
US 20200410322A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0410322 A1

Naphade et al . (43) Pub . Date : Dec. 31 , 2020

Publication Classification (54) NEURAL ARCHITECTURE FOR SELF
SUPERVISED EVENT LEARNING AND
ANOMALY DETECTION

(71) Applicant : NVIDIA Corporation , Santa Clara , CA
(US)

(72) Inventors : Milind Naphade , Cupertino , CA (US) ;
Tingting Huang , Santa Clara , CA (US) ;
Shuo Wang , Santa Clara , CA (US) ;
Xiaodong Yang , Fremont , CA (US) ;
Ming - Yu Liu , San Jose , CA (US)

(51) Int . CI .
GOON 3/04 (2006.01)
G06F 7/57 (2006.01)
GOON 3/08 (2006.01)

(52) U.S. CI .
??? GOON 3/0454 (2013.01) ; GO6N 37088

(2013.01) ; G06F 7/57 (2013.01) ; GO6N
3/0472 (2013.01)

(57) ABSTRACT
Systems and methods that use at least one neural network to
infer content of individual frames in a sequence of images
and to further infer changes to content in sequence of images
over time to determine whether one or more anomalous
events are present in sequence of images is described herein .

(21) Appl . No .: 16 / 453,913

(22) Filed : Jun . 26 , 2019

100

Neural Network 108

co Network
106 Autoencoder

Input Data 104

co Long Short
Term Memory

112

Video Cameras
102

Probabilistic
Model

co
Data Store

120 Input Data 104

CO kare

Anomaly
Indicator

116

100

Neural Network 108

GO
Network

Autoencoder

Patent Application Publication

Input Data 104 ?
3

Long Short Term Memory 112

Video Cameras 102

Probabilistic Model 114

Dec. 31 , 2020 Sheet 1 of 10

CO O

Data Store 120

Input Data 104 BO

Anomaly Indicator 116

US 2020/0410322 A1

FIG . 1

200

LSTM

Optical

Patent Application Publication

Input Data

conv4

decony1

1:14
202

204

208

210

206

Reconstruction Error : Relative Euclidean distance ;
Cosine similarity ; Euclidean distance

Dec. 31 , 2020 Sheet 2 of 10

+++++++++

212

Probabilistic Model

17 + * + 2 +++++++++++++++++++++++++++++++++++++++ C ++ * ++ * ++++++++++++++++++++++++ 0 + * + 9 ++++++++++++++ 12.9 ++++++++++++++++++++++ 12 + 12 +++++

214

US 2020/0410322 A1

FIG . 2

Patent Application Publication Dec. 31 , 2020 Sheet 3 of 10 US 2020/0410322 A1

FIG . 3

3w11 Event 1 Event 2

TH

302
GANAD

300

Patent Application Publication Dec. 31 , 2020 Sheet 4 of 10 US 2020/0410322 A1

400

Receive Video Data From One Or More
Cameras 402

Use A Convolutional Autoencoder To
Generate Latent Representations Of The

Video Data

Use A Long Short - Term Memory (LSTM)
Extract Features From The Latent
Representations Provided By The

Convolutional Autoencdoer

Use A Gaussian Mixture Model (GMM) TO
Generate Information For The Video Data 408

FIG . 4

Patent Application Publication Dec. 31 , 2020 Sheet 5 of 10 US 2020/0410322 A1

500

I
Receive Video Data From One Or More

Cameras 502

Use A Convolutional Autoencoder To
Generate Latent Representations Of The

Video Data 504

Use A Long Short - Term Memory (LSTM)
Extract Features From The Latent
Representations Provided By The

Convolutional Autoencdoer
506

Use A Gaussian Mixture Model (GMM) TO
Generate Likelihood Scores For The Video

Data 508

Yes Anomaly ? Anomaly Indicator
512 510

No

FIG . 5

Patent Application Publication Dec. 31 , 2020 Sheet 6 of 10 US 2020/0410322 A1

Parallel Processing Unit (PPU) 600
Interconnect

602 Front End Unit
610 606

Scheduler Unit
612

608 GPU Interconnect Work Distribution Unit
614

OP t

GPC (X)

W w *** w w w w w w w w w w w w w w w w w w w in
0 0 0

620 1.1 .
XBar

11
Memory

(Y)
604

Memory Partition Unit (U)
622

Dwqu on wwwwww !
on woon met wie won www Mga Ak sa NA M Kam na na na n san na na na na na na Kam KAR K N K NA M NA M NA NA NA NA NA NA }
10 O CO # *** OR 1 9 .

FIG . 6

Patent Application Publication Dec. 31 , 2020 Sheet 7 of 10 US 2020/0410322 A1

To / From Xbar

General Processing
Cluster (GPC) 700

Pipeline Manager
702

PROP
704

710

111 Primitive
Engine
712

SM
Raster Engine

708

DPC (V)

D.

www mm mm mm mmm WWW mo ma nou m me me me me me me me me me me i

WDX
716

? MMU 718

To / From Xbar To / From Xbar

FIG . 7

Patent Application Publication Dec. 31 , 2020 Sheet 8 of 10 US 2020/0410322 A1

To / From
Xbar

Memory Partition Unit
800

Raster Operations Unit
802

L2 Cache
804

To / From
Xbar

Memory Interface
806

To / From
Memory

FIG . 8

Patent Application Publication Dec. 31 , 2020 Sheet 9 of 10 US 2020/0410322 A1

Streaming Multiprocessor 900

Instruction Cache
902

Scheduler Unit (K) 904 $
3

Dispatch
906

www 3
• 1 o 2 de 40 W * * * 3

Register File
908

Core
(L - 1)
910

SFU
(M - 1)
912

LSU
(N - 1) 1

RR 309 0 0 0 0 0 90 * 4 * * * * *

******** **** **** *** **** **** ***** **** *** } ** GO XX 400 X 90 * * * * *** *** 200 0 *** *** *** * * 8

Interconnect Network
916

Shared Memory / L1 Cache
918

wwwwwwww

FIG . 9

Patent Application Publication Dec. 31 , 2020 Sheet 10 of 10 US 2020/0410322 A1

??????????? kimi *** REKRUTTEREZA KERRRRRRRR KERRRRRRRRRRRRRRRRRRR

Computer System
1000

Memory
1004 ?

Network
Interface
1022

Display
Devices
1006

Input
Devices
1008 1002 Communication

Bus 1010
Interconnect

1018
Switch
1020

PPU 1016

ndd 1016 1016

Parallel Processing
System
1012

FIG . 10

US 2020/0410322 A1 Dec. 31 , 2020
1

NEURAL ARCHITECTURE FOR SELF
SUPERVISED EVENT LEARNING AND

ANOMALY DETECTION

BACKGROUND

[0001] There are various technical challenges involved in
being able to scale training a neural network for a large
number of events identified from video data . As video data
obtained from cameras get bigger , tracking and supervision
of events and / or objects detected in video data become more
complex and are prone to errors . In other words , as video
data get bigger , more computing resources are required to
continuously supervise and track event and / or objects accu
rately . That is , event and / or object detection requires super
vision and computing resources required to parse and track
each and every event and / or object from video data typically
exceed or otherwise overwhelm what a computing environ
ment with limited resources can handle .

BRIEF DESCRIPTION OF DRAWINGS

[0002] Various techniques will be described with refer
ence to drawings , in which :
[0003] FIG . 1 illustrates a computing environment in
which a neural architecture is implemented to detect one or
more anomalous events , in accordance with an embodiment ;
[0004] FIG . 2 illustrates an environment in which a neural
architecture is implemented to detect one or more anoma
lous events using at least an autoencoder , Long Short - Term
Memory (LSTM) , and a probabilistic model in accordance
with an embodiment ;
[0005) FIG . 3 illustrates a diagram of event tracking in a
spatial - temporal space , in accordance with an embodiment ;
[0006] FIG . 4 is an illustrative example of a process for
training at least one neural network to determine one or more
anomalous events in a sequence of images , in accordance
with an embodiment ;
[0007] FIG . 5 is an illustrative example of a process 500
for detecting one or more anomalous events in a sequence of
images , in accordance with an embodiment ;
[0008] FIG . 6 illustrates an example of parallel processing
unit (“ PPU ”) , in accordance with an embodiment ;
[0009] FIG . 7 illustrates an example of a general process
ing cluster (“ GPC ”) , in accordance with one embodiment ;
[0010] FIG . 8 illustrates an example of a memory partition
unit , in accordance with one embodiment ;
[0011] FIG . 9 illustrates an example of a streaming multi
processor , in accordance with one embodiment ; and
[0012] FIG . 10 illustrates a computer system in which
various examples can be implemented , in accordance with
one embodiment .

frames in a video (content of individual frames) and tem
poral information (how frames change over time) to deter
mine whether an anomalous event is present in a set of
images of a video .
[0014] In at least one embodiment , at least one neural
network is trained by using an optical flow of video frames
(e.g. , sequence of images in video data) that are fed as input
into an autoencoder to encode video frames . In at least one
embodiment , an autoencoder extracts information from indi
vidual frames . In at least one embodiment , an autoencoder
is a convolutional autoencoder . In at least one embodiment ,
results provided by autoencoder are then fed into a Long
Short - Term Memory (LSTM) network , which is designed to
make inferences from series of data by extracting features
from how frames change over time . In accordance with an
embodiment , encoded video data is decoded and recon
structed back to video data and errors associated with
reconstruction is measured . In at least one embodiment ,
reconstruction error measurements along with features
extracted from how frames change over time are fed to a
probabilistic model . In at least one embodiment , a probabi
listic model is a Gaussian Mixture Model (GMM) that
minimizes reconstruction errors and trained to maximize a
likelihood such that information (e.g. , scores) are generated
to indicate a high likelihood of normal event behavior . Once
at least one neural network is trained using optical flow of
video frames , new sequence of frames or additional video
frames from cameras are processed through a trained at least
one neural network . In at least one embodiment , neural
network includes autoencoder , LSTM , and an probabilistic
model , where probabilistic model then outputs a likelihood
of whether new sequence or incoming video frames show an
anomaly . In at least one embodiment , autoencoder , LSTM ,
and probabilistic model are a part of multiple layers in a
single neural network that is trained to perform each func
tion as described above . In at least one embodiment , auto
encoder , LSTM , and probabilistic model are a part of
multiple layers in a network of a plurality of individual
neural networks .

[0015] Techniques described herein are utilized to imple
ment a neural network that is self - supervised to discover
frequent event patterns obtained from a sequence of images
captured by multiple static (e.g. , stationary) video cameras
and further trained to detect rare event patterns including
anomalies in a sequence of images . In at least one embodi
ment , there are millions of cameras that exist worldwide and
most of its content is uninteresting to watch ; however , in
some instances , there may be a need to detect and locate
rare , infrequent , and / or anomalous patterns from all of this
content without having to reconfigure static video cameras .
To detect these rare event (e.g. , anomalous) patterns , it
would be very complex to build supervised models for each
and every event of interest . That is , detecting objects / events
in a sequence of images using bounding boxes and adding
manual rules for tracking , adding temporal learning to
bounding boxes , and / or using traditional supervised
approaches all have their shortcomings . For instance , object
detection ignores complex object - object temporal interac
tions and assumes perfect detection and tracking . Moreover ,
a supervised approach delivers low performance due to lack
of sufficient training samples . Hence , creating a neural
network that is trained using events captured by video
cameras and further configuring a neural network to have

DETAILED DESCRIPTION

[0013] In at least one embodiment , systems and methods
implemented in accordance with this disclosure are utilized
to create an end - to - end neural architecture (e.g. , neural
network) that simultaneously combines self - supervision ,
modeling temporal dynamics of a sequence of images , and
an ability to learn normal event behavior all in one network .
In at least one embodiment , a neural network combines
self - supervision of deep autoencoders with latent space
modeling of Gaussian mixtures and temporal dynamic mod
eling of recurrent networks . In at least one embodiment , at
least one neural network uses both spatial information from

US 2020/0410322 A1 Dec. 31 , 2020
2

self - supervised learning capabilities that is free of tracking
information for anomaly detection may be advantageous .
[0016] In preceding and following descriptions , various
techniques are described . For purposes of explanation , spe
cific configurations and details are set forth in order to
provide a thorough understanding of possible ways of imple
menting techniques . However , it will also be apparent that
techniques described below may be practiced in different
configurations without specific details . Furthermore , well
known features may be omitted or simplified to avoid
obscuring techniques being described .
[0017] FIG . 1 illustrates a computing environment 100 in
which a neural architecture is implemented to detect one or
more anomalous events , in accordance with an embodiment .
In at least one embodiment , computing environment 100
comprises a plurality of video cameras 102 that are a part of
network of cameras used to record and capture video (e.g. ,
sequence of images) . In at least one embodiment , video
cameras 102 are traffic cameras , surveillance cameras , home
security cameras , digital cameras , etc. In at least one
embodiment , plurality of video cameras 102 record video
data , where video data is representative of a stream or a
sequence of images captured over a period of time . In at least
one embodiment , video data (e.g. , a sequence of images) is
referred to as input data 104. In at least one embodiment ,
input data 104 is sent from plurality of video cameras 102 to
a data store 118 for storage . In at least one embodiment ,
formats of input data 104 include .mp4 , .wmv , .avi , .fly , etc.
In at least one embodiment , formats of input data 104
includes sequence of images in .JPEG , .GIF , .BMP , .PNG ,
etc. In at least one embodiment , video cameras 102 are
surveillance cameras that record and feeds traffic images as
input data 104 to a neural network 108. In at least one
embodiment , video cameras 102 as described herein
includes more than one video camera . In accordance with an
embodiment , video cameras 102 is just a single video
camera that records video data .

[0018] As further shown in FIG . 1 , in at least one embodi
ment , computing environment 100 includes a data store 120
that receives input data 104 from one or more video cameras
102. In at least one embodiment , data store 120 is configured
to store video data (e.g. , sequence of images) , text , metadata ,
training data , training images , training data threads , etc. In
at least one embodiment , data store 120 is a data storage
device , a data storage service in connection with a comput
ing device (not depicted in FIG . 1) , buffer , or a message
queue . In at least one embodiment , input data 104 is a
collection of training images that are three - dimensional
(3 - D) , and when obtained by one or more neural networks ,
is used to train one or more neural networks for anomaly
detection in additional or new video frames that are fed to a
trained network . In at least one embodiment , input data 104
is audio data , such that when obtained by one or more neural
networks , audio data is used to train none or more neural
networks for speech recognition or speech anomaly detec
tion purposes . In at least one embodiment , input data 104 is
stored as a data structure such as an array or a matrix . In at
least one embodiment , data store 120 is configured to satisfy
requests for input data 104 by sending input data 104 , via a
network 106 , either through a wired or wireless network , to
a neural network 108. In at least one embodiment , neural
network 108 is also referred to as a deep network or simply
a network as described herein .

[0019] In at least one embodiment , neural network 108 is
a computing device , a Graphics Processing Unit (GPU) or ,
in at least one embodiment , representative of multiple com
puting devices that comprise multiple GPUs . In at least one
embodiment , neural network 108 is configured to receive
input data 104 to detect anomalous events from input data
104. In at least one embodiment , input data 104 is received
at neural network 108 from data store 120 , another comput
ing device , computing service , virtual machine , virtual ser
vice (not depicted in FIG . 1) outside or inside of computing
environment 100 , via network 106 .
[0020] In at least one embodiment , neural network 108
comprises at least an autoencoder 110 , a Long Short - Term
Memory (LSTM) 112 , and a probabilistic model 114. In at
least one embodiment , neural network 108 may be one
single network where components , layers , or portions of
network each comprise of autoencoder 110 , LSTM 112 , and
probabilistic model 114. In at least one embodiment , neural
network is comprised of multiple neural networks and each
component of multiple neural networks comprise of auto
encoder 110 , LSTM 112 , and probabilistic model 114. In at
least one embodiment , neural network 108 is comprised of
a plurality of neural networks where autoencoder 110 is a
first neural network , LSTM 112 is a second neural network ,
and probabilistic model 114 is a third neural network , where
all three neural networks are separate from one another .
[0021] In at least one embodiment , autoencoder 110
receives input data 104 via network 106. As described
above , input data 104 may be video data / sequence of images
obtained from a plurality of video cameras 102. In at least
one embodiment , autoencoder 110 is a type of neural net
work designed to learn and apply data encoding in an
unsupervised manner . In other words , in at least one embodi
ment , autoencoder 110 learns to generate a representation
(e.g. , encoding) for a set of data . In at least one embodiment ,
autoencoder 110 takes input data 104 as its input to infer
content from individual images in a sequence of images . In
at least one embodiment , content includes spatial informa
tion from individual images . In at least one embodiment ,
autoencoder 110 is a component (e.g. , layer) of neural
network 108. In at least one embodiment , autoencoder 110
makes inferences about objects in frames from input data
104 (e.g. , whether a car is shown in several frames) . In at
least one embodiment , autoencoder 110 , in itself a neural
network , has three internal layers : an input layer , a hidden
(encoding) layer , and a decoding layer where network is
trained to reconstruct its input . In at least one embodiment ,
autoencoder 110 maps input data 104 to generate one or
more latent representations in a feature space from which
input data 104 can be approximately reproduced from fea
tures in a reduced feature space . That is , in at least one
embodiment , autoencoder 110 is used to extract features that
represent input data 104 in terms of reconstruction . In at
least one embodiment , autoencoder 110 is a convolutional
autoencoder . In at least one embodiment , instead of using a
convolutional autoencoder , a fully connected autoencoder is
used .
[0022] In at least one embodiment , LSTM 112 receives
results from autoencoder 110. In at least one embodiment ,
LSTM 112 is a component (e.g. , layer) of neural network
108 and results from autoencoder 110 are fed to LSTM 112
such that LSTM 112 makes inferences from series of data .
In at least one embodiment , LSTM 112 is a recurrent
network that processes data to generate information about

US 2020/0410322 A1 Dec. 31 , 2020
3

data . That is , in at least one embodiment , LSTM 112 is a
recurrent network that learns how individual frames change
over time and extracts features from how these frames
change from frame - to - frame . In at least one embodiment ,
individual frames are analyzed using previously trained
frames . In other words , in at least one embodiment , LSTM
112 extracts features from previous frames that are remem
bered (e.g. , previously trained on) and combines that with a
new incoming frame to infer changes in content in new
incoming frame that is a part of input data 104. As an
example , new incoming frame is combined with previous
frames using a sliding scale approach to infer changes in
new incoming frame . That is , in at least one embodiment ,
new incoming frame is combined with a total of 10 seconds
of frames previously before new incoming frame to infer
changes in content of new incoming frame . In another
example , new incoming frame is combined with a total of 11
seconds of frames previously before new incoming frame to
infer changes in content of new incoming frame . In at least
one embodiment , a sliding scale approach is performed until
a predetermined amount of seconds (e.g. , total of 30 sec
onds) has been met . In at least one embodiment , changes in
content includes temporal information about input data 104 .
That is , in at least one embodiment , results from autoen
coder 110 is sent to LSTM 112 to make inferences about
what objects in input data 104 are doing in optical flow of
frames (e.g. , determining from frame - to - frame of whether a
car is travelling in a particular lane / direction) .
[0023] In at least one embodiment , probabilistic model
114 receives information from LSTM 112. In at least one
embodiment , probabilistic model 114 is a Gaussian Mixture
Model (GMM) that is a component (e.g. layer) of neural
network 108. In at least one embodiment , probabilistic
model 114 incorporates random variables and probability
distributions into a model of an event . In at least one
embodiment , a GMM is a probabilistic model that assumes
all data points are generated from a mixture of a finite
number of Gaussian distributions . In at least one embodi
ment , probabilistic model 114 (e.g. , GMM) is modeling a
combination of features from latent space and information
from reconstruction error measurements generated from
reconstructing input data 104. In at least one embodiment ,
reconstruction error measurements are calculated using rela
tive Euclidean distance , cosine similarity , and / or Euclidean
distance between reconstructed input data and input data
104. In at least one embodiment , probabilistic model 114 ,
when trained , estimates a distribution of normal data .
[0024] In at least one embodiment , with respect to using a
trained probabilistic model 114 for anomaly detection , an
assumption is all normal data are from some distribution
(e.g. , previously trained model) and an anomaly will fall out
of that distribution . In at least one embodiment , probabilistic
model 114 provides a notification or indication of an
anomaly 116 in input data 104 because , from being trained ,
probabilistic model 114 has learned which events are con
sidered anomalous (e.g. , different from normal data) . In at
least one embodiment , probabilistic model 114 generates an
anomaly indicator 116 to indicate a likelihood of an anoma
lous event .
[0025] In at least one embodiment , an anomaly indicator
116 results from probabilistic model 114 when an anomaly
event is identified . In at least one embodiment , anomaly
indicator 116 includes information about data different from
normal data (e.g. , anomaly event) from input data 104. In at

least one embodiment , anor nomaly indicator 116 is a message
sent to a user with information indicating a likelihood of
which event from a plurality of events of input data 104 is
observed to be anomalous . In at least one embodiment , a
likelihood is a value outside normal distribution (using
values probabilistic model was previously trained on) , it
would indicate that it is an anomaly event . In at least one
embodiment , a value is lower than a threshold given that
probabilistic model , when previously trained , indicates that
normal events or behavior have high likelihood scores (or
scores above a certain threshold) . In at least one embodi
ment , anomaly indicator 116 identifies individual frames
from a sequence of images and tags them with metadata to
indicate a likelihood of an anomalous event and updates a
Graphical User Interface (GUI) to indicate as such .
[0026] FIG . 2 illustrates an environment in which a neural
architecture (e.g. , neural network) 200 is implemented to
detect one or more anomalous events from input data 202
using an autoencoder 204 , Long Short - Term Memory
(LSTM) 206 , and a probabilistic model 214 in accordance
with an embodiment . In at least one embodiment , input data
202 is video data (e.g. , sequence of images) obtained from
one or more cameras .

[0027] In at least one embodiment , neural network 200
includes a convolutional autoencoder 204 , which is a layer
in neural network 200 , that is designed to generate one or
more latent representations (e.g. , low dimensional represen
tation) of input data 202 in a feature space . In at least one
embodiment , latent representations are representations of
input data 202 that lie in latent space . In at least one
embodiment , convolutional autoencoder 204 is replaced by
a fully connected conventional encoder . In at least one
embodiment , input data 202 is received by convolutional
autoencoder 204 as input , and convolutional autoencoder
204 encodes input data 202 to generate encoded data input ,
which can be decoded by a decoder 208 to regenerate
original input data 202. In at least one embodiment , by
encoding input data 202 , convolutional autoencoder 204
infers content from individual images of input data 202. In
at least one embodiment , content from individual frames
from a sequence of images is inferred by convolutional
autoencoder 204 and further fed to a LSTM 206. In at least
one embodiment , content includes spatial information about
individual frames .
[0028] In at least one embodiment , an LSTM 206 receives
one or more latent representations of input data 202 from
convolutional autoencoder 204. In at least one embodiment ,
neural network 200 includes LSTM 206 , which is a layer of
its network , designed to make inferences from series of data
(e.g. , a sequence of images) . In at least one embodiment ,
LSTM 206 extracts features from how frames / images of
sequence of images change over time . In at least one
embodiment , LSTM 206 infers changes in content in input
data 202. In at least one embodiment , changes in content
includes temporal information about input data 202. In at
least one embodiment , results from convolutional autoen
coder 204 is sent to LSTM 206 to make inferences about
what objects in input data 202 are doing from frame - to
frame .
[0029] In at least one embodiment , a decoder 208 for
convolutional autoencoder 204 is used by neural network to
reconstruct 210 one or more latent representations of input
data 202 resulting from convolutional autoencoder 204. In at
least one embodiment , reconstruction error 212 for each

US 2020/0410322 A1 Dec. 31 , 2020
4

Accurately Detected Events Precision Event = # Detected Events
Recalled Events

Recall Event =
Ground Truth Events

input data point is measured . In at least one embodiment ,
reconstruction error measurements 212 is determined by at
least calculating relative Euclidean distance , Cosine simi
larity , or Euclidian distance between each data points in
reconstructed input data and input data 202. In at least one
embodiment , reconstruction error measurements 212 is fed
along with results from LSTM 206 , when training neural
network , to a probabilistic model 214. In at least one
embodiment , measuring reconstruction errors are not nec
essary for inferring changes in frames to detect anomalous
events .

[0030] In at least one embodiment , a probabilistic model
(e.g. , Gaussian Mixture Model (GMM)) 214 is leveraged
with neural network 200 to determine whether one or more
anomaly events exists in input data 202. In at least one
embodiment , probabilistic model is a layer in neural net
work 200 that is used in connection with other layers of
network 200. In at least one embodiment , data points
generated by a GMM are derived from a mixture of Gauss
ian distributions that has no known parameters . In at least
one embodiment , parameters for GMMs are derived either
from maximum a posteriori estimation or an iterative expec
tation - maximization algorithm from a prior model that was
trained . In other words , in at least one embodiment , proba
bilistic model 214 , such as GMM , is previously trained or
pre - trained using training video data indicative of normal
behavior . In at least one embodiment , probabilistic model
214 is previously trained using video data indicating that
cars are driving one direction only (e.g. , from East to West) .
In at least one embodiment , using inferences about what
objects in input are dong from frame - to - frame obtained from
additional or new optical flow of video frames , probabilistic
model 214 generates an anomaly notification for an event if
a car is found to be traveling in opposite direction (e.g. , from
West to East) of what model is trained to believe to be
normal behavior .
[0031] FIG . 3 illustrates a diagram 300 of event tracking
in spatial - temporal space , in accordance with an embodi
ment . In at least one embodiment , in video spatial - temporal
space , bounding boxes of annotated anomalous objects 302
form as three - dimensional (3 - D) volumes . In at least one
embodiment , each volume is treated as an event and , using
neural network implemented as described in FIGS . 1-2 ,
volumes from those features are detected to determine
whether they are anomalous . In other words , in at least one
embodiment , at least one neural network uses both spatial
information from frames in a video (content of individual
frames) and temporal information (how frames change over
time) to determine whether an anomalous event is present in
video based on previously trained models .
[0032] In at least one embodiment , a detected event is
considered for evaluation if its detected duration is greater
than 10 frames (1 second) in a sequence of images . In at least
one embodiment , a ground truth event is one object or object
group that has anomalous behavior , marked in spatial and
temporal space . In at least one embodiment , an accurately
detected event is an event that is considered accurately
detected if its temporal Intersection over Union (IoU) with
ground truth exceeds 50 % of detected duration . In at least
one embodiment , a recalled event is one or more detected
events for same ground truth event that will be considered as
a single recalled event . examples of calculation for precision
and recall of events detected from a sequence of images is
shown below :

[0033] FIG . 4 is an illustrative example of a process 400
for training at least one neural network to determine one or
more anomalous events in a sequence of images , in accor
dance with an embodiment . In accordance with an embodi
ment , video data is received by at least one neural network
from one or more cameras 402. In at least one embodiment ,
one or more cameras comprises traffic cameras at an inter
action where individual frames are captured indicating nor
mal traffic flow at intersection . In at least one embodiment ,
one or more video cameras comprise of traffic cameras or
surveillance camera that continuously record video data)
sequence of images of a freeway , highway , pedestrian walk
way , and like . In at least one embodiment , individual frames
(e.g. , individual images) from a sequence of frames (e.g. ,
sequence of images) are then fed from one or more cameras
to an encoder such as a convolutional autoencoder . In at least
one embodiment , at least one neural network includes a
convolutional autoencoder that is configured to use indi
vidual frames and generate latent representations of frames
402. In accordance with an embodiment , at least one neural
network is used to infer content from individual images in a
sequence of images obtained by one or more traffic cameras
at intersection . A sequence of images may be fed to at least
one neural network where at least one neural network is
trained .
[0034] In at least one embodiment , FIG . 4 further
describes use of a Long Short - Term Memory (LSTM) to
train at least one neural network , where LSTM is configured
to extract features from latent representations provided by
convolutional autoencoder 406. In at least one embodiment ,
at least one neural network uses LSTM to infer changes in
content in a sequence of images . As described in connection
with FIGS . 1-2 , in at least one embodiment , results from
convolutional autoencoder are fed to a LSTM such that
LSTM infers changes in content in sequence of images . In
at least one embodiment , LSTM is designed to make infer
ence from series of data (e.g. , extracts features from how
frames change over time) . In at least one embodiment ,
LSTM is a separate layer of neural network from autoen
coder but still a part of same neural network . In at least one
embodiment , results from LSTM and reconstruction error
measurements when reconstructing images are then fed into
a probabilistic model (e.g. , Gaussian Mixture Model) to
train GMM . In at least one embodiment , a decoder is fed
with input data , such as sequence of images , to train GMM
and further providing input data with information about
images to configure GMM 408. In at least one embodiment ,
GMM is trained such that frames in sequence of images
received from one or more cameras are associated with
information (e.g. , metadata , tags) based at least in part on
changes inferred by LSTM in content in sequence of images .
In at least one embodiment , at least one neural network is
trained by associating and / or providing metadata indicating
that each of frames in video data processed are considered
normal behavior .
[0035] FIG . 5 is an illustrative example of a process 500
for detecting one or more anomalous events in a sequence of
images , in accordance with an embodiment . In at least one

US 2020/0410322 A1 Dec. 31 , 2020
5

embodiment , process 500 utilizes trained neural network as
described in FIG . 4 to detect one or more anomalous events
in a sequence of images that are captured by one or more
cameras . In at least one embodiment and as described in
connection with FIG . 4 , video data is received by at least one
neural network from one or more cameras 502. In at least
one embodiment , one or more cameras comprises traffic
cameras , surveillance cameras , digital cameras , etc. In at
least one embodiment , individual frames from video data are
then fed to a autoencoder such as a convolutional autoen
coder . In at least one embodiment , at least one neural
network includes a convolutional autoencoder that is con
figured to use individual frames and generate latent repre
sentations of frames 502. In accordance with an embodi
ment , at least one neural network is used to infer content
from individual frames (e.g. individual images) in a
sequence of frames (e.g. , sequence of images) obtained by
one or more traffic cameras .

[0036] In at least one embodiment , FIG . 5 further
describes using a Long Short - Term Memory (LSTM) to
train at least one neural network , where LSTM is configured
to extract features from latent representations provided by
convolutional autoencoder 506. In at least one embodiment ,
at least one neural network uses LSTM to infer changes in
content in sequence of images . In at least one embodiment ,
LSTM is designed to make inference from series of data
(e.g. , extracts features from how frames change over time) .
In at least one embodiment , results from LSTM are then fed
into a probabilistic model (e.g. , Gaussian Mixture Model) to
result in likelihood (e.g. , probability) scores for sequence of
images 508. In at least one embodiment , GMM , based on its
previous training , identifies frames in video data received
from one or more cameras that are anomalous . In at least one
embodiment , GMM generates likelihood scores based at
least in part on information from changes inferred by LSTM
in content in sequence of images . In at least one embodi
ment , likelihood scores are indicative of whether an
anomaly exists 510. In at least one embodiment , if an
anomaly is detected , an anomaly indicator is sent to a user
or to a separate computing system 512. In at least one
embodiment , GMM outputs an anomaly indicator 512 with
a message that allows a user to identify which event or
events have been deemed as anomalous (e.g. , data that is
different than normal data) . In at least one embodiment , an
anomaly indicator is a message generated and transmitted to
a user associated with a separate computing device . In at
least one embodiment , a graphical user interface (GUI) is
updated to display an anomaly indicator message . In at least
one embodiment , if likelihood scores associated with an
anomaly event is outside normal distribution that was deter
mined when GMM was previously trained using a collection
of images then no anomaly indicator is generated , and
process 500 loops back to begin again and processes new
frames . In at least one embodiment , a message indicating
that no anomaly detected and images are free of anomaly
events is generated . In at least one embodiment , process 500
is a recursive process until all images or video data has been
processed through neural network .
[0037] As an example to describe process of FIG . 5 , video
data is obtained from traffic cameras . In at least one embodi
ment , a convolutional autoencoder is used to make infer
ences about objects in images / frames (e.g. , a car is shown in
several frames) . In at least one embodiment , LSTM then
uses results from convolutional autoencoder to make infer

ences about what those objects are doing from frame - to
frame (e.g. , car is travelling in a particular lane / direction) . In
at least one embodiment , probabilistic model (e.g. , GMM)
indicates whether objects are being anomalous . In at least
one embodiment , if a car is travelling in a wrong direction ,
GMM would indicate an anomaly because , from being
trained , it would learn that cars travel in opposite direction .
In at least one embodiment , if a car is stuck in an intersection
for a specific period of time , GMM would indicate an
anomaly because , from being trained , it would learn that
cars don't stay in an intersection for longer than ten seconds .
As indicated above , in at least one embodiment , speech data
or text data instead of video data is used to identify anoma
lous speech or text .
[0038] FIG . 6 illustrates a parallel processing unit (“ PPU ”)
600 , in accordance with one embodiment . In at least one
embodiment , PPU 600 is configured with machine - readable
code that , if executed by PPU , causes PPU to perform some
or all of processes and techniques described throughout this
disclosure . In at least one embodiment , PPU 600 is a
multi - threaded processor that is implemented on one or
more integrated circuit devices and that utilizes multithread
ing as a latency - hiding technique designed to process com
puter - readable instructions (also referred to as machine
readable instructions or simply instructions) on multiple
threads in parallel . In at least one embodiment , a thread
refers to a thread of execution and is an instantiation of a set
of instructions configured to be executed by PPU 600. In at
least one embodiment , PPU 600 is a graphics processing unit
(“ GPU ') configured to implement a graphics rendering
pipeline for processing three - dimensional (" 3D ") graphics
data in order to generate two - dimensional (“ 2D ”) image data
for display on a display device such as a liquid crystal
display (LCD) device . In at least one embodiment , PPU 600
is utilized to perform computations such as linear algebra
operations and machine learning operations . FIG . 5 illus
trates an example parallel processor for illustrative purposes
only and should be construed as a non - limiting example of
processor architectures contemplated within a scope of this
disclosure and that any suitable processor may be employed
to supplement and / or substitute .
[0039] In at least one embodiment , one or more PPUs are
configured to accelerate High Performance Computing
(" HPC ”) , data center , and machine learning applications . In
at least one embodiment , PPU 600 is configured to accel
erate deep learning systems and applications including a
following of non - limiting examples : autonomous vehicle
platforms , deep learning , high - accuracy speech , image , text
recognition systems , intelligent video analytics , molecular
simulations , drug discovery , disease dia weather fore
casting , big data analytics , astronomy , molecular dynamics
simulation , financial modeling , robotics , factory automation ,
real - time language translation , online search optimizations ,
and personalized user recommendations , and more .
[0040] In at least one embodiment , PPU 600 includes an
Input / Output (“ I / O ”) unit 606 , a front - end unit 610 , a
scheduler unit 612 , a work distribution unit 614 , a hub 616 ,
a crossbar (“ Xbar ”) 620 , one or more general processing
clusters (“ GPCs ”) 618 , and one or more partition units 622 .
In at least one embodiment , PPU 600 is connected to a host
processor or other PPUs 600 via one or more high - speed
GPU interconnects 608. In at least one embodiment , PPU
600 is connected to a host processor or other peripheral
devices via an interconnect 602. In at least one embodiment ,

US 2020/0410322 A1 Dec. 31 , 2020
6

PPU 600 is connected to a local memory comprising one or
more memory devices 604. In at least one embodiment , local
memory comprises one or more dynamic random access
memory (“ DRAM ”) devices . In at least one embodiment ,
one or more DRAM devices are configured and / or config
urable as high - bandwidth memory (" HBM ") subsystems ,
with multiple DRAM dies stacked within each device .
[0041] High - speed GPU interconnect 608 may refer to a
wire - based multi - lane communications link that is used by
systems to scale and include one or more PPUS 600 com
bined with one or more CPUs , supports cache coherence
between PPUS 600 and CPUs , and CPU mastering . In at
least one embodiment , data and / or commands are transmit
ted by high - speed GPU interconnect 608 through hub 616
to / from other units of PPU 600 such as one or more copy
engines , video encoders , video decoders , power manage
ment units , and other components which may not be explic
itly illustrated in FIG . 5 .
[0042] In at least one embodiment , I / O unit 606 is con
figured to transmit and receive communications (e.g. , com
mands , data) from a host processor (not illustrated in FIG . 5)
over system bus 602. In at least one embodiment , 1/0 unit
606 communicates with host processor directly via system
bus 602 or through one or more intermediate devices such as
a memory bridge . In at least one embodiment , 1/0 unit 606
may communicate with one or more other processors , such
as one or more of PPUs 600 via system bus 602. In at least
one embodiment , I / O unit 606 implements a Peripheral
Component Interconnect Express (“ PCIe ”) interface for
communications over a PCIe bus . In at least one embodi
ment , I / O unit 606 implements interfaces for communicating
with external devices .
[0043] In at least one embodiment , I / O unit 606 decodes
packets received via system bus 602. In at least one embodi
ment , at least some packets represent commands configured
to cause PPU 600 to perform various operations . In at least
one embodiment , I / O unit 606 transmits decoded commands
to various other units of PPU 600 as specified by commands .
In at least one embodiment , commands are transmitted to
front - end unit 610 and / or transmitted to hub 616 or other
units of PPU 600 such as one or more copy engines , a video
encoder , a video decoder , a power management unit , etc.
(not explicitly illustrated in FIG . 5) . In at least one embodi
ment , I / O unit 606 is configured to route communications
between and among various logical units of PPU 600 .
[0044] In at least one embodiment , a program executed by
host processor encodes a command stream in a buffer that
provides workloads to PPU 600 for processing . In at least
one embodiment , a workload comprises instructions and
data to be processed by those instruc ons . In at least one
embodiment , buffer is a region in a memory that is acces
sible (e.g. , read / write) by both host processor and PPU
600host interface unit may be configured to access buffer
in a system memory connected to system bus 602 via
memory requests transmitted over system bus 602 by I / O
unit 606. In at least one embodiment , host processor writes
command stream to buffer and then transmits a pointer to
start of command stream to PPU 600 such that front - end unit
610 receives pointers to one or more command streams and
manages one or more streams , reading commands from
streams and forwarding commands to various units of PPU
600 .
[0045] In at least one embodiment , front - end unit 610 is
coupled to a scheduler unit 612 that configures various

GPCs 618 to process tasks defined by one or more streams .
In at least one embodiment , scheduler unit 612 is configured
to track state information related to various tasks managed
by scheduler unit 612 where state information may indicate
which GPC 618 a task is assigned to , whether a task is active
or inactive , a priority level associated with task , and so forth .
In at least one embodiment , scheduler unit 612 manages
execution of a plurality of tasks on one or more GPCs 618 .
[0046] In at least one embodiment , scheduler unit 612 is
coupled to a work distribution unit 614 that is configured to
dispatch tasks for execution on GPCs 618. In at least one
embodiment , work distribution unit 614 tracks a number of
scheduled tasks received from scheduler unit 612 and work
distribution unit 614 manages a pending task pool and an
active task pool for each of GPCs 618. In at least one
embodiment , pending task pool comprises a number of slots
(e.g. , 32 slots) that contain tasks assigned to be processed by
a particular GPC 618 ; active task pool may comprise a
number of slots (e.g. , 4 slots) for tasks that are actively being
processed by GPCs 618 such that as a GPC 618 completes
execution of a task , that task is evicted from active task pool
for GPC 618 and one of other tasks from pending task pool
is selected and scheduled for execution on GPC 618. In at
least one embodiment , if an active task is idle on GPC 618 ,
such as while waiting for a data dependency to be resolved ,
then active task is evicted from GPC 618 and returned to
pending task pool while another task in pending task pool is
selected and scheduled for execution on GPC 618 .
[0047] In at least one embodiment , work distribution unit
614 communicates with one or more GPCs 618 via XBar
620. In at least one embodiment , XBar 620 is an intercon
nect network that couples many of units of PPU 600 to other
units of PPU 600 and can be configured to couple work
distribution unit 614 to a particular GPC 618. Although not
shown explicitly , one or more other units of PPU 600 may
also be connected to XBar 620 via hub 616 .
[0048] Tasks are managed by scheduler unit 612 and
dispatched to a GPC 618 by work distribution unit 614. GPC
618 is configured to process task and generate results .
Results may be consumed by other tasks within GPC 618 ,
routed to a different GPC 618 via XBar 620 , or stored in
memory 604. Results can be written to memory 604 via
partition units 622 , which implement a memory interface for
reading and writing data to / from memory 604. Results can
be transmitted to another PPU 604 or CPU via high - speed
GPU interconnect 608. In at least one embodiment , PPU 600
includes a number of partition units 622 that is equal to
number of separate and distinct memory devices 604
coupled to PPU 600. A partition unit 622 will be described
in more detail below in conjunction with FIG . 7 .
[0049] In at least one embodiment , a host processor
executes a driver kernel that implements an application
programming interface (“ API ”) that enables one or more
applications executing on host processor to schedule opera
tions for execution on PPU 600. In at least one embodiment ,
multiple compute applications are simultaneously executed
by PPU 600 and PPU 600 provides isolation , quality of
service (" QoS ”) , and independent address spaces for mul
tiple compute applications . In at least one embodiment , an
application generates instructions (e.g. , in form of API calls)
that cause driver kernel to generate one or more tasks for
execution by PPU 600 and driver kernel outputs tasks to one
or more streams being processed by PPU 600. In at least one
embodiment , each task comprises one or more groups of

US 2020/0410322 A1 Dec. 31 , 2020
7

a

related threads , which may be referred to as a warp . In at
least one embodiment , a warp comprises a plurality of
related threads (e.g. , 32 threads) that can be executed in
parallel . In at least one embodiment , cooperating threads can
refer to a plurality of threads including instructions to
perform a task and that exchange data through shared
memory . Threads and cooperating threads are described in
more detail , in accordance with one embodiment , in con
junction with FIG . 7A .
[0050] FIG . 7 illustrates a GPC 700 such as GPC illus
trated of PPU 600 of FIG . 6 , in accordance with one
embodiment . In at least one embodiment , each GPC 700
includes a number of hardware units for processing tasks
and each GPC 700 includes a pipeline manager 702 ,
pre - raster operations unit (“ PROP ”) 704 , a raster engine
708 , a work distribution crossbar (“ WDX ”) 716 , a memory
management unit (“ MMU ”) 718 , one or more Data Process
ing Clusters (“ DPCs ”) 706 , and any suitable combination of
parts . It will be appreciated that GPC 700 of FIG . 6 may
include other hardware units in lieu of or in addition to units
shown in FIG . 7 .
[0051] In at least one embodiment , operation of GPC 700
is controlled by pipeline manager 702. Pipeline manager 702
manages configuration of one or more DPCs 706 for pro
cessing tasks allocated to GPC 700. In at least one embodi
ment , pipeline manager 702 configures at least one of one or
more DPCs 706 to implement at least a portion of a graphics
rendering pipeline . In at least one embodiment , a DPC 706
is configured to execute a vertex shader program on pro
grammable streaming multiprocessor (" SM ") 714. Pipeline
manager 702 is configured to route packets received from a
work distribution to appropriate logical units within GPC
700 , in at least one embodiment , and some packets may be
routed to fixed function hardware units in PROP 704 and / or
raster engine 708 while other packets may be routed to DPCs
706 for processing by primitive engine 712 or SM 714. In at
least one embodiment , pipeline manager 702 configures at
least one of one or more DPCs 706 to implement a neural
network model and / or a computing pipeline .
[0052] PROP unit 704 is configured , in at least one
embodiment , to route data generated by raster engine 708
and DPCs 706 to a Raster Operations (“ ROP ”) unit in
memory partition unit , described in more detail above . In at
least one embodiment , PROP unit 704 is configured to
perform optimizations for color blending , organize pixel
data , perform address translations , and more . raster engine
708 includes a number of fixed function hardware units
configured to perform various raster operations , in at least
one embodiment , and raster engine 708 includes a setup
engine , a coarse raster engine , a culling engine , a clipping
engine , a fine raster engine , a tile coalescing engine , and any
suitable combination thereof . A setup engine , in at least one
embodiment , receives transformed vertices and generates
plane equations associated with geometric primitive defined
by vertices ; plane equations are transmitted to a coarse raster
engine to generate coverage information (e.g. , an x , y
coverage mask for a tile) for a primitive ; an output of a
coarse raster engine is transmitted to a culling engine where
fragments associated with a primitive that fail a z - test are
culled , and transmitted to a clipping engine where fragments
lying outside a viewing frustum are clipped . In at least one
embodiment , fragments that survive clipping and culling are
passed to a fine raster engine to generate attributes for pixel
fragments based on plane equations generated by setup

engine . In at least one embodiment , output of raster engine
708 comprises fragments to be processed by any suitable
entity such as by a fragment shader implemented within a
DPC 706 .
[0053] In at least one embodiment , each DPC 706
included in GPC 700 comprises an M - Pipe Controller
(“ MPC ”) 710 ; a primitive engine 712 ; one or more SMs 714 ;
and any suitable combination thereof . In at least one
embodiment , MPC 710 controls operation of DPC 706 ,
routing packets received from pipeline manager 702 to
appropriate units in DPC 706. In at least one embodiment ,
packets associated with a vertex are routed to primitive
engine 712 , which is configured to fetch vertex attributes
associated with vertex from memory ; in contrast , packets
associated with a shader program may be transmitted to SM
714 .
[0054] In at least one embodiment , SM 714 comprises a
programmable streaming processor that is configured to
process tasks represented by a number of threads . In at least
one embodiment , SM 714 is multi - threaded and configured
to execute a plurality of threads (e.g. , 32 threads) from a
particular group of threads concurrently and implements a
SIMD (Single - Instruction , Multiple - Data) architecture
where each thread in a group of threads (e.g. , a warp) is
configured to process a different set of data based on same
set of instructions . In at least one embodiment , all threads in
group of threads execute same instructions . In at least one
embodiment , SM 714 implements a SIMT (Single - Instruc
tion , Multiple Thread) architecture wherein each thread in a
group of threads is configured to process a different set of
data based on same set of instructions , but where individual
threads in group of threads are allowed to diverge during
execution . In at least one embodiment , a program counter ,
call stack , and execution state is maintained for each warp ,
enabling concurrency between warps and serial execution
within warps when threads within warp diverge . In another
embodiment , a program counter , call stack , and execution
state is maintained for each individual thread , enabling equal
concurrency between all threads , within and between warps .
In at least one embodiment , execution state is maintained for
each individual thread and threads executing same instruc
tions may be converged and executed in parallel for better
efficiency . In at least one embodiment , SM 714 is described
in more detail below .
[0055] In at least one embodiment , MMU 718 provides an
interface between GPC 700 and memory partition unit and
MMU 718 provides translation of virtual addresses into
physical addresses , memory protection , and arbitration of
memory requests . In at least one embodiment , MMU 718
provides one or more translation lookaside buffers (“ TLBs ”)
for performing translation of virtual addresses into physical
addresses in memory .
[0056] FIG . 8 illustrates a memory partition unit of a PPU ,
in accordance with one embodiment . In at least one embodi
ment , memory partition unit 800 includes a Raster Opera
tions (“ ROP ”) unit 802 ; a level two (“ L2 ”) cache 804 ; a
memory interface 806 ; and any suitable combination
thereof . Memory interface 806 is coupled to memory .
Memory interface 806 may implement 32 , 64 , 128 , 1024 - bit
data buses , or like , for high - speed data transfer . In at least
one embodiment , PPU incorporates U memory interfaces
806 , one memory interface 806 per pair of partition units
800 , where each pair of partition units 800 is connected to
a corresponding memory device . For example , PPU may be

US 2020/0410322 A1 Dec. 31 , 2020
8

connected to up to Y memory devices , such as high band
width memory stacks or graphics double - data - rate , version
5 , synchronous dynamic random access memory (“ GDDR5
SDRAM ”) .
[0057] In at least one embodiment , memory interface 806
implements an HBM2 memory interface and Y equals half
U. In at least one embodiment , HBM2 memory stacks are
located on same physical package as PPU , providing sub
stantial power and area savings compared with conventional
GDDR5 SDRAM systems . In at least one embodiment , each
HBM2 stack includes four memory dies and Y equals 4 , with
HBM2 stack including two 128 - bit channels per die for a
total of 8 channels and a data bus width of 1024 bits .
[0058] In at least one embodiment , memory supports
Single - Error Correcting Double - Error Detecting
(“ SECDED ") Error Correction Code (“ ECC ”) to protect
data . ECC provides higher reliability for compute applica
tions that are sensitive to data corruption . Reliability is
especially important in large - scale cluster computing envi
ronments where PPUs process very large datasets and / or run
applications for extended periods .
[0059] In at least one embodiment , PPU implements a
multi - level memory hierarchy . In at least one embodiment ,
memory partition unit 800 supports a unified memory to
provide a single unified virtual address space for CPU and
PPU memory , enabling data sharing between virtual
memory systems . In at least one embodiment frequency of
accesses by a PPU to memory located on other processors is
trace to ensure that memory pages are moved to physical
memory of PPU that is accessing pages more frequently . In
at least one embodiment , high - speed GPU interconnect 608
supports address translation services allowing PPU to
directly access a CPU's page tables and providing full
access to CPU memory by PPU .
[0060] In at least one embodiment , copy engines transfer
data between multiple PPUs or between PPUs and CPUs . In
at least one embodiment , copy engines can generate page
faults for addresses that are not mapped into page tables and
memory partition unit 800 then services page faults , map
ping addresses into page table , after which copy engine
performs transfer . In at least one embodiment , memory is
pinned (e.g. , non - pageable) for multiple copy engine opera
tions between multiple processors , substantially reducing
available memory . In at least one embodiment , with hard
ware page faulting , addresses can be passed to copy engines
without regard as to whether memory pages are resident , and
copy process is transparent .
[0061] Data from memory of FIG . 6 or other system
memory is fetched by memory partition unit 800 and stored
in L2 cache 804 , which is located on - chip and is shared
between various GPCs , in accordance with one embodiment .
Each memory partition unit 800 , in at least one embodiment ,
includes at least a portion of L2 cache 760 associated with
a corresponding memory device . In at least one embodi
ment , lower level caches are implemented in various units
within GPCs . In at least one embodiment , each of SMS 840
may implement a level one (“ L1 ”) cache wherein L1 cache
is private memory that is dedicated to a particular SM 840
and data from L2 cache 804 is fetched and stored in each of
L1 caches for processing in functional units of SMs 840. In
at least one embodiment , L2 cache 804 is coupled to
memory interface 806 and XBar 620 .
[0062] ROP unit 802 performs graphics raster operations
related to pixel color , such as color compression , pixel

blending , and more , in at least one embodiment . ROP unit
850 , in at least one embodiment , implements depth testing in
conjunction with raster engine 825 , receiving a depth for a
sample location associated with a pixel fragment from
culling engine of raster engine 825. In at least one embodi
ment , depth is tested against a corresponding depth in a
depth buffer for a sample location associated with fragment .
In at least one embodiment , if fragment passes depth test for
sample location , then ROP unit 802 updates depth buffer and
transmits a result of depth test to raster engine 825. It will
be appreciated that number of partition units 800 may be
different than number of GPCs and , therefore , each ROP unit
802 can , in at least one embodiment , be coupled to each of
GPCs . In at least one embodiment , ROP unit 802 tracks
packets received from different GPCs and determines which
that a result generated by ROP unit 802 is routed to through
XBar .

[0063] FIG . 9 illustrates a streaming multi - processor such
as streaming multi - processor of FIG . 7 , in accordance with
one embodiment . In at least one embodiment , SM 900
includes : an instruction cache 902 ; one or more scheduler
units 904 ; a register file 908 ; one or more processing cores
910 ; one or more special function units (“ SFUs ”) 912 ; one
or more load / store units (“ LSUs ”) 914 ; an interconnect
network 916 ; a shared memory / L1 cache 918 ; and any
suitable combination thereof . In at least one embodiment ,
work distribution unit dispatches tasks for execution on
GPCs of PPU and each task is allocated to a particular DPC
within a GPC and , if task is associated with a shader
program , task is allocated to an SM 900. In at least one
embodiment , scheduler unit 904 receives tasks from work
distribution unit and manages instruction scheduling for one
or more thread blocks assigned to SM 900. In at least one
embodiment , scheduler unit 904 schedules thread blocks for
execution as warps of parallel threads , wherein each thread
block is allocated at least one warp . In at least one embodi
ment , each warp executes threads . In at least one embodi
ment , scheduler unit 904 manages a plurality of different
thread blocks , allocating warps to different thread blocks and
then dispatching instructions from plurality of different
cooperative groups to various functional units (e.g. , cores
910 , SFUS 912 , and LSUS 914) during each clock cycle .
[0064] Cooperative Groups may refer to a programming
model for organizing groups of communicating threads that
allows developers to express granularity at which threads are
communicating , enabling expression of richer , more effi
cient parallel decompositions . In at least one embodiment ,
cooperative launch APIs support synchronization amongst
thread blocks for execution of parallel algorithms . In at least
one embodiment , applications of conventional programming
models provide a single , simple construct for synchronizing
cooperating threads : a barrier across all threads of a thread
block (e.g. , syncthreads () function) . However , programmers
would often like to define groups of threads at smaller than
thread block granularities and synchronize within defined
groups to enable greater performance , design flexibility , and
software reuse in form of collective group - wide function
interfaces . Cooperative Groups enables programmers to
define groups of threads explicitly at sub - block (e.g. , as
small as a single thread) and multi - block granularities , and
to perform collective operations such as synchronization on
threads in a cooperative group . programming model sup
ports clean composition across software boundaries , so that
libraries and utility functions can synchronize safely within

US 2020/0410322 A1 Dec. 31 , 2020
9

their local context without having to make assumptions
about convergence . Cooperative Groups primitives enable
new patterns of cooperative parallelism , including producer
consumer parallelism , opportunistic parallelism , and global
synchronization across an entire grid of thread blocks .
[0065] In at least one embodiment , a dispatch unit 906 is
configured to transmit instructions to one or more of func
tional units and scheduler unit 904 includes two dispatch
units 906 that enable two different instructions from same
warp to be dispatched during each clock cycle . In at least one
embodiment , each scheduler unit 904 includes a single
dispatch unit 906 or additional dispatch units 906 .
[0066] Each SM 900 , in at least one embodiment , includes
a register file 908 that provides a set of registers for
functional units of SM 900. In at least one embodiment ,
register file 908 is divided between each of functional units
such that each functional unit is allocated a dedicated
portion of register file 908. In at least one embodiment ,
register file 908 is divided between different warps being
executed by SM 900 and register file 908 provides tempo
rary storage for operands connected to data paths of func
tional units . In at least one embodiment , each SM 900
comprises a plurality of L processing cores 910. In at least
one embodiment , SM 900 includes a large number (e.g. , 128
or more) of distinct processing cores 910. Each core 910 , in
at least one embodiment , includes a fully - pipelined , single
precision , double - precision , and / or mixed precision process
ing unit that includes a floating point arithmetic logic unit
and an integer arithmetic logic unit . In at least one embodi
ment , floating point arithmetic logic units implement IEEE
754-2008 standard for floating point arithmetic . In at least
one embodiment , cores 910 include 64 single - precision
(32 - bit) floating point cores , 64 integer cores , 32 double
precision (64 - bit) floating point cores , and 8 tensor cores .
[0067] Tensor cores are configured to perform matrix
operations in accordance with an embodiment . In at least
one embodiment , one or more tensor cores are included in
cores 910. In at least one embodiment , tensor cores are
configured to perform deep learning matrix arithmetic , such
as convolution operations for neural network training and
inferencing . In at least one embodiment , each tensor core
operates on a 4x4 matrix and performs a matrix multiply and
accumulate operation D = AxB + C , where A , B , C , and D are
4x4 matrices .

[0068] In at least one embodiment , matrix multiply inputs
A and B are 16 - bit floating point matrices and accumulation
matrices C and D are 16 - bit floating point or 32 - bit floating
point matrices . In at least one embodiment , tensor cores
operate on 16 - bit floating point input data with 32 - bit
floating point accumulation . In at least one embodiment ,
16 - bit floating point multiply requires 64 operations and
results in a full precision product that is then accumulated
using 32 - bit floating point addition with other intermediate
products for a 4x4x4 matrix multiply . Tensor cores are used
to perform much larger two - dimensional or higher dimen
sional matrix operations , built up from these smaller ele
ments , in at least one embodiment . In at least one embodi
ment , an API , such as CUDA 9 C ++ API , exposes
specialized matrix load , matrix multiply and accumulate ,
and matrix store operations to efficiently use tensor cores
from a CUDA - C ++ program . In at least one embodiment , at
CUDA level , warp - level interface assumes 16x16 size
matrices spanning all 32 threads of warp .

[0069] In at least one embodiment , each SM 900 com
prises M SFUs 912 that perform special functions (e.g. ,
attribute evaluation , reciprocal square root , and like) . In at
least one embodiment , SFUs 912 include a tree traversal unit
configured to traverse a hierarchical tree data structure . In at
least one embodiment , SFUS 912 include texture unit con
figured to perform texture map filtering operations . In at
least one embodiment , texture units are configured to load
texture maps (e.g. , a 2D array of texels) from memory and
sample texture maps to produce sampled texture values for
use in shader programs executed by SM 900. In at least one
embodiment , texture maps are stored in shared memory / L1
cache . texture units implement texture operations such as
filtering operations using mip - maps (e.g. , texture maps of
varying levels of detail) , in accordance with one embodi
ment . In at least one embodiment , each SM 900 includes two
texture units .
[0070] Each SM 900 comprises N LSUs 854 that imple
ment load and store operations between shared memory / L1
cache 806 and register file 908 , in at least one embodiment .
Each SM 900 includes an interconnect network 816 that
connects each of functional units to register file 908 and
LSU 914 to register file 908 , shared memory / L1 cache 918
in at least one embodiment . In at least one embodiment ,
interconnect network 916 is a crossbar that can be config
ured to connect any of functional units to any of registers in
register file 908 and connect LSUS 914 to register file and
memory locations in shared memory / L1 cache 918 .
[0071] Shared memory / L1 cache 918 is an array of on
chip memory that allows for data storage and communica
tion between SM 900 and primitive engine and between
threads in SM 900 in at least one embodiment . In at least one
embodiment , shared memory / L1 cache 918 comprises 128
KB of storage capacity and is in path from SM 900 to
partition unit . shared memory / L1 cache 918 , in at least one
embodiment , is used to cache reads and writes . One or more
of shared memory / L1 cache 918 , L2 cache , and memory are
backing stores .
[0072] Combining data cache and shared memory func
tionality into a single memory block provides improved
performance for both types of memory accesses , in at least
one embodiment . capacity , in at least one embodiment , is
used or is usable as a cache by programs that do not use
shared memory , such as if shared memory is configured to
use half of capacity , texture and load / store operations can use remaining capacity . Integration within shared memory /
L1 cache 918 enables shared memory / L1 cache 918 to
function as a high - throughput conduit for streaming data
while simultaneously providing high - bandwidth and low
latency access to frequently reused data , in accordance with
an embodiment . When configured for general purpose par
allel computation , a simpler configuration can be used
compared with graphics processing . In at least one embodi
ment , fixed function graphics processing units are bypassed ,
creating a much simpler programming model . In general
purpose parallel computation configuration , work distrubu
tion unit assigns and distributes blocks of threads directly to
DPCs , in at least one embodiment . threads in a block execute
same program , using a unique thread ID in calculation to
ensure each thread generates unique results , using SM 900
to execute program and perform calculations , shared
memory / L1 cache 918 to communicate between threads , and
LSU 914 to read and write global memory through shared
memory / L1 cache 918 and memory partition unit , in accor

US 2020/0410322 A1 Dec. 31 , 2020
10

dance with one embodiment . In at least one embodiment , when configured for general purpose parallel computation ,
SM 900 writes commands that scheduler unit can use to
launch new work on DPCs .
[0073] In at least one embodiment , PPU is included in or
coupled to a desktop computer , a laptop computer , a tablet
computer , servers , supercomputers , a smart - phone (e.g. , a
wireless , hand - held device) , personal digital assistant
(“ PDA ”) , a digital camera , a vehicle , a head mounted
display , a hand - held electronic device , and more . In at least
one embodiment , PPU is embodied on a single semicon
ductor substrate . In at least one embodiment , PPU is
included in a system - on - a - chip (“ SOC ”) along with one or
more other devices such as additional PPUs , memory , a
reduced instruction set computer (“ RISC ”) CPU , a memory
management unit (“ MMU ") , a digital - to - analog converter
(“ DAC ”) , and like .
[0074] In at least one embodiment , PPU may be included
on a graphics card that includes one or more memory
devices . graphics card may be configured to interface with
a PCIe slot on a motherboard of a desktop computer . In yet
another embodiment , PPU may be an integrate graphics
processing unit (“ iGPU ”) included in chipset of mother
board .
[0075] FIG . 10 illustrates a computer system 1000 in
which various architecture and / or functionality can be
implemented , in accordance with one embodiment . com
puter system 1000 , in at least one embodiment , is configured
to implement various processes and methods described
throughout this disclosure .
[0076] In at least one embodiment , computer system 1000
comprises at least one central processing unit 1002 that is
connected to a communication bus 1010 implemented using
any suitable protocol , such as PCI (Peripheral Component
Interconnect) , PCI - Express , AGP (Accelerated Graphics
Port) , HyperTransport , or any other bus or point - to - point
communication protocol (s) . In at least one embodiment ,
computer system 1000 includes a main memory 1004 and
control logic (e.g. , implemented as hardware , software , or a
combination thereof) and data are stored in main memory
1004 which may take form of random access memory
(“ RAM ”) . In at least one embodiment , a network interface
subsystem 1022 provides an interface to other computing
devices and networks for receiving data from and transmit
ting data to other systems from computer system 1000 .
[0077] Computer system 1000 , in at least one embodi
ment , includes input devices 1008 , parallel processing sys
tem 1012 , and display devices 1006 which can be imple
mented using a conventional CRT (cathode ray tube) , LCD
(liquid crystal display) , LED light emitting diode) , plasma
display , or other suitable display technologies . In at least one
embodiment , user input is received from input devices 1008
such as keyboard , mouse , touchpad , microphone , and more .
In at least one embodiment , each of foregoing modules can
be situated on a single semiconductor platform to form a
processing system .
[0078] In present description , a single semiconductor plat
form may refer to a sole unitary semiconductor - based inte
grated circuit or chip . It should be noted that term single
semiconductor platform may also refer to multi - chip mod
ules with increased connectivity which simulate on - chip
operation , and make substantial improvements over utilizing
a conventional central processing unit (“ CPU ”) and bus
implementation . Of course , various modules may also be

situated separately or in various combinations of semicon
ductor platforms per desires of user .
[0079] In at least one embodiment , computer programs in
form of machine - readable executable code or computer
control logic algorithms are stored in main memory 1004
and / or secondary storage . Computer programs , if executed
by one or more processors , enable system 1000 to perform
various functions in accordance with one embodiment .
Memory 1004 , storage , and / or any other storage are possible
examples of computer - readable media . Secondary storage
may refer to any suitable storage device or system such as
a hard disk drive and / or a removable storage drive , repre
senting a floppy disk drive , a magnetic tape drive , a compact
disk drive , digital versatile disk (“ DVD ”) drive , recording
device , universal serial bus (“ USB ”) flash memory .
[0080] In at least one embodiment , architecture and / or
functionality of various previous figures are implemented in
context of central processor 1002 ; parallel processing sys
tem 1012 ; an integrated circuit capable of at least a portion
of capabilities of both central processor 1002 ; parallel
processing system 1012 ; a chipset (e.g. , a group of inte
grated circuits designed to work and sold as a unit for
performing related functions , etc.) ; and any suitable combi
nation of integrated circuit .
[0081] In at least one embodiment , architecture and / or
functionality of various previous figures is be implemented
in context of a general computer system , a circuit board
system , a game console system dedicated for entertainment
purposes , an application - specific system , and more . In at
least one embodiment , computer system 1000 may take
form of a desktop computer , a laptop computer , a tablet
computer , servers , supercomputers , a smart - phone (e.g. , a
wireless , hand - held device) , personal digital assistant
(“ PDA ") , a digital camera , a vehicle , a head mounted
display , a hand - held electronic device , a mobile phone
device , a television , workstation , game consoles , embedded
system , and / or any other type of logic .
[0082] In at least one embodiment , a parallel processing
system 1012 includes a plurality of PPUs 1014 and associ
ated memories 1016. In at least one embodiment , PPUs are
connected to a host processor or other peripheral devices via
an interconnect 1018 and a switch 1020 or multiplexer . In at
least one embodiment , parallel processing system 1012
distributes computational tasks across PPUs 1014 which can
be parallelizable for example , as part of distribution of
computational tasks across multiple GPU thread blocks . In
at least one embodiment , memory is shared and accessible
(e.g. , for read and / or write access) across some or all of
PPUs 1014 , although such shared memory may incur per
formance penalties relative to use of local memory and
registers resident to a PPU . In at least one embodiment ,
operation of PPUs 1014 is synchronized through use of a
command such as _syncthreads (which requires all threads
in a block (e.g. , executed across multiple PPUs 1014) to
reach a certain point of execution of code before proceeding .
[0083] Specification and drawings are , accordingly , to be
regarded in an illustrative rather than a restrictive sense . It
will , however , be evident that various modifications and
changes may be made thereunto without departing from
broader spirit and scope of invention as set forth in claims .
[0084] Other variations are within spirit of present disclo
sure . Thus , while disclosed techniques are susceptible to
various modifications and alternative constructions , certain
illustrated embodiments thereof are shown in drawings and

US 2020/0410322 A1 Dec. 31 , 2020
11

have been described above in detail . It should be understood ,
however , that there is no intention to limit invention to
specific form or forms disclosed , but on contrary , intention
is to cover all modifications , alternative constructions , and
equivalents falling within spirit and scope of invention , as
defined in appended claims .
[0085] Use of terms “ a ” and “ an ” and “ the ” and similar
referents in context of describing disclosed embodiments
(especially in context of following claims) are to be con
strued to cover both singular and plural , unless otherwise
indicated herein or clearly contradicted by context . terms
" comprising , " " having , " " including , " and " containing ” are
to be construed as open - ended terms (e.g. , meaning “ includ
ing , but not limited to , ") unless otherwise noted . term
“ connected , ” when unmodified and referring to physical
connections , is to be construed as partly or wholly contained
within , attached to , or joined together , even if there is
something intervening . Recitation of ranges of values herein
are merely intended to serve as a shorthand method of
referring individually to each separate value falling within
range , unless otherwise indicated herein and each separate
value is incorporated into specification as if it were indi
vidually recited herein . use of term “ set ” (e.g. , " a set of
items ”) or " subset ” unless otherwise noted or contradicted
by context , is to be construed as a nonempty collection
comprising one or more members . Further , unless otherwise
noted or contradicted by context , term “ subset ” of a corre
sponding set does not necessarily denote a proper subset of
corresponding set , but subset and corresponding set may be
equal .
[0086] Conjunctive language , such as phrases of form “ at
least one of A , B , and C , ” or “ at least one of A , B and C , "
unless specifically stated otherwise or otherwise clearly
contradicted by context , is otherwise understood with con
text as used in general to present that an item , term , etc. , may
be either A or B or C , or any nonempty subset of set of A and
B and C. For instance , in illustrative example of a set having
three members , conjunctive phrases “ at least one of A , B ,
and C ” and “ at least one of A , B and C ” refer to any of
following sets : { A } , { B } , { C } , { A , B } , { A , C } , { B , C } , { A ,
B , C } . Thus , such conjunctive language is not generally
intended to imply that certain embodiments require at least
one of A , at least one of B and at least one of C each to be
present . In addition , unless otherwise noted or contradicted
by context , term “ plurality ” indicates a state of being plural
(e.g. , " a plurality of items ” indicates multiple items) . num
ber of items in a plurality is at least two , but can be more
when so indicated either explicitly or by context . Further ,
unless stated otherwise or otherwise clear from context ,
phrase “ based on " means “ based at least in part on ” and not
“ based solely on . ”
[0087] Operations of processes described herein can be
performed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context . In at
least one embodiment , a process such as those processes
described herein (or variations and / or combinations thereof)
is performed under control of one or more computer systems
configured with executable instructions and is implemented
as code (e.g. , executable instructions , one or more computer
programs or one or more applications) executing collec
tively on one or more processors , by hardware or combina
tions thereof . In at least one embodiment , code is stored on
a computer - readable storage medium , for example , in form
of a computer program comprising a plurality of instructions

executable by one or more processors . In at least one
embodiment , a computer - readable storage medium is a
non - transitory computer - readable storage medium that
excludes transitory signals (e.g. , a propagating transient
electric or electromagnetic transmission) but includes non
transitory data storage circuitry (e.g. , buffers , cache , and
queues) within transceivers of transitory signals . In at least
one embodiment , code (e.g. , executable code or source
code) is stored on a set of one or more non - transitory
computer - readable storage media having stored thereon
executable instructions (or other memory to store executable
instructions) that , when executed (e.g. , as a result of being
executed) by one or more processors of a computer system ,
cause computer system to perform operations described
herein . set of non - transitory computer - readable storage
media , in at least one embodiment , comprises multiple
non - transitory computer - readable storage media and one or
more of individual non - transitory storage media of multiple
non - transitory computer - readable storage media lack all of
code while multiple non - transitory computer - readable stor
age media collectively store all of code . In at least one
embodiment , executable instructions are executed such that
different instructions are executed by different processors
for example , a non - transitory computer - readable storage
medium store instructions and a main CPU execute some of
instructions while a graphics processor unit executes other
instructions . In at least one embodiment , different compo
nents of a computer system have separate processors and
different processors execute different subsets of instructions .
[0088] Accordingly , in at least one embodiment , computer
systems are configured to implement one or more services
that singly or collectively perform operations of processes
described herein and such computer systems are configured
with applicable hardware and / or software that enable per
formance of operations . Further , a computer system that
implement an embodiment of present disclosure is a single
device and , in another embodiment , is a distributed com
puter system comprising multiple devices that operate dif
ferently such that distributed computer system performs
operations described herein and such that a single device
does not perform all operations .
[0089] Use of any and all examples , or exemplary lan
guage (e.g. , “ such as ”) provided herein , is intended merely
to better illuminate embodiments of invention and does not
pose a limitation on scope of invention unless otherwise
claimed . No language in specification should be construed
as indicating any non - claimed element as essential to prac
tice of invention .

[0090] Embodiments of this disclosure are described
herein , including best mode known to inventors for carrying
out invention . Variations of those embodiments may become
apparent to those of ordinary skill in art upon reading
foregoing description . inventors expect skilled artisans to
employ such variations as appropriate and inventors intend
for embodiments of present disclosure to be practiced oth
erwise than as specifically described herein . Accordingly ,
scope of present disclosure includes all modifications and
equivalents of subject matter recited in claims appended
hereto as permitted by applicable law . Moreover , any com
bination of above - described elements in all possible varia
tions thereof is encompassed by scope of present disclosure
unless otherwise indicated herein or otherwise clearly con
tradicted by context .

US 2020/0410322 A1 Dec. 31 , 2020
12

[0091] All references , including publications , patent appli
cations , and patents , cited herein are hereby incorporated by
reference to same extent as if each reference were individu
ally and specifically indicated to be incorporated by refer
ence and were set forth in its entirety herein .
[0092] In description and claims , terms “ coupled ” and
“ connected , ” along with their derivatives , may be used . It
should be understood that these terms may be not intended
as synonyms for each other . Rather , in particular examples ,
“ connected ” or “ coupled ” may be used to indicate that two
or more elements are in direct or indirect physical or
electrical contact with each other . “ Coupled ” may also mean
that two or more elements are not in direct contact with each
other , but yet still co - operate or interact with each other .
[0093] Unless specifically stated otherwise , it may be
appreciated that throughout specification terms such as
" processing , " " computing , " " calculating , " " determining , " or
like , refer to action and / or processes of a computer or
computing system , or similar electronic computing device ,
that manipulate and / or transform data represented as physi
cal , such as electronic , quantities within computing system's
registers and / or memories into other data similarly repre
sented as physical quantities within computing system's
memories , registers or other such information storage , trans
mission or display devices .
[0094] In a similar manner , term “ processor ” may refer to
any device or portion of a device that processes electronic
data from registers and / or memory and transform that elec
tronic data into other electronic data that may be stored in
registers and / or memory . As non - limiting examples , “ pro
cessor ” may be a Central Processing Unit (CPU) or a
Graphics Processing Unit (GPU) . A " computing platform "
may comprise one or more processors . As used herein ,
" software ” processes may include , for example , software
and / or hardware entities that perform work over time , such
as tasks , threads , and intelligent agents . Also , each process
may refer to multiple processes , for carrying out instructions
in sequence or in parallel , continuously or intermittently .
terms “ system ” and “ method ” are used herein interchange
ably insofar as system may embody one or more methods
and methods may be considered a system .
[0095] In present document , references may be made to
obtaining , acquiring , receiving , or inputting analog or digital
data into a subsystem , computer system , or computer - imple
mented machine . process of obtaining , acquiring , receiving ,
or inputting analog and digital data can be accomplished in
a variety of ways such as by receiving data as a parameter
of a function call or a call to an application programming
interface . In some implementations , process of obtaining ,
acquiring , receiving , or inputting analog or digital data can
be accomplished by transferring data via a serial or parallel
interface . In another implementation , process of obtaining ,
acquiring , receiving , or inputting analog or digital data can
be accomplished by transferring data via a computer net
work from providing entity to acquiring entity . References
may also be made to providing , outputting , transmitting ,
sending , or presenting analog or digital data . In various
examples , process of providing , outputting , transmitting ,
sending , or presenting analog or digital data can be accom
plished by transferring data as an input or output parameter
of a function call , a parameter of an application program
ming interface or interprocess communication mechanism .
[0096] Although discussion above sets forth example
implementations of described techniques , other architec

tures may be used to implement described functionality , and
are intended to be within scope of this disclosure . Further
more , although specific distributions of responsibilities are
defined above for purposes of discussion , various functions
and responsibilities might be distributed and divided in
different ways , depending on circumstances .
[0097] Furthermore , although subject matter has been
described in language specific to structural features and / or
methodological acts , it is to be understood that subject
matter defined in appended claims is not necessarily limited
to specific features or acts described . Rather , specific fea
tures and acts are disclosed as exemplary forms of imple
menting claims .

What is claimed is :
1. A processor , comprising :
one or more arithmetic logic units (ALUS) to :

use at least one neural network to infer content from
individual images in a sequence of images ; and

use the at least one neural network to infer changes in
the content in the sequence of images .

2. The processor of claim 1 , wherein the one or more
ALUS are to :

use a probabilistic model to determine an anomalous
event in the sequence of images in response to obtain
ing information associated with the changes in the
content in the sequence of images and obtaining infor
mation associated with errors from reconstructing the
sequence of images .

3. The processor of claim 1 , wherein the one or more
ALUs are to train a first component of the at least one neural
network , wherein the first component is an autoencoder with
an internal layer that maps the sequence of images to
generate one or more latent representations in a feature
space .

4. The processor of claim 3 , wherein the autoencoder is a
convolutional autoencoder .

5. The processor of claim 3 , wherein the one or more
ALUs are to train a second component of the at least one
neural network , wherein the second component is a Long
Short - Term Memory (LSTM) that receives the one or more
latent representations from the first component to infer
changes in the sequence of images over a period of time .

6. The processor of claim 1 , wherein content from indi
vidual images in the sequence of images includes spatial
information .

7. The processor of claim 1 , wherein changes in the
content in the sequence of images includes temporal infor
mation .

8. The processor of claim 1 , wherein the one or more
ALUs are to receive the sequence of images from at least
one or more stationary video cameras , wherein the one or
more stationary video cameras provide the sequence of
images for anomalous event detection without reconfigura
tions .

9. A system , comprising :
one or more computers having one or more processors to

train one or more neural networks to infer content from
individual images in a sequence of images and changes
in the content in the sequence of images .

10. The system of claim 9 , wherein the one or more
processors are to train the one or more neural networks to :

input the sequence of images to a first neural network of
the one or more neural networks to generate a first set

US 2020/0410322 A1 Dec. 31 , 2020
13

of information representing content from individual
images of the sequence of images ;

input the first set of information to a second neural
network of the one or more neural networks to generate
a second set of information associated with the changes
in the content in the sequence of images ;

reproduce the sequence of images using the first set of
information ; and

use a probabilistic model to generate a third set of
information based at least in part on receiving error
measurements associated with the reproduced sequence
of images and the second set of information .

11. The system of claim 10 , wherein the first neural
network is a convolutional autoencoder that takes the
sequence of images as input to generate the first set of
information .

12. The system of claim 11 , wherein the convolutional
autoencoder maps features of the sequence of images to
generate the first set of information in a reduce feature space
from which the sequence of images can be approximately
reproduced from the first set of information in the reduced

train at least one neural network to infer content from
individual images in a sequence of images ; and

train the at least one neural network to infer changes in the
content in the sequence of images .

18. The machine - readable medium of claim 17 , wherein
the set of instructions further cause the one or more proces
sors to at least train the at least one neural network by using
a probabilistic model to generate information associated
with a likelihood of normal behavior in the sequence of
images .

19. The machine - readable medium of claim 18 , wherein
the probabilistic model is a Gaussian Mixture Model
(GMM) .

20. The machine - readable medium of claim 19 , wherein
the GMM determines , based at least in part on information
associated with the changes in the content in the , a score
indicating a likelihood of one or more anomalous events .

21. A method comprising :
using a first portion of at least one neural network to infer

content from individual images in a sequence of
images ; and

using a second portion of the at least one neural network
to infer changes in the content in the sequence of
images .

22. The method of claim 21 , wherein the first portion is a
convolutional autoencoder .

23. The method of claim 21 , wherein the second portion
is a Long Short - Term Memory (LSTM) .

24. The method of claim 21 , wherein content from indi
vidual images in the sequence of image includes one or more
latent representations of the individual images .

25. The method of claim 24 , further comprising :
using a third portion of the at least one neural network to

determine one or more anomalous events in the
sequence of images based at least in part on changes in
the content in the sequence of images .

26. The method of claim 25 , wherein the third portion of
the at least one neural network is a probabilistic model .

feature space .
13. The system of claim 10 , wherein the second neural

network is a Long Short - Term Memory (LSTM) that takes
the first set of information as input .

14. The system of claim 10 , wherein the one or more
processors are to train the one or more neural networks to
obtain the sequence of images from one or more static video
cameras to detect anomalous events in the sequence of
images .

15. The system of claim 10 , wherein the third set of
information includes at least one indicator of an anomaly
event in the sequence of images .

16. The system of claim 10 , wherein the probabilistic
model is previously trained on a collection of training
images .

17. A machine - readable medium having stored thereon a
set of instructions , which if performed by one or more
processors , cause the one or more processors to at least : *

