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There are numerous features in video that can be detected 
using computer - based systems , such as objects and / or 
motion . The detection of these features , and in particular the 
detection of motion , has many useful applications , such as 
action recognition , activity detection , object tracking , etc. 
The present disclosure provides a neural network that learns 
motion from unlabeled video frames . In particular , the 
neural network uses the unlabeled video frames to perform 
self - supervised hierarchical motion learning . The present 
disclosure also describes how the learned motion can be 
used in video action recognition . 
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SELF - SUPERVISED HIERARCHICAL 
MOTION LEARNING FOR VIDEO ACTION 

RECOGNITION 

CLAIM OF PRIORITY 

[ 0001 ] This application claims the benefit of U.S. Provi 
sional Application No. 62 / 892,118 ( Attorney Docket No. 
NVIDP1279 + / 19 - SC - 0314U501 ) titled " CROSS - DOMAIN 
DISENTANGLEMENT AND ADAPTATION FOR PER 
SON RE - IDENTIFICATION AND UNARY - STEAM NET 
WORK FOR VIDEO ACTION RECOGNITION , ” filed 
Aug. 27 , 2019 , the entire contents of which is incorporated 
herein by reference . 

[ 0010 ] FIG . 3 illustrates a block diagram of contrastive 
motion learning , in accordance with an embodiment . 
[ 0011 ] FIG . 4 illustrates a block diagram of a method for 
action recognition learning using learned motion and 
appearance features , in accordance with an embodiment . 
[ 0012 ] FIG . 5 is a block diagram of an example game 
streaming system suitable for use in implementing some 
embodiments of the present disclosure . 
[ 0013 ] FIG . 6 is a block diagram of an example computing 
device suitable for use in implementing some embodiments 
of the present disclosure . 

TECHNICAL FIELD 

[ 0002 ] The present disclosure relates to detecting motion 
in video . 

BACKGROUND 

[ 0003 ] There are numerous features in video that can be 
detected using computer - based systems , such as objects 
and / or motion . The detection of these features , and in 
particular the detection of motion , has many useful appli 
cations . For example , a broad range of video understanding 
tasks can benefit from the introduction of motion informa 
tion , such as action recognition , activity detection , object 
tracking , etc. 
[ 0004 ] While early techniques developed to detect motion 
relied on the off - the - shelf pre - computed motion features 
( e.g. , optical flow ) , more recent techniques directed towards 
action recognition have relied upon convolutional neural 
networks ( CNNs ) for more effective motion learning from 
raw video frames . Some of these recent techniques rely on 
supervised learning to train the networks , such that the 
accuracy of the network is a function of the quality of the 
training data ( i.e. annotated video ) that is available . How 
ever , difficulty in annotating motion in video limits the 
quality of available training data . On the other hand , recent 
techniques that use unsupervised learning processes do not 
effectively catch the high - level and long - term temporal 
dynamics . 
[ 0005 ] There is a need for addressing these issues and / or 
other issues associated with the prior art . 

DETAILED DESCRIPTION 
[ 0014 ] FIG . 1 illustrates a flowchart of a method 100 for 
self - supervised hierarchical motion learning , in accordance 
with an embodiment . Each operation of method 100 , 
described herein , comprises a computing process that may 
be performed using any combination of hardware , firmware , 
and / or software . For instance , various functions may be 
carried out by a processor executing instructions stored in 
memory . The method 100 may also be embodied as com 
puter - usable instructions stored on computer storage media . 
The method 100 may be provided by a standalone applica 
tion , a service or hosted service ( standalone or in combina 
tion with another hosted service ) , or a plug - in to another 
product , to name a few . In addition , method 100 may be 
executed by any one system , or any combination of systems , 
including , but not limited to , those described herein . 
[ 0015 ] In operation 102 , a plurality of unlabeled video 
frames is accessed . The unlabeled video frames may be 
accessed from any computer storage storing the unlabeled 
video frames . In the context of the present description , the 
video frames are a continuous sequence of frames from a 
single video . Additionally , the video frames are unlabeled in 
terms of motion within the video ( i.e. are not annotation with 
motion information ) . 
[ 0016 ] Further , in operation 104 , self - supervised hierar 
chical motion learning is performed by a neural network , 
using the unlabeled video frames . In other words , the neural 
network learns motion features , such as type of motion , 
direction of motion , etc. from the unlabeled video frames . 
[ 0017 ] In one embodiment , the self - supervised motion 
learning learns a hierarchy of motion representations . The 
hierarchy includes multiple levels each having an increasing 
level of detail for the motion representations . Accordingly , 
the self - supervised motion learning may progressively learn , 
for each level of the hierarchy in a bottom - up manner , 
motion representations that include motion features at 
increasing level of abstraction . 
[ 0018 ] In another embodiment , the self - supervised motion 
learning may be initialized with a preliminary motion fea 
tures derived from the unlabeled video frames . These pre 
liminary motion features may be determined from the plu 
rality of unlabeled video frames in a self - supervised manner . 
For example , the preliminary motion features may be deter 
mined by applying video frame reconstruction to the plu 
rality of unlabeled video frames . To this end , the motion 
features at the first level in the hierarchy may be the 
preliminary motion features . 
[ 0019 ] In a further embodiment , at each level above the 
first level in the hierarchy , motion features for the level may 
be learned based on the motion features at a previous level . 
In particular , the motion features for the current level may be 
learned by enforcing the motion features to predict future 

SUMMARY 

[ 0006 ] A method , computer readable medium , and system 
are disclosed for self - supervised hierarchical motion learn 
ing , which can be used for video action recognition . In use , 
a plurality of unlabeled video frames is accessed . Further , 
self - supervised motion learning is performed by a neural 
network , using the unlabeled video frames . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0007 ] FIG . 1 illustrates a flowchart of a method for 
self - supervised hierarchical motion learning , in accordance 
with an embodiment . 
[ 0008 ] FIG . 2A illustrates the architecture of a motion 
learning module embedded in a backbone network , in accor 
dance with an embodiment . 
[ 0009 ] FIG . 2B illustrates a block diagram of the prime 
motion block of FIG . 2A , in accordance with an embodi 
ment . 
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motion features at the previous level . In yet another embodi 
ment , a discriminative contrastive loss may be used as an 
objective , such that the current level is trained to capture 
semantic temporal dynamics from the previous level . 
[ 0020 ] Once the motion features are learned , the motion 
features may be used for any desired application requiring 
motion representation , such as for video game applications 
or other computer vision applications . In one embodiment , 
action recognition learning ( by the neural network ) may be 
performed using the learned motion features . The action 
recognition learning may be performed by integrating the 
learned motion features into a backbone network . The 
learned motion features may be integrated with appearance 
features . In this way , the integration may enable end - to - end 
fusion of appearance and motion information over multiple 
levels throughout a single unified network , instead of learn 
ing them disjointly , for use in action recognition . 
[ 0021 ] More illustrative information will now be set forth 
regarding various optional architectures and features with 
which the foregoing framework may be implemented , per 
the desires of the user . For example , while an exemplary 
backbone network is shown , other embodiments are con 
templated in which various backbone networks can be used . 
It should be strongly noted that the following information is 
set forth for illustrative purposes and should not be con 
strued as limiting in any manner . Any of the following 
features may be optionally incorporated with or without the 
exclusion of other features described . 
[ 0022 ] The embodiments described below provide a self 
supervised learning framework , which can enable explicit 
motion supervision at multiple feature abstraction levels , or 
in other words which can provide hierarchical contrastive 
motion learning . Specifically , given preliminary motion fea 
tures ( also referred to as cues ) as a bootstrap , the approach 
can progressively learn a hierarchy of motion features in a 
bottom - up manner . To acquire the preliminary motion cues 
to initialize the hierarchical motion learning , video frame 
reconstruction may be used as an auxiliary task such that the 
whole motion representation learning is provided by a 
unified self - supervised setup . 
[ 0023 ] This hierarchical design can bridge the semantic 
gap between the low - level preliminary motion and the 
high - level recognition task . At each level , a discriminative 
contrastive loss may be used to provide an explicit self 
supervision to enforce the motion features at a current level 
to predict the future ones at previous level . In contrast to 
pretext tasks that focus on low - level image details , the 
contrastive learning may encourage the model to learn 
useful semantic dynamics from previously learned motion 
features at a lower level , and therefore may be more favor 
able for motion learning at higher levels where the spatial 
and temporal resolutions of feature maps are low . 
[ 0024 ] Just by way of example , a low level of the hierar 
chy may indicate only that some pixels are moving between 
video frames ; a mid level of the hierarchy may indicate 
which object ( s ) in the frames is / are moving ; and a high level 
of the hierarchy may indicate a direction of the movement 
( e.g. the two objects are moving closer together ) . As another 
example , a low level of the hierarchy may indicate only that 
some pixels are moving between video frames ; a mid level 
of the hierarchy may indicate which object ( s ) in the frames 
is / are moving and a direction of the movement ( e.g. the 
object is moving upwards ) ; and a high level of the hierarchy 

may indicate a complete movement of the object ( e.g. the 
object is being turned upside down ) . 
[ 0025 ] As described in further detail below , the proposed 
motion learning module may be realized via a side network 
branch , which is lightweight and flexible to embed into a 
variety of backbone CNNs . In particular , the hierarchical 
design may promote the appearance and motion fusion by 
integrating the learned motion features into the backbone 
network at multiple abstraction levels . Such a multi - level 
fusion paradigm is unachievable for previous motion learn 
ing methods that depend solely on low - level motion super 
visions . It is also noteworthy that this approach only intro 
duces a small overhead to the computation of a backbone 
network at inference time . 
[ 0026 ] To this end , embodiments of the present disclosure 
may ( 1 ) provide a new learning framework for motion 
representation learning from raw ( i.e. unlabeled ) video 
frames ; ( 2 ) advance contrastive learning to a hierarchical 
design , and empower contrastive learning in motion repre 
sentation learning for large - scale video action recognition ; 
and ( 3 ) achieve superior results without relying on off - the 
shelf motion features or supervised pre - training . 
[ 0027 ] FIG . 2A illustrates the architecture of a motion 
learning module 200 embedded in a backbone network , in 
accordance with an embodiment . 
[ 0028 ] The convolutional features at different levels of the 
backbone network are denoted as , { } , ... , IL - 1 } , where 
L is the number of abstraction levels . The goal is to learn a 
hierarchy of motion representations { Po , ... , PL - l } that 
correspond to the different levels . As a first step , video frame 
reconstruction is used to obtain the preliminary motion cues 
Po , which function as a bootstrap for the following hierar 
chical motion learning . With that , the motion features are 
progressively learned in a bottom - up manner . At each level 
1 > 0 , the motion features Pl are learned by enforcing them to 
predict the future motion features at the previous level Di - l , 
as described below . Contrastive loss L contrastive is used as an 
objective so that P ’ is trained to capture semantic temporal 
dynamics from pl - 1 . 
[ 0029 ] It should be noted that the side branches ( i.e. , the 
boxed region of FIG . 2A ) for self - supervised motion learn 
ing may be discarded after training , and only the learned 
motion features may be retained in the form of residual 
connections . The learned motion features at each level may 
be integrated into the backbone network via residual con 
nections to perform appearance and motion feature fusion : 
Z ! < , xl + g ' ( P ) , where g ' ( ) is used to match the feature 
dimensions . After learning motion at all levels , the whole 
network can be jointly trained for action recognition in a 
multi - tasking manner , as described below . Compared with 
the prior art two - stream methods that require an additional 
temporal stream operating on the pre - computed optical flow , 
the present approach is capable of boosting action recogni 
tion with a minor computational increase . 
[ 0030 ] Prime Motion Block 
[ 0031 ] A lightweight prime motion block ( PMB ) is used to 
transform the convolutional features of the backbone net 
work to more discriminative representations for motion 
learning . The key component of this block is a cost volume 
layer . A cost volume is initially used to store the costs that 
measure how well a pixel in one frame matches other pixels 
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F = { Fo , ... , F1-1 

more abstract trajectory that summarizes motion dynamics 
from the lower - level ones . This objective therefore allows 
varying features which progressively correspond to high 
level semantic concepts to be extracted slowly . 
[ 0040 ] Formally , the motion features generated by the 
prime motion block at level 1 > 0 may be denoted as P ? = { P . ' , 

P1-1 ? } , where T indicates the sequence length . In order 
to train Pl , we enforce P , to predict the future motion 
features at the previous level ( i.e. , PX , 1-1 ) , conditioned on the 
motion feature at the start time P , 7-1 , as illustrated in FIG . 3 . 
In practice , a predictive function fo is applied for the motion 
feature prediction at time step t + 8 : 151–1– 2-1 = fs ( [ P ' , P , -1 ] ) , 
where [ : ; : ] denotes channel - wise concatenation . A multi 
layer perception with one hidden layer is used for the 
prediction function : F8 ( x ) = W8 ( 2 ) ( W ( 1 ) x ) , where o is ReLU 
and w ( 1 ) is shared across all prediction steps for leveraging 
their common information . 
[ 0041 ] The objective function of each level is defined as a 
contrastive loss that encourages the predicted Ô - 1 to be close 
to the ground truth pl - 1 while being far away from the 
negative samples , as shown in Equation 2 . 

T - 12 

feature map 

Equation 2 
L'Contrastive ? = — log exp ( simp , px - Vr ) 

Dies exp ( simíð ; " , p . ; 1/1 ) 1-1 

LES 

in another frame to catch the inter - frame pixel - wise relations 
that indicate the rough motion . 
[ 0032 ] Given a sequence of convolutional features 

o ... , FT - 1 } with length T , first a 1x1x1 convolution 
is conducted to reduce the input channels by 1 / ß , denoted as 
F.This operation significantly reduces the computational 
overhead of prime motion block , and provides more com 
pact representations to reserve the essential information to 
compute cost volumes . The adjacent features are then re 
organized to feature pairs T * = { ( fo , F ) , ... , ( ÉT - 2 , FT - 1 ) , 
( f fT - 1 } , which is used to construct the cost volumes . 
The matching cost between two features is defined using the 
equation shown in Equation 1 . 

CV ( X1 , Y1 , X2 , y2 ) = sim ( f ( x1 , y? ) , Fi + 1 ( x2 , y2 ) ) 
[ 0033 ] where F / ( x , y ) denotes the feature vector at time t 
and position ( x , y ) , and the cosine distance is used as the 
similarity function : sim * u , v ) = u + v / || 1 || || vl . Note that the last 

fy - 1 is replicated to compute their cost volume 
in order to keep the original temporal resolution . 
[ 0034 ] While constructing a full cost volume over the 
whole feature map is computationally expensive , a “ partial ” 
cost volume is constructed . The search range is limited with 
the max displacement of ( X2 , y2 ) to be d and a striding factor 
s is used to handle large displacements without increasing 
the computation . As a result , the cost volume layer outputs 
a feature tensor of size MxHxW , where M = ( 2x [ d / s ] +1 ) 2 and 
H , W denote the height and width of a feature map . It is 
noteworthy that computing cost volumes is lightweight as it 
has no learnable parameters and much fewer FLOPs than 3D 
convolutions . Finally , the cost volumes are combined with 
the features obtained after dimension reduction , motivated 
by the observation that these two features provide comple 
mentary information for localizing the motion boundaries . 
[ 0035 ] FIG . 2B illustrates a block diagram of the prime 
motion block of FIG . 2A , in accordance with an embodi 
ment . 
[ 0036 ] As shown , the prime motion block is wrapped as a 
residual block such that the motion features 2 can be 
inserted into the backbone network seamlessly . For the cost 
volume layer , in one embodiment the search range is limited 
with the maximum displacement d = 6 and the stride s = 2 , 
which is equivalent to covering a region of 13x13 pixels 
with a stride 2. To combine the complementary information 
provided by the cost volumes and the convolutional features 
( after dimension reduction ) , the two features are concat 
enated in channels and then a 2D convolution is performed . 
Batch normalization and rectified linear unit ( ReLU ) may be 
used after each convolutional layer and cost volume layer . 
[ 0037 ] FIG . 3 illustrates a block diagram of contrastive 
motion learning , in accordance with an embodiment . 
[ 0038 ] Although the prime motion block extracts rough 
motion features from convolutional features , such features 
may be easily biased towards appearance information when 
jointly trained with the backbone network . Thus , an explicit 
motion supervision may be of vital importance for more 
effective motion learning at each level . 
[ 0039 ] To this end , a multi - level self - supervised objective 
based on the contrastive loss may be used . The goal is to 
employ the higher - level motion features as a conditional 
input to guide the prediction of the future lower - level motion 
features that are well - learned from a previous step . In this 
way , the higher - level features are forced to understand a 

t , k , 

[ 0042 ] where the similarity function is defined as the 
cosine similarity as the one used in computing cost volumes , 
and S denotes the sampling space of positive and negative 
samples . As shown in FIG . 3 , the positive sample of the 
predicted feature is the ground - truth feature that corresponds 
to the same video and locates at the same position in both 
space and time as the predicted one . As for the negative 
samples , considering efficiency , N spatial locations are ran 
domly sampled for each video within a mini - batch to 
compute the loss , so the number of spatial negatives , tem 
poral negatives and easy negatives for a predicted feature are 
respectively : ( N - 1 ) T , ( T - 1 ) and ( B - 1 ) NT , where B is the 
batch size and T is the sequence length of ground - truth 
features . 

[ 0043 ] With regard to the sampling strategy for contrastive 
motion learning , the predicted motion feature at level 1 is 
denoted as Ê , where tE { 1 , ... , T ' } is the temporal index , 
[ 0044 ] and kE { ( 1 , 1 ) , ( 1 , 2 ) , . . . ( H ' , W ) } is the spatial 
index . The only positive pair is ( @rk , Puk ) , which is the 
ground - truth feature that corresponds to the same video and 
locates at the same position in both space and time as the 
predicted one . Three types of negative samples may be used 
for all the prediction and ground - truth pairs ( @k , Pt , m ) : 
[ 0045 ] Spatial negatives are the ground - truth features that 
come from the same video of the predicted one but at a 
different spatial position , i.e. , kæm . Considering the effi 
ciency , N spatial locations for each video within a mini 
batch may be we randomly sampled to compute the loss . So 
the number of spatial negatives is ( N - 1 ) T ” . 
[ 0046 ] Temporal negatives are the ground - truth features 
that come from the same video and same spatial position , but 
from different time steps , i.e. , k = m , tzt . They are the hardest 
negative samples to classify , and the number of temporal 
negatives are T ' - 1 . 
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[ 0056 ] As shown , both learned motion features 402 and 
appearance features 404 are integrated for action recognition 
learning 406 . 
[ 0057 ] One use of the learned hierarchical motion features 
is for improving video action recognition . To integrate the 
learned motion features into a backbone network , the prime 
motion block may be wrapped into a residual block : Z ? = 
F ? + g ' ( Pl ) , where is the convolutional features at level 
1 , Pi is the corresponding motion features obtained as 
described above , and g ( ) is a 1x1xl convolution . This 
seamless integration enables end - to - end fusion of appear 
ance and motion information over multiple levels through 
out a single unified network , instead of learning them 
disjointly like two - stream networks . After the motion rep 
resentations are self - supervised learned at all levels , the 
classification loss is added to jointly optimize the total 
objective , which is a weighted sum of the following losses 
shown in Equation 5 . 

[ 0047 ] Easy negatives are the ground - truth features that 
come from different videos , and the number of easy nega 
tives are ( B - 1 ) NT ' , where B is the batch size . 
[ 0048 ] As illustrated in FIG . 2A , the contrastive motion 
learning is performed for multiple levels until the motion 
hierarchy of the whole network is built up . 
[ 0049 ) Progressive Training 
[ 0050 ] Training the multi - level self - supervised learning 
framework simultaneously from the beginning is infeasible , 
as the lower - level motion features are initially not well 
learned and the higher - level prediction would be arbitrary . 
To facilitate the optimization process , a progressive training 
strategy is used that learns motion features for one level at 
a time , propagating from low - level to high - level . In practice , 
after the convergence of training at level 1-1 , we freeze all 
network parameters up to level 1-1 ( therefore fixing the 
motion features Pi - l ) , and then start the training for level 1 . 
In this way , the higher - level motion features can be stably 
trained with the well - learned lower - level ones . 
[ 0051 ] Preliminary Motion Cues 
[ 0052 ] To initialize the progressive training , the prelimi 
nary motion cues , i.e. , Po , are required as a bootstrap . They 
may encode some low - level but valid movement informa 
tion to facilitate the following motion learning . In one 
embodiment , video frame reconstruction may be used to 
guide the extraction of preliminary motion cues . This task 
can be formulated as a self - supervised optical flow estima 
tion problem , aiming to produce optical flow to allow frame 
reconstruction from neighboring frames . A simple optical 
flow estimation module may be built using 5 convolutional 
layers that are stacked sequentially with dense connections . 
The optical flow output maybe used to warp video frames 
through bilinear interpolation . The loss function consists of 
a photometric term that measures the error between the 
warped frame and the target frame , and a smoothness term 
that addresses the aperture problem that causes ambiguity in 
motion estimation : L = L 
The photometric error is defined as shown in Equation 3 . 

Liorat = Letassification + ALreconstruct + y'Lcontrastive Equation 5 

reconstruct photometrict & L smoothness 

T WH ?. 1 Equation 3 
Lphotometric HWIEL 1 mxy = 1 ] P ( 1 / ( x , y ) – † , ( x , y ) ) 

1 = 1 x = l y = 1 

[ 0058 ] where à and y? are the weights to balance related 
loss terms . As shown in FIG . 2A , the multi - level self 
supervised learning is performed via a side network branch , 
which can be flexibly embedded into standard CNNs . Fur 
thermore , this self - supervised learning side branch can be 
discarded after training so that the final network can well 
maintain the efficiency at runtime for inference . 
[ 0059 ] FIG . 5 is a block diagram of an example game 
streaming system suitable for use in implementing some 
embodiments of the present disclosure . 
[ 0060 ] FIG . 6 is a block diagram of an example computing 
device suitable for use in implementing some embodiments 
of the present disclosure . 
[ 0061 ] Example Game Streaming System 
[ 0062 ] FIG . 5 is an example system diagram for a game 
streaming system 500 , in accordance with some embodi 
ments of the present disclosure . FIG . 5 includes game 
server ( s ) 502 ( which may include similar components , fea 
tures , and / or functionality to the example computing device 
600 of FIG . 6 ) , client device ( s ) 504 ( which may include 
similar components , features , and / or functionality to the 
example computing device 600 of FIG . 6 ) , and network ( s ) 
506 ( which may be similar to the network ( s ) described 
herein ) . In some embodiments of the present disclosure , the 
system 500 may be implemented . 
[ 0063 ] In the system 500 , for a game session , the client 
device ( s ) 504 may only receive input data in response to 
inputs to the input device ( s ) , transmit the input data to the 
game server ( s ) 502 , receive encoded display data from the 
game server ( s ) 502 , and display the display data on the 
display 524. As such , the more computationally intense 
computing and processing is offloaded to the game server ( s ) 
502 ( e.g. , rendering in particular ray or path tracing for 
graphical output of the game session is executed by the 
GPU ( s ) of the game server ( s ) 502 ) . In other words , the game 
session is streamed to the client device ( s ) 504 from the game 
server ( s ) 502 , thereby reducing the requirements of the 
client device ( s ) 504 for graphics processing and rendering . 
[ 0064 ] For example , with respect to an instantiation of a 
game session , a client device 504 may be displaying a frame 

[ 0053 ] where Î , indicates the warped frame at time t and 
p ( z ) = ( z ? + € ? ) " is the generalized Charbonnier penalty func 
tion with a = 0.45 and ele - 3 . A binary mask m is used to 
indicate the positions of invalid warped pixels ( i.e. , out - of 
boundary ) and an indicator function 1 
applied to exclude those invalid positions . The smoothness 
term is computed as shown in Equation 4 . 

[ m = 11 € { 0 , 1 } is 

Equation 4 
Lsmoothness = ??? , 0 , P ( VxU1 ) + P ( V , U : ) + P ( VxV :) + P ( VV ) 

[ 0054 ] where V UN and V , U / V denote the gradients of 
estimated flow fields U / V in x / y directions . 
[ 0055 ] FIG . 4 illustrates a block diagram of a method 400 
for action recognition learning using learned motion and 
appearance features , in accordance with an embodiment . 
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of the game session on the display 524 based on receiving 
the display data from the game server ( s ) 502. The client 
device 504 may receive an input to one of the input device ( s ) 
and generate input data in response . The client device 504 
may transmit the input data to the game server ( s ) 502 via the 
communication interface 520 and over the network ( s ) 506 
( e.g. , the Internet ) , and the game server ( s ) 502 may receive 
the input data via the communication interface 518. The 
CPU ( s ) may receive the input data , process the input data , 
and transmit data to the GPU ( s ) that causes the GPU ( S ) to 
generate a rendering of the game session . For example , the 
input data may be representative of a movement of a 
character of the user in a game , firing a weapon , reloading , 
passing a ball , turning a vehicle , etc. The rendering com 
ponent 512 may render the game session ( e.g. , representa 
tive of the result of the input data ) and the render capture 
component 514 may capture the rendering of the game 
session as display data ( e.g. , as image data capturing the 
rendered frame of the game session ) . The rendering of the 
game session may include ray or path - traced lighting and / or 
shadow effects , computed using one or more parallel pro 
cessing units such as GPUs , which may further employ the 
use of one or more dedicated hardware accelerators or 
processing cores to perform ray or path - tracing techniques , 
of the game server ( s ) 502. The encoder 516 may then encode 
the display data to generate encoded display data and the 
encoded display data may be transmitted to the client device 
504 over the network ( s ) 506 via the communication inter 
face 518. The client device 504 may receive the encoded 
display data via the communication interface 520 and the 
decoder 522 may decode the encoded display data to gen 
erate the display data . The client device 504 may then 
display the display data via the display 524 . 

any 

[ 0067 ] The interconnect system 602 may represent one or 
more links or busses , such as an address bus , a data bus , a 
control bus , or a combination thereof . The interconnect 
system 602 may include one or more bus or link types , such 
as an industry standard architecture ( ISA ) bus , an extended 
industry standard architecture ( EISA ) bus , a video electron 
ics standards association ( VESA ) bus , a peripheral compo 
nent interconnect ( PCI ) bus , a peripheral component inter 
connect express ( PCIe ) bus , and / or another type of bus or 
link . In some embodiments , there are direct connections 
between components . As an example , the CPU 606 may be 
directly connected to the memory 604. Further , the CPU 606 
may be directly connected to the GPU 608. Where there is 
direct , or point - to - point connection between components , 
the interconnect system 602 may include a PCIe link to carry 
out the connection . In these examples , a PCI bus need not be 
included in the computing device 600 . 
[ 0068 ] The memory 604 may include of a variety of 
computer - readable media . The computer - readable media 
may be any available media that may be accessed by the 
computing device 600. The computer - readable media may 
include both volatile and nonvolatile media , and removable 
and non - removable media . By way of example , and not 
limitation , the computer - readable media may comprise com 
puter - storage media and communication media . 
[ 0069 ] The computer - storage media may include both 
volatile and nonvolatile media and / or removable and non 
removable media implemented in any method or technology 
for storage of information such as computer - readable 
instructions , data structures , program modules , and / or other 
data types . For example , the memory 604 may store com 
puter - readable instructions ( e.g. , that represent a program ( s ) 
and / or a program element ( s ) , such as an operating system . 
Computer - storage media may include , but is not limited to , 
RAM , ROM , EEPROM , flash memory or other memory 
technology , CD - ROM , digital versatile disks ( DVD ) or other 
optical disk storage , magnetic cassettes , magnetic tape , 
magnetic disk storage or other magnetic storage devices , or 
any other medium which may be used to store the desired 
information and which may be accessed by computing 
device 600. As used herein , computer storage media does 
not comprise signals per se . 
[ 0070 ] The computer storage media may embody com 
puter - readable instructions , data structures , program mod 
ules , and / or other data types in a modulated data signal such 
as a carrier wave or other transport mechanism and includes 
any information delivery media . The term “ modulated data 
signal ” may refer to a signal that has one or more of its 
characteristics set or changed in such a manner as to encode 
information in the signal . By way of example , and not 
limitation , the computer storage media may include wired 
media such as a wired network or direct - wired connection , 
and wireless media such as acoustic , RF , infrared and other 
wireless media . Combinations of any of the above should 
also be included within the scope of computer- readable 
media . 
[ 0071 ] The CPU ( S ) 606 may be configured to execute at 
least some of the computer - readable instructions to control 
one or more components of the computing device 600 to 
perform one or more of the methods and / or processes 
described herein . The CPU ( s ) 606 may each include one or 
more cores ( e.g. , one , two , four , eight , twenty - eight , sev 
enty - two , etc. ) that are capable of handling a multitude of 
software threads simultaneously . The CPU ( s ) 606 may 

Example Computing Device 
[ 0065 ] FIG . 6 is a block diagram of an example computing 
device ( s ) 600 suitable for use in implementing some 
embodiments of the present disclosure . Computing device 
600 may include an interconnect system 602 that directly or 
indirectly couples the following devices : memory 604 , one 
or more central processing units ( CPUs ) 606 , one or more 
graphics processing units ( GPUs ) 608 , a communication 
interface 610 , input / output ( 1/0 ) ports 612 , input / output 
components 614 , a power supply 616 , one or more presen 
tation components 618 ( e.g. , display ( s ) ) , and one or more 
logic units 620 . 
[ 0066 ] Although the various blocks of FIG . 6 are shown as 
connected via the interconnect system 602 with lines , this is 
not intended to be limiting and is for clarity only . For 
example , in some embodiments , a presentation component 
618 , such as a display device , may be considered an 1/0 
component 614 ( e.g. , if the display is a touch screen ) . As 
another example , the CPUs 606 and / or GPUs 608 may 
include memory ( e.g. , the memory 604 may be representa 
tive of a storage device in addition to the memory of the 
GPUs 608 , the CPUs 606 , and / or other components ) . In 
other words , the computing device of FIG . 6 is merely 
illustrative . Distinction is not made between such categories 
as “ workstation , " " server , " " laptop , " " desktop , " " tablet , " 
“ client device , " " mobile device , " " hand - held device , " 
“ game console , ” “ electronic control unit ( ECU ) , ” “ virtual 
reality system , ” and / or other device or system types , as all 
are contemplated within the scope of the computing device 
of FIG . 6 . 
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include any type of processor , and may include different 
types of processors depending on the type of computing 
device 600 implemented ( e.g. , processors with fewer cores 
for mobile devices and processors with more cores for 
servers ) . For example , depending on the type of computing 
device 600 , the processor may be an Advanced RISC 
Machines ( ARM ) processor implemented using Reduced 
Instruction Set Computing ( RISC ) or an x86 processor 
implemented using Complex Instruction Set Computing 
( CISC ) . The computing device 600 may include one or more 
CPUs 606 in addition to one or more microprocessors or 
supplementary co - processors , such as math co - processors . 
[ 0072 ] In addition to or alternatively from the CPU ( s ) 606 , 
the GPU ( s ) 608 may be configured to execute at least some 
of the computer - readable instructions to control one or more 
components of the computing device 600 to perform one or 
more of the methods and / or processes described herein . One 
or more of the GPU ( s ) 608 may be an integrated GPU ( e.g. , 
with one or more of the CPU ( s ) 606 and / or one or more of 
the GPU ( s ) 608 may be a discrete GPU . In embodiments , 
one or more of the GPU ( S ) 608 may be a coprocessor 
or more of the CPU ( s ) 606. The GPU ( s ) 608 may be used by 
the computing device 600 to render graphics ( e.g. , 3D 
graphics ) or perform general purpose computations . For 
example , the GPU ( s ) 608 may be used for General - Purpose 
computing on GPUs ( GPGPU ) . The GPU ( s ) 608 may 
include hundreds or thousands of cores that are capable of 
handling hundreds or thousands of software threads simul 
taneously . The GPU ( s ) 608 may generate pixel data for 
output images in response to rendering commands ( e.g. , 
rendering commands from the CPU ( s ) 606 received via a 
host interface ) . The GPU ( s ) 608 may include graphics 
memory , such as display memory , for storing pixel data or 
any other suitable data , such as GPGPU data . The display 
memory may be included as part of the memory 604. The 
GPU ( s ) 608 may include two or more GPUs operating in 
parallel ( e.g. , via a link ) . The link may directly connect the 
GPUs ( e.g. , using NVLINK ) or may connect the GPUs 
through a switch ( e.g. , using NVSwitch ) . When combined 
together , each GPU 608 may generate pixel data or GPGPU 
data for different portions of an output or for different 
outputs ( e.g. , a first GPU for a first image and a second GPU 
for a second image ) . Each GPU may include its own 
memory , or may share memory with other GPUs . 
[ 0073 ] In addition to or alternatively from the CPU ( s ) 606 
and / or the GPU ( s ) 608 , the logic unit ( s ) 620 may be con 
figured to execute at least some of the computer - readable 
instructions to control one or more components of the 
computing device 600 to perform one or more of the 
methods and / or processes described herein . In embodi 
ments , the CPU ( s ) 606 , the GPU ( S ) 608 , and / or the logic 
unit ( s ) 620 may discretely or jointly perform any combina 
tion of the methods , processes and / or portions thereof . One 
or more of the logic units 620 may be part of and / or 
integrated in one or more of the CPU ( s ) 606 and / or the 
GPU ( S ) 608 and / or one or more of the logic units 620 may 
be discrete components or otherwise external to the CPU ( s ) 
606 and / or the GPU ( s ) 608. In embodiments , one or more of 
the logic units 620 may be a coprocessor of one or more of 
the CPU ( s ) 606 and / or one or more of the GPU ( s ) 608 . 
[ 0074 ] Examples of the logic unit ( s ) 620 include one or 
more processing cores and / or components thereof , such as 
Tensor Cores ( TCS ) , Tensor Processing Units ( TPUs ) , Pixel 
Visual Cores ( PVCs ) , Vision Processing Units ( VPUs ) , 

Graphics Processing Clusters ( GPCs ) , Texture Processing 
Clusters ( TPCs ) , Streaming Multiprocessors ( SMS ) , Tree 
Traversal Units ( TTUS ) , Artificial Intelligence Accelerators 
( AIAs ) , Deep Learning Accelerators ( DLAs ) , Arithmetic 
Logic Units ( ALUS ) , Application Specific Integrated Cir 
cuits ( ASICs ) , Floating Point Units ( FPUs ) , input / output 
( I / O ) elements , peripheral component interconnect ( PCI ) or 
peripheral component interconnect express ( PCIe ) elements , 
and / or the like . 

[ 0075 ] The communication interface 610 may include one 
or more receivers , transmitters , and / or transceivers that 
enable the computing device 600 to communicate with other 
computing devices via an electronic communication net 
work , included wired and / or wireless communications . The 
communication interface 610 may include components and 
functionality to enable communication over any of a number 
of different networks , such as wireless networks ( e.g. , Wi - Fi , 
Z - Wave , Bluetooth , Bluetooth LE , ZigBee , etc. ) , wired 
networks ( e.g. , communicating over Ethernet or InfiniBand ) , 
low - power wide - area networks ( e.g. , LoRaWAN , SigFox , 
etc. ) , and / or the Internet . 
[ 0076 ] The I / O ports 612 may enable the computing 
device 600 to be logically coupled to other devices including 
the I / O components 614 , the presentation component ( s ) 618 , 
and / or other components , some of which may be built in to 
( e.g. , integrated in ) the computing device 600. Illustrative 
I / O components 614 include a microphone , mouse , key 
board , joystick , game pad , game controller , satellite dish , 
scanner , printer , wireless vice , etc. The I / O components 
614 may provide a natural user interface ( NUI ) that pro 
cesses air gestures , voice , or other physiological inputs 
generated by a user . In some instances , inputs may be 
transmitted to an appropriate network element for further 
processing . An NUI may implement any combination of 
speech recognition , stylus recognition , facial recognition , 
biometric recognition , gesture recognition both on screen 
and adjacent to the screen , air gestures , head and eye 
tracking , and touch recognition ( as described in more detail 
below ) associated with a display of the computing device 
600. The computing device 600 may be include depth 
cameras , such as stereoscopic camera systems , infrared 
camera systems , RGB camera systems , touchscreen tech 
nology , and combinations of these , for gesture detection and 
recognition . Additionally , the computing device 600 may 
include accelerometers or gyroscopes ( e.g. , as part of an 
inertia measurement unit ( IMU ) ) that enable detection of 
motion . In some examples , the output of the accelerometers 
or gyroscopes may be used by the computing device 600 to 
render immersive augmented reality or virtual reality . 
[ 0077 ] The power supply 616 may include a hard - wired 
power supply , a battery power supply , or a combination 
thereof . The power supply 616 may provide power to the 
computing device 600 to enable the components of the 
computing device 600 to operate . 
[ 0078 ] The presentation component ( s ) 618 may include a 
display ( e.g. , a monitor , a touch screen , a television screen , 
a heads - up - display ( HUD ) , other display types , or a com 
bination thereof ) , speakers , and / or other presentation com 
ponents . The presentation component ( s ) 618 may receive 
data from other components ( e.g. , the GPU ( s ) 608 , the 
CPU ( s ) 606 , etc. ) , and output the data ( e.g. , as an image , 
video , sound , etc. ) . 
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[ 0079 ] Example Network Environments 
[ 0080 ] Network environments suitable for use in imple 
menting embodiments of the disclosure may include one or 
more client devices , servers , network attached storage 
( NAS ) , other backend devices , and / or other device types . 
The client devices , servers , and / or other device types ( e.g. , 
each device ) may be implemented on one or more instances 
of the computing device ( s ) 600 of FIG . 6.g. , each device 
may include similar components , features , and / or function 
ality of the computing device ( s ) 600 . 
[ 0081 ] Components of a network environment may com 
municate with each other via a network ( s ) , which may be 
wired , wireless , or both . The network may include multiple 
networks , or a network of networks . By way of example , the 
network may include one or more Wide Area Networks 
( WANs ) , one or more Local Area Networks ( LANs ) , one or 
more public networks such as the Internet and / or a public 
switched telephone network ( PSTN ) , and / or one or more 
private networks . Where the network includes a wireless 
telecommunications network , components such as a base 
station , a communications tower , or even access points ( as 
well as other components ) may provide wireless connectiv 
ity . 
[ 0082 ] Compatible network environments may include 
one or more peer - to - peer network environments — in which 
case a server may not be included in a network environ 
ment and one or more client - server network environ 
ments — in which case one or more servers may be included 
in a network environment . In peer - to - peer network environ 
ments , functionality described herein with respect to a 
server ( s ) may be implemented on any number of client 
devices . 
[ 0083 ] In at least one embodiment , a network environment 
may include one or more cloud - based network environ 
ments , a distributed computing environment , a combination 
thereof , etc. A cloud - based network environment may 
include a framework layer , a job scheduler , a resource 
manager , and a distributed file system implemented on one 
or more of servers , which may include one or more core 
network servers and / or edge servers . A framework layer may 
include a framework to support software of a software layer 
and / or one or more application ( s ) of an application layer . 
The software or application ( s ) may respectively include 
web - based service software or applications . In embodi 
ments , one or more of the client devices may use the 
web - based service software or applications ( e.g. , by access 
ing the service software and / or applications via one or more 
application programming interfaces ( APIs ) ) . The framework 
layer may be , but is not limited to , a type of free and 
open - source softwa web application framework such as 
that may use a distributed file system for large - scale data 
processing ( e.g. , " big data " ) . 
[ 0084 ] A cloud - based network environment may provide 
cloud computing and / or cloud storage that carries out any 
combination of computing and / or data storage functions 
described herein ( or one or more portions thereof ) . Any of 
these various functions may be distributed over multiple 
locations from central or core servers ( e.g. , of one or more 
data centers that may be distributed across a state , a region , 
a country , the globe , etc. ) . If a connection to a user ( e.g. , a 
client device ) is relatively close to an edge server ( s ) , a core 
server ( s ) may designate at least a portion of the functionality 
to the edge server ( s ) . A cloud - based network environment 
may be private ( e.g. , limited to a single organization ) , may 

be public ( e.g. , available to many organizations ) , and / or a 
combination thereof ( e.g. , a hybrid cloud environment ) . 
[ 0085 ] The client device ( s ) may include at least some of 
the components , features , and functionality of the example 
computing device ( s ) 600 described herein with respect to 
FIG . 6. By way of example and not limitation , a client device 
may be embodied as a Personal Computer ( PC ) , a laptop 
computer , a mobile device , a smartphone , a tablet computer , 
a smart watch , a wearable computer , a Personal Digital 
Assistant ( PDA ) , an MP3 player , a virtual reality headset , a 
Global Positioning System ( GPS ) or device , a video player , 
a video camera , a surveillance device or system , a vehicle , 
a boat , a flying vessel , a virtual machine , a drone , a robot , 
a handheld communications device , a hospital device , a 
gaming device or system , an entertainment system , a vehicle 
computer system , an embedded system controller , a remote 
control , an appliance , a consumer electronic device , a work 
station , an edge device , any combination of these delineated 
devices , or any other suitable device . 
[ 0086 ] The disclosure may be described in the general 
context of computer code or machine - useable instructions , 
including computer - executable instructions such as program 
modules , being executed by a computer or other machine , 
such as a personal data assistant or other handheld device . 
Generally , program modules including routines , programs , 
objects , components , data structures , etc. , refer to code that 
perform particular tasks or implement particular abstract 
data types . The disclosure may be practiced in a variety of 
system configurations , including hand - held devices , con 
sumer electronics , general - purpose computers , more spe 
cialty computing devices , etc. The disclosure may also be 
practiced in distributed computing environments where 
tasks are performed by remote - processing devices that are 
linked through a communications network . 
[ 0087 ] As used herein , a recitation of " and / or ” with 
respect to two or more elements should be interpreted to 
mean only one element , or a combination of elements . For 
example , “ element A , element B , and / or element C " may 
include only element A , only element B , only element C , 
element A and element B , element A and element C , element 
B and element C , or elements A , B , and C. In addition , “ at 
least one of element A or element B ” may include at least 
one of element A , at least one of element B , or at least one 
of element A and at least one of element B. Further , “ at least 
one of element A and element B ” may include at least one 
of element A , at least one of element B , or at least one of 
element A and at least one of element B. 

[ 0088 ] The subject matter of the present disclosure is 
described with specificity herein to meet statutory require 
ments . However , the description itself is not intended to 
limit the scope of this disclosure . Rather , the inventors have 
contemplated that the claimed subject matter might also be 
embodied in other ways , to include different steps or com 
binations of steps similar to the ones described in this 
document , in conjunction with other present or future tech 
nologies . Moreover , although the terms “ step ” and / or 
“ block ” may be used herein to connote different elements of 
methods employed , the terms should not be interpreted as 
implying any particular order among or between various 
steps herein disclosed unless and except when the order of 
individual steps is explicitly described . 
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What is claimed is : 
1. A method , comprising : 
accessing a plurality of unlabeled video frames ; and 
performing self - supervised hierarchical motion learning 

by a neural network , using the plurality of unlabeled 
video frames . 

2. The method of claim 1 , wherein the self - supervised 
hierarchical motion learning learns a hierarchy of motion 
representations . 

3. The method of claim 2 , wherein the self - supervised 
hierarchical motion learning progressively learns , for each 
level of the hierarchy in a bottom - up manner , motion fea 
tures at increasing level of detail . 

4. The method of claim 3 , wherein at each level above a 
first level in the hierarchy , motion features for the level are 
learned by enforcing the motion features to predict future 
motion features at a previous level . 

5. The method of claim 4 , wherein a discriminative 
contrastive loss is used as an objective such that the current 
level is trained to capture semantic temporal dynamics from 
the previous level . 

6. The method of claim 1 , wherein preliminary motion 
features are determined in a self - supervised manner from the 
plurality of unlabeled video frames . 

7. The method of claim 6 , wherein the preliminary motion 
features are determined by applying video frame reconstruc 
tion to the plurality of unlabeled video frames . 

8. The method of claim 6 , further comprising : 
initializing the self - supervised hierarchical motion learn 

ing with the preliminary motion features . 
9. The method of claim 1 , further comprising : 
performing action recognition learning using the learned 

motion features . 
10. The method of claim 9 , wherein the action recognition 

learning is performed by integrating the learned motion 
features into a backbone network . 

11. The method of claim 10 , wherein the learned motion 
features are integrated with appearance features . 

12. A system , comprising : 
a neural network configured to : 
perform self - supervised hierarchical motion learning , 

using a plurality of unlabeled video frames . 
13. The system of claim 12 , wherein the self - supervised 

motion learning learns a hierarchy of motion representa 
tions . 

14. The method of claim 13 , wherein the self - supervised 
motion learning progressively learns , for each level of the 
hierarchy in a bottom - up manner , motion features at increas 
ing level of detail . 

15. The method of claim 14 , wherein at each level above 
a first level in the hierarchy , motion features for the level are 
learned by enforcing the motion features to predict future 
motion features at a previous level . 

16. The method of claim 1 , wherein preliminary motion 
features are determined in a self - supervised manner from the 
plurality of unlabeled video frames , and further comprising : 

initializing the self - supervised motion learning with the 
preliminary motion features . 

17. The method of claim 1 , wherein the neural network is 
further configured to : 

perform action recognition learning using the learned 
motion features . 

18. The method of claim 17 , wherein the action recogni 
tion learning is performed by integrating the learned motion 
features into a backbone network . 

19. The method of claim 18 , wherein the learned motion 
features are integrated with appearance features . 

20. A non - transitory computer - readable media storing 
computer instructions that , when executed by one or more 
processors , cause the one or more processors to perform a 
method comprising : 

accessing a plurality of unlabeled video frames ; and 
performing self - supervised hierarchical motion learning 

by a neural network , using the plurality of unlabeled 
video frames . 


