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(57) ABSTRACT

The disclosure provides a framework or system for learning
visual representation using a large set of image/text pairs.
The disclosure provides, for example, a method of visual
representation learning, a joint representation learning sys-
tem, and an artificial intelligence (Al) system that employs
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JOINT REPRESENTATION LEARNING
FROM IMAGES AND TEXT

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of U.S. Provi-
sional Application Ser. No. 62/891,155, filed by Arash
Vahdat, et al. on Aug. 23, 2019, entitled “JOINT REPRE-
SENTATION LEARNING FROM IMAGES AND TEXT,”
commonly assigned with this application and incorporated
herein by reference in its entirety.

TECHNICAL FIELD

[0002] This application is directed, in general, to machine
learning and, more specifically, to visual representation
learning.

BACKGROUND

[0003] Machine learning is a branch of artificial intelli-
gence (Al) where systems learn from data analysis, identify
patterns, and make decisions. Machine learning can be used
to automate analytical model building and train Al algo-
rithms. Visual representation learning is a type of machine
learning concerned with learning features for the visual
domain that can be used such that downstream tasks (e.g.,
image classification, object detection, segmentation, etc.)
are performed with minimal supervision. Current
approaches to visual representation learning can be grouped
into two categories, supervised learning, and unsupervised
or self-supervised learning. In supervised learning category,
a large set of labeled images, such as the ImageNet dataset
or another similar dataset, is used to pre-train a model on an
auxiliary task. A benefit of this approach is that the learned
representation can capture the semantically meaningful
aspects of the data due to the supervision. However, a
disadvantage is that a large collection of annotated images
are often required for training the model.

[0004] In the unsupervised or self-supervised learning
category, unsupervised learning approaches are used where
Al algorithms are trained using data that is not classified or
labeled. For example, an auxiliary task can be defined based
on image denoising, variational auto encoders, or video
colorization. A benefit of this approach is that the need for
human supervision is minimal. However, a disadvantage is
that the learned representation is not necessarily semanti-
cally meaningful.

SUMMARY

[0005] In one aspect, the disclosure provides a method of
visual representation learning. In one example, the method
includes: (1) receiving a set of image embeddings from an
image representation model and a set of text embeddings
from a text representation model, and (2) training, employ-
ing mutual information, a critic function by learning rela-
tionships between the set of image embeddings and the set
of text embeddings.

[0006] In another aspect, the disclosure provides a joint
representation learning system. In one example, the joint
representation learning system includes: (1) a critic function
engine configured to train, employing mutual information, a
critic function by learning relationships between a set of
image embeddings from an image representation model and
a set of text embeddings from a text representation model,

Feb. 25, 2021

and (2) a mutual information estimator configured to train at
least one of the image representation model and the text
representation model by maximizing the mutual informa-
tion.

[0007] Inyet another aspect, the disclosure provides an Al
system. In one example, the Al system includes: (1) a neural
network configured to provide a task employing at least one
of a trained image representation model or a trained text
representation model, and (2) at least one of the trained
image representation model or the trained text representation
model, wherein the at least one is trained by employing a
compatibility value generated from features extracted from
the at least one to maximize mutual information in a joint
representation learning system.

BRIEF DESCRIPTION

[0008] Reference is now made to the following descrip-
tions taken in conjunction with the accompanying drawings,
in which:

[0009] FIG. 1 illustrates a block diagram of an example of
a joint representation learning system constructed according
to the principles of the disclosure;

[0010] FIG. 2 illustrates a diagram of an example of one
implementation of a joint representation learning system
constructed according to the principles of the disclosure;
[0011] FIG. 3 illustrates a block diagram of an example of
an Al system that employs one or more of an image or text
representation models trained according to the joint repre-
sentation learning disclosed herein; and

[0012] FIG. 4 illustrates a flow diagram of a method of an
example of visual representation learning carried out accord-
ing to the principles of the disclosure.

DETAILED DESCRIPTION

[0013] The disclosure provides a framework or system for
learning visual representation using a large set of image/text
pairs. The system and features disclosed herein are based on
maximizing the mutual information between text and image
representations. The system employs unsupervised repre-
sentation learning using both text and images. In this system,
a large corpus of paired image and text (i.e., image captions)
is used for representation learning. A caption is a sentence or
phrase that describes an image. For example, if the image
shows a banana on a table, the caption can be “A banana on
a table.” Advantages to this approach of unsupervised visual
representation learning using a set of image/text pairs
include: 1) the learned representation is semantically mean-
ingful due to the semantics injected by text, and ii) the
amount of supervision is minimal as image/text pairs can be
collected easily, such as from the web.

[0014] For example, the disclosure provides a visual rep-
resentation learning solution that maximizes the mutual
information between the image representation and the text
representation when training the representation in the joint
space. The mutual information between two random vari-
ables x and y can be expressed using Equation 1:

px, y) (1
I(x. = PX. lo dxd
(x,y) IL‘ (%, yllog @ p(y) Y,

[0015] where p(X, y) is the joint probability distribution
and p(x) and p(y) are the marginal distributions. However,
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1(x, y) is often challenging to compute. As such, instead of
maximizing the mutual information, a lower bound on the
mutual information can be maximized. Different lower
bound solutions can be used. One possible approach is to use
the lower bound provided by the noise contrastive estima-
tion technique as represented by Equation 2:

| o Gnn) &
Ivcg = E X E logﬁ <I(x,y)
n=1 Ekz:“l enon

[0016] where {(x,y)},_," is a training set with x€X and
yEY where X is the domain of the random variable x and
similarly Y is the domain of y. Here, f:XxY— R is known
as the critic function that generates a high scalar value, i.e.,
the compatibility value, when x,, and y,, belong to the same
pair in the training set and K<N is the number of training
samples used for measuring the I, bound. As such, the
numerator processes the positive pairs and the numerator
processes the negative pairs. Using a lower bound, such as
Iver in Equation 2, the representation learning problem can
be reduced to learning the critic function (f). Learning
employing Equation 2 can end, for example, when a suc-
cessive number of iterations produce a minimal designated
improvement in the compatibility value. Thus, the output of
the critic function is applied to Equation 2, which can be
employed by a mutual information estimator. The critic
function, the image representation model and the text rep-
resentation model can all be trained together by maximizing
Equation 2. Training together can be training in parallel or
at least partially in parallel and indicates that training is
occurring in parallel paths but not necessarily simultane-
ously. Training the critic function involves training the
parameters of the critic function. The image representation
model and/or the text representation model can be pretrained
(fixed) and the critic function can be used to improve the
trained models. One or both of the trained image and text
representation models can then be used in various imple-
mentations, such as image classification, object detection,
and image captioning. For example, one or both of the
trained image and text representation models can be used in
various types of autonomous or semi-autonomous vehicles
that are capable of operating with minimal or no human
intervention. A vehicle, includes without limitation, auto-
mobiles, box trucks, trucks with trailers, drones, ATVs,
robotics, indoor robots, airplanes, rockets, missiles, space-
craft, or other types of moving machines.

[0017] Turning now to the figures, FIG. 1 illustrates a
block diagram of an example of a joint representation
learning system 100 constructed according to the principles
of the disclosure. The system 100 includes an image repre-
sentation model 110, a separate text representation model
120, a critic function engine 130, and a mutual information
estimator 140. Each of these components can be imple-
mented on a processor or multiple processors. In some
examples, a single processor can be used for a combination
of the components of the joint representation learning sys-
tem 100. One or more of the components of the joint
representation learning system 100 can be located in a cloud
environment for training performed partially or fully in the
cloud. Each of the components of the joint representation
learning system 100 can also include associated data storage

Feb. 25, 2021

that is typically employed with the processors. The proces-
sors can be parallel processing units that include associated
data storage. The data storage can include a temporary
storage, such as a register file or a memory, that is configured
to stage or temporarily store data between the processor and
the memory for the operations. The parallel processors can
be a different type of general or special processing unit such
as a central processing unit (CPU) or a graphics processing
unit (GPU).

[0018] One or more of the components of the joint repre-
sentation learning system 100 can be implemented in a data
center having GPU racks that include high performance
GPU compute nodes and storage nodes. The high perfor-
mance GPU compute nodes can be servers designed for
general-purpose computing on graphics processing units
(GPGPU) to accelerate deep learning applications. For
example, the GPU compute nodes can be servers of the
DGX product line from Nvidia Corporation of Santa Clara,
Calif. The GPU racks can be high-density (HD) GPU racks
that can provide the storage and networking needed to
support large-scale neural network (NN) training, such as
deep neural network (DNN) training, which powers soft-
ware development for autonomous vehicles, internal Al for
companies, robotics development, etc. The disclosed learn-
ing representations can be used for NN training for conver-
sational Al products, where learning semantically meaning-
ful representation in the joint space of images and text can
be useful for downstream tasks including but not limited to
image captioning, visual question answering, and image
grounding. The HD-GPU racks can be used with reactive
machines, autonomous machines, self-aware machines, and
self-learning machines that all require a massive compute
intensive server infrastructure. The server structure can be
used in a virtual computing platform.

[0019] The image representation model 110 can be imple-
mented on a fully convolutional network and can be a
conventional model that is used in machine learning for
training images, such as images without text. In some
examples, the images can be created by ray tracing. Ray
tracing can be an alternative or supplement to traditional
rendering techniques, such as rasterization. Ray tracing can
be described as extending a line, i.e., ray, from the user’s
view perspective to an object within a scene, and then
determining a second ray from that object to a light source.
These rays can then be used to determine the amount of light
hitting the object, at what angle the light is to the user view
perspective, and how the color, texture, and other object
characteristics are represented to the user. Accordingly, the
images can be rendered images.

[0020] The text representation model 120 can be a con-
ventional text model that is used for machine learning
training. In its core, the disclosed models can use represen-
tation learning approaches proposed for image or text only.
Some examples of different approaches that can be used with
the disclosed framework are Deep InfoMax or another
machine learning framework for images without text anno-
tation, and BERT or another machine learning framework
for natural language processing (NLP) for the captions.
Deep InfoMax learns representations images by considering
the structure and is available from BERT, which is an
acronym for Bidirectional Encoder Representations from
Transformers is a technique for NLP pre-training developed
by Google LL.C of Mountain View, Calif. The critic function
engine 130 can be implemented as a DNN. The DNN can be
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a convolution neural network (CNN) or another type of NN,
such as a recursive neural network (RNN).

[0021] The critic function engine 130 is configured to
learn a compatibility function, referred to herein as a critic
function, that compares image representations and caption
representations from the image and text representation mod-
els 110, 120, and generates a compatibility value based on
the comparison. The compatibility value is a scalar value
that represents the compatibility or correspondence between
the image and caption representations that are compared.
The compatibility value, for example, is greater when a
representation extracted at a location in the image represen-
tation matches a representation extracted from a location of
the caption representation, than when the two extracted
representations do not match. As discussed with respect to
FIG. 2, the image and caption representations can be image
embeddings and text embeddings. The critic function engine
130 provides the compatibility value to the mutual informa-
tion estimator 140.

[0022] The mutual information estimator 140 is config-
ured to employ the compatibility value in an estimation of
mutual information shared between the image and caption
representations, and train the image representation model
110, the text representation model 120, and the critic func-
tion engine 130. For example, the mutual information esti-
mator 140 can maximize mutual information between an
input and the output of a DNN encoder for the training. The
mutual information estimator 140 can provide a quantitative
measurement of the amount of information shared between
the image and caption representations. Equation 1 provides
an example representing the logic employed by the mutual
information estimator 140 for an estimation of the shared
information, wherein x and y are the extracted features from
the image representation model 110 and the text represen-
tation model 120. As such, x and y of Equation 1 can be a
set of image embeddings and a set of text embeddings. The
mutual information estimator 140 can train the image rep-
resentation model 110, the text representation model 120,
and the critic function engine 130 by maximizing the mutual
information employing the compatibility value.

[0023] The image representation model 110, the text rep-
resentation model 120, and the critic function of critic
function engine 130 can all be trained together by maximiz-
ing the mutual information. Instead of maximizing the
mutual information, a lower bound of the mutual informa-
tion can be maximized for the training. Equation 2 provides
an example representing the logic that can be used for
maximizing the lower bound of the mutual information. In
Equation 2, f (%, y) is the critic function wherein x and y can
be a set of image embeddings and a set of text embeddings
as noted above with Equation 1. As represented by Equation
2, the mutual information estimator 140 can use a noise
contrastive estimation technique for maximizing the lower
bound.

[0024] FIG. 2 illustrates a diagram of an example of one
implementation of a joint representation learning system 200
constructed according to the principles of the disclosure. The
joint representation learning system 200 includes an image
representation model 210, a text representation model 220,
and a DNN 250. The joint representation learning system
200 employs a similarity measurement determined by the
DNN 250 based on mutual information extracted from
image and caption representations. The similarity measure-
ment can be used to compute the compatibility value of a
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critic function using, for example, Equation 3 presented
below. The DNN 250 can include a critic function engine
such as disclosed in FIG. 1. The image representation model
210 and the text representation model 220 provide examples
of the image representation model 110 and the text repre-
sentation model 120 of FIG. 1.

[0025] The image representation model 210 extracts
visual features given an image. The image representation
model 110 can be, for example, implemented using a fully
CNN. The output of the image representation model 210 is
a set of spatially organized features, i.e., for each position i
in the output, an image embedding e,(1) is extracted for the
image I.

[0026] The text representation model 220 extracts features
from the language domain. The text representation model
220 is configured to extract contextualized features for each
word in a caption that corresponds to the paired image from
the image representation model 210. The output of the text
representation model 220 is a set of text embeddings g,(C)
where j is an index running over the word indices and C is
the caption. Both e,(I) and g(C) are represented by vectors.
The text representation model 220 can be implemented, for
example, using BERT. The outputs from each model do not
have to exactly represent the image or caption. For example,
the extracted features, the image and text embeddings, can
be down sampled.

[0027] As shown in FIG. 2, the image and text represen-
tation models 210 and 220 generate image and text embed-
dings {e(D)} and {g(C)} that can be used for training. The
image and text embeddings are visually represented by
image embeddings 230 and text embeddings 240 as
examples. The image embeddings 230 represent features of
the image that are extracted by the image representation
model 210 at proscribed locations of the image. The image
embeddings 230 include a five by five array of pixels of the
image that have a number of numerical values representing
the features, or channels, for each of the pixels. The numeri-
cal values indicate what is located at each particular pixel.
For example, if the image is of a banana on a table, then the
image representation model 210 can extract numerical val-
ues representing the color yellow and the banana texture for
pixels 232 and 234 corresponding to the location of the
banana in the image. Similarly, the image representation
model 210 can extract numerical values representing the
color brown and the texture of the table for pixels 236 and
238 corresponding to the location of the table in the image.
For the image embeddings 230, three channels are extracted
for each pixel. The number of channels extracted can vary
depending on the implementation. With more channels, or
values, the quality of the representation of a pixel increases.
[0028] The text embeddings 240 include five vectors
(shown as rectangles) that each uniquely represent one word
of the caption. The text representation model 220 extracts
one or more features from each word to represent the word.
The features are represented by numerical values that are
extracted by the text representation model 220 to form each
ofthe vectors. The numerical values are contextual such that
the representation of each word depends on the other words,
e.g., neighboring words, of the caption. Continuing with the
caption of “A banana on a table” as an example, vector 242
corresponds to “banana” and includes numerical values
extracted by the text representation model that contextually
represents the word “banana” in the caption. As such, the
numerical values for vector 242 consider the words “A” and
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on”. Similarly, each of the other vectors that are not
denoted correspond to “A”, “on”, “a” and “table” and
include contextual numerical values representing a single
word of the caption. Each of the vector representations
provides a semantically meaningful representation of a word
of the caption that, for example, should correspond to vector
representations of similar words in other captions. The text
embeddings 240 include three features for each word of the
caption, which are visually represented by boxes in each of
the rectangles. The number of features extracted can vary
depending on the implementation. With more features, or
values, the quality of the representation of a word increases.
The number of channels of the image embeddings and the
number of features of the text embeddings can be the same.
Accordingly, the dot product of the values as represented in
Equation 3 is a scalar value.

[0029] The framework provided by the joint representa-
tion learning system 200 is based on the mutual information
to learn representation jointly in the image and text domains.
Various modifications can be employed with the framework.
For example, while (or before) training the whole image
representation model 210, the text representation model 220
using the mutual information between image and text fea-
tures, a visual representation learning objective function can
be used, such as mutual information to train (or pre-train) the
image representation model 210. This training does not
involve the captions, and it only uses the image domain to
train visual features.

[0030] Similarly, while (or before) training the whole
model, a text representation learning objective function,
such as the word masking method used in BERT, can be used
to train (or pre-train) the text representation model 220. This
training does not involve the visual representation and it
only uses the text domain to learn text features.

[0031] A critic function is formed in the DNN 250 that
compares the set of image embeddings to text embeddings,
and generates a compatibility value if they belong to the
same pair. The critic function can take the form f ({e, (D)},
{g,(O)}). The critic function can use an attention mechanism
to attend the different parts of the visual features for gen-
erating the compatibility value.

[0032] Attention mechanisms can be constructed using
key, value, and query attention mechanisms and can be
employed by the critic function of the DNN 250. For
example, one can use DNNs to generate key and value
(denoted by k, and v, respectively) for each image embed-
ding e(I), and query and value (denoted by q; and V',
respectively) for each word embedding g,(C). We can then
compute the attention score using:
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[0033] where s, is the output of the attention mechanism
and 1 runs over all indices of image embeddings. Given s,
this similarity measurement can be then used to aggregate
the similarity between all the image and text embeddings for
the pair (I, C). The scalar output of the function f, the
compatibility value, can then be computed using the fol-
lowing expression of Equation 3:
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[0034] As noted above with respect to FIG. 1, the com-
patibility value can then be used by a mutual information
estimator for maximizing a lower bound of the mutual
information. Equation 2 provides an example for maximiz-
ing the lower bound, wherein Equation 3 is the critic
function f (x, y) in Equation 2. The mutual information
estimator can be implemented in the DNN 250 along with
the critic function engine.

[0035] Given that both the image and text representation
models 210, 220, can extract features using DNNs, the
mutual information can be maximize at different layers of
the DNN 250. Thus, instead of being used on the output
layer of the DNN 250, the maximized mutual information
can also be used with other layers of the DNN 250. This will
enable learning representations at different levels jointly
between the text and image domains and increase the
granularity.

[0036] FIG. 3 illustrates a block diagram of an example of
an Al system 300 that employs one or more of an image or
text representation models trained according to the joint
representation learning disclosed herein. The Al system 300
provides a function or downstream task employing one or
more of the trained models. The system 300 includes a
trained image representation model 310, a text representa-
tion model 320 and a NN 330. One or both of the trained
image and text representation models 310, 320, can be
trained according to the joint representation learning as
described herein.

[0037] The NN 330 is configured to perform a designated
function or task employing at least one of the trained image
and text representation models 310, 320. The Al system 300
can be or be part of a conversational A product, where the
NN 330 employs the semantically meaningful representa-
tions of the trained image and text representation models
310, 320, for tasks including but not limited to image
captioning, visual question answering, and image ground-
ing. The NN 330 can also employ one or more of the trained
image and text representation models 310, 320, for such
tasks as image classification, objection detection, and seg-
mentation. Depending on the application, only the trained
image representation model 310, only the trained text rep-
resentation learning model 320, or both of the trained image
and text representation models 310, 320, may be employed
by the NN 330 to perform a designated function. For
example, in the case of object detection by the NN 330, the
trained text representation model 310 is not needed.
[0038] The NN 330 can be a DNN or another type of NN
that is added to the top of the representation models 310,
320, to perform a downstream task (e.g. object detection).
The NN 330, however, is a different NN than the critic
function engine used for training the representation models
as illustrated in FIG. 2. In fact, after training, the critic
function can be discarded and the trained representation
models can be used.

[0039] FIG. 4 illustrates a flow diagram of a method 400
of an example of visual representation learning carried out
according to the principles of the disclosure. The method
400 can be carried out, for example, by the joint represen-
tation learning system of FIG. 1 or FIG. 2. At least a portion
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of'the method 400 can be performed in a cloud environment
where information is communicated between components of
a joint representation learning system via communication
networks. The method 400 can be provided as a service
wherein a representation model or models are trained by a
first entity or service provider and provided to another entity
or entities for employing in a system for use, such as an A
system 300. The method 400 can also be employed in
autonomous or semi-autonomous vehicles for various sys-
tems that are employed to control operation of the vehicles.
The method 400 begins in step 405.

[0040] Instep 410, a set of image embeddings are received
from an image representation model and a set of text
embeddings are received from a text representation model.
The set of image embeddings and text embeddings can be
received from representation models that are fixed (pre-
trained). One or both of the set of image embeddings and
text embeddings can also be extracted as part of the method
400.

[0041] A critic function is trained in a step 420 by learning
relationships between the set of image embeddings and the
set of text embeddings. The critic function can include an
attention score generated by an attention mechanism
employed with the image embeddings. Equation 3, for
example, can be used to define the critic function. Mutual
information between the set of image embeddings and the
set of text embeddings can be employed for training the
critic function. For example, maximizing a lower bound of
the mutual information can be employed to train the critic
function. Equation 2 provides an example for maximizing
the lower bound of the mutual information for training the
critic function. As such, the maximizing can employ a noise
contrastive estimation technique. Training of the critic func-
tion provides a compatibility value that a mutual information
estimator can employ for maximizing the mutual informa-
tion.

[0042] In a step 430, one or more of the image represen-
tation model and the text representation model are trained
employing the mutual information. Both of the image rep-
resentation model and the text representation model can be
trained. If already trained (pre-trained) training of one of
more of the models can be performed to improve perfor-
mance.

[0043] The method 400 continues to step 440 and ends.
The trained image and text representation models can be
used in an Al system, such as illustrated in FIG. 3.

[0044] The disclosed methods, systems, solutions, pro-
vided herein advantageously employs mutual information
for representation learning jointly in the space of images and
text. As described herein, a noise contrastive estimation
technique can be used for maximizing the mutual informa-
tion. Additionally, an attention-based mechanism can be
used to attend different regions of an image and to use the
output of the attention to aggregate the features for repre-
sentation learning using mutual information. The disclosed
learning representation can be used with conversational Al
products, where learning semantically meaningful represen-
tation in the joint space of images and text can be useful for
many downstream tasks including but not limited to image
captioning, visual question answering, image grounding,
etc.

[0045] A portion of the above-described apparatus, sys-
tems or methods may be embodied in or performed by
various digital data processors or computers, wherein the
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computers are programmed or store executable programs of
sequences of software instructions to perform one or more of
the steps of the methods. The software instructions of such
programs may represent algorithms and be encoded in
machine-executable form on non-transitory digital data stor-
age media, e.g., magnetic or optical disks, random-access
memory (RAM), magnetic hard disks, flash memories, and/
or read-only memory (ROM), to enable various types of
digital data processors or computers to perform one, mul-
tiple or all of the steps of one or more of the above-described
methods, or functions, systems or apparatuses described
herein.

[0046] Portions of disclosed embodiments may relate to
computer storage products with a non-transitory computer-
readable medium that have program code thereon for per-
forming various computer-implemented operations that
embody a part of an apparatus, device or carry out the steps
of a method set forth herein. Non-transitory used herein
refers to all computer-readable media except for transitory,
propagating signals. Examples of non-transitory computer-
readable media include, but are not limited to: magnetic
media such as hard disks, floppy disks, and magnetic tape;
optical media such as CD-ROM disks; magneto-optical
media such as floptical disks; and hardware devices that are
specially configured to store and execute program code,
such as ROM and RAM devices. Examples of program code
include both machine code, such as produced by a compiler,
and files containing higher level code that may be executed
by the computer using an interpreter.

[0047] The processors or computers can be comprised of
one or more GPUs, one or more CPUs, one or more of other
processor types, or a combination thereof. The processors
and computers can be located proximate each other, proxi-
mate a user, in a cloud environment, a data center, or located
in a combination thereof. For example, some components
can be located proximate the user and some components can
be located in a cloud environment or data center.

[0048] The GPUs can be embodied on a single semicon-
ductor substrate, included in a system with one or more other
devices such as additional GPUs, a memory, and a CPU. The
GPUs may be included on a graphics card that includes one
or more memory devices and is configured to interface with
a motherboard of a computer. The GPUs may be integrated
GPUs (iGPUs) that are co-located with a CPU on a single
chip.

[0049] The NN disclosed herein include multiple layers
of connected nodes that can be trained with input data to
solve complex problems. For example, the image and text
embeddings can be used with the critic function for training
of the image and text representation models. Once trained,
the NN (the image and text representation models) can be
deployed and used to identify and classify objects or patterns
in an inference process through which a NN extracts useful
information from a given input.

[0050] During training, data flows through the NNs in a
forward propagation phase until a prediction is produced
that indicates a label corresponding to the input. When the
NNs do not correctly label the input, errors between the
correct label and the predicted label are analyzed, and the
weights are adjusted for features of the layers during a
backward propagation phase that correctly labels the inputs
in a training dataset. With thousands of processing cores that
are optimized for matrix math operations, GPUs such as
noted above are capable of delivering the performance
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required for training NNs for artificial intelligence and
machine learning applications, including joint representa-
tion learning from images and text pairs.

[0051] In interpreting the disclosure, all terms should be
interpreted in the broadest possible manner consistent with
the context. In particular, the terms “comprises” and “com-
prising” should be interpreted as referring to elements,
components, or steps in a non-exclusive manner, indicating
that the referenced elements, components, or steps may be
present, or utilized, or combined with other elements, com-
ponents, or steps that are not expressly referenced.

[0052] Those skilled in the art to which this application
relates will appreciate that other and further additions,
deletions, substitutions and modifications may be made to
the described embodiments. It is also to be understood that
the terminology used herein is for the purpose of describing
particular embodiments only, and is not intended to be
limiting, since the scope of the present disclosure will be
limited only by the claims. Unless defined otherwise, all
technical and scientific terms used herein have the same
meaning as commonly understood by one of ordinary skill
in the art to which this disclosure belongs. Although any
methods and materials similar or equivalent to those
described herein can also be used in the practice or testing
of the present disclosure, a limited number of the exemplary
methods and materials are described herein. Those skilled in
the art to which this application relates will appreciate that
other and further additions, deletions, substitutions and
modifications may be made to the described embodiments.

What is claimed is:
1. A method of visual representation learning, comprising:
receiving a set of image embeddings from an image
representation model and a set of text embeddings from
a text representation model; and

training, employing mutual information, a critic function
by learning relationships between the set of image
embeddings and the set of text embeddings.

2. The method as recited in claim 1, wherein the mutual
information is a quantitative measurement of an amount of
information shared between the text embeddings and the
image embeddings.

3. The method as recited in claim 1, wherein the training
includes maximizing a lower bound of the mutual informa-
tion.

4. The method as recited in claim 3, wherein the maxi-
mizing employs a noise contrastive estimation technique.

5. The method as recited in claim 1, wherein the critic
function employs an attention mechanism to generate a
similarity measurement between each image embedding of
the set of image embeddings and each text embedding of the
set of text embeddings.

6. The method as recited in claim 1, wherein the critic
function provides a scalar value based on a summation of the
similarity measurements of the image and text embeddings,
and a dot product of the set of image embeddings and the set
of text embeddings.

7. The method as recited in claim 1, further comprising
extracting at least one of the text embeddings from the text
representation model or the image embeddings from the
image representation model.
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8. The method as recited in claim 1, further comprising
training at least one of the image representation model or the
text representation model employing the mutual informa-
tion.

9. The method as recited in claim 8, wherein one or more
of the image representation model or the text representation
model are pre-trained and the training of the image repre-
sentation model or the text representation model is addi-
tional training that improves the image representation model
or the text representation model.

10. The method as recited in claim 1, further comprising
training the image representation model, the text represen-
tation model, and the critic function together employing the
mutual information.

11. The method as recited in claim 1, wherein the training
is performed by at least one deep neural network.

12. A joint representation learning system, comprising:

a critic function engine configured to train, employing

mutual information, a critic function by learning rela-
tionships between a set of image embeddings from an
image representation model and a set of text embed-
dings from a text representation model; and

a mutual information estimator configured to train at least

one of the image representation model and the text
representation model by maximizing the mutual infor-
mation.
13. The joint representation learning system as recited in
claim 12, wherein the mutual information estimator is con-
figured to train both the image representation model and the
text representation model.
14. The joint representation learning system as recited in
claim 12, further comprising the image representation model
and the text representation model.
15. The joint representation learning system as recited in
claim 12, wherein the mutual information estimator is con-
figured to maximizing the mutual information by maximiz-
ing a lower bound of the mutual information.
16. The joint representation learning system as recited in
claim 12, wherein the critic function employs an attention
score generated by an attention mechanism employed with
the image embeddings.
17. The joint representation learning system as recited in
claim 12, wherein the training of the critic function provides
a compatibility value that the mutual information estimator
employs for maximizing the mutual information.
18. The joint representation learning system as recited in
claim 12, wherein the critic function engine and the mutual
information estimator and implemented in at least one neural
network.
19. An artificial intelligence system, comprising:
a neural network configured to provide a task employing
at least one of a trained image representation model or
a trained text representation model; and

at least one of the trained image representation model or
the trained text representation model, wherein the at
least one is trained by employing a compatibility value
generated from features extracted from the at least one
to maximize mutual information in a joint representa-
tion learning system.

20. The artificial intelligence system as recited in claim
19, further comprising both of the trained image represen-
tation model or the trained text representation model.
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