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NEURAL ARCHITECTURE FOR SELF 
SUPERVISED EVENT LEARNING AND 

ANOMALY DETECTION 

BACKGROUND 

[ 0001 ] There are various technical challenges involved in 
being able to scale training a neural network for a large 
number of events identified from video data . As video data 
obtained from cameras get bigger , tracking and supervision 
of events and / or objects detected in video data become more 
complex and are prone to errors . In other words , as video 
data get bigger , more computing resources are required to 
continuously supervise and track event and / or objects accu 
rately . That is , event and / or object detection requires super 
vision and computing resources required to parse and track 
each and every event and / or object from video data typically 
exceed or otherwise overwhelm what a computing environ 
ment with limited resources can handle . 

BRIEF DESCRIPTION OF DRAWINGS 

[ 0002 ] Various techniques will be described with refer 
ence to drawings , in which : 
[ 0003 ] FIG . 1 illustrates a computing environment in 
which a neural architecture is implemented to detect one or 
more anomalous events , in accordance with an embodiment ; 
[ 0004 ] FIG . 2 illustrates an environment in which a neural 
architecture is implemented to detect one or more anoma 
lous events using at least an autoencoder , Long Short - Term 
Memory ( LSTM ) , and a probabilistic model in accordance 
with an embodiment ; 
[ 0005 ) FIG . 3 illustrates a diagram of event tracking in a 
spatial - temporal space , in accordance with an embodiment ; 
[ 0006 ] FIG . 4 is an illustrative example of a process for 
training at least one neural network to determine one or more 
anomalous events in a sequence of images , in accordance 
with an embodiment ; 
[ 0007 ] FIG . 5 is an illustrative example of a process 500 
for detecting one or more anomalous events in a sequence of 
images , in accordance with an embodiment ; 
[ 0008 ] FIG . 6 illustrates an example of parallel processing 
unit ( “ PPU ” ) , in accordance with an embodiment ; 
[ 0009 ] FIG . 7 illustrates an example of a general process 
ing cluster ( “ GPC ” ) , in accordance with one embodiment ; 
[ 0010 ] FIG . 8 illustrates an example of a memory partition 
unit , in accordance with one embodiment ; 
[ 0011 ] FIG . 9 illustrates an example of a streaming multi 
processor , in accordance with one embodiment ; and 
[ 0012 ] FIG . 10 illustrates a computer system in which 
various examples can be implemented , in accordance with 
one embodiment . 

frames in a video ( content of individual frames ) and tem 
poral information ( how frames change over time ) to deter 
mine whether an anomalous event is present in a set of 
images of a video . 
[ 0014 ] In at least one embodiment , at least one neural 
network is trained by using an optical flow of video frames 
( e.g. , sequence of images in video data ) that are fed as input 
into an autoencoder to encode video frames . In at least one 
embodiment , an autoencoder extracts information from indi 
vidual frames . In at least one embodiment , an autoencoder 
is a convolutional autoencoder . In at least one embodiment , 
results provided by autoencoder are then fed into a Long 
Short - Term Memory ( LSTM ) network , which is designed to 
make inferences from series of data by extracting features 
from how frames change over time . In accordance with an 
embodiment , encoded video data is decoded and recon 
structed back to video data and errors associated with 
reconstruction is measured . In at least one embodiment , 
reconstruction error measurements along with features 
extracted from how frames change over time are fed to a 
probabilistic model . In at least one embodiment , a probabi 
listic model is a Gaussian Mixture Model ( GMM ) that 
minimizes reconstruction errors and trained to maximize a 
likelihood such that information ( e.g. , scores ) are generated 
to indicate a high likelihood of normal event behavior . Once 
at least one neural network is trained using optical flow of 
video frames , new sequence of frames or additional video 
frames from cameras are processed through a trained at least 
one neural network . In at least one embodiment , neural 
network includes autoencoder , LSTM , and an probabilistic 
model , where probabilistic model then outputs a likelihood 
of whether new sequence or incoming video frames show an 
anomaly . In at least one embodiment , autoencoder , LSTM , 
and probabilistic model are a part of multiple layers in a 
single neural network that is trained to perform each func 
tion as described above . In at least one embodiment , auto 
encoder , LSTM , and probabilistic model are a part of 
multiple layers in a network of a plurality of individual 
neural networks . 

[ 0015 ] Techniques described herein are utilized to imple 
ment a neural network that is self - supervised to discover 
frequent event patterns obtained from a sequence of images 
captured by multiple static ( e.g. , stationary ) video cameras 
and further trained to detect rare event patterns including 
anomalies in a sequence of images . In at least one embodi 
ment , there are millions of cameras that exist worldwide and 
most of its content is uninteresting to watch ; however , in 
some instances , there may be a need to detect and locate 
rare , infrequent , and / or anomalous patterns from all of this 
content without having to reconfigure static video cameras . 
To detect these rare event ( e.g. , anomalous ) patterns , it 
would be very complex to build supervised models for each 
and every event of interest . That is , detecting objects / events 
in a sequence of images using bounding boxes and adding 
manual rules for tracking , adding temporal learning to 
bounding boxes , and / or using traditional supervised 
approaches all have their shortcomings . For instance , object 
detection ignores complex object - object temporal interac 
tions and assumes perfect detection and tracking . Moreover , 
a supervised approach delivers low performance due to lack 
of sufficient training samples . Hence , creating a neural 
network that is trained using events captured by video 
cameras and further configuring a neural network to have 

DETAILED DESCRIPTION 

[ 0013 ] In at least one embodiment , systems and methods 
implemented in accordance with this disclosure are utilized 
to create an end - to - end neural architecture ( e.g. , neural 
network ) that simultaneously combines self - supervision , 
modeling temporal dynamics of a sequence of images , and 
an ability to learn normal event behavior all in one network . 
In at least one embodiment , a neural network combines 
self - supervision of deep autoencoders with latent space 
modeling of Gaussian mixtures and temporal dynamic mod 
eling of recurrent networks . In at least one embodiment , at 
least one neural network uses both spatial information from 
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self - supervised learning capabilities that is free of tracking 
information for anomaly detection may be advantageous . 
[ 0016 ] In preceding and following descriptions , various 
techniques are described . For purposes of explanation , spe 
cific configurations and details are set forth in order to 
provide a thorough understanding of possible ways of imple 
menting techniques . However , it will also be apparent that 
techniques described below may be practiced in different 
configurations without specific details . Furthermore , well 
known features may be omitted or simplified to avoid 
obscuring techniques being described . 
[ 0017 ] FIG . 1 illustrates a computing environment 100 in 
which a neural architecture is implemented to detect one or 
more anomalous events , in accordance with an embodiment . 
In at least one embodiment , computing environment 100 
comprises a plurality of video cameras 102 that are a part of 
network of cameras used to record and capture video ( e.g. , 
sequence of images ) . In at least one embodiment , video 
cameras 102 are traffic cameras , surveillance cameras , home 
security cameras , digital cameras , etc. In at least one 
embodiment , plurality of video cameras 102 record video 
data , where video data is representative of a stream or a 
sequence of images captured over a period of time . In at least 
one embodiment , video data ( e.g. , a sequence of images ) is 
referred to as input data 104. In at least one embodiment , 
input data 104 is sent from plurality of video cameras 102 to 
a data store 118 for storage . In at least one embodiment , 
formats of input data 104 include .mp4 , .wmv , .avi , .fly , etc. 
In at least one embodiment , formats of input data 104 
includes sequence of images in .JPEG , .GIF , .BMP , .PNG , 
etc. In at least one embodiment , video cameras 102 are 
surveillance cameras that record and feeds traffic images as 
input data 104 to a neural network 108. In at least one 
embodiment , video cameras 102 as described herein 
includes more than one video camera . In accordance with an 
embodiment , video cameras 102 is just a single video 
camera that records video data . 

[ 0018 ] As further shown in FIG . 1 , in at least one embodi 
ment , computing environment 100 includes a data store 120 
that receives input data 104 from one or more video cameras 
102. In at least one embodiment , data store 120 is configured 
to store video data ( e.g. , sequence of images ) , text , metadata , 
training data , training images , training data threads , etc. In 
at least one embodiment , data store 120 is a data storage 
device , a data storage service in connection with a comput 
ing device ( not depicted in FIG . 1 ) , buffer , or a message 
queue . In at least one embodiment , input data 104 is a 
collection of training images that are three - dimensional 
( 3 - D ) , and when obtained by one or more neural networks , 
is used to train one or more neural networks for anomaly 
detection in additional or new video frames that are fed to a 
trained network . In at least one embodiment , input data 104 
is audio data , such that when obtained by one or more neural 
networks , audio data is used to train none or more neural 
networks for speech recognition or speech anomaly detec 
tion purposes . In at least one embodiment , input data 104 is 
stored as a data structure such as an array or a matrix . In at 
least one embodiment , data store 120 is configured to satisfy 
requests for input data 104 by sending input data 104 , via a 
network 106 , either through a wired or wireless network , to 
a neural network 108. In at least one embodiment , neural 
network 108 is also referred to as a deep network or simply 
a network as described herein . 

[ 0019 ] In at least one embodiment , neural network 108 is 
a computing device , a Graphics Processing Unit ( GPU ) or , 
in at least one embodiment , representative of multiple com 
puting devices that comprise multiple GPUs . In at least one 
embodiment , neural network 108 is configured to receive 
input data 104 to detect anomalous events from input data 
104. In at least one embodiment , input data 104 is received 
at neural network 108 from data store 120 , another comput 
ing device , computing service , virtual machine , virtual ser 
vice ( not depicted in FIG . 1 ) outside or inside of computing 
environment 100 , via network 106 . 
[ 0020 ] In at least one embodiment , neural network 108 
comprises at least an autoencoder 110 , a Long Short - Term 
Memory ( LSTM ) 112 , and a probabilistic model 114. In at 
least one embodiment , neural network 108 may be one 
single network where components , layers , or portions of 
network each comprise of autoencoder 110 , LSTM 112 , and 
probabilistic model 114. In at least one embodiment , neural 
network is comprised of multiple neural networks and each 
component of multiple neural networks comprise of auto 
encoder 110 , LSTM 112 , and probabilistic model 114. In at 
least one embodiment , neural network 108 is comprised of 
a plurality of neural networks where autoencoder 110 is a 
first neural network , LSTM 112 is a second neural network , 
and probabilistic model 114 is a third neural network , where 
all three neural networks are separate from one another . 
[ 0021 ] In at least one embodiment , autoencoder 110 
receives input data 104 via network 106. As described 
above , input data 104 may be video data / sequence of images 
obtained from a plurality of video cameras 102. In at least 
one embodiment , autoencoder 110 is a type of neural net 
work designed to learn and apply data encoding in an 
unsupervised manner . In other words , in at least one embodi 
ment , autoencoder 110 learns to generate a representation 
( e.g. , encoding ) for a set of data . In at least one embodiment , 
autoencoder 110 takes input data 104 as its input to infer 
content from individual images in a sequence of images . In 
at least one embodiment , content includes spatial informa 
tion from individual images . In at least one embodiment , 
autoencoder 110 is a component ( e.g. , layer ) of neural 
network 108. In at least one embodiment , autoencoder 110 
makes inferences about objects in frames from input data 
104 ( e.g. , whether a car is shown in several frames ) . In at 
least one embodiment , autoencoder 110 , in itself a neural 
network , has three internal layers : an input layer , a hidden 
( encoding ) layer , and a decoding layer where network is 
trained to reconstruct its input . In at least one embodiment , 
autoencoder 110 maps input data 104 to generate one or 
more latent representations in a feature space from which 
input data 104 can be approximately reproduced from fea 
tures in a reduced feature space . That is , in at least one 
embodiment , autoencoder 110 is used to extract features that 
represent input data 104 in terms of reconstruction . In at 
least one embodiment , autoencoder 110 is a convolutional 
autoencoder . In at least one embodiment , instead of using a 
convolutional autoencoder , a fully connected autoencoder is 
used . 
[ 0022 ] In at least one embodiment , LSTM 112 receives 
results from autoencoder 110. In at least one embodiment , 
LSTM 112 is a component ( e.g. , layer ) of neural network 
108 and results from autoencoder 110 are fed to LSTM 112 
such that LSTM 112 makes inferences from series of data . 
In at least one embodiment , LSTM 112 is a recurrent 
network that processes data to generate information about 
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data . That is , in at least one embodiment , LSTM 112 is a 
recurrent network that learns how individual frames change 
over time and extracts features from how these frames 
change from frame - to - frame . In at least one embodiment , 
individual frames are analyzed using previously trained 
frames . In other words , in at least one embodiment , LSTM 
112 extracts features from previous frames that are remem 
bered ( e.g. , previously trained on ) and combines that with a 
new incoming frame to infer changes in content in new 
incoming frame that is a part of input data 104. As an 
example , new incoming frame is combined with previous 
frames using a sliding scale approach to infer changes in 
new incoming frame . That is , in at least one embodiment , 
new incoming frame is combined with a total of 10 seconds 
of frames previously before new incoming frame to infer 
changes in content of new incoming frame . In another 
example , new incoming frame is combined with a total of 11 
seconds of frames previously before new incoming frame to 
infer changes in content of new incoming frame . In at least 
one embodiment , a sliding scale approach is performed until 
a predetermined amount of seconds ( e.g. , total of 30 sec 
onds ) has been met . In at least one embodiment , changes in 
content includes temporal information about input data 104 . 
That is , in at least one embodiment , results from autoen 
coder 110 is sent to LSTM 112 to make inferences about 
what objects in input data 104 are doing in optical flow of 
frames ( e.g. , determining from frame - to - frame of whether a 
car is travelling in a particular lane / direction ) . 
[ 0023 ] In at least one embodiment , probabilistic model 
114 receives information from LSTM 112. In at least one 
embodiment , probabilistic model 114 is a Gaussian Mixture 
Model ( GMM ) that is a component ( e.g. layer ) of neural 
network 108. In at least one embodiment , probabilistic 
model 114 incorporates random variables and probability 
distributions into a model of an event . In at least one 
embodiment , a GMM is a probabilistic model that assumes 
all data points are generated from a mixture of a finite 
number of Gaussian distributions . In at least one embodi 
ment , probabilistic model 114 ( e.g. , GMM ) is modeling a 
combination of features from latent space and information 
from reconstruction error measurements generated from 
reconstructing input data 104. In at least one embodiment , 
reconstruction error measurements are calculated using rela 
tive Euclidean distance , cosine similarity , and / or Euclidean 
distance between reconstructed input data and input data 
104. In at least one embodiment , probabilistic model 114 , 
when trained , estimates a distribution of normal data . 
[ 0024 ] In at least one embodiment , with respect to using a 
trained probabilistic model 114 for anomaly detection , an 
assumption is all normal data are from some distribution 
( e.g. , previously trained model ) and an anomaly will fall out 
of that distribution . In at least one embodiment , probabilistic 
model 114 provides a notification or indication of an 
anomaly 116 in input data 104 because , from being trained , 
probabilistic model 114 has learned which events are con 
sidered anomalous ( e.g. , different from normal data ) . In at 
least one embodiment , probabilistic model 114 generates an 
anomaly indicator 116 to indicate a likelihood of an anoma 
lous event . 
[ 0025 ] In at least one embodiment , an anomaly indicator 
116 results from probabilistic model 114 when an anomaly 
event is identified . In at least one embodiment , anomaly 
indicator 116 includes information about data different from 
normal data ( e.g. , anomaly event ) from input data 104. In at 

least one embodiment , anor nomaly indicator 116 is a message 
sent to a user with information indicating a likelihood of 
which event from a plurality of events of input data 104 is 
observed to be anomalous . In at least one embodiment , a 
likelihood is a value outside normal distribution ( using 
values probabilistic model was previously trained on ) , it 
would indicate that it is an anomaly event . In at least one 
embodiment , a value is lower than a threshold given that 
probabilistic model , when previously trained , indicates that 
normal events or behavior have high likelihood scores ( or 
scores above a certain threshold ) . In at least one embodi 
ment , anomaly indicator 116 identifies individual frames 
from a sequence of images and tags them with metadata to 
indicate a likelihood of an anomalous event and updates a 
Graphical User Interface ( GUI ) to indicate as such . 
[ 0026 ] FIG . 2 illustrates an environment in which a neural 
architecture ( e.g. , neural network ) 200 is implemented to 
detect one or more anomalous events from input data 202 
using an autoencoder 204 , Long Short - Term Memory 
( LSTM ) 206 , and a probabilistic model 214 in accordance 
with an embodiment . In at least one embodiment , input data 
202 is video data ( e.g. , sequence of images ) obtained from 
one or more cameras . 

[ 0027 ] In at least one embodiment , neural network 200 
includes a convolutional autoencoder 204 , which is a layer 
in neural network 200 , that is designed to generate one or 
more latent representations ( e.g. , low dimensional represen 
tation ) of input data 202 in a feature space . In at least one 
embodiment , latent representations are representations of 
input data 202 that lie in latent space . In at least one 
embodiment , convolutional autoencoder 204 is replaced by 
a fully connected conventional encoder . In at least one 
embodiment , input data 202 is received by convolutional 
autoencoder 204 as input , and convolutional autoencoder 
204 encodes input data 202 to generate encoded data input , 
which can be decoded by a decoder 208 to regenerate 
original input data 202. In at least one embodiment , by 
encoding input data 202 , convolutional autoencoder 204 
infers content from individual images of input data 202. In 
at least one embodiment , content from individual frames 
from a sequence of images is inferred by convolutional 
autoencoder 204 and further fed to a LSTM 206. In at least 
one embodiment , content includes spatial information about 
individual frames . 
[ 0028 ] In at least one embodiment , an LSTM 206 receives 
one or more latent representations of input data 202 from 
convolutional autoencoder 204. In at least one embodiment , 
neural network 200 includes LSTM 206 , which is a layer of 
its network , designed to make inferences from series of data 
( e.g. , a sequence of images ) . In at least one embodiment , 
LSTM 206 extracts features from how frames / images of 
sequence of images change over time . In at least one 
embodiment , LSTM 206 infers changes in content in input 
data 202. In at least one embodiment , changes in content 
includes temporal information about input data 202. In at 
least one embodiment , results from convolutional autoen 
coder 204 is sent to LSTM 206 to make inferences about 
what objects in input data 202 are doing from frame - to 
frame . 
[ 0029 ] In at least one embodiment , a decoder 208 for 
convolutional autoencoder 204 is used by neural network to 
reconstruct 210 one or more latent representations of input 
data 202 resulting from convolutional autoencoder 204. In at 
least one embodiment , reconstruction error 212 for each 
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# Accurately Detected Events Precision Event = # Detected Events 
# Recalled Events 

Recall Event = 
# Ground Truth Events 

input data point is measured . In at least one embodiment , 
reconstruction error measurements 212 is determined by at 
least calculating relative Euclidean distance , Cosine simi 
larity , or Euclidian distance between each data points in 
reconstructed input data and input data 202. In at least one 
embodiment , reconstruction error measurements 212 is fed 
along with results from LSTM 206 , when training neural 
network , to a probabilistic model 214. In at least one 
embodiment , measuring reconstruction errors are not nec 
essary for inferring changes in frames to detect anomalous 
events . 

[ 0030 ] In at least one embodiment , a probabilistic model 
( e.g. , Gaussian Mixture Model ( GMM ) ) 214 is leveraged 
with neural network 200 to determine whether one or more 
anomaly events exists in input data 202. In at least one 
embodiment , probabilistic model is a layer in neural net 
work 200 that is used in connection with other layers of 
network 200. In at least one embodiment , data points 
generated by a GMM are derived from a mixture of Gauss 
ian distributions that has no known parameters . In at least 
one embodiment , parameters for GMMs are derived either 
from maximum a posteriori estimation or an iterative expec 
tation - maximization algorithm from a prior model that was 
trained . In other words , in at least one embodiment , proba 
bilistic model 214 , such as GMM , is previously trained or 
pre - trained using training video data indicative of normal 
behavior . In at least one embodiment , probabilistic model 
214 is previously trained using video data indicating that 
cars are driving one direction only ( e.g. , from East to West ) . 
In at least one embodiment , using inferences about what 
objects in input are dong from frame - to - frame obtained from 
additional or new optical flow of video frames , probabilistic 
model 214 generates an anomaly notification for an event if 
a car is found to be traveling in opposite direction ( e.g. , from 
West to East ) of what model is trained to believe to be 
normal behavior . 
[ 0031 ] FIG . 3 illustrates a diagram 300 of event tracking 
in spatial - temporal space , in accordance with an embodi 
ment . In at least one embodiment , in video spatial - temporal 
space , bounding boxes of annotated anomalous objects 302 
form as three - dimensional ( 3 - D ) volumes . In at least one 
embodiment , each volume is treated as an event and , using 
neural network implemented as described in FIGS . 1-2 , 
volumes from those features are detected to determine 
whether they are anomalous . In other words , in at least one 
embodiment , at least one neural network uses both spatial 
information from frames in a video ( content of individual 
frames ) and temporal information ( how frames change over 
time ) to determine whether an anomalous event is present in 
video based on previously trained models . 
[ 0032 ] In at least one embodiment , a detected event is 
considered for evaluation if its detected duration is greater 
than 10 frames ( 1 second ) in a sequence of images . In at least 
one embodiment , a ground truth event is one object or object 
group that has anomalous behavior , marked in spatial and 
temporal space . In at least one embodiment , an accurately 
detected event is an event that is considered accurately 
detected if its temporal Intersection over Union ( IoU ) with 
ground truth exceeds 50 % of detected duration . In at least 
one embodiment , a recalled event is one or more detected 
events for same ground truth event that will be considered as 
a single recalled event . examples of calculation for precision 
and recall of events detected from a sequence of images is 
shown below : 

[ 0033 ] FIG . 4 is an illustrative example of a process 400 
for training at least one neural network to determine one or 
more anomalous events in a sequence of images , in accor 
dance with an embodiment . In accordance with an embodi 
ment , video data is received by at least one neural network 
from one or more cameras 402. In at least one embodiment , 
one or more cameras comprises traffic cameras at an inter 
action where individual frames are captured indicating nor 
mal traffic flow at intersection . In at least one embodiment , 
one or more video cameras comprise of traffic cameras or 
surveillance camera that continuously record video data ) 
sequence of images of a freeway , highway , pedestrian walk 
way , and like . In at least one embodiment , individual frames 
( e.g. , individual images ) from a sequence of frames ( e.g. , 
sequence of images ) are then fed from one or more cameras 
to an encoder such as a convolutional autoencoder . In at least 
one embodiment , at least one neural network includes a 
convolutional autoencoder that is configured to use indi 
vidual frames and generate latent representations of frames 
402. In accordance with an embodiment , at least one neural 
network is used to infer content from individual images in a 
sequence of images obtained by one or more traffic cameras 
at intersection . A sequence of images may be fed to at least 
one neural network where at least one neural network is 
trained . 
[ 0034 ] In at least one embodiment , FIG . 4 further 
describes use of a Long Short - Term Memory ( LSTM ) to 
train at least one neural network , where LSTM is configured 
to extract features from latent representations provided by 
convolutional autoencoder 406. In at least one embodiment , 
at least one neural network uses LSTM to infer changes in 
content in a sequence of images . As described in connection 
with FIGS . 1-2 , in at least one embodiment , results from 
convolutional autoencoder are fed to a LSTM such that 
LSTM infers changes in content in sequence of images . In 
at least one embodiment , LSTM is designed to make infer 
ence from series of data ( e.g. , extracts features from how 
frames change over time ) . In at least one embodiment , 
LSTM is a separate layer of neural network from autoen 
coder but still a part of same neural network . In at least one 
embodiment , results from LSTM and reconstruction error 
measurements when reconstructing images are then fed into 
a probabilistic model ( e.g. , Gaussian Mixture Model ) to 
train GMM . In at least one embodiment , a decoder is fed 
with input data , such as sequence of images , to train GMM 
and further providing input data with information about 
images to configure GMM 408. In at least one embodiment , 
GMM is trained such that frames in sequence of images 
received from one or more cameras are associated with 
information ( e.g. , metadata , tags ) based at least in part on 
changes inferred by LSTM in content in sequence of images . 
In at least one embodiment , at least one neural network is 
trained by associating and / or providing metadata indicating 
that each of frames in video data processed are considered 
normal behavior . 
[ 0035 ] FIG . 5 is an illustrative example of a process 500 
for detecting one or more anomalous events in a sequence of 
images , in accordance with an embodiment . In at least one 
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embodiment , process 500 utilizes trained neural network as 
described in FIG . 4 to detect one or more anomalous events 
in a sequence of images that are captured by one or more 
cameras . In at least one embodiment and as described in 
connection with FIG . 4 , video data is received by at least one 
neural network from one or more cameras 502. In at least 
one embodiment , one or more cameras comprises traffic 
cameras , surveillance cameras , digital cameras , etc. In at 
least one embodiment , individual frames from video data are 
then fed to a autoencoder such as a convolutional autoen 
coder . In at least one embodiment , at least one neural 
network includes a convolutional autoencoder that is con 
figured to use individual frames and generate latent repre 
sentations of frames 502. In accordance with an embodi 
ment , at least one neural network is used to infer content 
from individual frames ( e.g. individual images ) in a 
sequence of frames ( e.g. , sequence of images ) obtained by 
one or more traffic cameras . 

[ 0036 ] In at least one embodiment , FIG . 5 further 
describes using a Long Short - Term Memory ( LSTM ) to 
train at least one neural network , where LSTM is configured 
to extract features from latent representations provided by 
convolutional autoencoder 506. In at least one embodiment , 
at least one neural network uses LSTM to infer changes in 
content in sequence of images . In at least one embodiment , 
LSTM is designed to make inference from series of data 
( e.g. , extracts features from how frames change over time ) . 
In at least one embodiment , results from LSTM are then fed 
into a probabilistic model ( e.g. , Gaussian Mixture Model ) to 
result in likelihood ( e.g. , probability ) scores for sequence of 
images 508. In at least one embodiment , GMM , based on its 
previous training , identifies frames in video data received 
from one or more cameras that are anomalous . In at least one 
embodiment , GMM generates likelihood scores based at 
least in part on information from changes inferred by LSTM 
in content in sequence of images . In at least one embodi 
ment , likelihood scores are indicative of whether an 
anomaly exists 510. In at least one embodiment , if an 
anomaly is detected , an anomaly indicator is sent to a user 
or to a separate computing system 512. In at least one 
embodiment , GMM outputs an anomaly indicator 512 with 
a message that allows a user to identify which event or 
events have been deemed as anomalous ( e.g. , data that is 
different than normal data ) . In at least one embodiment , an 
anomaly indicator is a message generated and transmitted to 
a user associated with a separate computing device . In at 
least one embodiment , a graphical user interface ( GUI ) is 
updated to display an anomaly indicator message . In at least 
one embodiment , if likelihood scores associated with an 
anomaly event is outside normal distribution that was deter 
mined when GMM was previously trained using a collection 
of images then no anomaly indicator is generated , and 
process 500 loops back to begin again and processes new 
frames . In at least one embodiment , a message indicating 
that no anomaly detected and images are free of anomaly 
events is generated . In at least one embodiment , process 500 
is a recursive process until all images or video data has been 
processed through neural network . 
[ 0037 ] As an example to describe process of FIG . 5 , video 
data is obtained from traffic cameras . In at least one embodi 
ment , a convolutional autoencoder is used to make infer 
ences about objects in images / frames ( e.g. , a car is shown in 
several frames ) . In at least one embodiment , LSTM then 
uses results from convolutional autoencoder to make infer 

ences about what those objects are doing from frame - to 
frame ( e.g. , car is travelling in a particular lane / direction ) . In 
at least one embodiment , probabilistic model ( e.g. , GMM ) 
indicates whether objects are being anomalous . In at least 
one embodiment , if a car is travelling in a wrong direction , 
GMM would indicate an anomaly because , from being 
trained , it would learn that cars travel in opposite direction . 
In at least one embodiment , if a car is stuck in an intersection 
for a specific period of time , GMM would indicate an 
anomaly because , from being trained , it would learn that 
cars don't stay in an intersection for longer than ten seconds . 
As indicated above , in at least one embodiment , speech data 
or text data instead of video data is used to identify anoma 
lous speech or text . 
[ 0038 ] FIG . 6 illustrates a parallel processing unit ( “ PPU ” ) 
600 , in accordance with one embodiment . In at least one 
embodiment , PPU 600 is configured with machine - readable 
code that , if executed by PPU , causes PPU to perform some 
or all of processes and techniques described throughout this 
disclosure . In at least one embodiment , PPU 600 is a 
multi - threaded processor that is implemented on one or 
more integrated circuit devices and that utilizes multithread 
ing as a latency - hiding technique designed to process com 
puter - readable instructions ( also referred to as machine 
readable instructions or simply instructions ) on multiple 
threads in parallel . In at least one embodiment , a thread 
refers to a thread of execution and is an instantiation of a set 
of instructions configured to be executed by PPU 600. In at 
least one embodiment , PPU 600 is a graphics processing unit 
( “ GPU ' ) configured to implement a graphics rendering 
pipeline for processing three - dimensional ( " 3D " ) graphics 
data in order to generate two - dimensional ( “ 2D ” ) image data 
for display on a display device such as a liquid crystal 
display ( LCD ) device . In at least one embodiment , PPU 600 
is utilized to perform computations such as linear algebra 
operations and machine learning operations . FIG . 5 illus 
trates an example parallel processor for illustrative purposes 
only and should be construed as a non - limiting example of 
processor architectures contemplated within a scope of this 
disclosure and that any suitable processor may be employed 
to supplement and / or substitute . 
[ 0039 ] In at least one embodiment , one or more PPUs are 
configured to accelerate High Performance Computing 
( " HPC ” ) , data center , and machine learning applications . In 
at least one embodiment , PPU 600 is configured to accel 
erate deep learning systems and applications including a 
following of non - limiting examples : autonomous vehicle 
platforms , deep learning , high - accuracy speech , image , text 
recognition systems , intelligent video analytics , molecular 
simulations , drug discovery , disease dia weather fore 
casting , big data analytics , astronomy , molecular dynamics 
simulation , financial modeling , robotics , factory automation , 
real - time language translation , online search optimizations , 
and personalized user recommendations , and more . 
[ 0040 ] In at least one embodiment , PPU 600 includes an 
Input / Output ( “ I / O ” ) unit 606 , a front - end unit 610 , a 
scheduler unit 612 , a work distribution unit 614 , a hub 616 , 
a crossbar ( “ Xbar ” ) 620 , one or more general processing 
clusters ( “ GPCs ” ) 618 , and one or more partition units 622 . 
In at least one embodiment , PPU 600 is connected to a host 
processor or other PPUs 600 via one or more high - speed 
GPU interconnects 608. In at least one embodiment , PPU 
600 is connected to a host processor or other peripheral 
devices via an interconnect 602. In at least one embodiment , 
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PPU 600 is connected to a local memory comprising one or 
more memory devices 604. In at least one embodiment , local 
memory comprises one or more dynamic random access 
memory ( “ DRAM ” ) devices . In at least one embodiment , 
one or more DRAM devices are configured and / or config 
urable as high - bandwidth memory ( " HBM " ) subsystems , 
with multiple DRAM dies stacked within each device . 
[ 0041 ] High - speed GPU interconnect 608 may refer to a 
wire - based multi - lane communications link that is used by 
systems to scale and include one or more PPUS 600 com 
bined with one or more CPUs , supports cache coherence 
between PPUS 600 and CPUs , and CPU mastering . In at 
least one embodiment , data and / or commands are transmit 
ted by high - speed GPU interconnect 608 through hub 616 
to / from other units of PPU 600 such as one or more copy 
engines , video encoders , video decoders , power manage 
ment units , and other components which may not be explic 
itly illustrated in FIG . 5 . 
[ 0042 ] In at least one embodiment , I / O unit 606 is con 
figured to transmit and receive communications ( e.g. , com 
mands , data ) from a host processor ( not illustrated in FIG . 5 ) 
over system bus 602. In at least one embodiment , 1/0 unit 
606 communicates with host processor directly via system 
bus 602 or through one or more intermediate devices such as 
a memory bridge . In at least one embodiment , 1/0 unit 606 
may communicate with one or more other processors , such 
as one or more of PPUs 600 via system bus 602. In at least 
one embodiment , I / O unit 606 implements a Peripheral 
Component Interconnect Express ( “ PCIe ” ) interface for 
communications over a PCIe bus . In at least one embodi 
ment , I / O unit 606 implements interfaces for communicating 
with external devices . 
[ 0043 ] In at least one embodiment , I / O unit 606 decodes 
packets received via system bus 602. In at least one embodi 
ment , at least some packets represent commands configured 
to cause PPU 600 to perform various operations . In at least 
one embodiment , I / O unit 606 transmits decoded commands 
to various other units of PPU 600 as specified by commands . 
In at least one embodiment , commands are transmitted to 
front - end unit 610 and / or transmitted to hub 616 or other 
units of PPU 600 such as one or more copy engines , a video 
encoder , a video decoder , a power management unit , etc. 
( not explicitly illustrated in FIG . 5 ) . In at least one embodi 
ment , I / O unit 606 is configured to route communications 
between and among various logical units of PPU 600 . 
[ 0044 ] In at least one embodiment , a program executed by 
host processor encodes a command stream in a buffer that 
provides workloads to PPU 600 for processing . In at least 
one embodiment , a workload comprises instructions and 
data to be processed by those instruc ons . In at least one 
embodiment , buffer is a region in a memory that is acces 
sible ( e.g. , read / write ) by both host processor and PPU 
600host interface unit may be configured to access buffer 
in a system memory connected to system bus 602 via 
memory requests transmitted over system bus 602 by I / O 
unit 606. In at least one embodiment , host processor writes 
command stream to buffer and then transmits a pointer to 
start of command stream to PPU 600 such that front - end unit 
610 receives pointers to one or more command streams and 
manages one or more streams , reading commands from 
streams and forwarding commands to various units of PPU 
600 . 
[ 0045 ] In at least one embodiment , front - end unit 610 is 
coupled to a scheduler unit 612 that configures various 

GPCs 618 to process tasks defined by one or more streams . 
In at least one embodiment , scheduler unit 612 is configured 
to track state information related to various tasks managed 
by scheduler unit 612 where state information may indicate 
which GPC 618 a task is assigned to , whether a task is active 
or inactive , a priority level associated with task , and so forth . 
In at least one embodiment , scheduler unit 612 manages 
execution of a plurality of tasks on one or more GPCs 618 . 
[ 0046 ] In at least one embodiment , scheduler unit 612 is 
coupled to a work distribution unit 614 that is configured to 
dispatch tasks for execution on GPCs 618. In at least one 
embodiment , work distribution unit 614 tracks a number of 
scheduled tasks received from scheduler unit 612 and work 
distribution unit 614 manages a pending task pool and an 
active task pool for each of GPCs 618. In at least one 
embodiment , pending task pool comprises a number of slots 
( e.g. , 32 slots ) that contain tasks assigned to be processed by 
a particular GPC 618 ; active task pool may comprise a 
number of slots ( e.g. , 4 slots ) for tasks that are actively being 
processed by GPCs 618 such that as a GPC 618 completes 
execution of a task , that task is evicted from active task pool 
for GPC 618 and one of other tasks from pending task pool 
is selected and scheduled for execution on GPC 618. In at 
least one embodiment , if an active task is idle on GPC 618 , 
such as while waiting for a data dependency to be resolved , 
then active task is evicted from GPC 618 and returned to 
pending task pool while another task in pending task pool is 
selected and scheduled for execution on GPC 618 . 
[ 0047 ] In at least one embodiment , work distribution unit 
614 communicates with one or more GPCs 618 via XBar 
620. In at least one embodiment , XBar 620 is an intercon 
nect network that couples many of units of PPU 600 to other 
units of PPU 600 and can be configured to couple work 
distribution unit 614 to a particular GPC 618. Although not 
shown explicitly , one or more other units of PPU 600 may 
also be connected to XBar 620 via hub 616 . 
[ 0048 ] Tasks are managed by scheduler unit 612 and 
dispatched to a GPC 618 by work distribution unit 614. GPC 
618 is configured to process task and generate results . 
Results may be consumed by other tasks within GPC 618 , 
routed to a different GPC 618 via XBar 620 , or stored in 
memory 604. Results can be written to memory 604 via 
partition units 622 , which implement a memory interface for 
reading and writing data to / from memory 604. Results can 
be transmitted to another PPU 604 or CPU via high - speed 
GPU interconnect 608. In at least one embodiment , PPU 600 
includes a number of partition units 622 that is equal to 
number of separate and distinct memory devices 604 
coupled to PPU 600. A partition unit 622 will be described 
in more detail below in conjunction with FIG . 7 . 
[ 0049 ] In at least one embodiment , a host processor 
executes a driver kernel that implements an application 
programming interface ( “ API ” ) that enables one or more 
applications executing on host processor to schedule opera 
tions for execution on PPU 600. In at least one embodiment , 
multiple compute applications are simultaneously executed 
by PPU 600 and PPU 600 provides isolation , quality of 
service ( " QoS ” ) , and independent address spaces for mul 
tiple compute applications . In at least one embodiment , an 
application generates instructions ( e.g. , in form of API calls ) 
that cause driver kernel to generate one or more tasks for 
execution by PPU 600 and driver kernel outputs tasks to one 
or more streams being processed by PPU 600. In at least one 
embodiment , each task comprises one or more groups of 
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related threads , which may be referred to as a warp . In at 
least one embodiment , a warp comprises a plurality of 
related threads ( e.g. , 32 threads ) that can be executed in 
parallel . In at least one embodiment , cooperating threads can 
refer to a plurality of threads including instructions to 
perform a task and that exchange data through shared 
memory . Threads and cooperating threads are described in 
more detail , in accordance with one embodiment , in con 
junction with FIG . 7A . 
[ 0050 ] FIG . 7 illustrates a GPC 700 such as GPC illus 
trated of PPU 600 of FIG . 6 , in accordance with one 
embodiment . In at least one embodiment , each GPC 700 
includes a number of hardware units for processing tasks 
and each GPC 700 includes a pipeline manager 702 , 
pre - raster operations unit ( “ PROP ” ) 704 , a raster engine 
708 , a work distribution crossbar ( “ WDX ” ) 716 , a memory 
management unit ( “ MMU ” ) 718 , one or more Data Process 
ing Clusters ( “ DPCs ” ) 706 , and any suitable combination of 
parts . It will be appreciated that GPC 700 of FIG . 6 may 
include other hardware units in lieu of or in addition to units 
shown in FIG . 7 . 
[ 0051 ] In at least one embodiment , operation of GPC 700 
is controlled by pipeline manager 702. Pipeline manager 702 
manages configuration of one or more DPCs 706 for pro 
cessing tasks allocated to GPC 700. In at least one embodi 
ment , pipeline manager 702 configures at least one of one or 
more DPCs 706 to implement at least a portion of a graphics 
rendering pipeline . In at least one embodiment , a DPC 706 
is configured to execute a vertex shader program on pro 
grammable streaming multiprocessor ( " SM " ) 714. Pipeline 
manager 702 is configured to route packets received from a 
work distribution to appropriate logical units within GPC 
700 , in at least one embodiment , and some packets may be 
routed to fixed function hardware units in PROP 704 and / or 
raster engine 708 while other packets may be routed to DPCs 
706 for processing by primitive engine 712 or SM 714. In at 
least one embodiment , pipeline manager 702 configures at 
least one of one or more DPCs 706 to implement a neural 
network model and / or a computing pipeline . 
[ 0052 ] PROP unit 704 is configured , in at least one 
embodiment , to route data generated by raster engine 708 
and DPCs 706 to a Raster Operations ( “ ROP ” ) unit in 
memory partition unit , described in more detail above . In at 
least one embodiment , PROP unit 704 is configured to 
perform optimizations for color blending , organize pixel 
data , perform address translations , and more . raster engine 
708 includes a number of fixed function hardware units 
configured to perform various raster operations , in at least 
one embodiment , and raster engine 708 includes a setup 
engine , a coarse raster engine , a culling engine , a clipping 
engine , a fine raster engine , a tile coalescing engine , and any 
suitable combination thereof . A setup engine , in at least one 
embodiment , receives transformed vertices and generates 
plane equations associated with geometric primitive defined 
by vertices ; plane equations are transmitted to a coarse raster 
engine to generate coverage information ( e.g. , an x , y 
coverage mask for a tile ) for a primitive ; an output of a 
coarse raster engine is transmitted to a culling engine where 
fragments associated with a primitive that fail a z - test are 
culled , and transmitted to a clipping engine where fragments 
lying outside a viewing frustum are clipped . In at least one 
embodiment , fragments that survive clipping and culling are 
passed to a fine raster engine to generate attributes for pixel 
fragments based on plane equations generated by setup 

engine . In at least one embodiment , output of raster engine 
708 comprises fragments to be processed by any suitable 
entity such as by a fragment shader implemented within a 
DPC 706 . 
[ 0053 ] In at least one embodiment , each DPC 706 
included in GPC 700 comprises an M - Pipe Controller 
( “ MPC ” ) 710 ; a primitive engine 712 ; one or more SMs 714 ; 
and any suitable combination thereof . In at least one 
embodiment , MPC 710 controls operation of DPC 706 , 
routing packets received from pipeline manager 702 to 
appropriate units in DPC 706. In at least one embodiment , 
packets associated with a vertex are routed to primitive 
engine 712 , which is configured to fetch vertex attributes 
associated with vertex from memory ; in contrast , packets 
associated with a shader program may be transmitted to SM 
714 . 
[ 0054 ] In at least one embodiment , SM 714 comprises a 
programmable streaming processor that is configured to 
process tasks represented by a number of threads . In at least 
one embodiment , SM 714 is multi - threaded and configured 
to execute a plurality of threads ( e.g. , 32 threads ) from a 
particular group of threads concurrently and implements a 
SIMD ( Single - Instruction , Multiple - Data ) architecture 
where each thread in a group of threads ( e.g. , a warp ) is 
configured to process a different set of data based on same 
set of instructions . In at least one embodiment , all threads in 
group of threads execute same instructions . In at least one 
embodiment , SM 714 implements a SIMT ( Single - Instruc 
tion , Multiple Thread ) architecture wherein each thread in a 
group of threads is configured to process a different set of 
data based on same set of instructions , but where individual 
threads in group of threads are allowed to diverge during 
execution . In at least one embodiment , a program counter , 
call stack , and execution state is maintained for each warp , 
enabling concurrency between warps and serial execution 
within warps when threads within warp diverge . In another 
embodiment , a program counter , call stack , and execution 
state is maintained for each individual thread , enabling equal 
concurrency between all threads , within and between warps . 
In at least one embodiment , execution state is maintained for 
each individual thread and threads executing same instruc 
tions may be converged and executed in parallel for better 
efficiency . In at least one embodiment , SM 714 is described 
in more detail below . 
[ 0055 ] In at least one embodiment , MMU 718 provides an 
interface between GPC 700 and memory partition unit and 
MMU 718 provides translation of virtual addresses into 
physical addresses , memory protection , and arbitration of 
memory requests . In at least one embodiment , MMU 718 
provides one or more translation lookaside buffers ( “ TLBs ” ) 
for performing translation of virtual addresses into physical 
addresses in memory . 
[ 0056 ] FIG . 8 illustrates a memory partition unit of a PPU , 
in accordance with one embodiment . In at least one embodi 
ment , memory partition unit 800 includes a Raster Opera 
tions ( “ ROP ” ) unit 802 ; a level two ( “ L2 ” ) cache 804 ; a 
memory interface 806 ; and any suitable combination 
thereof . Memory interface 806 is coupled to memory . 
Memory interface 806 may implement 32 , 64 , 128 , 1024 - bit 
data buses , or like , for high - speed data transfer . In at least 
one embodiment , PPU incorporates U memory interfaces 
806 , one memory interface 806 per pair of partition units 
800 , where each pair of partition units 800 is connected to 
a corresponding memory device . For example , PPU may be 
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connected to up to Y memory devices , such as high band 
width memory stacks or graphics double - data - rate , version 
5 , synchronous dynamic random access memory ( “ GDDR5 
SDRAM ” ) . 
[ 0057 ] In at least one embodiment , memory interface 806 
implements an HBM2 memory interface and Y equals half 
U. In at least one embodiment , HBM2 memory stacks are 
located on same physical package as PPU , providing sub 
stantial power and area savings compared with conventional 
GDDR5 SDRAM systems . In at least one embodiment , each 
HBM2 stack includes four memory dies and Y equals 4 , with 
HBM2 stack including two 128 - bit channels per die for a 
total of 8 channels and a data bus width of 1024 bits . 
[ 0058 ] In at least one embodiment , memory supports 
Single - Error Correcting Double - Error Detecting 
( “ SECDED " ) Error Correction Code ( “ ECC ” ) to protect 
data . ECC provides higher reliability for compute applica 
tions that are sensitive to data corruption . Reliability is 
especially important in large - scale cluster computing envi 
ronments where PPUs process very large datasets and / or run 
applications for extended periods . 
[ 0059 ] In at least one embodiment , PPU implements a 
multi - level memory hierarchy . In at least one embodiment , 
memory partition unit 800 supports a unified memory to 
provide a single unified virtual address space for CPU and 
PPU memory , enabling data sharing between virtual 
memory systems . In at least one embodiment frequency of 
accesses by a PPU to memory located on other processors is 
trace to ensure that memory pages are moved to physical 
memory of PPU that is accessing pages more frequently . In 
at least one embodiment , high - speed GPU interconnect 608 
supports address translation services allowing PPU to 
directly access a CPU's page tables and providing full 
access to CPU memory by PPU . 
[ 0060 ] In at least one embodiment , copy engines transfer 
data between multiple PPUs or between PPUs and CPUs . In 
at least one embodiment , copy engines can generate page 
faults for addresses that are not mapped into page tables and 
memory partition unit 800 then services page faults , map 
ping addresses into page table , after which copy engine 
performs transfer . In at least one embodiment , memory is 
pinned ( e.g. , non - pageable ) for multiple copy engine opera 
tions between multiple processors , substantially reducing 
available memory . In at least one embodiment , with hard 
ware page faulting , addresses can be passed to copy engines 
without regard as to whether memory pages are resident , and 
copy process is transparent . 
[ 0061 ] Data from memory of FIG . 6 or other system 
memory is fetched by memory partition unit 800 and stored 
in L2 cache 804 , which is located on - chip and is shared 
between various GPCs , in accordance with one embodiment . 
Each memory partition unit 800 , in at least one embodiment , 
includes at least a portion of L2 cache 760 associated with 
a corresponding memory device . In at least one embodi 
ment , lower level caches are implemented in various units 
within GPCs . In at least one embodiment , each of SMS 840 
may implement a level one ( “ L1 ” ) cache wherein L1 cache 
is private memory that is dedicated to a particular SM 840 
and data from L2 cache 804 is fetched and stored in each of 
L1 caches for processing in functional units of SMs 840. In 
at least one embodiment , L2 cache 804 is coupled to 
memory interface 806 and XBar 620 . 
[ 0062 ] ROP unit 802 performs graphics raster operations 
related to pixel color , such as color compression , pixel 

blending , and more , in at least one embodiment . ROP unit 
850 , in at least one embodiment , implements depth testing in 
conjunction with raster engine 825 , receiving a depth for a 
sample location associated with a pixel fragment from 
culling engine of raster engine 825. In at least one embodi 
ment , depth is tested against a corresponding depth in a 
depth buffer for a sample location associated with fragment . 
In at least one embodiment , if fragment passes depth test for 
sample location , then ROP unit 802 updates depth buffer and 
transmits a result of depth test to raster engine 825. It will 
be appreciated that number of partition units 800 may be 
different than number of GPCs and , therefore , each ROP unit 
802 can , in at least one embodiment , be coupled to each of 
GPCs . In at least one embodiment , ROP unit 802 tracks 
packets received from different GPCs and determines which 
that a result generated by ROP unit 802 is routed to through 
XBar . 

[ 0063 ] FIG . 9 illustrates a streaming multi - processor such 
as streaming multi - processor of FIG . 7 , in accordance with 
one embodiment . In at least one embodiment , SM 900 
includes : an instruction cache 902 ; one or more scheduler 
units 904 ; a register file 908 ; one or more processing cores 
910 ; one or more special function units ( “ SFUs ” ) 912 ; one 
or more load / store units ( “ LSUs ” ) 914 ; an interconnect 
network 916 ; a shared memory / L1 cache 918 ; and any 
suitable combination thereof . In at least one embodiment , 
work distribution unit dispatches tasks for execution on 
GPCs of PPU and each task is allocated to a particular DPC 
within a GPC and , if task is associated with a shader 
program , task is allocated to an SM 900. In at least one 
embodiment , scheduler unit 904 receives tasks from work 
distribution unit and manages instruction scheduling for one 
or more thread blocks assigned to SM 900. In at least one 
embodiment , scheduler unit 904 schedules thread blocks for 
execution as warps of parallel threads , wherein each thread 
block is allocated at least one warp . In at least one embodi 
ment , each warp executes threads . In at least one embodi 
ment , scheduler unit 904 manages a plurality of different 
thread blocks , allocating warps to different thread blocks and 
then dispatching instructions from plurality of different 
cooperative groups to various functional units ( e.g. , cores 
910 , SFUS 912 , and LSUS 914 ) during each clock cycle . 
[ 0064 ] Cooperative Groups may refer to a programming 
model for organizing groups of communicating threads that 
allows developers to express granularity at which threads are 
communicating , enabling expression of richer , more effi 
cient parallel decompositions . In at least one embodiment , 
cooperative launch APIs support synchronization amongst 
thread blocks for execution of parallel algorithms . In at least 
one embodiment , applications of conventional programming 
models provide a single , simple construct for synchronizing 
cooperating threads : a barrier across all threads of a thread 
block ( e.g. , syncthreads ( ) function ) . However , programmers 
would often like to define groups of threads at smaller than 
thread block granularities and synchronize within defined 
groups to enable greater performance , design flexibility , and 
software reuse in form of collective group - wide function 
interfaces . Cooperative Groups enables programmers to 
define groups of threads explicitly at sub - block ( e.g. , as 
small as a single thread ) and multi - block granularities , and 
to perform collective operations such as synchronization on 
threads in a cooperative group . programming model sup 
ports clean composition across software boundaries , so that 
libraries and utility functions can synchronize safely within 
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their local context without having to make assumptions 
about convergence . Cooperative Groups primitives enable 
new patterns of cooperative parallelism , including producer 
consumer parallelism , opportunistic parallelism , and global 
synchronization across an entire grid of thread blocks . 
[ 0065 ] In at least one embodiment , a dispatch unit 906 is 
configured to transmit instructions to one or more of func 
tional units and scheduler unit 904 includes two dispatch 
units 906 that enable two different instructions from same 
warp to be dispatched during each clock cycle . In at least one 
embodiment , each scheduler unit 904 includes a single 
dispatch unit 906 or additional dispatch units 906 . 
[ 0066 ] Each SM 900 , in at least one embodiment , includes 
a register file 908 that provides a set of registers for 
functional units of SM 900. In at least one embodiment , 
register file 908 is divided between each of functional units 
such that each functional unit is allocated a dedicated 
portion of register file 908. In at least one embodiment , 
register file 908 is divided between different warps being 
executed by SM 900 and register file 908 provides tempo 
rary storage for operands connected to data paths of func 
tional units . In at least one embodiment , each SM 900 
comprises a plurality of L processing cores 910. In at least 
one embodiment , SM 900 includes a large number ( e.g. , 128 
or more ) of distinct processing cores 910. Each core 910 , in 
at least one embodiment , includes a fully - pipelined , single 
precision , double - precision , and / or mixed precision process 
ing unit that includes a floating point arithmetic logic unit 
and an integer arithmetic logic unit . In at least one embodi 
ment , floating point arithmetic logic units implement IEEE 
754-2008 standard for floating point arithmetic . In at least 
one embodiment , cores 910 include 64 single - precision 
( 32 - bit ) floating point cores , 64 integer cores , 32 double 
precision ( 64 - bit ) floating point cores , and 8 tensor cores . 
[ 0067 ] Tensor cores are configured to perform matrix 
operations in accordance with an embodiment . In at least 
one embodiment , one or more tensor cores are included in 
cores 910. In at least one embodiment , tensor cores are 
configured to perform deep learning matrix arithmetic , such 
as convolution operations for neural network training and 
inferencing . In at least one embodiment , each tensor core 
operates on a 4x4 matrix and performs a matrix multiply and 
accumulate operation D = AxB + C , where A , B , C , and D are 
4x4 matrices . 

[ 0068 ] In at least one embodiment , matrix multiply inputs 
A and B are 16 - bit floating point matrices and accumulation 
matrices C and D are 16 - bit floating point or 32 - bit floating 
point matrices . In at least one embodiment , tensor cores 
operate on 16 - bit floating point input data with 32 - bit 
floating point accumulation . In at least one embodiment , 
16 - bit floating point multiply requires 64 operations and 
results in a full precision product that is then accumulated 
using 32 - bit floating point addition with other intermediate 
products for a 4x4x4 matrix multiply . Tensor cores are used 
to perform much larger two - dimensional or higher dimen 
sional matrix operations , built up from these smaller ele 
ments , in at least one embodiment . In at least one embodi 
ment , an API , such as CUDA 9 C ++ API , exposes 
specialized matrix load , matrix multiply and accumulate , 
and matrix store operations to efficiently use tensor cores 
from a CUDA - C ++ program . In at least one embodiment , at 
CUDA level , warp - level interface assumes 16x16 size 
matrices spanning all 32 threads of warp . 

[ 0069 ] In at least one embodiment , each SM 900 com 
prises M SFUs 912 that perform special functions ( e.g. , 
attribute evaluation , reciprocal square root , and like ) . In at 
least one embodiment , SFUs 912 include a tree traversal unit 
configured to traverse a hierarchical tree data structure . In at 
least one embodiment , SFUS 912 include texture unit con 
figured to perform texture map filtering operations . In at 
least one embodiment , texture units are configured to load 
texture maps ( e.g. , a 2D array of texels ) from memory and 
sample texture maps to produce sampled texture values for 
use in shader programs executed by SM 900. In at least one 
embodiment , texture maps are stored in shared memory / L1 
cache . texture units implement texture operations such as 
filtering operations using mip - maps ( e.g. , texture maps of 
varying levels of detail ) , in accordance with one embodi 
ment . In at least one embodiment , each SM 900 includes two 
texture units . 
[ 0070 ] Each SM 900 comprises N LSUs 854 that imple 
ment load and store operations between shared memory / L1 
cache 806 and register file 908 , in at least one embodiment . 
Each SM 900 includes an interconnect network 816 that 
connects each of functional units to register file 908 and 
LSU 914 to register file 908 , shared memory / L1 cache 918 
in at least one embodiment . In at least one embodiment , 
interconnect network 916 is a crossbar that can be config 
ured to connect any of functional units to any of registers in 
register file 908 and connect LSUS 914 to register file and 
memory locations in shared memory / L1 cache 918 . 
[ 0071 ] Shared memory / L1 cache 918 is an array of on 
chip memory that allows for data storage and communica 
tion between SM 900 and primitive engine and between 
threads in SM 900 in at least one embodiment . In at least one 
embodiment , shared memory / L1 cache 918 comprises 128 
KB of storage capacity and is in path from SM 900 to 
partition unit . shared memory / L1 cache 918 , in at least one 
embodiment , is used to cache reads and writes . One or more 
of shared memory / L1 cache 918 , L2 cache , and memory are 
backing stores . 
[ 0072 ] Combining data cache and shared memory func 
tionality into a single memory block provides improved 
performance for both types of memory accesses , in at least 
one embodiment . capacity , in at least one embodiment , is 
used or is usable as a cache by programs that do not use 
shared memory , such as if shared memory is configured to 
use half of capacity , texture and load / store operations can use remaining capacity . Integration within shared memory / 
L1 cache 918 enables shared memory / L1 cache 918 to 
function as a high - throughput conduit for streaming data 
while simultaneously providing high - bandwidth and low 
latency access to frequently reused data , in accordance with 
an embodiment . When configured for general purpose par 
allel computation , a simpler configuration can be used 
compared with graphics processing . In at least one embodi 
ment , fixed function graphics processing units are bypassed , 
creating a much simpler programming model . In general 
purpose parallel computation configuration , work distrubu 
tion unit assigns and distributes blocks of threads directly to 
DPCs , in at least one embodiment . threads in a block execute 
same program , using a unique thread ID in calculation to 
ensure each thread generates unique results , using SM 900 
to execute program and perform calculations , shared 
memory / L1 cache 918 to communicate between threads , and 
LSU 914 to read and write global memory through shared 
memory / L1 cache 918 and memory partition unit , in accor 
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dance with one embodiment . In at least one embodiment , when configured for general purpose parallel computation , 
SM 900 writes commands that scheduler unit can use to 
launch new work on DPCs . 
[ 0073 ] In at least one embodiment , PPU is included in or 
coupled to a desktop computer , a laptop computer , a tablet 
computer , servers , supercomputers , a smart - phone ( e.g. , a 
wireless , hand - held device ) , personal digital assistant 
( “ PDA ” ) , a digital camera , a vehicle , a head mounted 
display , a hand - held electronic device , and more . In at least 
one embodiment , PPU is embodied on a single semicon 
ductor substrate . In at least one embodiment , PPU is 
included in a system - on - a - chip ( “ SOC ” ) along with one or 
more other devices such as additional PPUs , memory , a 
reduced instruction set computer ( “ RISC ” ) CPU , a memory 
management unit ( “ MMU " ) , a digital - to - analog converter 
( “ DAC ” ) , and like . 
[ 0074 ] In at least one embodiment , PPU may be included 
on a graphics card that includes one or more memory 
devices . graphics card may be configured to interface with 
a PCIe slot on a motherboard of a desktop computer . In yet 
another embodiment , PPU may be an integrate graphics 
processing unit ( “ iGPU ” ) included in chipset of mother 
board . 
[ 0075 ] FIG . 10 illustrates a computer system 1000 in 
which various architecture and / or functionality can be 
implemented , in accordance with one embodiment . com 
puter system 1000 , in at least one embodiment , is configured 
to implement various processes and methods described 
throughout this disclosure . 
[ 0076 ] In at least one embodiment , computer system 1000 
comprises at least one central processing unit 1002 that is 
connected to a communication bus 1010 implemented using 
any suitable protocol , such as PCI ( Peripheral Component 
Interconnect ) , PCI - Express , AGP ( Accelerated Graphics 
Port ) , HyperTransport , or any other bus or point - to - point 
communication protocol ( s ) . In at least one embodiment , 
computer system 1000 includes a main memory 1004 and 
control logic ( e.g. , implemented as hardware , software , or a 
combination thereof ) and data are stored in main memory 
1004 which may take form of random access memory 
( “ RAM ” ) . In at least one embodiment , a network interface 
subsystem 1022 provides an interface to other computing 
devices and networks for receiving data from and transmit 
ting data to other systems from computer system 1000 . 
[ 0077 ] Computer system 1000 , in at least one embodi 
ment , includes input devices 1008 , parallel processing sys 
tem 1012 , and display devices 1006 which can be imple 
mented using a conventional CRT ( cathode ray tube ) , LCD 
( liquid crystal display ) , LED light emitting diode ) , plasma 
display , or other suitable display technologies . In at least one 
embodiment , user input is received from input devices 1008 
such as keyboard , mouse , touchpad , microphone , and more . 
In at least one embodiment , each of foregoing modules can 
be situated on a single semiconductor platform to form a 
processing system . 
[ 0078 ] In present description , a single semiconductor plat 
form may refer to a sole unitary semiconductor - based inte 
grated circuit or chip . It should be noted that term single 
semiconductor platform may also refer to multi - chip mod 
ules with increased connectivity which simulate on - chip 
operation , and make substantial improvements over utilizing 
a conventional central processing unit ( “ CPU ” ) and bus 
implementation . Of course , various modules may also be 

situated separately or in various combinations of semicon 
ductor platforms per desires of user . 
[ 0079 ] In at least one embodiment , computer programs in 
form of machine - readable executable code or computer 
control logic algorithms are stored in main memory 1004 
and / or secondary storage . Computer programs , if executed 
by one or more processors , enable system 1000 to perform 
various functions in accordance with one embodiment . 
Memory 1004 , storage , and / or any other storage are possible 
examples of computer - readable media . Secondary storage 
may refer to any suitable storage device or system such as 
a hard disk drive and / or a removable storage drive , repre 
senting a floppy disk drive , a magnetic tape drive , a compact 
disk drive , digital versatile disk ( “ DVD ” ) drive , recording 
device , universal serial bus ( “ USB ” ) flash memory . 
[ 0080 ] In at least one embodiment , architecture and / or 
functionality of various previous figures are implemented in 
context of central processor 1002 ; parallel processing sys 
tem 1012 ; an integrated circuit capable of at least a portion 
of capabilities of both central processor 1002 ; parallel 
processing system 1012 ; a chipset ( e.g. , a group of inte 
grated circuits designed to work and sold as a unit for 
performing related functions , etc. ) ; and any suitable combi 
nation of integrated circuit . 
[ 0081 ] In at least one embodiment , architecture and / or 
functionality of various previous figures is be implemented 
in context of a general computer system , a circuit board 
system , a game console system dedicated for entertainment 
purposes , an application - specific system , and more . In at 
least one embodiment , computer system 1000 may take 
form of a desktop computer , a laptop computer , a tablet 
computer , servers , supercomputers , a smart - phone ( e.g. , a 
wireless , hand - held device ) , personal digital assistant 
( “ PDA " ) , a digital camera , a vehicle , a head mounted 
display , a hand - held electronic device , a mobile phone 
device , a television , workstation , game consoles , embedded 
system , and / or any other type of logic . 
[ 0082 ] In at least one embodiment , a parallel processing 
system 1012 includes a plurality of PPUs 1014 and associ 
ated memories 1016. In at least one embodiment , PPUs are 
connected to a host processor or other peripheral devices via 
an interconnect 1018 and a switch 1020 or multiplexer . In at 
least one embodiment , parallel processing system 1012 
distributes computational tasks across PPUs 1014 which can 
be parallelizable for example , as part of distribution of 
computational tasks across multiple GPU thread blocks . In 
at least one embodiment , memory is shared and accessible 
( e.g. , for read and / or write access ) across some or all of 
PPUs 1014 , although such shared memory may incur per 
formance penalties relative to use of local memory and 
registers resident to a PPU . In at least one embodiment , 
operation of PPUs 1014 is synchronized through use of a 
command such as _syncthreads ( which requires all threads 
in a block ( e.g. , executed across multiple PPUs 1014 ) to 
reach a certain point of execution of code before proceeding . 
[ 0083 ] Specification and drawings are , accordingly , to be 
regarded in an illustrative rather than a restrictive sense . It 
will , however , be evident that various modifications and 
changes may be made thereunto without departing from 
broader spirit and scope of invention as set forth in claims . 
[ 0084 ] Other variations are within spirit of present disclo 
sure . Thus , while disclosed techniques are susceptible to 
various modifications and alternative constructions , certain 
illustrated embodiments thereof are shown in drawings and 
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have been described above in detail . It should be understood , 
however , that there is no intention to limit invention to 
specific form or forms disclosed , but on contrary , intention 
is to cover all modifications , alternative constructions , and 
equivalents falling within spirit and scope of invention , as 
defined in appended claims . 
[ 0085 ] Use of terms “ a ” and “ an ” and “ the ” and similar 
referents in context of describing disclosed embodiments 
( especially in context of following claims ) are to be con 
strued to cover both singular and plural , unless otherwise 
indicated herein or clearly contradicted by context . terms 
" comprising , " " having , " " including , " and " containing ” are 
to be construed as open - ended terms ( e.g. , meaning “ includ 
ing , but not limited to , " ) unless otherwise noted . term 
“ connected , ” when unmodified and referring to physical 
connections , is to be construed as partly or wholly contained 
within , attached to , or joined together , even if there is 
something intervening . Recitation of ranges of values herein 
are merely intended to serve as a shorthand method of 
referring individually to each separate value falling within 
range , unless otherwise indicated herein and each separate 
value is incorporated into specification as if it were indi 
vidually recited herein . use of term “ set ” ( e.g. , " a set of 
items ” ) or " subset ” unless otherwise noted or contradicted 
by context , is to be construed as a nonempty collection 
comprising one or more members . Further , unless otherwise 
noted or contradicted by context , term “ subset ” of a corre 
sponding set does not necessarily denote a proper subset of 
corresponding set , but subset and corresponding set may be 
equal . 
[ 0086 ] Conjunctive language , such as phrases of form “ at 
least one of A , B , and C , ” or “ at least one of A , B and C , " 
unless specifically stated otherwise or otherwise clearly 
contradicted by context , is otherwise understood with con 
text as used in general to present that an item , term , etc. , may 
be either A or B or C , or any nonempty subset of set of A and 
B and C. For instance , in illustrative example of a set having 
three members , conjunctive phrases “ at least one of A , B , 
and C ” and “ at least one of A , B and C ” refer to any of 
following sets : { A } , { B } , { C } , { A , B } , { A , C } , { B , C } , { A , 
B , C } . Thus , such conjunctive language is not generally 
intended to imply that certain embodiments require at least 
one of A , at least one of B and at least one of C each to be 
present . In addition , unless otherwise noted or contradicted 
by context , term “ plurality ” indicates a state of being plural 
( e.g. , " a plurality of items ” indicates multiple items ) . num 
ber of items in a plurality is at least two , but can be more 
when so indicated either explicitly or by context . Further , 
unless stated otherwise or otherwise clear from context , 
phrase “ based on " means “ based at least in part on ” and not 
“ based solely on . ” 
[ 0087 ] Operations of processes described herein can be 
performed in any suitable order unless otherwise indicated 
herein or otherwise clearly contradicted by context . In at 
least one embodiment , a process such as those processes 
described herein ( or variations and / or combinations thereof ) 
is performed under control of one or more computer systems 
configured with executable instructions and is implemented 
as code ( e.g. , executable instructions , one or more computer 
programs or one or more applications ) executing collec 
tively on one or more processors , by hardware or combina 
tions thereof . In at least one embodiment , code is stored on 
a computer - readable storage medium , for example , in form 
of a computer program comprising a plurality of instructions 

executable by one or more processors . In at least one 
embodiment , a computer - readable storage medium is a 
non - transitory computer - readable storage medium that 
excludes transitory signals ( e.g. , a propagating transient 
electric or electromagnetic transmission ) but includes non 
transitory data storage circuitry ( e.g. , buffers , cache , and 
queues ) within transceivers of transitory signals . In at least 
one embodiment , code ( e.g. , executable code or source 
code ) is stored on a set of one or more non - transitory 
computer - readable storage media having stored thereon 
executable instructions ( or other memory to store executable 
instructions ) that , when executed ( e.g. , as a result of being 
executed ) by one or more processors of a computer system , 
cause computer system to perform operations described 
herein . set of non - transitory computer - readable storage 
media , in at least one embodiment , comprises multiple 
non - transitory computer - readable storage media and one or 
more of individual non - transitory storage media of multiple 
non - transitory computer - readable storage media lack all of 
code while multiple non - transitory computer - readable stor 
age media collectively store all of code . In at least one 
embodiment , executable instructions are executed such that 
different instructions are executed by different processors 
for example , a non - transitory computer - readable storage 
medium store instructions and a main CPU execute some of 
instructions while a graphics processor unit executes other 
instructions . In at least one embodiment , different compo 
nents of a computer system have separate processors and 
different processors execute different subsets of instructions . 
[ 0088 ] Accordingly , in at least one embodiment , computer 
systems are configured to implement one or more services 
that singly or collectively perform operations of processes 
described herein and such computer systems are configured 
with applicable hardware and / or software that enable per 
formance of operations . Further , a computer system that 
implement an embodiment of present disclosure is a single 
device and , in another embodiment , is a distributed com 
puter system comprising multiple devices that operate dif 
ferently such that distributed computer system performs 
operations described herein and such that a single device 
does not perform all operations . 
[ 0089 ] Use of any and all examples , or exemplary lan 
guage ( e.g. , “ such as ” ) provided herein , is intended merely 
to better illuminate embodiments of invention and does not 
pose a limitation on scope of invention unless otherwise 
claimed . No language in specification should be construed 
as indicating any non - claimed element as essential to prac 
tice of invention . 

[ 0090 ] Embodiments of this disclosure are described 
herein , including best mode known to inventors for carrying 
out invention . Variations of those embodiments may become 
apparent to those of ordinary skill in art upon reading 
foregoing description . inventors expect skilled artisans to 
employ such variations as appropriate and inventors intend 
for embodiments of present disclosure to be practiced oth 
erwise than as specifically described herein . Accordingly , 
scope of present disclosure includes all modifications and 
equivalents of subject matter recited in claims appended 
hereto as permitted by applicable law . Moreover , any com 
bination of above - described elements in all possible varia 
tions thereof is encompassed by scope of present disclosure 
unless otherwise indicated herein or otherwise clearly con 
tradicted by context . 
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[ 0091 ] All references , including publications , patent appli 
cations , and patents , cited herein are hereby incorporated by 
reference to same extent as if each reference were individu 
ally and specifically indicated to be incorporated by refer 
ence and were set forth in its entirety herein . 
[ 0092 ] In description and claims , terms “ coupled ” and 
“ connected , ” along with their derivatives , may be used . It 
should be understood that these terms may be not intended 
as synonyms for each other . Rather , in particular examples , 
“ connected ” or “ coupled ” may be used to indicate that two 
or more elements are in direct or indirect physical or 
electrical contact with each other . “ Coupled ” may also mean 
that two or more elements are not in direct contact with each 
other , but yet still co - operate or interact with each other . 
[ 0093 ] Unless specifically stated otherwise , it may be 
appreciated that throughout specification terms such as 
" processing , " " computing , " " calculating , " " determining , " or 
like , refer to action and / or processes of a computer or 
computing system , or similar electronic computing device , 
that manipulate and / or transform data represented as physi 
cal , such as electronic , quantities within computing system's 
registers and / or memories into other data similarly repre 
sented as physical quantities within computing system's 
memories , registers or other such information storage , trans 
mission or display devices . 
[ 0094 ] In a similar manner , term “ processor ” may refer to 
any device or portion of a device that processes electronic 
data from registers and / or memory and transform that elec 
tronic data into other electronic data that may be stored in 
registers and / or memory . As non - limiting examples , “ pro 
cessor ” may be a Central Processing Unit ( CPU ) or a 
Graphics Processing Unit ( GPU ) . A " computing platform " 
may comprise one or more processors . As used herein , 
" software ” processes may include , for example , software 
and / or hardware entities that perform work over time , such 
as tasks , threads , and intelligent agents . Also , each process 
may refer to multiple processes , for carrying out instructions 
in sequence or in parallel , continuously or intermittently . 
terms “ system ” and “ method ” are used herein interchange 
ably insofar as system may embody one or more methods 
and methods may be considered a system . 
[ 0095 ] In present document , references may be made to 
obtaining , acquiring , receiving , or inputting analog or digital 
data into a subsystem , computer system , or computer - imple 
mented machine . process of obtaining , acquiring , receiving , 
or inputting analog and digital data can be accomplished in 
a variety of ways such as by receiving data as a parameter 
of a function call or a call to an application programming 
interface . In some implementations , process of obtaining , 
acquiring , receiving , or inputting analog or digital data can 
be accomplished by transferring data via a serial or parallel 
interface . In another implementation , process of obtaining , 
acquiring , receiving , or inputting analog or digital data can 
be accomplished by transferring data via a computer net 
work from providing entity to acquiring entity . References 
may also be made to providing , outputting , transmitting , 
sending , or presenting analog or digital data . In various 
examples , process of providing , outputting , transmitting , 
sending , or presenting analog or digital data can be accom 
plished by transferring data as an input or output parameter 
of a function call , a parameter of an application program 
ming interface or interprocess communication mechanism . 
[ 0096 ] Although discussion above sets forth example 
implementations of described techniques , other architec 

tures may be used to implement described functionality , and 
are intended to be within scope of this disclosure . Further 
more , although specific distributions of responsibilities are 
defined above for purposes of discussion , various functions 
and responsibilities might be distributed and divided in 
different ways , depending on circumstances . 
[ 0097 ] Furthermore , although subject matter has been 
described in language specific to structural features and / or 
methodological acts , it is to be understood that subject 
matter defined in appended claims is not necessarily limited 
to specific features or acts described . Rather , specific fea 
tures and acts are disclosed as exemplary forms of imple 
menting claims . 

What is claimed is : 
1. A processor , comprising : 
one or more arithmetic logic units ( ALUS ) to : 

use at least one neural network to infer content from 
individual images in a sequence of images ; and 

use the at least one neural network to infer changes in 
the content in the sequence of images . 

2. The processor of claim 1 , wherein the one or more 
ALUS are to : 

use a probabilistic model to determine an anomalous 
event in the sequence of images in response to obtain 
ing information associated with the changes in the 
content in the sequence of images and obtaining infor 
mation associated with errors from reconstructing the 
sequence of images . 

3. The processor of claim 1 , wherein the one or more 
ALUs are to train a first component of the at least one neural 
network , wherein the first component is an autoencoder with 
an internal layer that maps the sequence of images to 
generate one or more latent representations in a feature 
space . 

4. The processor of claim 3 , wherein the autoencoder is a 
convolutional autoencoder . 

5. The processor of claim 3 , wherein the one or more 
ALUs are to train a second component of the at least one 
neural network , wherein the second component is a Long 
Short - Term Memory ( LSTM ) that receives the one or more 
latent representations from the first component to infer 
changes in the sequence of images over a period of time . 

6. The processor of claim 1 , wherein content from indi 
vidual images in the sequence of images includes spatial 
information . 

7. The processor of claim 1 , wherein changes in the 
content in the sequence of images includes temporal infor 
mation . 

8. The processor of claim 1 , wherein the one or more 
ALUs are to receive the sequence of images from at least 
one or more stationary video cameras , wherein the one or 
more stationary video cameras provide the sequence of 
images for anomalous event detection without reconfigura 
tions . 

9. A system , comprising : 
one or more computers having one or more processors to 

train one or more neural networks to infer content from 
individual images in a sequence of images and changes 
in the content in the sequence of images . 

10. The system of claim 9 , wherein the one or more 
processors are to train the one or more neural networks to : 

input the sequence of images to a first neural network of 
the one or more neural networks to generate a first set 
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of information representing content from individual 
images of the sequence of images ; 

input the first set of information to a second neural 
network of the one or more neural networks to generate 
a second set of information associated with the changes 
in the content in the sequence of images ; 

reproduce the sequence of images using the first set of 
information ; and 

use a probabilistic model to generate a third set of 
information based at least in part on receiving error 
measurements associated with the reproduced sequence 
of images and the second set of information . 

11. The system of claim 10 , wherein the first neural 
network is a convolutional autoencoder that takes the 
sequence of images as input to generate the first set of 
information . 

12. The system of claim 11 , wherein the convolutional 
autoencoder maps features of the sequence of images to 
generate the first set of information in a reduce feature space 
from which the sequence of images can be approximately 
reproduced from the first set of information in the reduced 

train at least one neural network to infer content from 
individual images in a sequence of images ; and 

train the at least one neural network to infer changes in the 
content in the sequence of images . 

18. The machine - readable medium of claim 17 , wherein 
the set of instructions further cause the one or more proces 
sors to at least train the at least one neural network by using 
a probabilistic model to generate information associated 
with a likelihood of normal behavior in the sequence of 
images . 

19. The machine - readable medium of claim 18 , wherein 
the probabilistic model is a Gaussian Mixture Model 
( GMM ) . 

20. The machine - readable medium of claim 19 , wherein 
the GMM determines , based at least in part on information 
associated with the changes in the content in the , a score 
indicating a likelihood of one or more anomalous events . 

21. A method comprising : 
using a first portion of at least one neural network to infer 

content from individual images in a sequence of 
images ; and 

using a second portion of the at least one neural network 
to infer changes in the content in the sequence of 
images . 

22. The method of claim 21 , wherein the first portion is a 
convolutional autoencoder . 

23. The method of claim 21 , wherein the second portion 
is a Long Short - Term Memory ( LSTM ) . 

24. The method of claim 21 , wherein content from indi 
vidual images in the sequence of image includes one or more 
latent representations of the individual images . 

25. The method of claim 24 , further comprising : 
using a third portion of the at least one neural network to 

determine one or more anomalous events in the 
sequence of images based at least in part on changes in 
the content in the sequence of images . 

26. The method of claim 25 , wherein the third portion of 
the at least one neural network is a probabilistic model . 

feature space . 
13. The system of claim 10 , wherein the second neural 

network is a Long Short - Term Memory ( LSTM ) that takes 
the first set of information as input . 

14. The system of claim 10 , wherein the one or more 
processors are to train the one or more neural networks to 
obtain the sequence of images from one or more static video 
cameras to detect anomalous events in the sequence of 
images . 

15. The system of claim 10 , wherein the third set of 
information includes at least one indicator of an anomaly 
event in the sequence of images . 

16. The system of claim 10 , wherein the probabilistic 
model is previously trained on a collection of training 
images . 

17. A machine - readable medium having stored thereon a 
set of instructions , which if performed by one or more 
processors , cause the one or more processors to at least : * 


