according to claim 2, wherein the deter-
mining the first loss term based on a first minimum distance
and/or a second minimum distance comprises: adding a sum
of first minimum distances corresponding to the plurality of
predicted points in the next frame to a sum of second
minimum distances corresponding to the plurality of real
points in the next frame to obtain the first loss term accord-
ing to the following equation:

TRRES YN PV 9o E R
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wherein L__,.;., represents the first loss term, p,” represents
an i-th predicted point in a t-th frame, p represents a set
of a plurality of predicted points in the t-th frame, p/
represents a j-th real point in the t-th frame, and p’
represents a set of a plurality of real points in the t-th
frame.
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4. The method according to claim 1, wherein the dataset
further comprises image data of the plurality of frames
matching the point clouds in the plurality of frames, wherein
the method further comprises:
projecting a real point in a target frame onto an image
plane comprising image data to determine a first pixel,
and determining an ego-optical flow of the first pixel
based on a pose change of an ego-vehicle, wherein the
target frame is the current frame or the next frame, and
the first pixel is a pixel in the image data of the target
frame and matching a real point in the target frame;

determining an overall optical flow of the first pixel based
on the image data, and determining an object optical
flow of the first pixel based on the overall optical flow
and the ego-optical flow;

projecting a pillar motion parameter corresponding to the

real point in the target frame onto the image plane, and
determining a corresponding projected optical flow;
and

determining a second loss term based on a difference

between the object optical flow and the projected
optical flow, and adding the second loss term to the loss
function.

5. The method according to claim 4, wherein the deter-
mining a second loss term based on a difference between the
object optical flow and the projected optical flow comprises:
determining the second loss term according to the following
equation:

:EHF(uiJvi)t_Fobj(uilvi)tH
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wherein £ regutar TEPIESENTS the second loss term, (u,, v,)*
represents a first pixel in a t-th frame corresponding to
an i-th real point p,, F(u, v,)" represents a projected
optical flow of the first pixel (u, v,)', and F,, (u,, v,
represents an object optical flow of the first pixel (u,,
v,

6. The method according to claim 1, wherein the dataset
further comprises image data of the plurality of frames
matching the point clouds in the plurality of frames, wherein
the method further comprises:

projecting a real point in a target frame onto an image
plane comprising image data to determine a first pixel,
and determining an ego-optical flow of the first pixel
based on a pose change of an ego-vehicle, wherein the
target frame is the current frame or the next frame, and
the first pixel is a pixel in the image data of the target
frame and matching a real point in the target frame;

determining an overall optical flow of the first pixel based
on the image data, and determining an object optical
flow of the first pixel based on the overall optical flow
and the ego-optical flow; and

determining a probability that the first pixel corresponds
to a dynamic object based on magnitude of the object
optical flow, to determine a probability that a real point
in the target frame corresponding to the first pixel
corresponds to the dynamic object, wherein the prob-
ability is positively correlated to the magnitude of the
object optical flow;

and wherein the determining a first loss term based on
minimum distances among distances between predicted
points in the next frame and real points in the next
frame comprises:

weighting, with the probability that the real point corre-
sponds to the dynamic object as a weighting coefficient,
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minimum distances between predicted points in the
next frame and real points in the next frame, and
determining the first loss term based on a minimum
distance obtained from weighting.

7. The method according to claim 6, wherein the deter-
mining a probability that the first pixel corresponds to a
dynamic object based on magnitude of the object optical
flow comprises: determining the probability that the first
pixel corresponds to the dynamic object according to the
following equation:

s/=1-exp{-a max(|F,y;(u; vi)l-7,0)}

wherein (u,, v,)’ represents a first pixel in a t-th frame
corresponding to an i-th real point, F,, (u,, v,)" repre-
sents an object optical flow of the first pixel (u,, v,)’s,
represents a probability that the first pixel (u, v,
corresponds to a dynamic object, o is a smoothing
factor, and T is a tolerance.
8. The method according to claim 4, wherein the project-
ing a real point in a target frame onto an image plane
comprising image data to determine a first pixel, and deter-
mining an ego-optical flow of the first pixel based on a pose
change of an ego-vehicle comprises:
determining a relative pose T, ., between LiDAR for
collecting the point cloud and a camera for collecting
the image data, and determining an inherent parameter
K of the camera;

projecting the real point in the target frame onto the image
plane comprising the image data based on the relative
pose and the inherent parameter, to determine the first
pixel;

determining the pose change T,_,,,, of the ego-vehicle in

the target frame, and determining the ego-optical flow
of the first pixel according to the following equation:

Fgoltt, V) =KTy TP~y

p,’ represents an i-th real point in the t-th frame, (u,, v,)
represents a first pixel in the t-th frame corresponding
to the i-th real point, and F,.(u,, v, represents an
ego-optical flow of the first pixel (u,, v,)".

9. The method according to claim 1, wherein a component
of the pillar motion parameter in the vertical direction is
Zero.

10. The method according to claim 1, further comprising:

generating a pillar motion field, wherein the pillar motion
field comprises pillar motion parameters of a plurality
of pillars; and

determining a third loss term based on components and
gradients of the pillar motion field in a plurality of
directions, and adding the third loss term to the loss
function.

11. The method according to claim 10, wherein the
determining a third loss term based on components and
gradients of the pillar motion field in a plurality of directions
comprises:

determining components and gradients of the pillar
motion field in an x direction and a y direction in a
horizontal plane, and determining the third loss term
according to the following equation:

L oo =V M A4V, M 14y, M1y Mg

wherein M ’ represents a component of a pillar motion
field of a t-th frame in the x direction, # ,/ represents
a component of the pillar motion field of the t-th frame
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in the y direction, V_ represents a gradient in the x
direction, V, represents a gradient in the x direction.
12. The method according to claim 1, wherein the gen-
erating a loss function comprising the first loss term com-

prises:

in a case of other loss term than the first loss term, setting
a balance coefficient for the first loss term and the other
loss term, and generating the loss function.

13. A device for self-supervised learning, comprising:

an acquisition module configured to acquire an unlabeled
dataset, wherein the dataset comprises point clouds in
a plurality of frames, and a point cloud in each of the
plurality of frames comprises a plurality of real points;

a pillar module configured to organize real points in one
column along a vertical direction into a pillar, wherein
the pillar is provided with a pillar motion parameter,
and each of the real points in the pillar has a motion
parameter that is the same as the pillar motion param-
eter;

a prediction module configured to, for each of real points
in a current frame, move the real point to a next frame
based on a corresponding pillar motion parameter, to
determine a predicted point in the next frame;

a loss determination module configured to determine a
first loss term based on a minimum distance among
distances between predicted points in the next frame
and real points in the next frame, and generate a loss
function comprising the first loss term; and

a processing module configured to perform self-super-
vised learning processing based on the loss function to
determine a pillar motion parameter of the pillar.

14. A computer-readable storage medium storing a com-
puter program that, when being executed by a processor,
performs:

acquiring an unlabeled dataset, wherein the dataset com-
prises point clouds in a plurality of frames, and a point
cloud in each of the plurality of frames comprises a
plurality of real points;

organizing real points in one column along a vertical
direction into a pillar, wherein the pillar is provided
with a pillar motion parameter, and each of the real
points in the pillar has a motion parameter that is the
same as the pillar motion parameter;
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for each of real points in a current frame, moving the real
point to a next frame based on a corresponding pillar
motion parameter, and determining a predicted point in
the next frame;
determining a first loss term based on a minimum distance
among distances between predicted points in the next
frame and real points in the next frame, and generating
a loss function comprising the first loss term; and
performing self-supervised learning processing based on
the loss function to determine a pillar motion parameter
of the pillar.
15. An electronic device, comprising:
a bus;
a transceiver;
a memory storing computer-executable instructions; and
a processor configured to execute the computer-readable
instructions;
wherein
the transceiver, the memory and the processor are con-
nected to each other via the bus, and
wherein the computer-executable instructions include:
acquiring an unlabeled dataset, wherein the dataset
comprises point clouds in a plurality of frames, and
a point cloud in each of the plurality of frames
comprises a plurality of real points;
organizing real points in one column along a vertical
direction into a pillar, wherein the pillar is provided
with a pillar motion parameter, and each of the real
points in the pillar has a motion parameter that is the
same as the pillar motion parameter:
for each of real points in a current frame, moving the
real point to a next frame based on a corresponding
pillar motion parameter, and determining a predicted
point in the next frame;
determining a first loss term based on a minimum
distance among distances between predicted points
in the next frame and real points in the next frame,
and generating a loss function comprising the first
loss term; and
performing self-supervised learning processing based
on the loss function to determine a pillar motion
parameter of the pillar.
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