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1 

WEAKLY - SUPERVISED OBJECT 
DETECTION USING ONE OR MORE 

NEURAL NETWORKS 

BACKGROUND 
[ 0001 ] Advances in computer technology have resulted in 
improved capabilities in object identification and analysis . 
Machine learning has been used as a tool for detecting 
objects in image data for purposes of such analysis . In order 
to train machine learning , a significant amount of labeled 
training data is needed . Creating this training data can be a 
long and complicated process . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0022 ] FIG . 21 illustrates a computer system , in at least 
one embodiment ; 
[ 0023 ] FIG . 22 illustrates a parallel processor , in at least 
one embodiment ; 
[ 0024 ] FIG . 23 illustrates a partition unit , in at least one 
embodiment ; 
[ 0025 ] FIG . 24 illustrates a processing cluster , in at least 
one embodiment ; 
[ 0026 ] FIG . 25 illustrates a graphics multiprocessor , in at 
least one embodiment ; 
[ 0027 ] FIG . 26 is a block diagram illustrating a processor 
micro - architecture for a processor , in at least one embodi 
ment ; 
[ 0028 ] FIG . 27 illustrates a deep learning application 
processor , in at least one embodiment ; 
[ 0029 ] FIG . 28 is a block diagram illustrating an example 
neuromorphic processor , in at least one embodiment ; 
[ 0030 ] FIG . 29 illustrates at least portions of a graphics 
processor , according to one or more embodiments ; 
[ 0031 ] FIG . 30 is a block diagram of at least portions of a 
graphics processor core , in at least one embodiment ; 
[ 0032 ] FIGS . 31A and 31B illustrates thread execution 
logic , in at least one embodiment ; 
[ 0033 ] FIG . 32 illustrates a parallel processing unit 
( “ PPU ” ) , in at least one embodiment ; 
[ 0034 ] FIG . 33 illustrates a general processing cluster 
( " GPC ” ) , in at least one embodiment ; 
[ 0035 ] FIG . 34 illustrates a memory partition unit of a 
parallel processing unit ( “ PPU ” ) , in at least one embodi 
ment ; and 
[ 0036 ] FIG . 35 illustrates a streaming multi - processor , in 
at least one embodiment . 

DETAILED DESCRIPTION 

[ 0002 ] The present disclosure will be described with ref 
erence to the drawings , in which : 
[ 0003 ] FIGS . 1A , 1B , and 1C illustrates example images 
that can be processed or generated using one or more neural 
networks , in at least one embodiment ; 
[ 0004 ] FIG . 2 illustrates components of an example multi 
branch network , in at least one embodiment ; 
[ 0005 ] FIGS . 3A , 3B , 3C , and 3D illustrate components of 
an example network , in at least one embodiment ; 
[ 0006 ] FIGS . 4A and 4B illustrates example drop block 
approach , in at least one embodiment ; 
[ 0007 ] FIG . 5 illustrates example object detections that 
can be inferred , in at least one embodiment ; 
[ 0008 ] FIGS . 6A and 6B illustrate portions of an example 
process for training a neural network to infer object repre 
sentations , and using such a network for inferencing , in at 
least one embodiment ; 
[ 0009 ] FIG . 7 illustrates an example environment in which 
aspects of at least one embodiment can be implemented ; 
[ 0010 ] FIG . 8 illustrates an example system for training an 
image synthesis network that can be utilized , in at least one 
embodiment ; 
[ 0011 ] FIG . 9 illustrates layers of an example statistical 
model that can be utilized , in at least one embodiment ; 
[ 0012 ] FIG . 10 illustrates inference and / or training logic , 
in at least one embodiment ; 
[ 0013 ] FIG . 11 illustrates inference and / or training logic , 
in at least one embodiment ; 
[ 0014 ] FIG . 13 illustrates an example data center system , 
in at least one embodiment ; 
[ 0015 ] FIG . 14 is a block diagram illustrating a computer 
system , in at least one embodiment ; 
[ 0016 ] FIG . 15 is a block diagram illustrating computer 
system , in at least one embodiment ; 
[ 0017 ] FIG . 16 illustrates a computer system , in at least 
one embodiment ; 
[ 0018 ] FIG . 17 illustrates a computer system , according at 
least one embodiment ; 
[ 0019 ] FIG . 18 illustrates exemplary integrated circuits 
and associated graphics processors that may be fabricated 
using one or more IP cores , in at least one embodiment 
described herein ; 
[ 0020 ] FIGS . 19A - 19B illustrate exemplary integrated cir 
cuits and associated graphics processors that may be fabri 
cated using one or more IP cores , in at least one embodi 
ment ; 
[ 0021 ] FIGS . 20A - 20B illustrate additional exemplary 
graphics processor logic in at least one embodiment ; 

[ 0037 ] FIG . 1A illustrates an example image 100 that can 
be analyzed in at least one embodiment . This example image 
includes representations of multiple objects 102 , including a 
man and a dog attempting to herd a group of sheep . In at 
least one embodiment , such an image used for training 
would ha specific labels attached , which would include a 
type of object and location of an object in an image . In at 
least one embodiment location information could include 
coordinates for bounding boxes 142 indicating a portion of 
an image corresponding to an object as illustrated in an 
example image 140 of FIG . 1B . As mentioned , however , in 
at least one embodiment such annotations are not required 
for each training image , and can determine locations of 
various objects without specific labeling . At least one 
embodiment can determine proposals for objects of different 
classes , then use one or more refinements to arrive that 
locations of each object , such as illustrated in FIG . 1B . In at 
least one embodiment classification and location informa 
tion can be used to detect and / or segment objects 182 
represented in an image , as illustrated in an example image 
180 of FIG . 1C . It should be understood that location 
information other than bounding box coordinates can be 
used as well in at least one embodiment . 
[ 0038 ] In at least one embodiment a framework is utilized 
for instance - aware and context - focused weakly - supervised 
object detection that can accept image - level tags , without 
other spatial information . In at least one embodiment such a 
framework can differentiate between multiple instances of a 
same type of object rather than obtaining a single combined 
detection . In at least one embodiment an example frame 
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Pw ( c ) = sw ( c , r ) ? TER 

for class c in an image . In at least one embodiment a 
ground - truth class label y ( c ) E { 0 , 1 } can be used to indicate 
image - level existence of category c in a given image , and 
multi - label binary cross entropy loss can be used , as may be 
given by : 

Ling ( W ) = - ycc ) logo w CEC 

work can also obtain accurate results for classes with large 
intra - class variance , and can be memory friendly . An 
example framework 200 in at least one embodiment is 
illustrated in FIG . 2 , with a framework including an image 
branch 206 and at least one refinement branch 208 , 210 , 212 . 
In at least one embodiment an image branch can accept as 
input an image - level label and an image , and can supervise 
a detection model that produces output and region of interest 
( ROI ) scores . In at least one embodiment an ROI score can 
be an indication of confidence in at least one embodiment 
that an object is represented in that region . In at least one 
embodiment , one or more refinement branches can take at 
least some of these outputs , such as ROI scores , and attempt 
to refine or improve accuracy of a score , in order to make a 
more accurate object detection determination . In at least one 
embodiment , a refinement branch can help to solve instance 
ambiguity and part domination . 
[ 0039 ] In at least one embodiment , detection of objects of 
interest can be performed using a multi - label image classi 
fication framework . In one embodiment , object categories of 
interest can be collected in a set C. Given an input image I 
and a set of pre - computed region proposals R , in at least one 
embodiment convolutional layers from a set of pre - trained 
DNNs ( “ Base ' 202 in FIG . 2 ) can be used to extract features , 
which can then be fed into an ROI pooling component to 
produce region features for every region in a set R. In at least 
one embodiment these features can be passed through a set 
of intermediate layers ( “ Neck ’ 204 in FIG . 2 ) , then passed 
through two different fully - connected layers , illustrated via 
boxes FCcis FC det in FIG . 2 , to produce classification logits 
fc , r ) ER and detection logits gw ( C , PER for every object 
category c E C and for every region rER . Vector w in this 
example subsumes all trainable parameters , including Base , 
Neck , and Head . In at least one embodiment a score s ( clr ) is 
obtained for a region r being classified as category c when 
using a softmax on classification logits , as may be given by : 

to train parameters w . In at least one embodiment this 
computation corresponds to an image branch 206 illustrated 
in FIG . 2 . 
[ 0043 ] Instead of computing detections from these ROI 
scores sw ( c , r ) , in at least one embodiment scores can be used 
to generate instance - level self - supervision for a refinement 
branch . In at least one embodiment an online refinement 
module can be used to encourage highly - overlapping pro 
posals to be assigned a same classification . For example , in 
at least one embodiment an ROI score sw ( c , r ) can be used 
to generate a pseudo - label ? ' ( c , re { 0,1 } , where every 
region r can only be assigned to one class . 
[ 0044 ] With pseudo - label y ' ( c , r ) as self - supervision , in at 
least one embodiment a refinement branch can address 
instance - level classification in at least one embodiment by : 

L'ow ) = - Ar gl ( c . r ) log ( CIP ) , 
PER CEC 

efwlc , r ) 
Sw ( c r ) = Ececefw?c , r ) 1 

roi img 

[ 0040 ] Similarly , in at least one embodiment a score s ( clr ) 
can be obtained for detecting category c with region r when 
using a softmax on detection logits : 

where à , are hyper - parameters and ?w ( c , r ) is output of a 
first refinement branch , in this example an output after FCref 
in FIG . 2 passed through a class - wise softmax . In at least one 
embodiment hyper - parameters à , can be used to adaptively 
balance R and R so that more attention can be put on 
L roil when pseudo - label ?l gradually improves during 
training . In at least one embodiment , multiple refinement 
branches R roi ' ( w ) can be stacked and current ROI scores Sw " ( c , r ) used to compute pseudo - labels ?k + 1 as illustrated in 
FIG . 2. In at least one embodiment a final score can be 
obtained after averaging all sw " , not including sw ( c , r ) . 
[ 0045 ] In at least one embodiment , such a framework can 
yield compelling results for instance - level object detection . 
It is possible , however , to obtain more accurate instance 
level pseudo - labels , such as by providing adequate focus on 
context . In at least one embodiment , to obtain pseudo - labels 
Øk + l ( c , r ) , top scoring proposals can be a point of focus . In 
at least one embodiment for every class c , a top ranking can 
be located , such as by setting : 

Sw ( rc ) = 
€ 8w ( c , r ) 

Erere8w?c , r ) 

[ 0041 ] In at least one embodiment a set of region of 
interest ( ROI ) scores sw ( c , r ) for assigning category CEC to 
region rER can be computed via an element - wise product , 
such as may correspond to sw ( c , r ) = s . ( clr ) sw ( rlc ) E [ 0 , 1 ] . For 
inferencing , in at least one embodiment these ROI scores 
can be used to independently rank all regions for each 
category . In at least one embodiment non - maximum sup 
pression and thresholding can be applied to remove redun 
dant boxes in at least one embodiment . 
[ 0042 ] Since only image - level labels are available , in at 
least one embodiment a loss function can be constructed by 
summing ROI scores sw ( c , r ) for all regions r E R to obtain 
image evidence : 

pete k ( c ) = argmax , R. ( CIT ) 
D ( +1 ) ( 0 , r ) = 1 

if an intersection over union ( “ IOU ” ) between region r and 
region r *** ( c ) is larger than 0.5 . It should be noted that in this 
example ? ° ( clr ) s ( c , r ) . 
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[ 0046 ] To find pseudo - labels yk + 1 ( c , r ) that are more 
suitable for instance - level WSOD , in at least one embodi 
ment a spatial relationship of multiple instances in an image 
can be considered . For example , instead of only operating 
with a top - 1 ROI r *** ( c ) , in at least one embodiment all 
proposals r can be sorted according to their ROI score ?k ( elr ) 
for each class c . In at least one embodiment a top p percent 
of ranked ROIs for every category c can be selected , and R ' 
( c ) can be used to refer to a resulting set . Subsequently , in 
at least one embodiment a greedy algorithm can be utilized 
to select instances from R ' ( c ) , driven at least in part by a 
motivation that two non - overlapping and confident propos 
als have a high probability of corresponding to different 
objects . In at least one embodiment , a top proposal can be 
added to a pseudo label pool . Then , in at least one embodi 
ment starting from a second highest to a last one , an ROI can 
be added if it does not overlap with another one in a pool . 
In at least one embodiment , since two instances can be 
relatively close together , a very small threshold t can be 
sued to reject ROIs , rather than strictly enforcing a zero 
overlap rule . Similarly , in at least one embodiment proposals 
with an IoU bigger than 0.5 with any pseudo - label in a pool 
can be treated as positive examples during training . 
[ 0047 ] In at least one embodiment memory - efficient 
sequential batch forward and backward computation can be 
used , which can be tailored for WSOD models . In at least 
one embodiment , basic training via backpropagation can 
store all intermediate activations during a forward pass , 
which are reused when computing gradients of network 
parameters . In at least one embodiment such a method can 
be computationally efficient due in part to memorization , yet 
memory - demanding for a same reason . In at least one 
embodiment only a subset of intermediate activations are 
saved during a forward pass at key layers . In at least one 
embodiment , an entire model can be divided into smaller 
sub - networks at these key layers . In at least one embodiment 
when computing gradients for a sub - network , a forward pass 
can be applied to obtain intermediate representations for this 
subnetwork , starting from stored activations at an input key 
layer of a sub - network . Combined with gradients propagated 
from earlier sub - networks , in at least one embodiment 
gradients of sub - network weights can be computed and 
gradients propagated to outputs of earlier sub - networks . 
[ 0048 ] In at least one embodiment this can be particularly 
beneficial for extremely deep networks in at least one 
embodiment , where a memory cost may be roughly evenly 
distributed along layers . In at least one embodiment , when 
these DNNs are adapted for detection , however , activations 
( after ROI - Pooling ) can grow from 1xCHW ( image feature ) 
to NxCHW ( ROI - features ) , where N is in thousands for 
weakly - supervised models . In at least one embodiment , 
without ground - truth boxes , these proposals can be main 
tained to keep good recall and thus good performance . 
[ 0049 ] In at least one embodiment this training challenge 
can be addressed at least in part by using a sequential batch 
back - propagation . In at least one embodiment this can be 
performed in a Head sub - module as illustrated in an example 
300 of FIG . 3A , in a Neck sub - module , as illustrated in 
examples 320 and 340 of FIGS . 3B and 3C , and in a Base 
sub - module in example 360 of FIG . 3D . In these figures 
illustrating sequential batch back - propagation in one itera 
tion , an activation , gradients , and a module are shown that 
are being updated in that step . In at least one embodiment , 
during a forward pass , an input image is first passed through 

a Base and Neck , with only activations A , after Base being 
stored . In at least one embodiment , output of a Neck then 
goes into a Head for its first forward and backward pass to 
update weights of a Head and gradients G , as illustrated . In 
at least one embodiment , to update parameters of a Neck , 
ROI - features can be split into batches and backpropagation 
run sequentially on small batches . Such an approach can 
avoid storing memory - consuming feature maps and their 
gradients within a Neck . In at least one embodiment an 
example of such a sequential method is shown in FIG . 3C , 
where 2,000 proposals are split into two batches of 1000 
proposals each . In at least one embodiment a gradient G , is 
accumulated and used to update parameters of a Base 
network via regular back - propagation as illustrated in FIG . 
4D . For testing , in at least one embodiment a similar strategy 
can be applied if either a number of ROIs or a size of a Neck 
is too large . 
[ 0050 ] In at least one embodiment , due at least in part to 
intra - category variation , existing WSOD methods often mis 
takenly only predict discriminative parts of an object rather 
than its full extent . In at least one embodiment a DNN can 
be encouraged to focus on a context that can be achieved by 
dropping some most discriminative parts , referred to herein 
as performing spatial dropout . Since discriminative parts of 
objects differ in location and size , in at least one embodi 
ment object detection can utilize a structured drop block 
approach for each region of interest , such as is illustrated in 
an example of FIGS . 4A and 4B . In at least one embodiment , 
during training of points on ROI - feature maps can be 
sampled , such as with a Bernoulli distribution of probability 
y as blob centers . In at least one embodiment object regions 
can be divided into arrays of cells 402 , 402 as illustrated in 
an example of FIG . 4A . In at least one embodiment square 
or rectangular regions 452 , 454 around these centers of size 
www can be zeroed out as illustrated in an example 450 of 
FIG . 4B , such as by having relevant pixel values set to zero 
or another set value , across all channels on an feature map . 
In at least one embodiment feature values can then be 
re - scaled by a factor of an area of ROI over an area of an 
un - dropped region , for example , such that no normalization 
has to be applied for inference where all features are kept . 
In at least one embodiment , discriminative parts such as 
faces , car fronts , and heads are zeroed out . 
[ 0051 ] In at least one embodiment a model for object 
detection and / or segmentation can be trained using data that 
does not contain very detailed labels , and in some instances 
might only indicate classes of objects represented in an 
image or video frame , without any location or occurrence 
information being provided as well . In at least one embodi 
ment , labels might only state that there is at least one sheep 
and at least one dog represented in an image , but without 
indication of how many sheep or dogs are represented , or 
where those representations might be located in an image . In 
at least one embodiment these types of labels are referred to 
herein as image - level labels . In at least one embodiment a 
fully supervised method would need bounding box coordi 
nates , or other location information , to determine a size of an 
object boundary and location of an object representation in 
an image , in order to accurately train a model . 
[ 0052 ] In at least one embodiment , there can be different 
numbers and / or selections of refinement branches and func 
tionality . In at least one embodiment an image detection 
branch can receive and / or provide proposals for a plurality 
of bounding boxes that each corresponds to a potential 
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object representation , or at least a representation of a type of 
object or object satisfying specific criteria , etc. In at least one 
embodiment a separate object region proposal network or 
algorithm will generate an initial set of proposals . In at least 
one embodiment an image detection branch outputs a score , 
or set of scores , for object proposals , along with one or more 
classifications , and in at least one embodiment can reduce a 
number of proposals based at least in part upon scores and / or 
redundant proposals . In at least one embodiment output of 
an image branch for a given table is a matrix of dimension 
n ( for a number of proposals ) by c ( for a number of identified 
classes ) . In at least one embodiment each element of a 
matrix is then a confidence score ( or other such score ) 
indicating a confidence that a given object proposal is of a 
specific class . In at least one embodiment , these results can 
include FC and FC der values that correspond to post 
processing results from this table . FC cs and FCd can each 
be each a different nxc matrix derived from an original nxo 
matrix for initial image proposals . In at least one embodi 
ment each matrix can be normalized , such as by utilizing a 
softmax function along both a proposal dimension and a 
classification dimension . In at least one embodiment nor 
malization can provide for easier comparisons . In at least 
one embodiment a higher element score can be indicative of 
a higher likelihood of a correctly identified object and 
classification . In at least one embodiment tables can then be 
multiplied back as illustrated in FIG . 2. In at least one 
embodiment a result is a new nxc matrix that is output of a 
network . In at least one embodiment a global , adaptive , 
and / or other such threshold can be applied , and any score 
falling below that threshold can be determined to not cor 
respond to a correct actual object representation . In at least 
one embodiment elements with scores at or above a thresh 
old in at least one embodiment can be determined to be 
correct object representations in at least at least one embodi 
ment . 

[ 0053 ] Since image - level labels are available , in at least 
one embodiment a sum can be performed across various 
instances along n dimension of a matrix . In at least one 
embodiment a result is a c - dimensional pool vector , which 
is supervised by image - level labels . In at least one embodi 
ment such an approach provides a multi - label loss . In at least 
one embodiment a loss can supervise a vector , which can 
back - propagate a gradient to be used to train a network . In 
at least one embodiment a sum pooling process can help to 
reduce a large , initial table of proposals to something more 
like an image - level representation , which can then be more 
easily refined . In at least one embodiment a refinement 
branch follows a teacher / student model . In at least one 
embodiment it takes labels from initial predictions as a set 
of proposals with corresponding detection scores . In at least 
one embodiment , for each object class from image - level 
labels , proposals can be analyzed and their scores sorted . In 
at least one embodiment all scores can be normalized to a 
value between 0 and 1. In at least one embodiment a global 
threshold can be applied whereby any proposals with values 
that meet or exceed thresholds have their value set to 1 , and 
any proposals with values less than a threshold can have 
their value set to 0. In at least one embodiment this process 
results in a quantization of all scores . In at least one 
embodiment input is a score from a previous branch , but 
because of this quantization a set of pseudo - labels is pro 
duced for each refinement branch . An example refinement 
branch can produce an nxc matrix with all element values 

being either 0 or 1. In at least one embodiment pseudo - labels 
can be used to define a loss , which can help to refine this 
branch as well . 
[ 0054 ] In at least one embodiment initial seeds , or posi 
tions of various object proposals , are prevented from becom 
ing very close to each other . In at least one embodiment , a 
sorting of top windows could be performed , where a “ top 
window ” can correspond to a bounding box for a seed or 
proposal that has a high confidence score . In at least one 
embodiment many of these top windows will likely be very 
close together in an image , as multiple windows may 
correspond to a different view or approximation of an object 
represented in an image . In at least one embodiment top 
windows that are determined to be very close to another top 
window , or similar in size and location , can be excluded 
from consideration . In at least one embodiment , a greedy 
method with maximum suppression can be used to exclude 
redundant windows or proposals from consideration , as 
there is a high probability that they correspond to a same 
object representation . In at least one embodiment a quanti 
zation of a nxc matrix can again be performed , where an 
initial ( highest value similar ) window is set to a value of 1 , 
and redundant or similar windows are set to a value of 0. In 
at least one embodiment a large set of diverse seeds can then 
be selected or identified that can be used as starting points . 
In at least one embodiment elements of a matrix , or pseudo 
labels , for various proposals can be adjusted so that any 
window that significantly overlaps another window will 
drop out of consideration . In at least one embodiment a 
process is a form of label propagation , which can help to 
prevent a part domination problem . 
[ 0055 ] In at least one embodiment a refinement approach 
is referred to herein as a drop - block refinement . In at least 
one embodiment such a refinement approach can remove 
one or more sub - regions or portions of an object proposal 
region from consideration . FIGS . 4A and 4B illustrate an 
example drop - block approach that can be utilized in accor 
dance with at least one embodiment . In at least one embodi 
ment , a set of “ blocks ” ( where blocks represent pixels or 
groups of pixels in an image ) are dropped , or removed from 
consideration for an image proposal region . An example 
situation 400 in FIG . 4A illustrates a segmentation of an 
object proposal region into blocks , and FIG . 4B illustrates a 
situation 450 wherein a subset of these blocks has been 
removed from consideration in at least one embodiment . In 
at least one embodiment , blocks , and sizes of blocks , can be 
selected at random or according to a block selection algo 
rithm . In at least one embodiment a remaining portion of 
proposal data can be analyzed to determine whether a 
similar confidence score is obtained , indicating that a region 
likely represents an object of that class . In at least one 
embodiment this can also help train a network to infer a 
correct classification for an object for various different views 
or portions of an object . In at least one embodiment drops 
can be selected to drop from a region such as a face that 
would otherwise provide a high confidence region for a type 
of object . In at least one embodiment a process of randomly 
dropping blocks can also effectively introduce some noise 
into an image region , which can help to improve an ability 
of a network , once trained , to recognize different object 
representations . 
[ 0056 ] In at least one embodiment further advantages can 
be obtained that can be at least partially independent of 
selected refinement approaches . In at least one embodiment 
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an issue of memory consumption can be addresses by 
utilizing a batch back - propagation technique . In at least one 
embodiment data can be segmented into smaller batches that 
can be processed separately and / or in parallel , such that less 
data needs to be stored in memory for any given back 
propagation task . In at least one embodiment processing of 
various batches can also be staggered such that all data does 
not need to be processed and / or stored in processor memory 
concurrently . In at least one embodiment this reduction in 
memory consumption can also enable object detection and / 
or segmentation to be performed on video or other large data 
sets , streams , or sources . 
[ 0057 ] In at least one embodiment refinement branches all 
operate in parallel , taking as input proposal data from a 
detection branch . In at least one embodiment results from 
various refinement branches can then be aggregated with 
results from an object detection branch , such as by averaging 
or using a selected aggregation function that calculates a 
weighted or other function of various values for proposals . 
In at least one embodiment a proposal that does not satisfy 
requirements of various refinements can have its score 
substantially reduced , which may cause that proposal value 
to fall below a threshold and therefore be considered to not 
correspond to an object of a relevant class . 
[ 0058 ] In at least one embodiment , refinement branches 
can each take output ( e.g. , ROI scores ) from an earlier 
branch in a specified order . In at least one embodiment such 
an approach can save an extra processing step , as an ROI 
score from an image branch will be refined as it passes 
through various refinement branches . In at least one embodi 
ment some accurate object representations might have a 
corresponding ROI score improperly lowered by a refine 
ment branch to an extent where a proposal would be 
removed from consideration . In at least one embodiment 
performing refinements separately allows an object proposal 
to remain under consideration if , for example , all but one 
refinement branch indicate a high confidence in object 
determination for a given class . 
[ 0059 ] In at least one embodiment , such a process is 
adaptive in that it can be performed for multiple instances of 
a type of object , as well as multiple types of objects , 
represented in a single image or video frame . In at least one 
embodiment pseudo - labels that are generated serve as a type 
of ground truth data , providing at least some constraint to 
learning . In at least one embodiment , a number of pseudo 
labels with scores above a threshold value are determined , 
which are used to refine scores for object proposals from an 
initial object detection branch or process . In at least one 
embodiment , initial proposal scores are averaged with 
refinement scores to generate a final score , which can then 
be compared against a threshold or otherwise processed to 
determine which object proposals are accepted as being 
accurate . 
[ 0060 ] FIG . 5 illustrates an example set of images 500 
including object detection regions that can be inferred in 
accordance with at least one embodiment . In at least one 
embodiment , for each pair of images , results of a different 
approach are illustrated on left , and results of an approach in 
accordance with at least one embodiment are illustrated on 
right . In at least one embodiment each column of pairs also 
illustrates that an approach in accordance with at least one 
embodiment improves results for specific problems . For 
example , in at least one embodiment a left column illustrates 
that an approach does not miss instances of a type of object 

in an image . In at least one embodiment a middle column 
illustrates that an approach in accordance with at least one 
embodiment does not have problems detecting objects when 
an object proposal regions are initially grouped in an image . 
Further , in at least one embodiment a right column illustrates 
that an approach in accordance with at least one embodiment 
does not determine object regions in an image based upon 
part dominations , or regions of a face or grill that dominate 
a detection and may miss other parts of an object . 
[ 0061 ] FIG . 6A illustrates an example process 500 for 
training a neural network , such as a generative adversarial 
network ( GAN ) , to infer object detections and / or segmen 
tations in at least one embodiment . It should be understood 
for this and other processes discussed herein that there can 
be additional , alternative , or fewer steps performed in simi 
lar or alternative orders , or in parallel , in at least one 
embodiment unless otherwise stated . Further , this example 
discusses training a generative adversarial network ( GAN ) 
using alphanumeric semantic description data , but as dis 
cussed elsewhere herein there can be various types of 
models trained using a variety of different types of data 
within a scope of at least one embodiment . In at least one 
embodiment , an image ( or video frame , etc. ) is obtained 602 
that includes at least one representation of an object type of 
interest , with an image including one or more image - level 
labels indicating one or more classes of objects represented 
in an image . In at least one embodiment , labeling may not 
include any location or instance data , etc. In at least one 
embodiment a set of object proposals can be determined , 
either external or internal to a neural network , such as a 
GAN in this example . In at least one embodiment object 
proposal regions can be input to a detection branch of a 
GAN , which as discussed elsewhere herein can determine a 
region of interest ( ROI ) score or similar such value for 
various proposals , and in at least one embodiment can 
reduce a number of proposals based at least in part upon 
determined scores . In at least one embodiment ROI scores 
for various proposals can be passed to one or more refine 
ment branches of a network that can determine 606 pseudo 
labels for various proposals . In at least one embodiment 
these pseudo - labels can be associated with new or updated 
ROI scores for various proposals as determined using cri 
teria or approaches for relevant refinement branches . In at 
least one embodiment , an ROI score from an object detec 
tion branch is combined 608 with pseudo - label scores from 
refinement branches to generate a set of final ROI scores for 
various proposals and classes . In at least one embodiment a 
loss function can be determined 610 using a set of final ROI 
scores . Network parameters for a GAN can then be updated 
612 based at least in part upon a determined loss function . 
[ 0062 ] FIG . 6B illustrates an example process 650 for 
inferring object representations in an image using such a 
trained model in at least one embodiment . In at least one 
embodiment , an image or video frame is obtained 652 that 
is to be used for inferencing . In at least one embodiment an 
image can be provided 654 as input to a trained model . In at 
least one embodiment a trained model can process data and 
infer 656 one or more classes and locations of objects 
represented in an image . In at least one embodiment an 
inferred location can correspond to segmentation for an 
object in at least one embodiment . 
[ 0063 ] An increasing variety of industries and applications 
are taking advantage of machine learning . As an example , 
deep neural networks ( DNNs ) developed on processors have 
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been used for diverse use cases , from self - driving cars to 
faster drug development , from automatic image analysis for 
security systems to smart real - time language translation in 
video chat applications . Deep learning is a technique that 
models a neural learning process of a human brain , continu 
ally learning , continually getting smarter , and delivering 
more accurate results more quickly over time . A child is 
initially taught by an adult to correctly identify and classify 
various shapes , eventually being able to identify shapes 
without any coaching . Similarly , a deep learning or neural 
learning system designed to accomplish a similar task would 
need to be trained for it to get smarter and more efficient at 
identifying basic objects , occluded objects , etc. , while also 
assigning context to those objects . 
[ 0064 ] At a simplest level , neurons in a human brain look 
at various inputs that are received , importance levels are 
assigned to each of these inputs , and output is passed on to 
other neurons to act upon . An artificial neuron or perceptron 
is a most basic model off neural network . In one example , a 
perceptron may receive one or more inputs that represent 
various features of an object that a perceptron is being 
trained to recognize and classify , and each of these features 
is assigned a certain weight based on an importance of that 
feature in defining a shape of an object . 
[ 0065 ] A deep neural network ( DNN ) model includes 
multiple layers of many connected perceptrons ( e.g. , nodes ) 
that can be trained with enormous amounts of input data to 
quickly solve complex problems with high accuracy . In one 
example , a first layer of a DNN model breaks down an input 
image of an automobile into various sections and looks for 
basic patterns such as lines and angles . A second layer 
assembles lines to look for higher - level patterns such as 
wheels , windshields , and mirrors . A next layer identifies a 
type of vehicle , and a final few layers generate a label for an 
input image , identifying a model of a specific automobile 
brand . Once a DNN is trained , this DNN can be deployed 
and used to identify and classify objects or patterns in a 
process known as inference . Examples of inference ( a pro 
cess through which a DON extracts useful information from 
a given input ) include identifying handwritten numbers on 
checks deposited into ATM machines , identifying images of 
friends in photos , delivering movie recommendations , iden 
tifying and classifying different types of automobiles , pedes 
trians , and road hazards in driverless cars , or translating 
human speech in near real - time . 
[ 0066 ] During training , data flows through a DNN in a 
forward propagation phase until a prediction is produced 
that indicates a label corresponding to this input . If a neural 
network does not correctly label this input , then errors 
between a correct label and a predicted label are analyzed , 
and weights are adjusted for each feature during a backward 
propagation phase until this DNN correctly labels this input 
and other inputs in a training dataset . Training complex 
neural networks requires massive amounts of parallel com 
puting performance , including floating - point multiplications 
and additions that are supported . Inferencing is less com 
pute - intensive than training , being a latency - sensitive pro 
cess where a trained neural network is applied to new inputs 
it has not seen before to classify images , translate speech , 
and infer new information . 
[ 0067 ] Neural networks rely heavily on matrix math 
operations , and complex multi - layered networks require 
tremendous amounts of floating - point performance and 
bandwidth for both efficiency and speed . With thousands of 

processing cores , optimized for matrix math operations , and 
delivering tens to hundreds of TFLOPS of performance , a 
computing platform can deliver performance required for 
deep neural network - based artificial intelligence and 
machine learning applications . 
[ 0068 ] FIG . 7 illustrates components of an example sys 
tem 700 that can be used to train and utilize machine 
learning in accordance with at least one embodiment . As will 
be discussed , various components can be provided by vari 
ous combinations of computing devices and resources , or a 
single computing system , which may be under control of a 
single entity or multiple entities . Further , various aspects 
may be triggered , initiated , or requested by different entities . 
For example , in at least one embodiment training of a neural 
network might be instructed by a provider associated with a 
provider environment 706 , while in at least one embodiment 
training might be requested by a customer or other user 
having access to a provider environment through a client 
device 702 or other such resource . Training data ( or data to 
be analyzed by a trained neural network ) can be provided by 
a provider , a user , or a third party content provider 724. In 
at least one embodiment , client device 702 may be a vehicle 
or object that is to be navigated on behalf of a user , for 
example , which can submit requests and / or receive instruc 
tions that assist in navigation of this device . 
[ 0069 ] In this example , requests are able to be submitted 
across at least one network 704 to be received to a provider 
environment 706. A client device may be any appropriate 
electronic and / or computing devices enabling a user to 
generate and send such requests , as may include desktop 
computers , notebook computers , computer servers , smart 
phones , tablet computers , gaming consoles ( portable or 
otherwise ) , computer processors , computing logic , and set 
top boxes . Network ( s ) 704 can include any appropriate 
network for transmitting a request or other such data , as may 
include an Internet , an intranet , an Ethernet , a cellular 
network , a local area network ( LAN ) , a network of direct 
wireless connections among peers , and so on . 
[ 0070 ] Requests can be received to an interface layer 708 , 
which can forward data to a training and inference manager 
710 in this example . This manager can be a system or service 
including hardware and software for managing requests and 
service corresponding data or content in at least one embodi 
ment . This manager can receive a request to train a neural 
network , and can provide data for this request to a training 
manger 712. Training manager 712 can select an appropriate 
model or network to be used , if not specified by this request , 
and can train this model using relevant training data . In at 
least one embodiment training data can be a batch of data 
stored to a training data repository 714 , received from client 
device 702 or obtained from a third party provider 724 . 
Training manager 712 can be responsible for training this 
data , such as by using a LARC - based approach as discussed 
herein . A network can be any appropriate network , such as 
a recurrent neural network ( RNN ) or convolutional neural 
network ( CNN ) . Once a network is trained and successfully 
evaluated , this trained network can be stored to a model 
repository 716 , for example , that may store different models 
or networks for users , applications , or services , etc. As 
mentioned , in at least one embodiment there may be mul 
tiple models for a single application or entity , as may be 
utilized based on a number of different factors . 
[ 0071 ] At a subsequent point in time , a request may be 
received from a client device 702 ( or another such device ) 
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for content ( e.g. , path determinations ) or data that is at least 
partially determined or impacted by a trained neural net 
work . A request can include , for example , input data to be 
processed using a neural network to obtain one or more 
inferences or other output values , classifications , or predic 
tions . Input data can be received to interface layer 708 and 
directed to inference module 718 , although a different sys 
tem or service can be used as well in at least one embodi 
ment . Inference module 718 can obtain an appropriate 
trained network , such as a trained deep neural network 
( DNN ) as discussed herein , from model repository 716 if not 
already stored locally to inference module 718. Inference 
module 718 can provide data as input to a trained network , 
which can then generate one or more inferences as output . 
This may include , for example , a classification of an 
instance of input data . Inferences can then be transmitted to 
client device 702 for display or other communication to a 
user . Context data for a user may also be stored to a user 
context data repository 722 , which may include data about 
a user which may be useful as input to a network in 
generating inferences , or determining data to return to a user 
after obtaining instances . Relevant data , which may include 
at least some of input or inference data , may also be stored 
to a local database 720 for processing future requests . In at 
least one embodiment , a user can use account or other 
information to access resources or functionality of a pro 
vider environment . If permitted and available , user data may 
also be collected and used to further train models , in order 
to provide more accurate inferences for future requests . 
Requests may be received through a user interface to a 
machine learning application 726 executing on client device 
702 in at least one embodiment , and results displayed 
through a same interface . A client device can include 
resources such as a processor 728 and memory 730 for 
generating this request and processing results or a response , 
as well as at least one data storage element 732 for storing 
data for machine learning application 726 . 
[ 0072 ] In at least one embodiment a processor 728 ( or a 
processor of training manager 712 or inference module 718 ) 
will be a central processing unit ( CPU ) . As mentioned , 
however , resources in such environments can utilize GPUs 
to process data for at least certain types of requests . With 
thousands of cores , GPUs are designed to handle substantial 
parallel workloads and , therefore , have become popular in 
deep learning for training neural networks and generating 
predictions . While use of GPUs for offline builds has 
enabled faster training of larger and more complex models , 
generating predictions offline implies that either request 
time input features cannot be used or predictions must be 
generated for all permutations of features and stored in a 
lookup table to serve real - time requests . If a deep learning 
framework supports a CPU - mode and model is small and 
simple enough to perform a feed - forward on a CPU with a 
reasonable latency , then a service on a CPU instance could 
host a model . In this case , training can be done offline on a 
GPU and inference done in real - time on this CPU . If a CPU 
approach is not a viable choice , then a service can run on a 
GPU instance . Because GPUs have different performance 
and cost characteristics than CPUs , however , running a 
service that offloads a runtime algorithm to a GPU can 
require it to be designed differently from a CPU based 
service . 
[ 0073 ] FIG . 8 illustrates an example system 800 that can 
be used to classify data , or generate inferences , in accor 

dance with at least one embodiment . Various types of 
predictions , labels , or other outputs can be generated for 
input data as well , as should be apparent in light of teachings 
and suggestions contained herein . Further , both supervised 
and unsupervised training can be used in at least one 
embodiment discussed herein . In this example , a set of 
training data 802 ( e.g. , classified or labeled data ) is provided 
as input to function as training data . Training data can 
include instances of at least one type of object for which a 
neural network is to be trained , as well as information that 
identifies that type of object . For example , training data 
might include a set of images that each includes a repre 
sentation of a type of object , where each image also 
includes , or is associated with , a label , metadata , classifica 
tion , or other piece of information identifying a type of 
object represented in a respective image . Various other types 
of data may be used as training data as well , as may include 
text data , audio data , video data , and so on . Training data 
802 in this example is provided as training input to a training 
manager 804. Training manager 804 can be a system or 
service that includes hardware and software , such as one or 
more computing devices executing a training application , 
for training a neural network ( or other model or algorithm , 
etc. ) . In this example , training manager 804 receives an 
instruction or request indicating a type of model to be used 
for training . A model can be any appropriate statistical 
model , network , or algorithm useful for such purposes , as 
may include an artificial neural network , deep learning 
algorithm , learning classifier , Bayesian network , and so on . 
Training manager 804 can select an initial model , or other 
untrained model , from an appropriate repository 806 and 
utilize training data 802 to train this model , generating a 
trained model 808 ( e.g. , trained deep neural network ) that 
can be used to classify similar types of data , or generate 
other such inferences . In at least one embodiment where 
training data is not used , an appropriate initial model can 
still be selected for training on input data per training 
manager 804 . 
[ 0074 ] A model can be trained in a number of different 
ways , as may depend in part upon a type of model selected . 
For example , in at least one embodiment a machine learning 
algorithm can be provided with a set of training data , where 
this model is a model artifact created by a training process . 
Each instance of training data contains a correct answer 
( e.g. , classification ) , which can be referred to as a target or 
target attribute . A learning algorithm finds patterns in train 
ing data that map input data attributes to a target , an answer 
to be predicted , and a machine learning model is output that 
captures these patterns . A machine learning model can then 
be used to obtain predictions on new data for which a target 
is not specified . 
[ 0075 ] In one example , a training manager 804 can select 
from a set of machine learning models including binary 
classification , multiclass classification , and regression mod 
els . A type of model to be used can depend at least in part 
upon a type of target to be predicted . Machine learning 
models for binary classification problems predict a binary 
outcome , such as one of two possible classes . A learning 
algorithm such as logistic regression can be used to train 
binary classification models . Machine learning models for 
multiclass classification problems allow predictions to be 
generated for multiple classes , such as to predict one of more 
than two outcomes . Multinomial logistic regression can be 
useful for training multiclass models . Machine learning 



US 2020/0394458 A1 Dec. 17 , 2020 
8 

models for regression problems predict a numeric value . 
Linear regression can be useful for training regression 
models . 

[ 0076 ] In order to train a machine learning model in 
accordance with at least one embodiment , a training man 
ager must determine an input training data source , as well as 
other information such as a name of a data attribute that 
contains a target to be predicted , required data transforma 
tion instructions , and training parameters to control a learn 
ing algorithm . During a training process , a training manager 
804 in at least one embodiment may automatically select an 
appropriate learning algorithm based on a type of target 
specified in a training data source . Machine learning algo 
rithms can accept parameters used to control certain prop 
erties of a training process and of a resulting machine 
learning model . These are referred to herein as training 
parameters . If no training parameters are specified , a training 
manager can utilize default values that are known to work 
well for a large range of machine learning tasks . Examples 
of training parameters for which values can be specified 
include maximum model size , maximum number of passes 
over training data , shuffle type , regularization type , learning 
rate , and regularization amount . Default settings may be 
specified , with choices to adjust values to fine - tune perfor 
mance . 

[ 0077 ] A maximum model size is a total size , in units of 
bytes , of patterns that are created during training of a model . 
A model may be created of a specified size by default , such 
as a model of 100 MB . If a training manager is unable to 
determine enough patterns to fill model size , a smaller model 
may be created . If a training manager finds more patterns 
than will fit into a specified size , a maximum cut - off may be 
enforced by trimming patterns that least affect quality of a 
learned model . Choosing a model size provides for control 
of a trade - off between a predictive quality of a model and a 
cost of use . Smaller models can cause a training manager to 
remove many patterns to fit within a maximum size limit , 
affecting quality of predictions . Larger models may cost 
more to query for real - time predictions . Larger input data 
sets do not necessarily result in larger models because 
models store patterns , not input data . If patterns are few and 
simple , a resulting model will be small . Input data that has 
a large number of raw attributes ( input columns ) or derived 
features ( outputs of data transformations ) will likely have 
more patterns found and stored during a training process . 
[ 0078 ] In at least one embodiment , training manager 804 
can make multiple passes or iterations over training data to 
attempt to discover patterns . There may be a default number 
of passes , such as ten passes , while in at least one embodi 
ment up to a maximum number of passes may be set , such 
as up to one hundred passes . In at least one embodiment 
there may be no maximum set , or there may be a conver 
gence criterion or other factor set that will trigger an end to 
a training process . In at least one embodiment training 
manager 804 can monitor quality of patterns during training , 
and can automatically stop training when there are no more 
data points or patterns to discover . Data sets with only a few 
observations may require more passes over data to obtain 
sufficiently high model quality . Larger data sets may contain 
many similar data points , which can reduce a need for a large 
number of passes . Potential impact of choosing more data 
passes over data is that model training can takes longer and 
cost more in terms of resources and system utilization . 

[ 0079 ] In at least one embodiment training data is shuffled 
before training , or between passes of training . Shuffling in at 
least one embodiment is a random or pseudo - random shuf 
fling to generate a truly random ordering , although there 
may be some constraints in place to ensure that there is no 
grouping of certain types of data , or shuffled data may be 
reshuffled if such grouping exists , etc. Shuffling changes an 
order or arrangement in which data is utilized for training so 
that a training algorithm does not encounter groupings of 
similar types of data , or a single type of data for too many 
observations in succession . For example , a model might be 
trained to predict an object . Data might be sorted by object 
type before uploading . An algorithm can then process data 
alphabetically by object type , encountering only data for a 
certain object type first . A model will begin to learn patterns 
for that type of object . A model will then encounter only data 
for a second object type , and will try to adjust a model to fit 
that object type , which can degrade patterns that fit that a 
first object type . This sudden switch from between object 
types can produce a model that does not learn how to predict 
object types accurately . Shuffling can be performed in at 
least one embodiment before a training data set is split into 
training and evaluation subsets , such that a relatively even 
distribution of data types is utilized for both stages . In at 
least one embodiment training manager 804 can automati 
cally shuffle data using , for example , a pseudo - random 
shuffling technique . 
[ 0080 ] When creating a machine learning model , training 
manager 804 in at least one embodiment can enable a user 
to specify settings . For example , a user may specify one or 
more evaluation settings , indicating a portion of input data 
to be reserved for evaluating predictive quality of a machine 
learning model . A user may specify a policy that indicates 
which attributes and attribute transformations are available 
for model training . A user may also specify various training 
parameters that control certain properties of a training 
process and of a resulting model . 
[ 0081 ] Once a training manager has determined that train 
ing of a model is complete , such as by using at least one end 
criterion discussed herein , trained model 808 can be pro 
vided for use by a classifier 814 in classifying ( or otherwise 
generating inferences for ) validation data 812. As illustrated , 
this involves a logical transition between a training mode for 
a model and an inference mode for a model . In at least one 
embodiment , however , trained model 808 will first be passed 
to an evaluator 810 , which may include an application , 
process , or service executing on at least one computing 
resource ( e.g. , a CPU or GPU of at least one server ) for 
evaluating quality ( or another such aspect ) of a trained 
model . A model is evaluated to determine whether this 
model will provide at least a minimum acceptable or thresh 
old level of performance in predicting a target on new and 
future data . If not , training manager 804 can continue to train 
a model . Since future data instances will often have 
unknown target values , it can be desirable to check an 
accuracy metric of machine learning on data for which a 
target answer is known , and use this assessment as a proxy 
for predictive accuracy on future data . 
[ 0082 ] In at least one embodiment , a model is evaluated 
using a subset of training data 802 that was provided for 
training . A subset can be determined using a shuffle and split 
approach as discussed above . This evaluation data subset 
will be labeled with a target , and thus can act as a source of 
ground truth for evaluation . Evaluating a predictive accu 
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racy of a machine learning model with same data that was 
used for training is not useful , as positive evaluations might 
be generated for models that remember training data instead 
of generalizing from it . Once training has completed , an 
evaluation data subset is processed using trained model 808 
and evaluator 810 can determine accuracy of a model by 
comparing ground truth data against corresponding output 
( or predictions / observations ) of a model . Evaluator 810 in at 
least one embodiment can provide a summary or perfor 
mance metric indicating how well predicted and true values 
match . If a trained model does not satisfy at least a minimum 
performand ance criterion , or other such accuracy threshold , 
then training manager 804 can be instructed to perform 
further training , or in some instances try training a new or 
different model . If trained model 808 satisfies relevant 
criteria , then a trained model can be provided for use by 
classifier 814 . 
[ 0083 ] When creating and training a machine learning 
model , it can be desirable in at least one embodiment to 
specify model settings or training parameters that will result 
in a model capable of making most accurate predictions . 
Example parameters include a number of passes to be 
performed ( forward and / or backward ) , regularization , model 
size , and shuffle type . As mentioned , however , selecting 
model parameter settings that produce best predictive per 
formance on evaluation data might result in an overfitting of 
a model . Overfitting occurs when a model has memorized 
patterns that occur in training and evaluation data sources , 
but has failed to generalize patterns in data . Overfitting often 
occurs when training data includes all data used in evalua 
tion . A model that has been over fit may perform well during 
evaluation , but may fail to make accurate predictions on new 
or otherwise validation data . To avoid selecting an over 
fitted model as a best model , a training manager can reserve 
additional data to validate performance of this model . For 
example , a training data set might be divided into 60 percent 
for training , and 40 percent for evaluation or validation , 
which may be divided into two or more stages . After 
selecting model parameters that work well for evaluation 
data , leading to convergence on a subset of validation data , 
such as half validation data , a second validation may be 
executed with a remainder of validation data to ensure 
performance of this model . If this model meets expectations 
on validation data , then this model is not overfitting data . 
Alternatively , a test set or held - out set may be used for 
testing parameters . Using a second validation or testing step 
helps to select appropriate model parameters to prevent 
overfitting . However , holding out more data from a training 
process for validation makes less data available for training . 
This may be problematic with smaller data sets as there may 
not be sufficient data available for training . One approach in 
such a situation is to perform cross - validation as discussed 
elsewhere herein . 
[ 0084 ] There are many metrics or insights that can be used 
to review and evaluate a predictive accuracy of a given 
model . One example evaluation outcome contains a predic 
tion accuracy metric to report on overall success of a model , 
as well as visualizations to help explore accuracy of this 
model beyond a prediction accuracy metric . An outcome can 
also provide an ability to review impact of setting a score 
threshold , such as for binary classification , and can generate 
alerts on criteria to check validity of an evaluation . Choice 
of a metric and visualization can depend at least in part upon 
a type of model being evaluated . 

[ 0085 ] Once trained and evaluated satisfactorily , a trained 
machine learning model can be used to build or support a 
machine learning application . In at least one embodiment 
building a machine learning application is an iterative pro 
cess that involves a sequence of steps . A core machine 
learning problem ( s ) can be framed in terms of what is 
observed and what answer this model is to predict . Data can 
then be collected , cleaned , and prepared to make this data 
suitable for consumption by machine learning model train 
ing algorithms . This data can be visualized and analyzed to 
run sanity checks to validate quality of this data and to 
understand this data . Raw data ( e.g. , input variables ) and 
answer data ( e.g. , target ) may not be represented in way 
that can be used to train a highly predictive model . There 
fore , it may be desirable to construct more predictive input 
representations or features from raw variables . Resulting 
features can be fed to a learning algorithm to build models 
and evaluate quality of models on data that was held out 
from model building . A model can then be used to generate 
predictions of a target answer for new data instances . 
[ 0086 ] In an example system 800 of FIG . 8 , trained model 
810 after evaluation is provided , or made available , to a 
classifier 814 that is able to use this trained model to process 
validation data . This may include , for example , data 
received from users or third parties that are not classified , 
such as query images that are looking for information about 
what is represented in those images . This validation data can 
be processed by a classifier using this trained model , and 
results 816 that are produced can be sent back to respective 
sources or otherwise processed or stored . In s at least one 
embodiment , and where such usage is permitted , now 
classified data instances can be stored to a training data 
repository , which can be used for further training of trained 
model 808 by a training manager . In at least one embodi 
ment a model will be continually trained as new data is 
available , but in at least one embodiment models will be 
retrained periodically , such as once a day or week , depend 
ing upon factors such as a size of a data set or complexity 
of a model . 
[ 0087 ] Classifier 814 can include appropriate hardware 
and software for processing validation data 812 using a 
trained model . In at least one embodiment a classifier will 
include one or more computer servers each having one or 
more graphics processing units ( GPUs ) that are able to 
process data . A configuration and design of GPUs can make 
them more desirable to use in processing machine learning 
data than CPUs or other such components . A trained model 
in at least one embodiment can be loaded into GPU memory 
and a received data instance provided to a GPU for process 
ing . GPUs can have a much larger number of cores than 
CPUs , and GPU cores can also be much less complex . 
Accordingly , a given GPU may be able to process thousands 
of data instances concurrently via different hardware 
threads . A GPU can also be configured to maximize floating 
point throughput , which can provide significant additional 
processing advantages for a large data set . 
[ 0088 ] Even when using GPUs , accelerators , and other 
such hardware to accelerate tasks such as training of a model 
or classification of data using such a model , such tasks can 
still require significant time , resource allocation , and cost . 
For example , if a machine learning model is to be trained 
using 800 passes , and a data set includes 1,000,000 data 
instances to be used for training , then all million instances 
would need to be processed for each pass . Different portions 
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of an architecture can also be supported by different types of 
devices . For example , training may be performed using a set 
of servers at a logically centralized location , as may be 
offered as a service , while classification of raw data may be 
performed by such a service or on a client device . These 
devices may also be owned , operated , or controlled by a 
same entity or multiple entities in at least one embodiment . 
[ 0089 ] FIG . 9 illustrates an example neural network 900 
that can be trained or otherwise utilized in accordance with 
at least one embodiment . In this example a statistical model 
is an artificial neural network ( ANN ) that includes a multiple 
layers of nodes , including an input layer 902 , an output layer 
906 , and multiple layers 904 of intermediate nodes , often 
referred to as “ hidden ” layers , as internal layers and nodes 
are typically not visible or accessible in various neural 
networks . Although only a few intermediate layers are 
illustrated for purposes of explanation , it should be under 
stood that there is no limit to a number of intermediate layers 
that can be utilized , and any limit on layers will often be a 
factor of resources or time required for processed using this 
model . As discussed elsewhere herein , there can be addi 
tional types of models , networks , algorithms , or processes 
used as well , as may include other numbers or selections of 
nodes and layers . Validation data can be processed by layers 
of this network to generate a set of inferences , or inference 
scores , which can then be fed to a loss function 908 . 
[ 0090 ] In this example network 900 , all nodes of a given 
layer are interconnected to all nodes of an adjacent layer . As 
illustrated , nodes of an intermediate layer will then each be 
connected to nodes of two adjacent layers . Nodes are also 
referred to as neurons or connected units in some models , 
and connections between nodes are referred to as edges . 
Each node can perform a function for inputs received , such 
as by using a specified function . Nodes and edges can obtain 
different weightings during training , and individual layers of 
nodes can perform specific types of transformations on 
received input , where those transformations can also be 
learned or adjusted during training . Learning can be super 
vised or unsupervised learning , as may depend at least in 
part upon a type of information contained in a training data 
set . Various types of neural networks can be utilized , as may 
include a convolutional neural network ( CNN ) that includes 
a number of convolutional layers and a set of pooling layers , 
and have proven to be beneficial for applications such as 
image recognition . CNNs can also be easier to train than 
other networks due to a relatively small number of param 
eters to be determined . 
[ 0091 ] In at least one embodiment , such a complex 
machine learning model can be trained using various tuning 
parameters . Choosing parameters , fitting a model , and 
evaluating this model are parts of a model tuning process , 
often referred to as hyperparameter optimization . Such tun 
ing can involve introspecting an underlying model or data in 
at least one embodiment . In a training or production setting , 
a robust workflow can be important to avoid overfitting of 
hyperparameters as discussed elsewhere herein . Cross - vali 
dation and adding Gaussian noise to a training dataset are 
techniques that can be useful for avoiding overfitting to any 
one dataset . For hyperparameter optimization it may be 
desirable in at least one embodiment to keep training and 
validation sets fixed . In at least one embodiment , hyperpa 
rameters can be tuned in certain categories , as may include 
data preprocessing , CNN architecture definition ( for 
example , filter sizes , number of filters ) , stochastic gradient 

descent ( SGD ) parameters ( for example , learning rate ) , and 
regularization ( for example , dropout probability ) . 
[ 0092 ] In an example pre - processing step , instances of a 
dataset can be embedded into a lower dimensional space of 
a certain size . A size of this space is a parameter to be tuned . 
An architecture of this CNN contains many tunable param 
eters . A parameter for filter sizes can represent an interpre 
tation of information that corresponds to size of an instance 
that will be analyzed . In computational linguistics , this is 
known as an n - gram size . An example CNN uses three 
different filter sizes , which represent potentially different 
n - gram sizes . A number of filters per filter size can corre 
spond to a depth of this filter . Each filter attempts to learn 
something different from a structure of an instance , such as 
a sentence structure for textual data . In a convolutional layer , 
an activation function can be a rectified linear unit and 
pooling type set as max pooling . Results can then be 
concatenated into a single dimensional vector , and a last 
layer is fully connected onto a two - dimensional output . This 
corresponds to binary classification to which an optimization 
function can be applied . One such function is an implemen 
tation of a Root Mean Square ( RMS ) propagation method of 
gradient descent , where example hyperparameters can 
include learning rate , batch size , maximum gradient normal , 
and epochs . With neural networks , regularization can be an 
extremely important consideration . As mentioned , in at least 
one embodiment input data may be relatively sparse . A main 
hyperparameter in such a situation can be a dropout at a 
penultimate layer , which represents a proportion of nodes 
that will not " fire ” at each training cycle . An example 
training process can suggest different hyperparameter con 
figurations based on feedback for performance of previous 
configurations . A model can be trained with a proposed 
configuration , evaluated on a designated validation set , and 
performance reporting . This process can be repeated to , for 
example , trade off exploration ( learning more about different 
configurations and exploitation ( leveraging previous 
knowledge to achieve better results ) . 
[ 0093 ] As training CNNs can be parallelized and GPU 
enabled computing resources can be utilized , multiple opti 
mization strategies can be attempted for different scenarios . 
A complex scenario allows tuning model architecture and 
preprocessing and stochastic gradient descent parameters . 
This expands a model configuration space . In a basic sce 
nario , only preprocessing and stochastic gradient descent 
parameters are tuned . There can be a greater number of 
configuration parameters in this complex scenario than in a 
basic scenario . Tuning in a joint space can be performed 
using a linear or exponential number of steps , iteration 
through an optimization loop for models . A cost for such a 
tuning process can be significantly less than for tuning 
processes such as random search and grid search , without 
any significant performance loss . 
[ 0094 ] In at least one embodiment backpropagation can be 
utilized to calculate a gradient used for determining weights 
for a neural network . Backpropagation is a form of differ 
entiation , and can be used by a gradient descent optimization 
algorithm to adjust weights applied to various nodes or 
neurons as discussed above . weights can be determined in at 
least one embodiment using gradient of a relevant loss 
function . Backpropagation can utilize a derivative of a loss 
function with respect to an output generated by a statistical 
model . As mentioned , various nodes can have associated 
activation functions that define output of respective nodes . 
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Various activation functions can be used as appropriate , as 
may include radial basis functions ( RBFs ) and sigmoids , 
which can be utilized by various support vector machines 
( SVMs ) for transformation of data . An activation function of 
an intermediate layer of nodes is referred to herein as an 
inner product kernel . These functions can include , for 
example , identity functions , step functions , sigmoidal func 
tions , ramp functions , and so on . Activation functions can 
also be linear or non - linear . 

Inference and Training Logic 
[ 0095 ] FIG . 10 illustrates inference and / or training logic 
1015 used to perform inferencing and / or training operations 
associated with one or more embodiments . Details regarding 
inference and / or training logic 1015 are provided below in 
conjunction with FIGS . 10 and / or 11 . 
[ 0096 ] In at least one embodiment , inference and / or train 
ing logic 1015 may include , without limitation , a data 
storage 1001 to store forward and / or output weight and / or 
input / output data corresponding to neurons or layers of a 
neural network trained and / or used for inferencing in aspects 
of one or more embodiments . In at least one embodiment 
data storage 1001 stores weight parameters and / or input / 
output data of each layer of a neural network trained or used 
in conjunction with one or more embodiments during for 
ward propagation of input / output data and / or weight param 
eters during training and / or inferencing using aspects of one 
or more embodiments . In at least one embodiment , any 
portion of data storage 1001 may be included with other 
on - chip or off - chip data storage , including a processor's L1 , 
L2 , or L3 cache or system memory . 
[ 0097 ] In at least one embodiment , any portion of data 
storage 1001 may be internal or external to one or more 
processors or other hardware logic devices or circuits . In at 
least one embodiment , data storage 1001 may be cache 
memory , dynamic randomly addressable memory 
( “ DRAM " ) static randomly addressable memory 
( " SRAM ” ) , non - volatile memory ( e.g. , Flash memory ) , or 
other storage . In at least one embodiment , choice of whether 
data storage 1001 is internal or external to a processor , for 
example , or comprised of DRAM , SRAM , Flash or some 
other storage type may depend on available storage on - chip 
versus off - chip , latency requirements of training and / or 
inferencing functions being performed , batch size of data 
used in inferencing and / or training of a neural network , or 
some combination of these factors . 
[ 0098 ] In at least one embodiment , inference and / or train 
ing logic 1015 may include , without limitation , a data 
storage 1005 to store backward and / or output weight and / or 
input / output data corresponding to neurons or layers of a 
neural network trained and / or used for inferencing in aspects 
of one or more embodiments . In at least one embodiment , 
data storage 1005 stores weight parameters and / or input / 
output data of each layer of a neural network trained or used 
in conjunction with one or more embodiments during back 
ward propagation of input / output data and / or weight param 
eters during training and / or inferencing using aspects of one 
or more embodiments . In at least one embodiment , any 
portion of data storage 1005 may be included with other 
on - chip or off - chip data storage , including a processor's Li , 
L2 , or L3 cache or system memory . In at least one embodi 
ment , any portion of data storage 1005 may be internal or 
external to on one or more processors or other hardware 
logic devices or circuits . In at least one embodiment , data 

storage 1005 may be cache memory , DRAM , SRAM , non 
volatile memory ( e.g. , Flash memory ) , or other storage . In at 
least one embodiment , choice of whether data storage 1005 
is internal or external to a processor , for example , or 
comprised of DRAM , SRAM , Flash or some other storage 
type may depend on available storage on - chip versus off 
chip , latency requirements of training and / or inferencing 
functions being performed , batch size of data used in infer 
encing and / or training of a neural network , or some com 
bination of these factors . 

[ 0099 ] In at least one embodiment , data storage 1001 and 
data storage 1005 may be separate storage structures . In at 
least one embodiment , data storage 1001 and data storage 
1005 may be same storage structure . In at least one embodi 
ment , data storage 1001 and data storage 1005 may be 
partially same storage structure and partially separate stor 
age structures . In at least one embodiment , any portion of 
data storage 1001 and data storage 1005 may be included 
with other on - chip or off - chip data storage , including a 
processor's L1 , L2 , or L3 cache or system memory . 
[ 0100 ] In at least one embodiment , inference and / or train 
ing logic 1015 may include , without limitation , one or more 
arithmetic logic unit ( s ) ( “ ALU ( s ) ” ) 1010 to perform logical 
and / or mathematical operations based , at least in part on , or 
indicated by , training and / or inference code , result of which 
may result in activations ( e.g. , output values from layers or 
neurons within a neural network ) stored in an activation 
storage 1020 that are functions of input / output and / or weight 
parameter data stored in data storage 1001 and / or data 
storage 1005. In at least one embodiment , activations stored 
in activation storage 1020 are generated according to linear 
algebraic and or matrix - based mathematics performed by 
ALU ( s ) 1010 in response to performing instructions or other 
code , wherein weight values stored in data storage 1005 
and / or data 1001 are used as operands along with other 
values , such as bias values , gradient information , momen 
tum values , or other parameters or hyperparameters , any or 
all of which may be stored in data storage 1005 or data 
storage 1001 or another storage on or off - chip . In at least one 
embodiment , ALU ( S ) 1010 are included within one or more 
processors or other hardware logic devices or circuits , 
whereas in another embodiment , ALU ( s ) 1010 may be 
external to a processor or other hardware logic device or 
circuit that uses them ( e.g. , a co - processor ) . In at least one 
embodiment , ALUs 1010 may be included within a proces 
sor's execution units or otherwise within a bank of ALUS 
accessible by a processor's execution units either within 
same processor or distributed between different processors 
of different types ( e.g. , central processing units , graphics 
processing units , fixed function units , etc. ) . In at least one 
embodiment , data storage 1001 , data storage 1005 , and 
activation storage 1020 may be on same processor or other 
hardware logic device or circuit , whereas in another embodi 
ment , they may be in different processors or other hardware 
logic devices or circuits , or some combination of same and 
different processors or other hardware logic devices or 
circuits . In at least one embodiment , any portion of activa 
tion storage 1020 may be included with other on - chip or 
off - chip data storage , including a processor's L1 , L2 , or L3 
cache or system memory . Furthermore , inferencing and / or 
training code may be stored with other code accessible to a 
processor or other hardware logic or circuit and fetched 
and / or processed using a processor's fetch , decode , sched 
uling , execution , retirement and / or other logical circuits . 
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input to next “ storage / computational pair 1005/1006 ” of 
data storage 1005 and computational hardware 1006 , in 
order to mirror conceptual organization of a neural network . 
In at least one embodiment , each of storage / computational 
pairs 1001/1002 and 1005/1006 may correspond to more 
than one neural network layer . In at least one embodiment , 
additional storage / computation pairs ( not shown ) subse 
quent to or in parallel with storage computation pairs 
1001/1002 and 1005/1006 may be included in inference 
and / or training logic 1015 . 

[ 0101 ] In at least one embodiment , activation storage 1020 
may be cache memory , DRAM , SRAM , non - volatile 
memory ( e.g. , Flash memory ) , or other storage . In at least 
one embodiment , activation storage 1020 may be com 
pletely or partially within or external to one or more pro 
cessors or other logical circuits . In at least one embodiment , 
choice of whether activation storage 1020 is internal or 
external to a processor , for example , or comprised of 
DRAM , SRAM , Flash or some other storage type may 
depend on available storage on - chip versus off - chip , latency 
requirements of training and / or inferencing functions being 
performed , batch size of data used in inferencing and / or 
training of a neural network , or some combination of these 
factors . In at least one embodiment , inference and / or train 
ing logic 1015 illustrated in FIG . 10 may be used in 
conjunction with an application - specific integrated circuit 
( “ ASIC ” ) , such as Tensorflow® Processing Unit from 
Google , an inference processing unit ( IPU ) from 
GraphcoreTM , or a Nervana® ( e.g. , “ Lake Crest ” ) processor 
from Intel Corp. In at least one embodiment , inference 
and / or training logic 1015 illustrated in FIG . 10 may be used 
in conjunction with central processing unit ( “ CPU ” ) hard 
ware , graphics processing unit ( “ GPU ” ) hardware or other 
hardware , such as field programmable gate arrays ( “ FP 
GAs ” ) . 
[ 0102 ] FIG . 11 illustrates inference and / or training logic 
1015 , in at least one embodiment various . In at least one 
embodiment , inference and / or training logic 1015 may 
include , without limitation , hardware logic in which com 
putational resources are dedicated or otherwise exclusively 
used in conjunction with weight values or other information 
corresponding to one or more layers of neurons within a 
neural network . In at least one embodiment , inference and / or 
training logic 1015 illustrated in FIG . 11 may be used in 
conjunction with an application - specific integrated circuit 
( ASIC ) , such as Tensorflow® Processing Unit from Google , 
an inference processing unit ( IPU ) from GraphcoreTM , or a 
Nervana® ( e.g. , “ Lake Crest ” ) processor from Intel Corp. In 
at least one embodiment , inference and / or training logic 
1015 illustrated in FIG . 11 may be used in conjunction with 
central processing unit ( CPU ) hardware , graphics processing 
unit ( GPU ) hardware or other hardware , such as field 
programmable gate arrays ( FPGAs ) . In at least one embodi 
ment , inference and / or training logic 1015 includes , without 
limitation , data storage 1001 and data storage 1005 , which 
may be used to store weight values and / or other information , 
including bias values , gradient information , momentum val 
ues , and / or other parameter or hyperparameter information . 
In at least one embodiment illustrated in FIG . 10.B , each of 
data storage 1001 and data storage 1005 is associated with 
a dedicated computational resource , such as computational 
hardware 1002 and computational hardware 1006 , respec 
tively . In at least one embodiment , each of computational 
hardware 1002 and computational hardware 1006 comprises 
one or more ALUs that perform mathematical functions , 
such as linear algebraic functions , only on information 
stored in data storage 1001 and data storage 1005 , respec 
tively , result of which is stored in activation storage 1020 . 
[ 0103 ] In at least one embodiment , each of data storage 
1001 and 1005 and corresponding computational hardware 
1002 and 1006 , respectively , correspond to different layers 
of a neural network , such that resulting activation from one 
“ storage / computational pair 1001/1002 ” of data storage 
1001 and computational hardware 1002 is provided as an 

Neural Network Training and Deployment 
[ 0104 ] FIG . 12 illustrates training and deployment of a 
deep neural network , in at least one embodiment . In at least 
one embodiment , untrained neural network 1206 is trained 
using a training dataset 1202. In at least one embodiment , 
training framework 1104 is a PyTorch framework , whereas 
in other embodiments , training framework 1104 is a Ten 
sorflow , Boost , Caffe , Microsoft Cognitive Toolkit / CNTK , 
MXNet , Chainer , Keras , Deeplearning4j , or other training 
framework . In at least one embodiment training framework 
1104 trains an untrained neural network 1106 and enables it 
to be trained using processing resources described herein to 
generate a trained neural network 1108. In at least one 
embodiment , weights may be chosen randomly or by pre 
training using a deep belief network . In at least one embodi 
ment , training may be performed in either a supervised , 
partially supervised , or unsupervised manner . 
[ 0105 ] In at least one embodiment , untrained neural net 
work 1106 is trained using supervised learning , wherein 
training dataset 1102 includes an input paired with a desired 
output for an input , or where training dataset 1102 includes 
input having known output and output of a neural network 
is manually graded . In at least one embodiment , untrained 
neural network 1106 is trained in a supervised manner 
processes inputs from training dataset 1102 and compares 
resulting outputs against a set of expected or desired outputs . 
In at least one embodiment , errors are then propagated back 
through untrained neural network 1106. In at least one 
embodiment , training framework 1104 adjusts weights that 
control untrained neural network 1106. In at least one 
embodiment , training framework 1104 includes tools to 
monitor how well untrained neural network 1106 is con 
verging towards a model , such as trained neural network 
1108 , suitable to generating correct answers , such as in 
result 1114 , based on known input data , such as new data 
1112. In at least one embodiment , training framework 1104 
trains untrained neural network 1106 repeatedly while adjust 
weights to refine an output of untrained neural network 1106 
using a loss function and adjustment algorithm , such as 
stochastic gradient descent . In at least one embodiment , 
training framework 1104 trains untrained neural network 
1106 until untrained neural network 1106 achieves a desired 
accuracy . In at least one embodiment , trained neural network 
1108 can then be deployed to implement any number of 
machine learning operations . 
[ 0106 ] In at least one embodiment , untrained neural net 
work 1106 is trained using unsupervised learning , wherein 
untrained neural network 1106 attempts to train itself using 
unlabeled data . In at least one embodiment , unsupervised 
learning training dataset 1102 will include input data without 
any associated output data or “ ground truth ” data . In at least 
one embodiment , untrained neural network 1106 can learn 
groupings within training dataset 1102 and can determine 
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how individual inputs are related to untrained dataset 1102 . 
In at least one embodiment , unsupervised training can be 
used to generate a self - organizing map , which is a type of 
trained neural network 1108 capable of performing opera 
tions useful in reducing dimensionality of new data 1112. In 
at least one embodiment , unsupervised training can also be 
used to perform anomaly detection , which allows identifi 
cation of data points in a new dataset 1112 that deviate from 
normal patterns of new dataset 1112 . 
[ 0107 ] In at least one embodiment , semi - supervised learn 
ing may be used , which is a technique in which in training 
dataset 1102 includes a mix of labeled and unlabeled data . 
In at least one embodiment , training framework 1104 may be 
used to perform incremental learning , such as through 
transferred learning techniques . In at least one embodiment , 
incremental learning enables trained neural network 1108 to 
adapt to new data 1112 without forgetting knowledge 
instilled within network during initial training . 

[ 0112 ] In at least one embodiment , as shown in FIG . 13 , 
framework layer 1320 includes a job scheduler 1332 , a 
configuration manager 1334 , a resource manager 1336 and 
a distributed file system 1338. In at least one embodiment , 
framework layer 1320 may include a framework to support 
software 1332 of software layer 1330 and / or one or more 
application ( s ) 1342 of application layer 1340. In at least one 
embodiment , software 1332 or application ( s ) 1342 may 
respectively include web - based service software or applica 
tions , such as those provided by Amazon Web Services , 
Google Cloud and Microsoft Azure . In at least one embodi 
ment , framework layer 1320 may be , but is not limited to , a 
type of free and open - source software web application 
framework such as Apache SparkTM ( hereinafter “ Spark ” ) 
that may utilize distributed file system 1338 for large - scale 
data processing ( e.g. , “ big data ” ) . In at least one embodi 
ment , job scheduler 1332 may include a Spark driver to 
facilitate scheduling of workloads supported by various 
layers of data center 1300. In at least one embodiment , 
configuration manager 1334 may be capable of configuring 
different layers such as software layer 1330 and framework 
layer 1320 including Spark and distributed file system 1338 
for supporting large - scale data processing . In at least one 
embodiment , resource manager 1336 may be capable of 
managing clustered or grouped computing resources 
mapped to or allocated for support of distributed file system 
1338 and job scheduler 1332. In at least one embodiment , 
clustered or grouped computing resources may include 
grouped computing resource 1314 at data center infrastruc 
ture layer 1310. In at least one embodiment , resource 
manager 1336 may coordinate with resource orchestrator 
1312 to manage these mapped or allocated computing 

Data Center 

[ 0108 ] FIG . 13 illustrates an example data center 1300 , in 
which at least one embodiment may be used . In at least one 
embodiment , data center 1300 includes a data center infra 
structure layer 1310 , a framework layer 1320 , a software 
layer 1330 and an application layer 1340 . 
[ 0109 ] In at least one embodiment , as shown in FIG . 13 , 
data center infrastructure layer 1310 may include a resource 
orchestrator 1312 , grouped computing resources 1314 , and 
node computing resources ( “ node C.R.s ” ) 1316 ( 1 ) -1316 ( N ) , 
where “ N ” represents any whole , positive integer . In at least 
one embodiment , node C.R.s 1316 ( 1 ) -1316 ( N ) may include , 
but are not limited to , any number of central processing units 
( “ CPUs ” ) or other processors ( including accelerators , field 
programmable gate arrays ( FPGAs ) , graphics processors , 
etc. ) , memory devices ( e.g. , dynamic read - only memory ) , 
storage devices ( e.g. , solid state or disk drives ) , network 
input / output ( “ NW I / O ” ) devices , network switches , virtual 
machines ( “ VMs ” ) , power modules , and cooling modules , 
etc. In at least one embodiment , one or more node C.R.S 
from among node C.R.s 1316 ( 1 ) -1316 ( N ) may be a server 
having one more of above - mentioned computing 

resources . 

or 

resources . 

[ 0110 ] In at least one embodiment , grouped computing 
resources 1314 may include separate groupings of node 
C.R.s housed within one or more racks ( not shown ) , or many 
racks housed in data centers at various geographical loca 
tions ( also not shown ) . separate groupings of node C.R.S 
within grouped computing resources 1314 may include 
grouped compute , network , memory or storage resources 
that may be configured or allocated to support one or more 
workloads . In at least one embodiment , several node C.R.S 
including CPUs or processors may grouped within one or 
more racks to provide compute resources to support one or 
more workloads . In at least one embodiment , one or more 
racks may also include any number of power modules , 
cooling modules , and network switches , in any combination . 
[ 0111 ] In at least one embodiment , resource orchestrator 
1322 may configure or otherwise control one or more node 
C.R.s 1316 ( 1 ) -1316 ( N ) and / or grouped computing resources 
1314. In at least one embodiment , resource orchestrator 
1322 may include a software design infrastructure ( “ SDI ” ) 
management entity for data center 1300. In at least one 
embodiment , resource orchestrator may include hardware , 
software or some combination thereof . 

[ 0113 ] In at least one embodiment , software 1332 included 
in software layer 1330 may include software used by at least 
portions of node C.R.s 1316 ( 1 ) -1316 ( N ) , grouped comput 
ing resources 1314 , and / or distributed file system 1338 of 
framework layer 1320. one or more types of software may 
include , but are not limited to , Internet web page search 
software , e - mail virus scan software , database software , and 
streaming video content software . 
[ 0114 ] In at least one embodiment , application ( s ) 1342 
included in application layer 1340 may include one or more 
types of applications used by at least portions of node C.R.s 
1316 ( 1 ) -1316 ( N ) , grouped computing resources 1314 , and / 
or distributed file system 1338 of framework layer 1320. one 
or more types of applications may include , but are not 
limited to , any number of a genomics application , a cogni 
tive compute , and a machine learning application , including 
training or inferencing software , machine learning frame 
work software ( e.g. , PyTorch , TensorFlow , Caffe , etc. ) or 
other machine learning applications used in conjunction 
with one or more embodiments . 
[ 0115 ] In at least one embodiment , any of configuration 
manager 1334 , resource manager 1336 , and resource orches 
trator 1312 may implement any number and type of self 
modifying actions based on any amount and type of data 
acquired in any technically feasible fashion . In at least one 
embodiment , self - modifying actions may relieve a data 
center operator of data center 1300 from making possibly 
bad configuration decisions and possibly avoiding underuti 
lized and / or poor performing portions of a data center . 
[ 0116 ] In at least one embodiment , data center 1300 may 
include tools , services , software or other resources to train 
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one or more machine learning models or predict or infer 
information using one or more machine learning models 
according to one or more embodiments described herein . 
For example , in at least one embodiment , a machine learning 
model may be trained by calculating weight parameters 
according to a neural network architecture using software 
and computing resources described above with respect to 
data center 1300. In at least one embodiment , trained 
machine learning models corresponding to one or more 
neural networks may be used to infer or predict information 
using resources described above with respect to data center 
1300 by using weight parameters calculated through one or 
more training techniques described herein . 
[ 0117 ] In at least one embodiment , data center may use 
CPUs , application - specific integrated circuits ( ASICs ) , 
GPUs , FPGAs , or other hardware to perform training and / or 
inferencing using above - described resources . Moreover , one 
or more software and / or hardware resources described above 
may be configured as a service to allow users to train or 
performing inferencing of information , such as image rec 
ognition , speech recognition , or other artificial intelligence 
services . 
[ 0118 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 13 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . 
[ 0119 ] In accordance with at least one embodiment , a data 
center infrastructure 1310 can receive input text and cause 
that input to be directed to corresponding components of 
application layer 1340 and software layer 1330 for purposes 
of training and / or inferencing as discussed herein . 

[ 0121 ] Embodiments may be used in other devices such as 
handheld devices and embedded applications . Some 
examples of handheld devices include cellular phones , Inter 
net Protocol devices , digital cameras , personal digital assis 
tants ( “ PDAs ” ) , and handheld PCs . In at least one embodi 
ment , embedded applications may include a microcontroller , 
a digital signal processor ( “ DSP ' ) , system on a chip , net 
work computers ( “ NetPCs ” ) , set - top boxes , network hubs , 
wide area network ( “ WAN ” ) switches , or any other system 
that may perform one or more instructions in accordance 
with at least one embodiment . 
[ 0122 ] In at least one embodiment , computer system 1400 
may include , without limitation , processor 1402 that may 
include , without limitation , one or more execution units 
1408 to perform machine learning model training and / or 
inferencing according to techniques described herein . In at 
least one embodiment , a system is a single processor desktop 
or server system , but in another embodiment this system 
may be a multiprocessor system . In at least one embodiment , 
processor 1402 may include , without limitation , a complex 
instruction set computer ( “ CISC ” ) microprocessor , a 
reduced instruction set computing ( “ RISC ” ) microprocessor , 
a very long instruction word ( “ VLIW ” ) microprocessor , a 
processor implementing a combination of instruction sets , or 
any other processor device , such as a digital signal proces 
sor , for example . In at least one embodiment , processor 1402 
may be coupled to a processor bus 1410 that may transmit 
data signals between processor 1402 and other components 
in computer system 1400 . 
[ 0123 ] In at least one embodiment , processor 1402 may 
include , without limitation , a Level 1 ( “ L1 ” ) internal cache 
memory ( “ cache ” ) 1404. In at least one embodiment , pro 
cessor 1402 may have a single internal cache or multiple 
levels of internal cache . In at least one embodiment , cache 
memory may reside external to processor 1402. Other 
embodiments may also include a combination of both inter 
nal and external caches depending on particular implemen 
tation and needs . In at least one embodiment , register file 
1406 may store different types of data in various registers 
including , without limitation , integer registers , floating point 
registers , status registers , and instruction pointer register . 
[ 0124 ] In at least one embodiment , execution unit 1408 , 
including , without limitation , logic to perform integer and 
floating point operations , also resides in processor 1402 . 
Processor 1402 may also include a microcode ( “ ucode ” ) 
read only memory ( “ ROM ” ) that stores microcode for 
certain macro instructions . In at least one embodiment , 
execution unit 1408 may include logic to handle a packed 
instruction set 1409. In at least one embodiment , by includ 
ing packed instruction set 1409 in instruction set of a 
general - purpose processor 1402 , along with associated cir 
cuitry to execute instructions , operations used by many 
multimedia applications may be performed using packed 
data in a general - purpose processor 1402. In one or more 
embodiments , many multimedia applications may be accel 
erated and executed more efficiently by using full width of 
a processor's data bus for performing operations on packed 
data , which may eliminate need to transfer smaller units of 
data across processor's data bus to perform one or more 
operations one data element at a time . 
[ 0125 ] In at least one embodiment , execution unit 1408 
may also be used in microcontrollers , embedded processors , 
graphics devices , DSPs , and other types of logic circuits . In 
at least one embodiment , computer system 1400 may 

Computer Systems 

[ 0120 ] FIG . 14 is a block diagram illustrating an exem 
plary computer system , which may be a system with inter 
connected devices and components , a system - on - a - chip 
( SOC ) or some combination thereof 1400 formed with a 
processor that may include execution units to execute an 
instruction , in at least one embodiment . In at least one 
embodiment , computer system 1400 may include , without 
limitation , a component , such as a processor 1402 to employ 
execution units including logic to perform algorithms for 
process data , in accordance with present disclosure , such as 
in embodiment described herein . In at least one embodi 
ment , computer system 1400 may include processors , such 
as PENTIUM® Processor family , XeonTM , Itanium® , 
XScaleTM and / or StrongARMTM , Intel® CoreTM , or Intel® 
NervanaTM microprocessors available from Intel Corpora 
tion of Santa Clara , Calif . , although other systems ( including 
PCs having other microprocessors , engineering worksta 
tions , set - top boxes and like ) may also be used . In at least 
one embodiment , computer system 1400 may execute a 
version of WINDOWS ’ operating system available from 
Microsoft Corporation of Redmond , Wash . , although other 
operating systems ( UNIX and Linux for example ) , embed 
ded software , and / or graphical user interfaces , may also be 
used . 
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include , without limitation , a memory 1420. In at least one 
embodiment , memory 1420 may be implemented as a 
Dynamic Random Access Memory ( “ DRAM ” ) device , a 
Static Random Access Memory ( " SRAM ” ) device , flash 
memory device , or other memory device . Memory 1420 
may store instruction ( s ) 1419 and / or data 1421 represented 
by data signals that may be executed by processor 1402 . 
[ 0126 ] In at least one embodiment , system logic chip may 
be coupled to processor bus 1410 and memory 1420. In at 
least one embodiment , system logic chip may include , 
without limitation , a memory controller hub ( “ MCH ” ) 1416 , 
and processor 1402 may communicate with MCH 1416 via 
processor bus 1410. In at least one embodiment , MCH 1416 
may provide a high bandwidth memory path 1418 to 
memory 1420 for instruction and data storage and for 
storage of graphics commands , data and textures . In at least 
one embodiment , MCH 1416 may direct data signals 
between processor 1402 , memory 1420 , and other compo 
nents in computer system 1400 and to bridge data signals 
between processor bus 1410 , memory 1420 , and a system 
I / O 1422. In at least one embodiment , system logic chip may 
provide a graphics port for coupling to a graphics controller . 
In at least one embodiment , MCH 1416 may be coupled to 
memory 1420 through a high bandwidth memory path 1418 
and graphics / video card 1412 may be coupled to MCH 1416 
through an Accelerated Graphics Port ( “ AGP ” ) interconnect 
1414 . 
( 0127 ] In at least one embodiment , computer system 1400 
may use system I / O 1422 that is a proprietary hub interface 
bus to couple MCH 1416 to I / O controller hub ( “ ICH ” ) 
1430. In at least one embodiment , ICH 1430 may provide 
direct connections to some I / O devices via a local I / O bus . 
In at least one embodiment , local I / O bus may include , 
without limitation , a high - speed I / O bus for connecting 
peripherals to memory 1420 , chipset , and processor 1402 . 
Examples may include , without limitation , an audio con 
troller 1429 , a firmware hub ( “ flash BIOS ” ) 1428 , a wireless 
transceiver 1426 , a data storage 1424 , a legacy I / O controller 
1423 containing user input and keyboard interfaces , a serial 
expansion port 1427 , such as Universal Serial Bus ( “ USB ” ) , 
and a network controller 1434. Data storage 1424 may 
comprise a hard disk drive , a floppy disk drive , a CD - ROM 
device , a flash memory device , or other mass storage device . 
[ 0128 ] In at least one embodiment , FIG . 14 illustrates a 
system , which includes interconnected hardware devices or 
“ chips ” , whereas in other embodiments , FIG . 14A may 
illustrate an exemplary System on a Chip ( “ SOC ” ) . In at least 
one embodiment , devices illustrated in FIG . 14A may be 
interconnected with proprietary interconnects , standardized 
interconnects ( e.g. , PCIe ) or some combination thereof . In at 
least one embodiment , one or more components of system 
1400 are interconnected using compute express link ( CXL ) 
interconnects . 
[ 0129 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 14A for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . 

[ 0130 ] In some embodiments , a video data stream may be 
received over an expansion port 1427 or wireless transceiver 
1426 , for example , then directed to processor 1402 and / or 
video graphics card 1412 for processing . Depending on 
whether components are part of a device such as an autono 
mous vehicle or a separate device , output could then go to 
a control system via I / O or transmitted to vehicle via 
wireless transceiver . 
[ 0131 ] FIG . 15 is a block diagram illustrating an electronic 
device 1500 for utilizing a processor 1510 , in at least one 
embodiment . In at least one embodiment , electronic device 
1500 may be , for example and without limitation , a note 
book , a tower server , a rack server , a blade server , a laptop , 
a desktop , a tablet , a mobile device , a phone , an embedded 
computer , or any other suitable electronic device . 
[ 0132 ] In at least one embodiment , system 1500 may 
include , without limitation , processor 1510 communica 
tively coupled to any suitable number or kind of compo 
nents , peripherals , modules , or devices . In at least one 
embodiment , processor 1510 coupled using a bus or inter 
face , such as a 1 ° C. bus , a System Management Bus 
( “ SMBus ” ) , a Low Pin Count ( LPC ) bus , a Serial Peripheral 
Interface ( “ SPI ” ) , a High Definition Audio ( “ HDA ” ) bus , a 
Serial Advance Technology Attachment ( “ SATA ” ) bus , a 
Universal Serial Bus ( “ USB ” ) ( versions 1 , 2 , 3 ) , or a 
Universal Asynchronous Receiver / Transmitter ( “ UART ” ) 
bus . In at least one embodiment , FIG . 15 illustrates a system , 
which includes interconnected hardware devices or “ chips ” , 
whereas in other embodiments , FIG . 15 may illustrate an 
exemplary System on a Chip ( “ SOC ” ) . In at least one 
embodiment , devices illustrated in FIG . 15 may be inter 
connected with proprietary interconnects , standardized 
interconnects ( e.g. , PCIe ) or some combination thereof . In at 
least one embodiment , one or more components of FIG . 15 
are interconnected using compute express link ( CXL ) inter 
connects . 
[ 0133 ] In at least one embodiment , FIG . 15 may include a 
display 1524 , a touch screen 1525 , a touch pad 1530 , a Near 
Field Communications unit ( “ NFC ” ) 1545 , a sensor hub 
1540 , a thermal sensor 1546 , an Express Chipset ( “ EC ” ) 
1535 , a Trusted Platform Module ( “ TPM " ) 1538 , BIOS / 
firmware / flash memory ( “ BIOS , FW Flash ” ) 1522 , a DSP 
1560 , a drive “ SSD or HDD ” ) 1520 such as a Solid State 
Disk ( “ SSD ” ) or a Hard Disk Drive ( “ HDD ” ) , a wireless 
local area network unit ( “ WLAN ” ) 1550 , a Bluetooth unit 
1552 , a Wireless Wide Area Network unit ( “ WWAN " ) 1556 , 
a Global Positioning System ( GPS ) 1555 , a camera ( “ USB 
3.0 camera " ) 1554 such as a USB 3.0 camera , or a Low 
Power Double Data Rate ( “ LPDDR ” ) memory unit 
( “ LPDDR3 " ) 1515 implemented in , for example , LPDDR3 
standard . These components may each be implemented in 
any suitable manner . 
[ 0134 ] In at least one embodiment , other components may 
be communicatively coupled to processor 1510 through 
components discussed above . In at least one embodiment , an 
accelerometer 1541 , Ambient Light Sensor ( “ ALS ” ) 1542 , 
compass 1543 , and a gyroscope 1544 may be communica 
tively coupled to sensor hub 1540. In at least one embodi 
ment , thermal sensor 1539 , a fan 1537 , a keyboard 1546 , and 
a touch pad 1530 may be communicatively coupled to EC 
1535. In at least one embodiment , speaker 1563 , a head 
phones 1564 , and a microphone ( “ mic ” ) 1565 may be 
communicatively coupled to an audio unit ( “ audio codec and 
class d amp ” ) 1564 , which may in turn be communicatively 
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coupled to DSP 1560. In at least one embodiment , audio unit 
1564 may include , for example and without limitation , an 
audio coder / decoder ( " codec ” ) and a class D amplifier . In at 
least one embodiment , SIM card ( “ SIM ” ) 1557 may be 
communicatively coupled to WWAN unit 1556. In at least 
one embodiment , components such as WLAN unit 1550 and 
Bluetooth unit 1552 , as well as WWAN unit 1556 may be 
implemented in a Next Generation Form Factor ( “ NGFF ” ) . 
[ 0135 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 15 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . 
[ 0136 ] FIG . 16 illustrates a computer system 1600 , in at 
least one embodiment . In at least one embodiment , computer 
system 1600 is configured to implement various processes 
and methods described throughout this disclosure . 
[ 0137 ] In at least one embodiment , computer system 1600 
comprises , without limitation , at least one central processing 
unit ( " CPU ” ) 1602 that is connected to a communication bus 
1610 implemented using any suitable protocol , such as PCI 
( " Peripheral Component Interconnect ” ) , peripheral compo 
nent interconnect express ( “ PCI - Express ” ) , AGP ( “ Acceler 
ated Graphics Port ” ) , HyperTransport , or any other bus or 
point - to - point communication protocol ( s ) . In at least one 
embodiment , computer system 1600 includes , without limi 
tation , a main memory 1604 and control logic ( e.g. , imple 
mented as hardware , software , or a combination thereof ) and 
data are stored in main memory 1604 which may take form 
of random access memory ( RAM ” ) . In at least one embodi 
ment , a network interface subsystem ( “ network interface ” ) 
1622 provides an interface to other computing devices and 
networks for receiving data from and transmitting data to 
other systems from computer system 1600 . 
[ 0138 ] In at least one embodiment , computer system 1600 , 
in at least one embodiment , includes , without limitation , 
input devices 1608 , parallel processing system 1612 , and 
display devices 1606 which can be implemented using a 
cathode ray tube ( “ CRT ” ) , liquid crystal display ( “ LCD " ) , 
light emitting diode ( “ LED " ) , plasma display , or other 
suitable display technologies . In at least one embodiment , 
user input is received from input devices 1608 such as 
keyboard , mouse , touchpad , microphone , and more . In at 
least one embodiment , each of foregoing modules can be 
situated on a single semiconductor platform to form a 
processing system . 
[ 0139 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 16 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . 

[ 0140 ] FIG . 17 illustrates a computer system 1700 , in at 
least one embodiment . In at least one embodiment , computer 
system 1700 includes , without limitation , a computer 1710 
and a USB stick 1720. In at least one embodiment , computer 
1710 may include , without limitation , any number and type 
of processor ( s ) ( not shown ) and a memory ( not shown ) . In 
at least one embodiment , computer 1710 includes , without 
limitation , a server , a cloud instance , a laptop , and a desktop 
computer . 
[ 0141 ] In at least one embodiment , USB stick 1720 
includes , without limitation , a processing unit 1730 , a USB 
interface 1740 , and USB interface logic 1750. In at least one 
embodiment , processing unit 1730 may be any instruction 
execution system , apparatus , or device capable of executing 
instructions . In at least one embodiment , processing unit 
1730 may include , without limitation , any number and type 
of processing cores ( not shown ) . In at least one embodiment , 
processing core 1730 comprises an application specific 
integrated circuit ( “ ASIC ” ) that is optimized to perform any 
amount and type of operations associated with machine 
learning . For instance , in at least one embodiment , process 
ing core 1730 is a tensor processing unit ( “ TPC ” ) that is 
optimized to perform machine learning inference operations . 
In at least one embodiment , processing core 1730 is a vision 
processing unit ( “ VPU " ) that is optimized to perform 
machine vision and machine learning inference operations . 
[ 0142 ] In at least one embodiment , USB interface 1740 
may be any type of USB connector or USB socket . For 
instance , in at least one embodiment , USB interface 1740 is 
a USB 3.0 Type - C socket for data and power . In at least one 
embodiment , USB interface 1740 is a USB 3.0 Type - A 
connector . In at least one embodiment , USB interface logic 
1750 may include any amount and type of logic that enables 
processing unit 1730 to interface with or devices ( e.g. , 
computer 1710 ) via USB connector 1740 . 
[ 0143 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 17 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . 
[ 0144 ] FIG . 18 is a block diagram illustrating an exem 
plary system on a chip integrated circuit 1800 that may be 
fabricated using one or more IP cores , in at least one 
embodiment . In at least one embodiment , integrated circuit 
1800 includes one or more application processor ( s ) 1805 
( e.g. , CPUs ) , at least one graphics processor 1810 , and may 
additionally include an image processor 1815 and / or a video 
processor 1820 , any of which may be a modular IP core . In 
at least one embodiment , integrated circuit 1800 includes 
peripheral or bus logic including a USB controller 1825 , 
UART controller 1830 , an SPI / SDIO controller 1835 , and an 
I.sup.2S / I.sup.2C controller 1840. In at least one embodi 
ment , integrated circuit 1800 can include a display device 
1845 coupled to one or more of a high - definition multimedia 
interface ( HDMI ) controller 1850 and a mobile industry 
processor interface ( MIPI ) display interface 1855. In at least 
one embodiment , storage may be provided by a flash 
memory subsystem 1860 including flash memory and a flash 
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memory controller . In at least one embodiment , memory 
interface may be provided via a memory controller 1865 for 
access to SDRAM or SRAM memory devices . In at least one 
embodiment , some integrated circuits additionally include 
an embedded security engine 1870 . 
[ 0145 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in inte 
grated circuit 1800 for inferencing or predicting operations 
based , at least in part , on weight parameters calculated using 
neural network training operations , neural network functions 
and / or architectures , or neural network use cases described 
herein . 

[ 0146 ] For example , inference and / or training logic 1015 
can accept an input video stream and generate inferences for 
objects represented in video stream as discussed herein . 
Image processor 1815 can be used to process video frames 
as they are received , in at least some embodiments . 
[ 0147 ] FIGS . 19A - 19B illustrate exemplary integrated cir 
cuits and associated graphics processors that may be fabri 
cated using one or more IP cores , according to various 
embodiments described herein . In addition to what is illus 
trated , other logic and circuits may be included in at least 
one embodiment , including additional graphics processors / 
cores , peripheral interface controllers , or general - purpose 
processor cores . 
[ 0148 ] FIGS . 19A - 19B are block diagrams illustrating 
exemplary graphics processors for use within an SoC , 
according to embodiments described herein . FIG . 19A illus 
trates an exemplary graphics processor 1910 of a system on 
a chip integrated circuit that may be fabricated using one or 
more IP cores , in at least one embodiment . FIG . 19B 
illustrates an additional exemplary graphics processor 1940 
of a system on a chip integrated circuit that may be fabri 
cated using one or more IP cores , in at least one embodi 
ment . In at least one embodiment , graphics processor 1910 
of FIG . 19A is a low power graphics processor core . In at 
least one embodiment , graphics processor 1940 of FIG . 19B 
is a higher performance graphics processor core . In at least 
one embodiment , each of graphics processors 1910 , 1940 
can be variants of graphics processor 1810 of FIG . 18 . 
[ 0149 ] In at least one embodiment , graphics processor 
1910 includes a vertex processor 1905 and one or more 
fragment processor ( s ) 1915A - 1915N ( e.g. , 1915A , 1915B , 
1915C , 1915D , through 1915N - 1 , and 1915N ) . In at least 
one embodiment , graphics processor 1910 can execute dif 
ferent shader programs via separate logic , such that vertex 
processor 1905 is optimized to execute operations for vertex 
shader programs , while one or more fragment processor ( s ) 
1915A - 1915N execute fragment ( e.g. , pixel ) shading opera 
tions for fragment or pixel shader programs . In at least one 
embodiment , vertex processor 1905 performs a vertex pro 
cessing stage of a 3D graphics pipeline and generates 
primitives and vertex data . In at least one embodiment , 
fragment processor ( s ) 1915A - 1915N use primitive and ver 
tex data generated by vertex processor 1905 to produce a 
framebuffer that is displayed on a display device . In at least 
one embodiment , fragment processor ( s ) 1915A - 1915N are 
optimized to execute fragment shader programs as provided 

for in an OpenGL API , which may be used to perform 
similar operations as a pixel shader program as provided for 
in a Direct 3D API . 
[ 0150 ] In at least one embodiment , graphics processor 
1910 additionally includes one or more memory manage 
ment units ( MMUS ) 1920A - 1920B , cache ( s ) 1925A - 1925B , 
and circuit interconnect ( s ) 1930A - 1930B . In at least one 
embodiment , one or more MMU ( s ) 1920A - 1920B provide 
for virtual to physical address mapping for graphics proces 
sor 1910 , including for vertex processor 1905 and / or frag 
ment processor ( s ) 1915A - 1915N , which may reference ver 
tex or image / texture data stored in memory , in addition to 
vertex or image / texture data stored in one or more cache ( s ) 
1925A - 1925B . In at least one embodiment , one or more 
MMU ( S ) 1920A - 1920B may be synchronized with other 
MMUs within system , including one or more MMUs asso 
ciated with one or more application processor ( s ) 1805 , 
image processors 1815 , and / or video processors 1820 of 
FIG . 18 , such that each processor 1805-1820 can participate 
in a shared or unified virtual memory system . In at least one 
embodiment , one or more circuit interconnect ( s ) 1930A 
1930B enable graphics processor 1910 to interface with 
other IP cores within SoC , either via an internal bus of SoC 
or via a direct connection . 
[ 0151 ] In at least one embodiment , graphics processor 
1940 includes one or more MMU ( s ) 1920A - 1920B , caches 
1925A - 1925B , and circuit interconnects 1930A - 1930B of 
graphics processor 1910 of FIG . 19A . In at least one 
embodiment , graphics processor 1940 includes one or more 
shader core ( s ) 1955A - 1955N ( e.g. , 1955A , 1955B , 1955C , 
1955D , 1955E , 1955F , through 1955N - 1 , and 1955N ) , 
which provides for a unified shader core architecture in 
which a single core or type or core can execute all types of 
programmable shader code , including shader program code 
to implement vertex shaders , fragment shaders , and / or com 
pute shaders . In at least one embodiment , a number of shader 
cores can vary . In at least one embodiment , graphics pro 
cessor 1940 includes an inter - core task manager 1945 , which 
acts as a thread dispatcher to dispatch execution threads to 
one or more shader cores 1955A - 1955N and a tiling unit 
1958 to accelerate tiling operations for tile - based rendering , 
in which rendering operations for a scene are subdivided in 
image space , for example to exploit local spatial coherence 
within a scene or to optimize use of internal caches . 
[ 0152 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in inte 
grated circuit 19A and / or 19B for inferencing or predicting 
operations based , at least in part , on weight parameters 
calculated using neural network training operations , neural 
network functions and / or architectures , or neural network 
use cases described herein . For example , inference and / or 
training logic 1015 can accept an input video stream and 
generate inferences for objects represented in video stream 
as discussed herein . 
[ 0153 ] FIGS . 20A - 20B illustrate additional exemplary 
graphics processor logic according to embodiments 
described herein . FIG . 20A illustrates a graphics core 2000 
that may be included within graphics processor 1810 of FIG . 
18 , in at least one embodiment , and may be a unified shader 
core 1955A - 1955N as in FIG . 19B in at least one embodi 
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ment . FIG . 20B illustrates a highly - parallel general - purpose 
graphics processing unit 2030 suitable for deployment on a 
multi - chip module in at least one embodiment . 
[ 0154 ] In one embodiment , graphics core 2000 includes a 
shared instruction cache 2002 , a texture unit 2018 , and a 
cache / shared memory 2020 that may be shared with execu 
tion resources within graphics core 2000. In one embodi 
ment , graphics core 2000 can include multiple slices 2001A 
2001N or partition for each core , and a graphics processor 
can include multiple instances of graphics core 2000. Slices 
2001A - 2001N can include support logic including a local 
instruction cache 2004A - 2004N , a thread scheduler 2006A 
2006N , a thread dispatcher 2008A - 2008N , and a set of 
registers 2010A - 2010N . In one embodiment , slices 2001A 
2001N can include a set of additional function units ( AFUS 
2012A - 2012N ) , floating - point units ( FPU 2014A - 2014N ) , 
integer arithmetic logic units ( ALUS 2016-2016N ) , address 
computational units ( ACU 2013A - 2013N ) , double - precision 
floating - point units ( DPFPU 2015A - 2015N ) , and matrix 
processing units ( MPU 2017A - 2017N ) . 
[ 0155 ] In one embodiment , FPUS 2014A - 2014N can per 
form single - precision ( 32 - bit ) and half - precision ( 16 - bit ) 
floating point operations , while DPFPUs 2015A - 2015N 
perform double precision ( 64 - bit ) floating point operations . 
In one embodiment , ALUS 2016A - 2016N can perform vari 
able precision integer operations at 8 - bit , 16 - bit , and 32 - bit 
precision , and can be configured for mixed precision opera 
tions . In one embodiment , MPUS 2017A - 2017N can also be 
configured for mixed precision matrix operations , including 
half - precision floating point and 8 - bit integer operations . In 
one embodiment , MPUs 2017-2017N can perform a variety 
of matrix operations to accelerate machine learning appli 
cation frameworks , including enabling support for acceler 
ated general matrix to matrix multiplication ( GEMM ) . In 
one embodiment , AFUs 2012A - 2012N can perform addi 
tional logic operations not supported by floating - point or 
integer units , including trigonometric operations ( e.g. , Sine , 
Cosine , etc. ) . 
[ 0156 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in graphics 
core 2000 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . 
[ 0157 ] FIG . 20B illustrates a general - purpose processing 
unit ( GPGPU ) 2030 that can be configured to enable highly 
parallel compute operations to be performed by an array of 
graphics processing units , in at least one embodiment . In at 
least one embodiment , GPGPU 2030 can be linked directly 
to other instances of GPGPU 2030 to create a multi - GPU 
cluster to improve training speed for deep neural networks . 
In at least one embodiment , GPGPU 2030 includes a host 
interface 2032 to enable a connection with a host processor . 
In at least one embodiment , host interface 2032 is a PCI 
Express interface . In at least one embodiment , host interface 
2032 can be a vendor specific communications interface or 
communications fabric . In at least one embodiment , GPGPU 
2030 receives commands from a host processor and uses a 
global scheduler 2034 to distribute execution threads asso 

ciated with those commands to a set of compute clusters 
2036A - 2036H . In at least one embodiment , compute clusters 
2036A - 2036H share a cache memory 2038. In at least one 
embodiment , cache memory 2038 can serve as a higher 
level cache for cache memories within compute clusters 
2036A - 2036H . 
[ 0158 ] In at least one embodiment , GPGPU 2030 includes 
memory 2044A - 2044B coupled with compute clusters 
2036A - 2036H via a set of memory controllers 2042A 
2042B . In at least one embodiment , memory 2044A - 2044B 
can include various types of memory devices including 
dynamic random access memory ( DRAM ) or graphics ran 
dom access memory , such as synchronous graphics random 
access memory ( SGRAM ) , including graphics double data 
rate ( GDDR ) memory . 
[ 0159 ] In at least one embodiment , compute clusters 
2036A - 2036H each include a set of graphics cores , such as 
graphics core 2000 of FIG . 20A , which can include multiple 
types of integer and floating point logic units that can 
perform computational operations at a range of precisions 
including suited for machine learning computations . For 
example , in at least one embodiment , at least a subset of 
floating point units in each of compute clusters 2036A 
2036H can be configured to perform 16 - bit or 32 - bit floating 
point operations , while a different subset of floating point 
units can be configured to perform 64 - bit floating point 
operations . 
[ 0160 ] In at least one embodiment , multiple instances of 
GPGPU 2030 can be configured to operate as a compute 
cluster . In at least one embodiment , communication used by 
compute clusters 2036A - 2036H for synchronization and 
data exchange varies across embodiments . In at least one 
embodiment , multiple instances of GPGPU 2030 commu 
nicate over host interface 2032. In at least one embodiment , 
GPGPU 2030 includes an I / O hub 2039 that couples 
GPGPU 2030 with a GPU link 2040 that enables a direct 
connection to other instances of GPGPU 2030. In at least 
one embodiment , GPU link 2040 is coupled to a dedicated 
GPU - to - GPU bridge that enables communication and syn 
chronization between multiple instances of GPGPU 2030. In 
at least one embodiment GPU link 2040 couples with a high 
speed interconnect to transmit and receive data to other 
GPGPUs or parallel processors . In at least one embodiment , 
multiple instances of GPGPU 2030 are located in separate 
data processing systems and communicate via a network 
device that is accessible via host interface 2032. In at least 
one embodiment GPU link 2040 can be configured to enable 
a connection to a host processor in addition to or as an 
alternative to host interface 2032 . 
[ 0161 ] In at least one embodiment , GPGPU 2030 can be 
configured to train neural networks . In at least one embodi 
ment , GPGPU 2030 can be used within a inferencing 
platform . In at least one embodiment , in which GPGPU 
2030 is used for inferencing , GPGPU may include fewer 
compute clusters 2036A - 2036H relative to when GPGPU is 
used for training a neural network . In at least one embodi 
ment , memory technology associated with memory 2044A 
2044B may differ between inferencing and training configu 
rations , with higher bandwidth memory technologies 
devoted to training configurations . In at least one embodi 
ment , inferencing configuration of GPGPU 2030 can sup 
port inferencing specific instructions . For example , in at 
least one embodiment , an inferencing configuration can 
provide support for one or more 8 - bit integer dot product 



US 2020/0394458 A1 Dec. 17 , 2020 
19 

instructions , which may be used during inferencing opera 
tions for deployed neural networks . 
[ 0162 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in GPGPU 
2030 for inferencing or predicting operations based , at least 
in part , on weight parameters calculated using neural net 
work training operations , neural network functions and / or 
architectures , or neural network use cases described herein . 
[ 0163 ] FIG . 21 is a block diagram illustrating a computing 
system 2100 in at least one embodiment . In at least one 
embodiment , computing system 2100 includes a processing 
subsystem 2101 having one or more processor ( s ) 2102 and 
a system memory 2104 communicating via an interconnec 
tion path that may include a memory hub 2105. In at least 
one embodiment , memory hub 2105 may be a separate 
component within a chipset component or may be integrated 
within one or more processor ( s ) 2102. In at least one 
embodiment , memory hub 2105 couples with an I / O sub 
system 2111 via a communication link 2106. In at least one 
embodiment , I / O subsystem 2111 includes an I / O hub 2107 
that can enable computing system 2100 to receive input 
from one or more input device ( s ) 2108. In at least one 
embodiment , I / O hub 2107 can enable a display controller , 
which may be included in one or more processor ( s ) 2102 , to 
provide outputs to one or more display device ( s ) 2110A . In 
at least one embodiment , one or more display device ( s ) 
2110A coupled with I / O hub 2107 can include a local , 
internal , or embedded display device . 
[ 0164 ] In at least one embodiment , processing subsystem 
2101 includes one or more parallel processor ( s ) 2112 
coupled to memory hub 2105 via a bus or other communi 
cation link 2113. In at least one embodiment , communica 
tion link 2113 may be one of any number of standards based 
communication link technologies or protocols , such as , but 
not limited to PCI Express , or may be a vendor specific 
communications interface or communications fabric . In at 
least one embodiment , one or more parallel processor ( s ) 
2112 form a computationally focused parallel or vector 
processing system that can include a large number of pro 
cessing cores and / or processing clusters , such as a many 
integrated core ( MIC ) processor . In at least one embodiment , 
one or more parallel processor ( s ) 2112 form a graphics 
processing subsystem that can output pixels to one of one or 
more display device ( s ) 2110A coupled via I / O Hub 2107. In 
at least one embodiment , one or more parallel processor ( s ) 
2112 can also include a display controller and display 
interface ( not shown ) to enable a direct connection to one or 
more display device ( s ) 2110B . 
[ 0165 ] In at least one embodiment , a system storage unit 
2114 can connect to I / O hub 2107 to provide a storage 
mechanism for computing system 2100. In at least one 
embodiment , an I / O switch 2116 can be used to provide an 
interface mechanism to enable connections between I / O hub 
2107 and other components , such as a network adapter 2118 
and / or wireless network adapter 2119 that may be integrated 
into a platform , and various other devices that can be added 
via one or more add - in device ( s ) 2120. In at least one 
embodiment , network adapter 2118 can be an Ethernet 
adapter or another wired network adapter . In at least one 
embodiment , wireless network adapter 2119 can include one 

or more of a Wi - Fi , Bluetooth , near field communication 
( NFC ) , or other network device that includes one or more 
wireless radios . 
[ 0166 ] In at least one embodiment , computing system 
2100 can include other components not explicitly shown , 
including USB or other port connections , optical storage 
drives , video capture devices , and so on , may also be 
connected to I / O hub 2107. In at least one embodiment , 
communication paths interconnecting various components 
in FIG . 21 may be implemented using any suitable proto 
cols , such as PCI ( Peripheral Component Interconnect ) 
based protocols ( e.g. , PCI - Express ) , or other bus or point 
to - point communication interfaces and / or protocol ( s ) , such 
as NV - Link high - speed interconnect , or interconnect proto 
cols . 
[ 0167 ] In at least one embodiment , one or more parallel 
processor ( s ) 2112 incorporate circuitry optimized for graph 
ics and video processing , including , for example , video 
output circuitry , and constitutes a graphics processing unit 
( GPU ) . In at least one embodiment , one or more parallel 
processor ( s ) 2112 incorporate circuitry optimized for gen 
eral purpose processing . In at least embodiment , compo 
nents of computing system 2100 may be integrated with one 
or more other system elements on a single integrated circuit . 
For example , in at least one embodiment , one or more 
parallel processor ( s ) 2112 , memory hub 2105 , processor ( s ) 
2102 , and I / O hub 2107 can be integrated into a system on 
chip ( SOC ) integrated circuit . In at least one embodiment , 
components of computing system 2100 can be integrated 
into a single package to form a system in package ( SIP ) 
configuration . In at least one embodiment , at least a portion 
of components of computing system 2100 can be integrated 
into a multi - chip module ( MCM ) , which can be intercon 
nected with other multi - chip modules into a modular com puting system . 
[ 0168 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in system 
FIG . 2100 for inferencing or predicting operations based , at 
least in part , on weight parameters calculated using neural 
network training operations , neural network functions and / 
or architectures , or neural network use cases described 
herein . 

Processors 

[ 0169 ] FIG . 22 illustrates a parallel processor 2200 
according to at least on embodiment . In at least one embodi 
ment , various components of parallel processor 2200 may be 
implemented using one or more integrated circuit devices , 
such as programmable processors , application specific inte 
grated circuits ( ASICs ) , or field programmable gate arrays 
( FPGA ) . In at least one embodiment , illustrated parallel 
processor 2200 is a variant of one or more parallel processor 
( s ) 2112 shown in FIG . 21 according to an exemplary 
embodiment . 
[ 0170 ] In at least one embodiment , parallel processor 2200 
includes a parallel processing unit 2202. In at least one 
embodiment , parallel processing unit 2202 includes an I / O 
unit 2204 that enables communication with other devices , 
including other instances of parallel processing unit 2202. In 
at least one embodiment , 1/0 unit 2204 may be directly 
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connected to other devices . In at least one embodiment , I / O 
unit 2204 connects with other devices via use of a hub or 
switch interface , such as memory hub 2105. In at least one 
embodiment , connections between memory hub 2105 and 
I / O unit 2204 form a communication link 2113. In at least 
one embodiment , I / O unit 2204 connects with a host inter 
face 2206 and a memory crossbar 2216 , where host interface 
2206 receives commands directed to performing processing 
operations and memory crossbar 2216 receives commands 
directed to performing memory operations . 
[ 0171 ] In at least one embodiment , when host interface 
2206 receives a command buffer via 1/0 unit 2204 , host 
interface 2206 can direct work operations to perform those 
commands to a front end 2208. In at least one embodiment , 
front end 2208 couples with a scheduler 2210 , which is 
configured to distribute commands or other work items to a 
processing cluster array 2212. In at least one embodiment , 
scheduler 2210 ensures that processing cluster array 2212 is 
properly configured , and in a valid state , before tasks are 
distributed to processing cluster array 2212 of processing 
cluster array 2212. In at least one embodiment , scheduler 
2210 is implemented via firmware logic executing on a 
microcontroller . In at least one embodiment , microcontroller 
implemented scheduler 2210 is configurable to perform 
complex scheduling and work distribution operations at 
coarse and fine granularity , enabling rapid preemption and 
context switching of threads executing on processing array 
2212. In at least one embodiment , host software can prove 
workloads for scheduling on processing array 2212 via one 
of multiple graphics processing doorbells . In at least one 
embodiment , workloads can then be automatically distrib 
uted across processing array 2212 by scheduler 2210 logic 
within a microcontroller including scheduler 2210 . 
[ 0172 ] In at least one embodiment , processing cluster 
array 2212 can include up to “ N ” processing clusters ( e.g. , 
cluster 2214A , cluster 2214B , through cluster 2214N ) . In at 
least one embodiment , each cluster 2214A - 2214N of pro 
cessing cluster array 2212 can execute a large number of 
concurrent threads . In at least one embodiment , scheduler 
2210 can allocate work to clusters 2214A - 2214N of pro 
cessing cluster array 2212 using various scheduling and / or 
work distribution algorithms , which may vary depending on 
workload arising for each type of program or computation . 
In at least one embodiment , scheduling can be handled 
dynamically by scheduler 2210 , or can be assisted in part by 
compiler logic during compilation of program logic config 
ured for execution by processing cluster array 2212. In at 
least one embodiment , different clusters 2214A - 2214N of 
processing cluster array 2212 can be allocated for processing 
different types of grams or for performing different types 
of computations . 
[ 0173 ] In at least one embodiment , processing cluster 
array 2212 can be configured to perform various types of 
parallel processing operations . In at least one embodiment , 
processing cluster array 2212 is configured to perform 
general - purpose parallel compute operations . For example , 
in at least one embodiment , processing cluster array 2212 
can include logic to execute processing tasks including 
filtering of video and / or audio data , performing modeling 
operations , including physics operations , and performing 
data transformations . 
[ 0174 ] In at least one embodiment , processing cluster 
array 2212 is configured to perform parallel graphics pro 
cessing operations . In at least one embodiment , processing 

cluster array 2212 can include additional logic to support 
execution of such graphics processing operations , including , 
but not limited to texture sampling logic to perform texture 
operations , as well as tessellation logic and other vertex 
processing logic . In at least one embodiment , processing 
cluster array 2212 can be configured to execute graphics 
processing related shader programs such as , but not limited 
to vertex shaders , tessellation shaders , geometry shaders , 
and pixel shaders . In at least one embodiment , parallel 
processing unit 2202 can transfer data from system memory 
via I / O unit 2204 for processing . In at least one embodiment , 
during processing , transferred data can be stored to on - chip 
memory ( e.g. , parallel processor memory 2222 ) during 
processing , then written back to system memory . 
[ 0175 ] In at least one embodiment , when parallel process 
ing unit 2202 is used to perform graphics processing , 
scheduler 2210 can be configured to divide a processing 
workload into approximately equal sized tasks , to better 
enable distribution of graphics processing operations to 
multiple clusters 2214A - 2214N of processing cluster array 
2212. In at least one embodiment , portions of processing 
cluster array 2212 can be configured to perform different 
types of processing . For example , in at least one embodi 
ment , a first portion may be configured to perform vertex 
shading and topology generation , a second portion may be 
configured to perform tessellation and geometry shading , 
and a third portion may be configured to perform pixel 
shading or other screen space operations , to produce a 
rendered image for display . In at least one embodiment , 
intermediate data produced by one or more of clusters 
2214A - 2214N may be stored in buffers to allow intermedi 
ate data to be transmitted between clusters 2214A - 2214N for 
further processing . 
[ 0176 ] In at least one embodiment , processing cluster 
array 2212 can receive processing tasks to be executed via 
scheduler 2210 , which receives commands defining process 
ing tasks from front end 2208. In at least one embodiment , 
processing tasks can include indices of data to be processed , 
such as may include surface ( patch ) data , primitive data , 
vertex data , and / or pixel data , as well as state rameters and 
commands defining how data is to be processed ( e.g. , what 
program is to be executed ) . In at least one embodiment , 
scheduler 2210 may be configured to fetch indices corre 
sponding to tasks or may receive indices from front end 
2208. In at least one embodiment , front end 2208 can be 
configured to ensure processing cluster array 2212 is con 
figured to a valid state before a workload specified by 
incoming command buffers ( e.g. , batch - buffers , push buf 
fers , etc. ) is initiated . 
[ 0177 ] In at least one embodiment , each of one or more 
instances of parallel processing unit 2202 can couple with 
parallel processor memory 2222. In at least one embodi 
ment , parallel processor memory 2222 can be accessed via 
memory crossbar 2216 , which can receive memory requests 
from processing cluster array 2212 as well as 1/0 unit 2204 . 
In at least one embodiment , memory crossbar 2216 can 
access parallel processor memory 2222 via a memory inter 
face 2218. In at least one embodiment , memory interface 
2218 can include multiple partition units ( e.g. , partition unit 
2220A , partition unit 2220B , through partition unit 2220N ) 
that can each couple to a portion ( e.g. , memory unit ) of 
parallel processor memory 2222. In at least one embodi 
ment , a number of partition units 2220A - 2220N is config 
ured to be equal to a number of memory units , such that a 
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first partition unit 2220A has a corresponding first memory 
unit 2224A , a second partition unit 2220B has a correspond 
ing memory unit 2224B , and an Nth partition unit 2220N has 
a corresponding Nth memory unit 2224N . In at least one 
embodiment , a number of partition units 2220A - 2220N may 
not be equal to a number of memory devices . 
[ 0178 ] In at least one embodiment , memory units 2224A 
2224N can include various types of memory devices , includ 
ing dynamic random access memory ( DRAM ) or graphics 
random access memory , such as synchronous graphics ran 
dom access memory ( SGRAM ) , including graphics double 
data rate ( GDDR ) memory . In at least one embodiment , 
memory units 2224A - 2224N may also include 3D stacked 
memory , including but not limited to high bandwidth 
memory ( HBM ) . In at least one embodiment , render targets , 
such as frame buffers or texture maps may be stored across 
memory units 2224A - 2224N , allowing partition units 
2220A - 2220N to write portions of each render target in 
parallel to efficiently use available bandwidth of parallel 
processor memory 2222. In at least one embodiment , a local 
instance of parallel processor memory 2222 may be 
excluded in favor of a unified memory design that utilizes 
system memory in conjunction with local cache memory . 
[ 0179 ] In at least one embodiment , any one of clusters 
2214A - 2214N of processing cluster array 2212 can process 
data that will be written to any of memory units 2224A 
2224N within parallel processor memory 2222. In at least 
one embodiment , memory crossbar 2216 can be configured 
to transfer an output of each cluster 2214A - 2214N to any 
partition unit 2220A - 2220N or to another cluster 2214A 
2214N , which can perform additional processing operations 
on an output . In at least one embodiment , each cluster 
2214A - 2214N can communicate with memory interface 
2218 through memory crossbar 2216 to read from or write 
to various external memory devices . In at least one embodi 
ment , memory crossbar 2216 has a connection to memory 
interface 2218 to communicate with I / O unit 2204 , as well 
as a connection to a local instance of parallel processor 
memory 2222 , enabling processing units within different 
processing clusters 2214A - 2214N to communicate with 
system memory or other memory that is not local to parallel 
processing unit 2202. In at least one embodiment , memory 
crossbar 2216 can use virtual channels to separate traffic 
streams between clusters 2214A - 2214N and partition units 
2220A - 2220N . 
[ 0180 ] In at least one embodiment , multiple instances of 
parallel processing unit 2202 can be provided on a single 
add - in card , or multiple add - in cards can be interconnected . 
In at least one embodiment , different instances of parallel 
processing unit 2202 can be configured to inter - operate even 
if different instances have different numbers of processing 
cores , different amounts of local parallel processor memory , 
and / or other configuration differences . For example , in at 
least one embodiment , some instances of parallel processing 
unit 2202 can include higher precision floating point units 
relative to other instances . In at least one embodiment , 
systems incorporating one or more instances of parallel 
processing unit 2202 or parallel processor 2200 can be 
implemented in a variety of configurations and form factors , 
including but not limited to desktop , laptop , or handheld 
personal computers , servers , workstations , game consoles , 
and / or embedded systems . 
[ 0181 ] FIG . 23 is a block diagram of a partition unit 2320 
in at least one embodiment . In at least one embodiment , 

partition unit 2320 is an instance of one of partition units 
2220A - 2220N of FIG . 22. In at least one embodiment , 
partition unit 2320 includes an L2 cache 2321 , a frame 
buffer interface 2325 , and a ROP 2326 ( raster operations 
unit ) . L2 cache 2321 is a read / write cache that is configured 
to perform load and store operations received from memory 
crossbar 2316 and ROP 2326. In at least one embodiment , 
read misses and urgent write - back requests are output by L2 
cache 2321 to frame buffer interface 2325 for processing . In 
at least one embodiment , updates can also be sent to a frame 
buffer via frame buffer interface 2325 for processing . In at 
least one embodiment , frame buffer interface 2325 inter 
faces with one of memory units in parallel processor 
memory , such as memory units 2224A - 2224N of FIG . 22 
( e.g. , within parallel processor memory 2222 ) . 
[ 0182 ] In at least one embodiment , ROP 2326 is a pro 
cessing unit that performs raster operations such as stencil , 
z test , blending , and like . In at least one embodiment , ROP 
2326 then outputs processed graphics data that is stored in 
graphics memory . In at least one embodiment , ROP 2326 
includes compression logic to compress depth or color data 
that is written to memory and decompress depth or color 
data that is read from memory . In at least one embodiment , 
compression logic can be lossless compression logic that 
makes use of one or more of multiple compression algo 
rithms . A type of compression that is performed by ROP 
2326 can vary based on statistical characteristics of data to 
be compressed . For example , in at least one embodiment , 
delta color compression is performed on depth and color 
data on a per - tile basis . 
[ 0183 ] In at least one embodiment , ROP 2326 is included 
within each processing cluster ( e.g. , cluster 2214A - 2214N 
of FIG . 22 ) instead of within partition unit 2320. In at least 
one embodiment , read and write requests for pixel data are 
transmitted over memory crossbar 2316 instead of pixel 
fragment data . In at least one embodiment , processed graph 
ics data may be displayed on a display device , such as one 
of one or more display device ( s ) 2110 of FIG . 21 , routed for 
further processing by processor ( s ) 2102 , or routed for further 
processing by one of processing entities within parallel 
processor 2200 of FIG . 22 . 
[ 0184 ] FIG . 24 is a block diagram of a processing cluster 
2414 within a parallel processing unit in at least one embodi 
ment . In at least one embodiment , a processing cluster is an 
instance of one of processing clusters 2214A - 2214N of FIG . 
22. In at least one embodiment , processing cluster 2414 can 
be configured to execute many threads in parallel , where a 
term “ thread ” refers to an instance of a particular program 
executing on a particular set of input data . In at least one 
embodiment , single - instruction , multiple - data ( SIMD ) 
instruction issue techniques are used to support parallel 
execution of a large number of threads without providing 
multiple independent instruction units . In at least one 
embodiment , single - instruction , multiple - thread ( SIMT ) 
techniques are used to support parallel execution of a large 
number of synchronized threads , using a instruction unit 
configured to issue instructions to a set of processing 
engines within each one of processing clusters . 
[ 0185 ] In at least one embodiment , operation of process 
ing cluster 2214 can be controlled via a pipeline manager 
2432 that distributes processing tasks to SIMT parallel 
processors . In at least one embodiment , pipeline manager 
2432 receives instructions from scheduler 2210 of FIG . 22 
and manages execution of those instructions via a graphics 
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multiprocessor 2434 and / or a texture unit 2436. In at least 
one embodiment , graphics multiprocessor 2434 is an exem 
plary instance of a SIMT parallel processor . However , in at 
least one embodiment , various types of SIMT parallel pro 
cessors of differing architectures may be included within 
processing cluster 2414. In at least one embodiment , one or 
more instances of graphics multiprocessor 2434 can be 
included within a processing cluster 2414. In at least one 
embodiment , graphics multiprocessor 2434 can process data 
and a data crossbar 2440 can be used to distribute processed 
data to one of multiple possible destinations , including other 
shader units . In at least one embodiment , pipeline manager 
2432 can facilitate distribution of processed data by speci 
fying destinations for processed data to be distributed via 
data crossbar 2440 . 
[ 0186 ] In at least one embodiment , each graphics multi 
processor 2434 within processing cluster 2414 can include 
an identical set of functional execution logic ( e.g. , arithmetic 
logic units , load - store units , etc. ) . In at least one embodi 
ment , functional execution logic can be configured in a 
pipelined manner in which new instructions can be issued 
before previous instructions are complete . In at least one 
embodiment , functional execution logic supports a variety 
of operations including integer and floating point arithmetic , 
comparison operations , Boolean operations , bit - shifting , and 
computation of various algebraic functions . In at least one 
embodiment , a same functional - unit hardware can be lev 
eraged to perform different operations and any combination 
of functional units may be present . 
[ 0187 ] In at least one embodiment , instructions transmit 
ted to processing cluster 2414 constitute a thread . In at least 
one embodiment , a set of threads executing across a set of 
parallel processing engines is a thread group . In at least one 
embodiment , a thread group executes a program on different 
input data . In at least one embodiment , each thread within a 
thread group can be assigned to a different processing engine 
within a graphics multiprocessor 2434. In at least one 
embodiment , a thread group may include fewer threads than 
a number of processing engines within graphics multipro 
cessor 2434. In at least one embodiment , when a thread 
group includes fewer threads than a number of processing 
engines , one or more of processing engines may be idle 
during cycles in which that thread group is being processed . 
In at least one embodiment , a thread group may also include 
more threads than a number of processing engines within 
graphics multiprocessor 2434. In at least one embodiment , 
when a thread group includes more threads than a number of 
processing engines within graphics multiprocessor 2434 , 
processing can be performed over consecutive clock cycles . 
In at least one embodiment , multiple thread groups can be 
executed concurrently on a graphics multiprocessor 2434 . 
[ 0188 ] In at least one embodiment , graphics multiproces 
sor 2434 includes an internal cache memory to perform load 
and store operations . In at least one embodiment , graphics 
multiprocessor 2434 can forego an internal cache and use a 
cache memory ( e.g. , L1 cache 2448 ) within processing 
cluster 2414. In at least one embodiment , each graphics 
multiprocessor 2434 also has access to L2 caches within 
partition units ( e.g. , partition units 2220A - 2220N of FIG . 
22 ) that are shared among all processing clusters 2414 and 
may be used to transfer data between threads . In at least one 
embodiment , graphics multiprocessor 2434 may also access 
off - chip global memory , which can include one or more of 
local parallel processor memory and / or system memory . In 

at least one embodiment , any memory external to parallel 
processing unit 2402 may be used as global memory . In at 
least one embodiment , processing cluster 2414 includes 
multiple instances of graphics multiprocessor 2434 can 
share instructions and data , which may be stored in L1 cache 
2448 . 
[ 0189 ] In at least one embodiment , each processing cluster 
2414 may include an MMU 2445 ( memory management 
unit ) that is configured to map virtual addresses into physical 
addresses . In at least one embodiment , one or more instances 
of MMU 2445 may reside within memory interface 2218 of 
FIG . 22. In at least one embodiment , MMU 2445 includes 
a set of page table entries ( PTEs ) used to map a virtual 
address to a physical address of a tile ( talk more about tiling ) 
and a cache line index in at least one embodiment . In at least 
one embodiment , MMU 2445 may include address transla 
tion lookaside buffers ( TLB ) or caches that may reside 
within graphics multiprocessor 2434 or L1 cache or pro 
cessing cluster 2414. In at least one embodiment , physical 
address is processed to distribute surface data access locality 
to allow efficient request interleaving among partition units . 
In at least one embodiment , cache line index may be used to 
determine whether a request for a cache line is a hit or miss . 
[ 0190 ] In at least one embodiment , a processing cluster 
2414 may be configured such that each graphics multipro 
cessor 2434 is coupled to a texture unit 2436 for performing 
texture mapping operations , such as may involve determin 
ing texture sample positions , reading texture data , and 
filtering texture data . In at least one embodiment , texture 
data is read from an internal texture L1 cache ( not shown ) 
or from an L1 cache within graphics multiprocessor 2434 
and is fetched from an L2 cache , local parallel processor 
memory , or system memory , as needed . In at least one 
embodiment , each graphics multiprocessor 2434 outputs 
processed tasks to data crossbar 2440 to provide processed 
task to another processing cluster 2414 for further process 
ing or to store processed task in an L2 cache , local parallel 
processor memory , or system memory via memory crossbar 
2416. In at least one embodiment , preROP 2442 ( pre - raster 
operations unit ) is configured to receive data from graphics 
multiprocessor 2434 , direct data to ROP units , which may be 
located with partition units as described herein ( e.g. , parti 
tion units 2220A - 2220N of FIG . 22 ) . In at least one embodi 
ment , PreROP 2442 unit can perform optimizations for color 
blending , organize pixel color data , and perform address 
translations . 
[ 0191 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in graphics 
processing cluster 2214 for inferencing or predicting opera 
tions based , at least in part , on weight parameters calculated 
using neural network training operations , neural network 
functions and / or architectures , or neural network use cases 
described herein . 
[ 0192 ] FIG . 25 shows a graphics multiprocessor 2534 in at 
least one embodiment . In at least one embodiment , graphics 
multiprocessor 2534 couples with pipeline manager 2532 of 
processing cluster 2514. In at least one embodiment , graph 
ics multiprocessor 2534 has an execution pipeline including 
but not limited to an instruction cache 2552 , an instruction 
unit 2554 , an address mapping unit 2556 , a register file 
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2558 , one or more general purpose graphics processing unit 
( GPGPU ) cores 2562 , and one or more load / store units 
2566. GPGPU cores 2562 and load / store units 2566 are 
coupled with cache memory 2572 and shared memory 2570 
via a memory and cache interconnect 2568 . 
[ 0193 ] In at least one embodiment , instruction cache 2552 
receives a stream of instructions to execute from pipeline 
manager 2532. In at least one embodiment , instructions are 
cached in instruction cache 2552 and dispatched for execu 
tion by instruction unit 2554. In at least one embodiment , 
instruction unit 2554 can dispatch instructions as thread 
groups ( e.g. , warps ) , with each thread of thread group 
assigned to a different execution unit within GPGPU core 
2562. In at least one embodiment , an instruction can access 
any of a local , shared , or global address space by specifying 
an address within a unified address space . In at least one 
embodiment , address mapping unit 2556 can be used to 
translate addresses in a unified address space into a distinct 
memory address that can be accessed by load / store units 
2566 . 
[ 0194 ] In at least one embodiment , register file 2558 
provides a set of registers for functional units of graphics 
multiprocessor 2534. In at least one embodiment , register 
file 2558 provides temporary storage for operands connected 
to data paths of functional units ( e.g. , GPGPU cores 2562 , 
load / store units 2566 ) of graphics multiprocessor 2534. In at 
least one embodiment , register file 2558 is divided between 
each of functional units such that each functional unit is 
allocated a dedicated portion of register file 2558. In one 
embodiment , register file 2558 is divided between different 
warps being executed by graphics multiprocessor 2534 . 
[ 0195 ] In at least one embodiment , GPGPU cores 2562 
can each include floating point units ( FPUs ) and / or integer 
arithmetic logic units ( ALUS ) that are used to execute 
instructions of graphics multiprocessor 2534. GPGPU cores 
2562 can be similar in architecture or can differ in archi 
tecture . In at least one embodiment , a first portion of 
GPGPU cores 2562 include a single precision FPU and an 
integer ALU while a second portion of GPGPU cores 
include a double precision FPU . In at least one embodiment , 
FPUs can implement IEEE 754-2008 standard for floating 
point arithmetic or enable variable precision floating point 
arithmetic . In at least one embodiment , graphics multipro 
cessor 2534 can additionally include one or more fixed 
function or special function units to perform specific func 
tions such as copy rectangle or pixel blending operations . In 
at least one embodiment one or more GPGPU cores can also 
include fixed or special function logic . 
[ 0196 ] In at least one embodiment , GPGPU cores 2562 
include SIMD logic capable of performing a single instruc 
tion on multiple sets of data . In one embodiment GPGPU 
cores 2562 can physically execute SIMD4 , SIMD8 , and 
SIMD16 instructions and logically execute SIMD1 , SIMD2 , 
and SIMD32 instructions . In at least one embodiment , 
SIMD instructions for GPGPU cores can be generated at 
compile time by a shader compiler or automatically gener 
ated when executing programs written and compiled for 
single program multiple data ( SPMD ) or SIMT architec 
tures . In at least one embodiment , multiple threads of a 
program configured for an SIMT execution model can 
executed via a single SIMD instruction . For example , in at 
least one embodiment , eight SIMT threads that perform 
same or similar operations can be executed in parallel via a 
single SIMD8 logic unit . 

[ 0197 ] In at least one embodiment , memory and cache 
interconnect 2568 is an interconnect network that connects 
each functional unit of graphics multiprocessor 2534 to 
register file 2558 and to shared memory 2570. In at least one 
embodiment , memory and cache interconnect 2568 is a 
crossbar interconnect that allows load / store unit 2566 to 
implement load and store operations between shared 
memory 2570 and register file 2558. In at least one embodi 
ment , register file 2558 can operate at a same frequency as 
GPGPU cores 2562 , thus data transfer between GPGPU 
cores 2562 and register file 2558 is very low latency . In at 
least one embodiment , shared memory 2570 can be used to 
enable communication between threads that execute on 
functional units within graphics multiprocessor 2534. In at 
least one embodiment , cache memory 2572 can be used as 
a data cache for example , to cache texture data communi 
cated between functional units and texture unit 2536. In at 
least one embodiment , shared memory 2570 can also be 
used as a program managed cached . In at least one embodi 
ment , threads executing on GPGPU cores 2562 can pro 
grammatically store data within shared memory in addition 
to automatically cached data that is stored within cache 
memory 2572 . 
[ 0198 ] In at least one embodiment , a parallel processor or 
GPGPU as described herein is communicatively coupled to 
host / processor cores to accelerate graphics operations , 
machine - learning operations , pattern analysis operations , 
and various general purpose GPU ( GPGPU ) functions . In at 
least one embodiment , GPU may be communicatively 
coupled to host processor / cores over a bus or other inter 
connect ( e.g. , a high speed interconnect such as PCIe or 
NVLink ) . In at least one embodiment , a GPU may be 
integrated on same package or chip as cores and communi 
catively coupled to cores over an internal processor bus / 
interconnect , as may be internal to a package or chip . In at 
least one embodiment , regardless of manner in which GPU 
is connected , processor cores may allocate work to a GPU 
in form of sequences of commands / instructions contained in 
a work descriptor . In at least one embodiment , a GPU then 
uses dedicated circuitry / logic for efficiently processing these 
commands / instructions . 
[ 0199 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
inference and / or training logic 1015 may be used in graphics 
multiprocessor 2234 for inferencing or predicting operations 
based , at least in part , on weight parameters calculated using 
neural network training operations , neural network functions 
and / or architectures , or neural network use cases described 
herein . 
[ 0200 ] FIG . 26 is a block diagram illustrating micro 
architecture for a processor 2600 that may include logic 
circuits to perform instructions , in at least one embodiment . 
In at least one embodiment , processor 2600 may perform 
instructions , including X86 instructions , ARM instructions , specialized instructions for application - specific integrated 
circuits ( ASICs ) , etc. In at least one embodiment , processor 
2610 may include registers to store packed data , such as 
64 - bit wide MMXTM registers in microprocessors enabled 
with MMX technology from Intel Corporation of Santa 
Clara , Calif . In at least one embodiment , MMX registers , 
available in both integer and floating point forms , may 
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operate with packed data elements that accompany single 
instruction , multiple data ( “ SIMD ” ) and streaming SIMD 
extensions ( “ SSE ” ) instructions . In at least one embodiment , 
128 - bit wide XMM registers relating to SSE2 , SSE3 , SSE4 , 
AVX , or beyond ( referred to generically as “ SSEx ” ) tech 
nology may hold such packed data operands . In at least one 
embodiment , processors 2610 may perform instructions to 
accelerate machine learning or deep learning algorithms , 
training , or inferencing . 
[ 0201 ] In at least one embodiment , processor 2600 
includes an in - order front end ( “ front end ” ) 2601 to fetch 
instructions to be executed and prepare instructions to be 
used later in processor pipeline . In at least one embodiment , 
front end 2601 may include several units . In at least one 
embodiment , an instruction prefetcher 2626 fetches instruc 
tions from memory and feeds instructions to an instruction 
decoder 2628 which in turn decodes or interprets instruc 
tions . For example , in at least one embodiment , instruction 
decoder 2628 decodes a received instruction into one or 
more operations called “ micro - instructions ” or “ micro - op 
erations ” ( also called “ micro ops ” or “ uops ” ) that machine 
may execute . In at least one embodiment , instruction 
decoder 2628 parses instruction into an opcode and corre 
sponding data and control fields that may be used by 
micro - architecture to perform operations in accordance with 
at least one embodiment . In at least one embodiment , a trace 
cache 2630 may assemble decoded uops into program 
ordered sequences or traces in a uop queue 2634 for execu 
tion . In at least one embodiment , when trace cache 2630 
encounters a complex instruction , a microcode ROM 2632 
provides uops needed to complete operation . 
[ 0202 ] In at least one embodiment , some instructions may 
be converted into a single micro - op , whereas others need 
several micro - ops to complete full operation . In at least one 
embodiment , if more than four micro - ops are needed to 
complete an instruction , instruction decoder 2628 may 
access microcode ROM 2632 to perform instruction . In at 
least one embodiment , an instruction may be decoded into a 
small number of micro - ops for processing at instruction 
decoder 2628. In at least one embodiment , an instruction 
may be stored within microcode ROM 2632 should a 
number of micro - ops be needed to accomplish operation . In 
at least one embodiment , trace cache 2630 refers to an entry 
point programmable logic array ( " PLA " ) to determine a 
correct micro - instruction pointer for reading microcode 
sequences to complete one or more instructions from micro 
code ROM 2632 in accordance with at least one embodi 
ment . In at least one embodiment , after microcode ROM 
2632 finishes sequencing micro - ops for an instruction , front 
end 2601 of a machine may resume fetching micro - ops from 
trace cache 2630 . 
[ 0203 ] In at least one embodiment , out - of - order execution 
engine ( “ out of order engine ” ) 2603 may prepare instruc 
tions for execution . In at least one embodiment , out - of - order 
execution logic has a number of buffers to smooth out and 
re - order flow of instructions to optimize performance as they 
go down pipeline and get scheduled for execution . out - of 
order execution engine 2603 includes , without limitation , an 
allocator / register renamer 2640 , a memory uop queue 2642 , 
an integer / floating point uop queue 2644 , a memory sched 
uler 2646 , a fast scheduler 2602 , a slow / general floating 
point scheduler ( “ slow / general FP scheduler ” ) 2604 , and a 
simple floating point scheduler ( “ simple FP scheduler ” ) 
2606. In at least one embodiment , fast schedule 2602 , 

slow / general floating point scheduler 2604 , and simple 
floating point scheduler 2606 are also collectively referred to 
herein as “ uop schedulers 2602 , 2604 , 2606. " allocator / 
register renamer 2640 allocates machine buffers and 
resources that each uop needs in order to execute . In at least 
one embodiment , allocator / register renamer 2640 renames 
logic registers onto entries in a register file . In at least one 
embodiment , allocator / register renamer 2640 also allocates 
an entry for each uop in one of two uop queues , memory uop 
queue 2642 for memory operations and integer / floating 
point uop queue 2644 for non - memory operations , in front 
of memory scheduler 2646 and uop schedulers 2602 , 2604 , 
2606. In at least one embodiment , uop schedulers 2602 , 
2604 , 2606 , determine when a uop is ready to execute based 
on readiness of their dependent input register operand 
sources and availability of execution resources uops need to 
complete their operation . In at least one embodiment , fast 
scheduler 2602 of at least one embodiment may schedule on 
each half of main clock cycle while slow / general floating 
point scheduler 2604 and simple floating point scheduler 
2606 may schedule once per main processor clock cycle . In 
at least one embodiment , uop schedulers 2602 , 2604 , 2606 
arbitrate for dispatch ports to schedule uops for execution . 
[ 0204 ] In at least one embodiment , execution block b 11 
includes , without limitation , an integer register file / bypass 
network 2608 , a floating point register file / bypass network 
( “ FP register file / bypass network ” ) 2610 , address generation 
units ( “ AGUs ” ) 2612 and 2614 , fast Arithmetic Logic Units 
( ALUS ) ( “ fast ALUs ” ) 2616 and 2618 , a slow Arithmetic 
Logic Unit ( “ slow ALU ” ) 2620 , a floating point ALU ( “ FP ” ) 
2622 , and a floating point move unit ( “ FP move ” ) 2624. In 
at least one embodiment , integer register file / bypass network 
2608 and floating point register file / bypass network 2610 are 
also referred to herein as “ register files 2608 , 2610. ” In at 
least one embodiment , AGUSs 2612 and 2614 , fast ALUS 
2616 and 2618 , slow ALU 2620 , floating point ALU 2622 , 
and floating point move unit 2624 are also referred to herein 
as “ execution units 2612 , 2014 , 2616 , 2618 , 2620 , 2622 , and 
2624. ” In at least one embodiment , execution block b11 may 
include , without limitation , any number ( including zero ) and 
type of register files , bypass networks , address generation 
units , and execution units , in any combination . 
[ 0205 ] In at least one embodiment , register files 2608 , 
2610 may be arranged between uop schedulers 2602 , 2604 , 
2606 , and execution units 2612 , 2614 , 2616 , 2618 , 2620 , 
2622 , and 2624. In at least one embodiment , integer register 
file / bypass network 2608 performs integer operations . In at 
least one embodiment , floating point register file / bypass 
network 2610 performs floating point operations . In at least 
one embodiment , each of register files 2608 , 2610 may 
include , without limitation , a bypass network that may 
bypass or forward just completed results that have not yet 
been written into register file to new dependent uops . In at 
least one embodiment , register files 2608 , 2610 may com 
municate data with each other . In at least one embodiment , 
integer register file / bypass network 2608 may include , with 
out limitation , two separate register files , one register file for 
low - order thirty - two bits of data and a second register file for 
high order thirty - two bits of data . In at least one embodi 
ment , floating point register file / bypass network 2610 may 
include , without limitation , 128 - bit wide entries because 
floating point instructions typically have operands from 64 
to 128 bits in width . 
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[ 0206 ] In at least one embodiment , execution units 2612 , 
2614 , 2616 , 2618 , 2620 , 2622 , 2624 may execute instruc 
tions . In at least one embodiment , register files 2608 , 2610 
store integer and floating point data operand values that 
micro - instructions need to execute . In at least one embodi 
ment , processor 2600 may include , without limitation , any 
number and combination of execution units 2612 , 2614 , 
2616 , 2618 , 2620 , 2622 , 2624. In at least one embodiment , 
floating point ALU 2622 and floating point move unit 2624 , 
may execute floating point , MMX , SIMD , AVX and SSE , or 
other operations , including specialized machine learning 
instructions . In at least one embodiment , floating point ALU 
2622 may include , without limitation , a 64 - bit by 64 - bit 
floating point divider to execute divide , square root , and 
remainder micro ops . In at least one embodiment , instruc 
tions involving a floating point value may be handled with 
floating point hardware . In at least one embodiment , ALU 
operations may be passed to fast ALUS 2616 , 2618. In at 
least one embodiment , fast ALUS 2616 , 2618 may execute 
fast operations with an effective latency of half a clock cycle . 
In at least one embodiment , most complex integer opera 
tions go to slow ALU 2620 as slow ALU 2620 may include , 
without limitation , integer execution hardware for long 
latency type of operations , such as a multiplier , shifts , flag 
logic , and branch processing . In at least one embodiment , 
memory load / store operations may be executed by AGUS 
2612 , 2614. In at least one embodiment , fast ALU 2616 , fast 
ALU 2618 , and slow ALU 2620 may perform integer 
operations on 64 - bit data operands . In at least one embodi 
ment , fast ALU 2616 , fast ALU 2618 , and slow ALU 2620 
may be implemented to support a variety of data bit sizes 
including sixteen , thirty - two , 128 , 256 , etc. In at least one 
embodiment , floating point ALU 2622 and floating point 
move unit 2624 may be implemented to support a range of 
operands having bits of various widths . In at least one 
embodiment , floating point ALU 2622 and floating point 
move unit 2624 may operate on 128 - bit wide packed data 
operands in conjunction with SIMD and multimedia instruc 
tions . 

[ 0207 ] In at least one embodiment , uop schedulers 2602 , 
2604 , 2606 , dispatch dependent operations before parent 
load has finished executing . In at least one embodiment , as 
uops may be speculatively scheduled and executed in pro 
cessor 2600 , processor 2600 may also include logic to 
handle memory misses . In at least one embodiment , if a data 
load misses in data cache , there may be dependent opera 
tions in flight in pipeline that have left scheduler with 
temporarily incorrect data . In at least one embodiment , a 
replay mechanism tracks and re - executes instructions that 
use incorrect data . In at least one embodiment , dependent 
operations might need to be replayed and independent ones 
may be allowed to complete . In at least one embodiment , 
schedulers and replay mechanism of at least one embodi 
ment of a processor may also be designed to catch instruc 
tion sequences for text string comparison operations . 
[ 0208 ] In at least one embodiment , term “ registers ” may 
refer to on - board processor storage locations that may be 
used as part of instructions to identify operands . In at least 
one embodiment , registers may be those that may be usable 
from outside of processor ( from a programmer's perspec 
tive ) . In at least one embodiment , registers might not be 
limited to a particular type of circuit . Rather , in at least one 
embodiment , a register may store data , provide data , and 
perform functions described herein . In at least one embodi 

ment , registers described herein may be implemented by 
circuitry within a processor using any number of different 
techniques , such as dedicated physical registers , dynami 
cally allocated physical registers using register renaming , 
combinations of dedicated and dynamically allocated physi 
cal registers , etc. In at least one embodiment , integer reg 
isters store 32 - bit integer data . A register file of at least one 
embodiment also contains eight multimedia SIMD registers 
for packed data . 
[ 0209 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment 
portions or all of inference and / or training logic 1015 may 
be incorporated into EXE Block 2611 and other memory or 
registers shown or not shown . For example , in at least one 
embodiment , training and / or inferencing techniques 
described herein may use one or more of ALUs illustrated in 
EXE Block 2611. Moreover , weight parameters may be 
stored in on - chip or off - chip memory and / or registers 
( shown or not shown ) that configure ALUs of EXE Block 
2611 to perform one or more machine learning algorithms , 
neural network architectures , use cases , or training tech 
niques described herein . 
[ 0210 ] FIG . 27 illustrates a deep learning application 
processor 2700 , in at least one embodiment . In at least one 
embodiment , deep learning application processor 2700 uses 
instructions that , if executed by deep learning application 
processor 2700 , cause deep learning application processor 
2700 to perform some or all of processes and techniques 
described throughout this disclosure . In at least one embodi 
ment , deep learning application processor 2700 is an appli 
cation - specific integrated circuit ( ASIC ) . In at least one 
embodiment , application processor 2700 performs matrix 
multiply operations either “ hard - wired ” into hardware as a 
result of performing one or more instructions or both . In at 
least one embodiment , deep learning application processor 
2700 includes , without limitation , processing clusters 2710 
( 1 ) -2710 ( 12 ) , Inter - Chip Links ( “ ICLs ” ) 2720 ( 1 ) -2720 ( 12 ) , 
Inter - Chip Controllers ( “ ICCs ” ) 2730 ( 1 ) -2730 ( 2 ) , high 
bandwidth memory second generation ( “ HBM2 " ) 2740 ( 1 ) . 
2740 ( 4 ) , memory controllers ( “ Mem Ctrlrs ” ) 2742 ( 1 ) -2742 
( 4 ) , high bandwidth memory physical layer ( “ HBM PHY ” ) 
2744 ( 1 ) -2744 ( 4 ) , a management - controller central process 
ing unit ( “ management - controller CPU ” ) 2750 , a Serial 
Peripheral Interface , Inter - Integrated Circuit , and General 
Purpose Input / Output block ( " SPI , 12C , GPIO " ) 2760 , a 
peripheral component interconnect express controller and 
direct memory access block ( “ PCIe Controller and DMA ” 
2770 , and a sixteen - lane peripheral component interconnect 
express port ( “ PCI Expressx16 ” ) 2780 . 
[ 0211 ] In at least one embodiment , processing clusters 
2710 may perform deep learning operations , including infer 
ence or prediction operations based on weight parameters 
calculated one or more training techniques , including those 
described herein . In at least one embodiment , each process 
ing cluster 2710 may include , without limitation , any num 
ber and type of processors . In at least one embodiment , deep 
learning application processor 2700 may include any num 
ber and type of processing clusters 2700. In at least one 
embodiment , Inter - Chip Links 2720 are bi - directional . In at 
least one embodiment , Inter - Chip Links 2720 and Inter - Chip 
Controllers 2730 enable multiple deep learning application 
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processors 2700 to exchange information , including activa 
tion information resulting from performing one or more 
machine learning algorithms embodied in one or more 
neural networks . In at least one embodiment , deep learning 
application processor 2700 may include any number ( includ 
ing zero ) and type of ICLs 2720 and ICCs 2730 . 
[ 0212 ] In at least one embodiment , HBM2s 2740 provide 
a total of 32 Gigabytes ( GB ) of memory . HBM2 2740 ( i ) is 
associated with both memory controller 2742 ( i ) and HBM 
PHY 2744 ( i ) . In at least one embodiment , any number of 
HBM2s 2740 may provide any type and total amount of high 
bandwidth memory and may be associated with any number 
( including zero ) and type of memory controllers 2742 and 
HBM PHYs 2744. In at least one embodiment , SPI , 12C , 
GPIO 2760 , PCIe Controller and DMA 2770 , and / or PCIe 
2780 may be replaced with any number and type of blocks 
that enable any number and type of communication stan 
dards in any technically feasible fashion . 
[ 0213 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , deep 
learning application processor is used to train a machine 
learning model , such as a neural network , to predict or infer 
information provided to deep learning application processor 
2700. In at least one embodiment , deep learning application 
processor 2700 is used to infer or predict information based 
on a trained machine learning model ( e.g. , neural network ) 
that has been trained by another processor or system or by 
deep learning application processor 2700. In at least one 
embodiment , processor 2700 may be used to perform one or 
more neural network use cases described herein . 
[ 0214 ] FIG . 28 is a block diagram of a neuromorphic 
processor 2800 , in at least one embodiment . In at least one 
embodiment , neuromorphic processor 2800 may receive one 
or more inputs from sources external to neuromorphic 
processor 2800. In at least one embodiment , these inputs 
may be transmitted to one or more neurons 2802 within 
neuromorphic processor 2800. In at least one embodiment , 
neurons 2802 and components thereof may be implemented 
using circuitry or logic , including one or more arithmetic 
logic units ( ALUS ) . In at least one embodiment , neuromor 
phic processor 2800 may include , without limitation , thou 
sands or millions of instances of neurons 2802 , but any 
suitable number of neurons 2802 may be used . In at least one 
embodiment , each instance of neuron 2802 may include a 
neuron input 2804 and a neuron output 2806. In at least one 
embodiment , neurons 2802 may generate outputs that may 
be transmitted to inputs of other instances of neurons 2802 . 
For example , in at least one embodiment , neuron inputs 
2804 and neuron outputs 2806 may be interconnected via 
synapses 2808 . 
[ 0215 ] In at least one embodiment , neurons 2802 and 
synapses be interconnected such that neuromor 
phic processor 2800 operates to process or analyze infor 
mation received by neuromorphic processor 2800. In at least 
one embodiment , neurons 2802 may transmit an output 
pulse ( or “ fire ” or “ spike ” ) when inputs received through 
neuron input 2804 exceed a threshold . In at least one 
embodiment , neurons 2802 may sum or integrate signals 
received at neuron inputs 2804. For example , in at least one 
embodiment , neurons 2802 may be implemented as leaky 
integrate - and - fire neurons , wherein if a sum ( referred to as 

a “ membrane potential ” ) exceeds a threshold value , neuron 
2802 may generate an output ( or “ fire ” ) using a transfer 
function such as a sigmoid or threshold function . In at least 
one embodiment , a leaky integrate - and - fire neuron may sum 
signals received at neuron inputs 2804 into a membrane 
potential and may also apply a decay factor ( or leak ) to 
reduce a membrane potential . In at least one embodiment , a 
leaky integrate - and - fire neuron may fire if multiple input 
signals are received at neuron inputs 2804 rapidly enough to 
exceed a threshold value , such as before a membrane 
potential decays too low to fire . In at least one embodiment , 
neurons 2802 may be implemented using circuits or logic 
that receive inputs , integrate inputs into a membrane poten 
tial , and decay a membrane potential . In at least one embodi 
ment , inputs may be averaged , or any other suitable transfer 
function may be used . Furthermore , in at least one embodi 
ment , neurons 2802 may include , without limitation , com 
parator circuits or logic that generate an output spike at 
neuron output 2806 when result of applying a transfer 
function to neuron input 2804 exceeds a threshold . In at least 
one embodiment , once neuron 2802 fires , it may disregard 
previously received input information by , for example , reset 
ting a membrane potential to 0 or another suitable default 
value . In at least one embodiment , once membrane potential 
is reset to 0 , neuron 2802 may resume normal operation after 
a suitable period of time ( or refractory period ) . 
[ 0216 ] In at least one embodiment , neurons 2802 may be 
interconnected through synapses 2808. In at least one 
embodiment , synapses 2808 may operate to transmit signals 
from an output of a first neuron 2802 to an input of a second 
neuron 2802. In at least one embodiment , neurons 2802 may 
transmit information over more than one instance of synapse 
2808. In at least one embodiment , one or more instances of 
neuron output 2806 may be connected , via an instance of 
synapse 2808 , to an instance of neuron input 2804 in same 
neuron 2802. In at least one embodiment , an instance of 
neuron 2802 generating an output to be transmitted over an 
instance of synapse 2808 may be referred to as a " pre 
synaptic neuron ” with respect to that instance of synapse 
2808. In at least one embodiment , an instance of neuron 
2802 receiving an input transmitted over an instance of 
synapse 2808 may be referred to as a “ post - synaptic neuron ” 
with respect to that instance of synapse 2808. Because an 
instance of neuron 2802 may receive inputs from one or 
more instances of synapse 2808 , and may also transmit 
outputs over one or more instances of synapse 2808 , a single 
instance of neuron 2802 may therefore be both a “ pre 
synaptic neuron ” and “ post - synaptic neuron , ” with respect 
to various instances of synapses 2808 , in at least one 
embodiment . 
[ 0217 ] In at least one embodiment , neurons 2802 may be 
organized into one or more layers . Each instance of neuron 
2802 may have one neuron output 2806 that may fan out 
through one or more synapses 2808 to one or more neuron 
inputs 2804. In at least one embodiment , neuron outputs 
2806 of neurons 2802 in a first layer 2810 may be connected 
to neuron inputs 2804 of neurons 2802 in a second layer 
2812. In at least one embodiment , layer 2810 may be 
referred to as a “ feed - forward layer . ” In at least one embodi 
ment , each instance of neuron 2802 in an instance of first 
layer 2810 may fan out to each instance of neuron 2802 in 
second layer 2812. In at least one embodiment , first layer 
2810 may be referred to as a “ fully connected feed - forward 
layer . ” In at least one embodiment , each instance of neuron 

2808 may 
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2802 in an instance of second layer 2812 may fan out to 
fewer than all instances of neuron 2802 in a third layer 2814 . 
In at least one embodiment , second layer 2812 may be 
referred to as a “ sparsely connected feed - forward layer . " In 
at least one embodiment , neurons 2802 in second layer 2812 
may fan out to neurons 2802 in multiple other layers , 
including to neurons 2802 in ( same ) second layer 2812. In 
at least one embodiment , second layer 2812 may be referred 
to as a “ recurrent layer . ” Neuromorphic processor 2800 may 
include , without limitation , any suitable combination of 
recurrent layers and feed - forward layers , including , without 
limitation , both sparsely connected feed - forward layers and 
fully connected feed - forward layers . 
[ 0218 ] In at least one embodiment , neuromorphic proces 
sor 2800 may include , without limitation , a reconfigurable 
interconnect architecture or dedicated hard wired intercon 
nects to connect synapse 2808 to neurons 2802. In at least 
one embodiment , neuromorphic processor 2800 may 
include , without limitation , circuitry or logic that allows 
synapses to be allocated to different neurons 2802 as needed 
based on neural network topology and neuron fan - in / out . 
For example , in at least one embodiment , synapses 2808 
may be connected to neurons 2802 using an interconnect 
fabric , such as network - on - chip , or with dedicated connec 
tions . In at least one embodiment , synapse interconnections 
and components thereof may be implemented using circuitry 
or logic . 
[ 0219 ] FIG . 29 is a block diagram of a graphics processor 
2900 , which may be a discrete graphics processing unit , or 
may be a graphics processor integrated with a plurality of 
processing cores . In at least one embodiment , graphics 
processor 2900 communicates via a memory mapped I / O 
interface to registers on graphics processor 2900 and with 
commands placed into memory . In at least one embodiment , 
graphics processor 2900 includes a memory interface 2914 
to access memory . In at least one embodiment , memory 
interface 2914 is an interface to local memory , one or more 
internal caches , one or more shared external caches , and / or 
to system memory . 
[ 0220 ] In at least one embodiment , graphics processor 
2900 also includes a display controller 2902 to drive display 
output data to a display device 2920. In at least one 
embodiment , display controller 2902 includes hardware for 
one or more overlay planes for display device 2920 and 
composition of multiple layers of video or user interface 
elements . In at least one embodiment , display device 2920 
can be an internal or external display device . In at least one 
embodiment , display device 2920 is a head mounted display 
device , such as a virtual reality ( VR ) display device or an 
augmented reality ( AR ) display device . In at least one 
embodiment , graphics processor 2900 includes a video 
codec engine 2906 to encode , decode , or transcode media to , 
from , or between one or more media encoding formats , 
including , but not limited to Moving Picture Experts Group 
( MPEG ) formats such as MPEG - 2 , Advanced Video Coding 
( AVC ) formats such as H.264 / MPEG - 4 AVC , as well as a 
Society of Motion Picture & Television Engineers ( SMPTE ) 
421M / VC - 1 , and Joint Photographic Experts Group ( JPEG ) 
formats such as JPEG , and Motion JPEG ( MJPEG ) formats . 
[ 0221 ] In at least one embodiment , graphics processor 
2900 includes a block image transfer ( BLIT ) engine 2904 to 
perform two - dimensional ( 2D ) rasterizer operations includ 
ing , for example , bit - boundary block transfers . However , in 
at least one embodiment , 2D graphics operations are per 

formed using one or more components of graphics process 
ing engine ( GPE ) 2910. In at least one embodiment , GPE 
2910 is a compute engine for performing graphics opera 
tions , including three - dimensional ( 3D ) graphics operations 
and media operations . 
[ 0222 ] In at least one embodiment , GPE 2910 includes a 
3D pipeline 2912 for performing 3D operations , such as 
rendering three - dimensional images and scenes using pro 
cessing functions that act upon 3D primitive shapes ( e.g. , 
rectangle , triangle , etc. ) . 3D pipeline 2912 includes pro 
grammable and fixed function elements that perform various 
tasks and / or spawn execution threads to a 3D / Media sub 
system 2915. While 3D pipeline 2912 can be used to 
perform media operations , in at least one embodiment , GPE 
2910 also includes a media pipeline 2916 that is used to 
perform media operations , such as video post - processing 
and image enhancement . 
[ 0223 ] In at least one embodiment , media pipeline 2916 
includes fixed function or programmable logic units to 
perform one or more specialized media operations , such as 
video decode acceleration , video de - interlacing , and video 
encode acceleration in place of , or on behalf of video codec 
engine 2906. In at least one embodiment , media pipeline 
2916 additionally includes a thread spawning unit to spawn 
threads for execution on 3D / Media sub - system 2915. In at 
least one embodiment , spawned threads perform computa 
tions for media operations on one or more graphics execu 
tion units included in 3D / Media sub - system 2915 . 
[ 0224 ] In at least one embodiment , 3D / Media subsystem 
2915 includes logic for executing threads spawned by 3D 
pipeline 2912 and media pipeline 2916. In at least one 
embodiment , 3D pipeline 2912 and media pipeline 2916 
send thread execution requests to 3D / Media subsystem 
2915 , which includes thread dispatch logic for arbitrating 
and dispatching various requests to available thread execu 
tion resources . In at least one embodiment , execution 
resources include an array of graphics execution units to 
process 3D and media threads . In at least one embodiment , 
3D / Media subsystem 2915 includes one or more internal 
caches for thread instructions and data . In at least one 
embodiment , subsystem 2915 also includes shared memory , 
including registers and addressable memory , to share data 
between threads and to store output data . 
[ 0225 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment 
portions or all of inference and / or training logic 1015 may 
be incorporated into graphics processor 2900. For example , 
in at least one embodiment , training and / or inferencing 
techniques described herein may use one or more of ALUS 
embodied in 3D pipeline 2912. Moreover , in at least one 
embodiment , inferencing and / or training operations 
described herein may be done using logic other than logic 
illustrated in FIG . 10 or 11. In at least one embodiment , 
weight parameters may be stored in on - chip or off - chip 
memory and / or registers ( shown or not shown ) that config 
ure ALUs of graphics processor 2900 to perform one or 
more machine learning algorithms , neural network architec 
tures , use cases , or training techniques described herein . 
[ 0226 ] FIG . 30 is a block diagram of hardware logic of a 
graphics processor core 3000 , in at least one embodiment 
described herein . In at least one embodiment , graphics 
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processor core 3000 is included within a graphics core array . 
In at least one embodiment , graphics processor core 3000 , 
sometimes referred to as a core slice , can be one or multiple 
graphics cores within a modular graphics processor . In at 
least one embodiment , graphics processor core 3000 is 
exemplary of one graphics core slice , and a graphics pro 
cessor as described herein may include multiple graphics 
core slices based on target power and performance enve 
lopes . In at least one embodiment , each graphics core 3000 
can include a fixed function block 3030 coupled with 
multiple sub - cores 3001A - 3001F , also referred to as sub 
slices , that include modular blocks of general - purpose and 
fixed function logic . 
[ 0227 ] In at least one embodiment , fixed function block 
3030 includes a geometry / fixed function pipeline 3036 that 
can be shared by all sub - cores in graphics processor 3000 , 
for example , in lower performance and / or lower power 
graphics processor implementations . In at least one embodi 
ment , geometry / fixed function pipeline 3036 includes a 3D 
fixed function pipeline , a video front - end unit , a thread 
spawner and thread dispatcher , and a unified return buffer 
manager , which manages unified return buffers . 
[ 0228 ] In at least one embodiment fixed function block 
3030 also includes a graphics SoC interface 3037 , a graphics 
microcontroller 3038 , and a media pipeline 3039. Graphics 
SOC interface 3037 provides an interface between graphics 
core 3000 and other processor cores within a system on a 
chip integrated circuit . In at least one embodiment , graphics 
microcontroller 3038 is a programmable sub - processor that 
is configurable to manage various functions of graphics 
processor 3000 , including thread dispatch , scheduling , and 
pre - emption . In at least one embodiment , media pipeline 
3039 includes logic to facilitate decoding , encoding , pre 
processing , and / or post - processing of multimedia data , 
including image and video data . In at least one embodiment , 
media pipeline 3039 implement media operations via 
requests to compute or sampling logic within sub - cores 
3001-3001F . 
[ 0229 ] In at least one embodiment , SoC interface 3037 
enables graphics core 3000 to communicate with general 
purpose application processor cores ( e.g. , CPUs ) and / or 
other components within an SoC , including memory hier 
archy elements such as a shared last level cache memory , 
system RAM , and / or embedded on - chip or on - package 
DRAM . In at least one embodiment , SoC interface 3037 can 
also enable communication with fixed function devices 
within an SoC , such as camera imaging pipelines , and 
enables use of and / or implements global memory atomics 
that may be shared between graphics core 3000 and CPUs 
within an SoC . In at least one embodiment , SoC interface 
3037 can also implement power management controls for 
graphics core 3000 and enable an interface between a clock 
domain of graphic core 3000 and other clock domains within 
an SoC . In at least one embodiment , SoC interface 3037 
enables receipt of command buffers from a command 
streamer and global thread dispatcher that are configured to 
provide commands and instructions to each of one or more 
graphics cores within a graphics processor . In at least one 
embodiment , commands and instructions can be dispatched 
to media pipeline 3039 , when media operations are to be 
performed , or a geometry and fixed function pipeline ( e.g. , 
geometry and fixed function pipeline 3036 , geometry and 
fixed function pipeline 3014 ) when graphics processing 
operations are to be performed . 

[ 0230 ] In at least one embodiment , graphics microcon 
troller 3038 can be configured to perform various scheduling 
and management tasks for graphics core 3000. In at least one 
embodiment , graphics microcontroller 3038 can perform 
graphics and / or compute workload scheduling on various 
graphics parallel engines within execution unit ( EU ) arrays 
3002A - 3002F , 3004A - 3004F within sub - cores 3001A 
3001F . In at least one embodiment , host software executing 
on a CPU core of an SoC including graphics core 3000 can 
submit workloads one of multiple graphic processor door 
bells , which invokes a scheduling operation on an appro 
priate graphics engine . In at least one embodiment , sched 
uling operations include determining which workload to run 
next , submitting a workload to a command streamer , pre 
empting existing workloads running on an engine , monitor 
ing progress of a workload , and notifying host software 
when a workload is complete . In at least one embodiment , 
graphics microcontroller 3038 can also facilitate low - power 
or idle states for graphics core 3000 , providing graphics core 
3000 with an ability to save and restore registers within 
graphics core 3000 across low - power state transitions inde 
pendently from an operating system and / or graphics driver 
software on a system . 
[ 0231 ] In at least one embodiment , graphics core 3000 
may have greater than or fewer than illustrated sub - cores 
3001A - 3001F , up to N modular sub - cores . For each set of N sub - cores , in at least one embodiment , graphics core 3000 
can also include shared function logic 3010 , shared and / or 
cache memory 3012 , a geometry / fixed function pipeline 
3014 , as well as additional fixed function logic 3016 to 
accelerate various graphics and compute processing opera 
tions . In at least one embodiment , shared function logic 
3010 can include logic units ( e.g. , sampler , math , and / or 
inter - thread communication logic ) that can be shared by 
each N sub - cores within graphics core 3000. Shared and / or 
cache memory 3012 can be a last - level cache for N sub 
cores 3001A - 3001F within graphics core 3000 and can also 
serve as shared memory that is accessible by multiple 
sub - cores . In at least one embodiment , geometry / fixed func 
tion pipeline 3014 can be included instead of geometry / fixed 
function pipeline 3036 within fixed function block 3030 and 
can include same or similar logic units . 
[ 0232 ] In at least one embodiment , graphics core 3000 
includes additional fixed function logic 3016 that can 
include various fixed function acceleration logic for use by 
graphics core 3000. In at least one embodiment , additional 
fixed function logic 3016 includes an additional geometry 
pipeline for use in position - only shading . In position - only 
shading , at least two geometry pipelines exist , whereas in a 
full geometry pipeline within geometry / fixed function pipe 
line 3016 , 3036 , and a cull pipeline , which is an additional 
geometry pipeline which may be included within additional 
fixed function logic 3016. In at least one embodiment , cull 
pipeline is a trimmed down version of a full geometry 
pipeline . In at least one embodiment , a full pipeline and a 
cull pipeline can execute different instances of an applica 
tion , each instance having a separate context . In at least one 
embodiment , position only shading can hide long cull runs 
of discarded triangles , enabling shading to be completed 
earlier in some instances . For example , in at least one 
embodiment , cull pipeline logic within additional fixed 
function logic 3016 can execute position shaders in parallel 
with a main application and generates critical results faster 
than a full pipeline , as cull pipeline fetches and shades 
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position attribute of vertices , without performing rasteriza 
tion and rendering of pixels to a frame buffer . In at least one 
embodiment , cull pipeline can use generated critical results 
to compute visibility information for all triangles without 
regard to whether those triangles are culled . In at least one 
embodiment , full pipeline ( which in this instance may be 
referred to as a replay pipeline ) can consume visibility 
information to skip culled triangles to shade only visible 
triangles that are finally passed to a rasterization phase . 
[ 0233 ] In at least one embodiment , additional fixed func 
tion logic 3016 can also include machine learning accelera 
tion logic , such as fixed function matrix multiplication logic , 
for implementations including optimizations for machine 
learning training or inferencing . 
[ 0234 ] In at least one embodiment , within each graphics 
sub - core 3001A - 3001F includes a set of execution resources 
that may be used to perform graphics , media , and compute 
operations in response to requests by graphics pipeline , 
media pipeline , or shader programs . In at least one embodi 
ment , graphics sub - cores 3001A - 3001F include multiple EU 
arrays 3002A - 3002F , 3004A - 3004F , thread dispatch and 
inter - thread communication ( TD / IC ) logic 3003A - 3003F , a 
3D ( e.g. , texture ) sampler 3005A - 3005F , a media sampler 
3006A - 3006F , a shader processor 3007A - 3007F , and shared 
local memory ( SLM ) 3008A - 3008F . EU arrays 3002A 
3002F , 3004A - 3004F each include multiple execution units , 
which are general - purpose graphics processing units capable 
of performing floating - point and integer / fixed - point logic 
operations in service of a graphics , media , or compute 
operation , including graphics , media , or compute shader 
programs . In at least one embodiment , TD / IC logic 3003A 
3003F performs local thread dispatch and thread control 
operations for execution units within a sub - core and facili 
tate communication between threads executing on execution 
units of a sub - core . In at least one embodiment , 3D sampler 
3005A - 3005F can read texture or other 3D graphics related 
data into memory . In at least one embodiment , 3D sampler 
can read texture data differently based on a configured 
sample state and texture format associated with a given 
texture . In at least one embodiment , media sampler 3006A 
3006F can perform similar read operations based on a type 
and format associated with media data . In at least one 
embodiment , each graphics sub - core 3001A - 3001F can 
alternately include a unified 3D and media sampler . In at 
least one embodiment , threads executing on execution units 
within each of sub - cores 3001A - 3001F can make use of 
shared local memory 3008A - 3008F within each sub - core , to 
enable threads executing within a thread group to execute 
using a pool of on - chip memory . 
[ 0235 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , 
portions or all of inference and / or training logic 1015 may 
be incorporated into graphics processor 3010. For example , 
in at least one embodiment , training and / or inferencing 
techniques described herein may use one or more of ALUS 
embodied in 3D pipeline 3010 , graphics microcontroller 
3038 , geometry & fixed function pipeline 3014 and 3036 , or 
other logic in FIG . 29B . Moreover , in at least one embodi 
ment , inferencing and / or training operations described 
herein may be done using logic other than logic illustrated 
in FIG . 10 or 11. In at least one embodiment , weight 

parameters may be stored in on - chip or off - chip memory 
and / or registers ( shown or not shown ) that configure ALUS 
of graphics processor 3000 to perform one or more machine 
learning algorithms , neural network architectures , use cases , 
or training techniques described herein . 
[ 0236 ] FIGS . 31A - 31B illustrate thread execution logic 
3100 including an array of processing elements of a graphics 
processor core in at least one embodiment . FIG . 31A illus 
trates at least one embodiment , in which thread execution 
logic 3100 is used . FIG . 31B illustrates exemplary internal 
details of an execution unit , in at least one embodiment . 
[ 0237 ] As illustrated in FIG . 31A , in at least one embodi 
ment , thread execution logic 3100 includes a shader proces 
sor 3102 , a thread dispatcher 3104 , instruction cache 3106 , 
a scalable execution unit array including a plurality of 
execution units 3108A - 3108N , a sampler 3110 , a data cache 
3112 , and a data port 3114. In at least one embodiment a 
scalable execution unit array can dynamically scale by 
enabling or disabling one or more execution units ( e.g. , any 
of execution unit 3108A , 3108B , 3108C , 3108D , through 
3108N - 1 and 3108N ) based on computational requirements 
of a workload , for example . In at least one embodiment , 
scalable execution units are interconnected via an intercon 
nect fabric that links to each execution unit . In at least one 
embodiment , thread execution logic 3100 includes one or 
more connections to memory , such as system memory or 
cache memory , through one or more of instruction cache 
3106 , data port 3114 , sampler 3110 , and execution units 
3108A - 3108N . In at least one embodiment , each execution 
unit ( e.g. , 3108A ) is a stand - alone programmable general 
purpose computational unit that is capable of executing 
multiple simultaneous hardware threads while processing 
multiple data elements in parallel for each thread . In at least 
one embodiment , array of execution units 3108A - 3108N is 
scalable to include any number individual execution units . 
[ 0238 ] In at least one embodiment , execution units 
3108A - 3108N are primarily used to execute shader pro 
grams . In at least one embodiment , shader processor 3102 
can process various shader programs and dispatch execution 
threads associated with shader programs via a thread dis 
patcher 3104. In at least one embodiment , thread dispatcher 
3104 includes logic to arbitrate thread initiation requests 
from graphics and media pipelines and instantiate requested 
threads on one or more execution units in execution units 
3108A - 3108N . For example , in at least one embodiment , a 
geometry pipeline can dispatch vertex , tessellation , or geom 
etry shaders to thread execution logic for processing . In at 
least one embodiment , thread dispatcher 3104 can also 
process runtime thread spawning requests from executing 
shader programs . 
[ 0239 ] In at least one embodiment , execution units 
3108A - 3108N support an instruction set that includes native 
support for many standard 3D graphics shader instructions , 
such that shader programs from graphics libraries ( e.g. , 
Direct 3D and OpenGL ) are executed with minimal trans 
lation . In at least one embodiment , execution units support 
vertex and geometry processing ( e.g. , vertex programs , 
geometry programs , vertex shaders ) , pixel processing ( e.g. , 
pixel shaders , fragment shaders ) and general - purpose pro 
cessing ( e.g. , compute and media shaders ) . In at least one 
embodiment , each of execution units 3108A - 3108N , which 
include one or more arithmetic logic units ( ALUs ) , is 
capable of multi - issue single instruction multiple data 
( SIMD ) execution and multi - threaded operation enables an 
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efficient execution environment despite higher latency 
memory accesses . In at least one embodiment , each hard 
ware thread within each execution unit has a dedicated 
high - bandwidth register file and associated independent 
thread - state . In at least one embodiment , execution is multi 
issue per clock to pipelines capable of integer , single and 
double precision floating point operations , SIMD branch 
capability , logical operations , transcendental operations , and 
other miscellaneous operations . In at least one embodiment , 
while waiting for data from memory or one or more shared 
functions , dependency logic within execution units 3108A 
3108N causes a waiting thread to sleep until requested data 
has been returned . In at least one embodiment , hardware 
resources may be devoted to processing other threads while 
a specific , waiting thread is sleeping . For example , in at least 
one embodiment , during a delay associated with a vertex 
shader operation , an execution unit can perform operations 
for a pixel shader , fragment shader , or another type of shader 
program , including a different vertex shader . 
[ 0240 ] In at least one embodiment , each execution unit in 
execution units 3108A - 3108N operates on arrays of data 
elements . In at least one embodiment , a number of data 
elements is “ execution size , ” or a number of channels for an 
instruction . In at least one embodiment , an execution chan 
nel is a logical unit of execution for data element access , 
masking , and flow control within instructions . In at least one 
embodiment , a number of channels may be independent of 
a number of physical Arithmetic Logic Units ( ALUS ) or 
Floating Point Units ( FPUs ) for a particular graphics pro 
cessor . In at least one embodiment , execution units 3108A 
3108N support integer and floating - point data types . 
[ 0241 ] In at least one embodiment , an execution unit 
instruction set includes SIMD instructions . In at least one 
embodiment , various data elements can be stored as a 
packed data type in a register and an execution unit will 
process various elements based on a data size of those 
elements . For example , in at least one embodiment , when 
operating on a 256 - bit wide vector , 256 bits of a vector are 
stored in a register and an execution unit operates on a vector 
as four separate 64 - bit packed data elements ( Quad - Word 
( QW ) size data elements ) , eight separate 32 - bit packed data 
elements ( Double Word ( DW ) size data elements ) , sixteen 
separate 16 - bit packed data elements ( Word ( W ) size data 
elements ) , or thirty - two separate 8 - bit data elements ( byte 
( B ) size data elements ) . However , in at least one embodi 
ment , different vector widths and register sizes are possible . 
[ 0242 ] In at least one embodiment , one or more execution 
units can be combined into a fused execution unit 3109A 
3109N having thread control logic ( 3107A - 3107N ) that is 
used for fused EUs . In at least one embodiment , multiple 
EUs can be fused into an EU group . In at least one 
embodiment , each EU in fused EU group can be configured 
to execute a separate SIMD hardware thread . A number of 
EUs in a fused EU group can vary according to various 
embodiments . In at least one embodiment , various SIMD 
widths can be performed per - EU , including but not limited 
to SIMD8 , SIMD16 , and SIMD32 . In at least one embodi 
ment , each fused graphics execution unit 3109A - 3109N 
includes at least two execution units . For example , in at least 
one embodiment , fused execution unit 3109A includes a first 
EU 3108A , second EU 3108B , and thread control logic 
3107 A that is shared with first EU 3108A and second EU 
3108B . In at least one embodiment , thread control logic 
3107A controls threads executed on fused graphics execu 

tion unit 3109A , allowing each EU within fused execution 
units 3109A - 3109N to execute using an instruction pointer 
register . 
[ 0243 ] In at least one embodiment , one or more internal 
instruction caches ( e.g. , 3106 ) are included in thread execu 
tion logic 3100 to cache thread instructions for execution 
units . In at least one embodiment , one or more data caches 
( e.g. , 3112 ) are included to cache thread data during thread 
execution . In at least one embodiment , a sampler 3110 is 
included to provide texture sampling for 3D operations and 
media sampling for media operations . In at least one 
embodiment , sampler 3110 includes specialized texture or 
media sampling functionality to process texture or media 
data during a sampling process before providing sampled 
data to an execution unit . 
[ 0244 ] During execution , in at least one embodiment , 
graphics and media pipelines send thread initiation requests 
to thread execution logic 3100 via thread spawning and 
dispatch logic . In at least one embodiment , once a group of 
geometric objects has been processed and rasterized into 
pixel data , pixel processor logic ( e.g. , pixel shader logic , 
fragment shader logic , etc. ) within shader processor 3102 is 
invoked to further compute output information and cause 
results to be written to output surfaces ( e.g. , color buffers , 
depth buffers , stencil buffers , etc. ) . In at least one embodi 
ment , a pixel shader or fragment shader calculates values of 
various vertex attributes that are to be interpolated across a 
rasterized object . In at least one embodiment , pixel proces 
sor logic within shader processor 3102 then executes an 
application programming interface ( API ) -supplied pixel or 
fragment shader program . In at least one embodiment , to 
execute a shader program , shader processor 3102 dispatches 
threads to an execution unit ( e.g. , 3108A ) via thread dis 
patcher 3104. In at least one embodiment , shader processor 
3102 uses texture sampling logic in sampler 3110 to access 
texture data in texture maps stored in memory . In at least one 
embodiment , arithmetic operations on texture data and input 
geometry data compute pixel color data for each geometric 
fragment , or discards one or more pixels from further 
processing . 
[ 0245 ] In at least one embodiment , data port 3114 pro 
vides a memory access mechanism for thread execution 
logic 3100 to output processed data to memory for further 
processing on a graphics processor output pipeline . In at 
least one embodiment , data port 3114 includes or couples to 
one or more cache memories ( e.g. , data cache 3112 ) to cache 
data for memory access via a data port . 
[ 0246 ] As illustrated in FIG . 31B , in at least one embodi 
ment , a graphics execution unit 3108 can include an instruc 
tion fetch unit 3137 , a general register file array ( GRF ) 3124 , 
an architectural register file array ( ARF ) 3126 , a thread 
arbiter 3122 , a send unit 3130 , a branch unit 3132 , a set of 
SIMD floating point units ( FPUs ) 3134 , and In at least one 
embodiment a set of dedicated integer SIMD ALUS 3135. In 
at least one embodiment , GRF 3124 and ARF 3126 includes 
a set of general register files and architecture register files 
associated with each simultaneous hardware thread that may 
be active in graphics execution unit 3108. In at least one 
embodiment , per thread architectural state is maintained in 
ARF 3126 , while data used during thread execution is stored 
in GRF 3124. In at least one embodiment , execution state of 
each thread , including instruction pointers for each thread , 
can be held in thread - specific registers in ARF 3126 . 
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[ 0247 ] In at least one embodiment , graphics execution unit 
3108 has an architecture that is a combination of Simulta 
neous Multi - Threading ( SMT ) and fine - grained Interleaved 
Multi - Threading ( IMT ) . In at least one embodiment , archi 
tecture has a modular configuration that can be fine - tuned at 
design time based on a target number of simultaneous 
threads and number of registers per execution unit , where 
execution unit resources are divided across logic used to 
execute multiple simultaneous threads . 
[ 0248 ] In at least one embodiment , graphics execution unit 
3108 can co - issue multiple instructions , which may each be 
different instructions . In at least one embodiment , thread 
arbiter 3122 of graphics execution unit thread 3108 can 
dispatch instructions to one of send unit 3130 , branch unit 
3142 , or SIMD FPU ( s ) 3134 for execution . In at least one 
embodiment , each execution thread can access 128 general 
purpose registers within GRF 3124 , where each register can 
store 32 bytes , accessible as a SIMD 8 - element vector of 
32 - bit data elements . In at least one embodiment , each 
execution unit thread has access to 4 Kbytes within GRF 
3124 , although embodiments are not so limited , and greater 
or fewer register resources may be provided in other 
embodiments . In at least one embodiment , up to seven 
threads can execute simultaneously , although a number of 
threads per execution unit can also vary according to 
embodiments . In at least one embodiment , in which seven 
threads may access 4 Kbytes , GRF 3124 can store a total of 
28 Kbytes . In at least one embodiment , flexible addressing 
modes can permit registers to be addressed together to build 
effectively wider registers or to represent strided rectangular 
block data structures . 
[ 0249 ] In at least one embodiment , memory operations , 
sampler operations , and other longer - latency system com 
munications are dispatched via “ send ” instructions that are 
executed by message passing send unit 3130. In at least one 
embodiment , branch instructions are dispatched to a dedi 
cated branch unit 3132 to facilitate SIMD divergence and 
eventual convergence . 
[ 0250 ] In at least one embodiment graphics execution unit 
3108 includes one or more SIMD floating point units 
( FPU ( s ) ) 3134 to perform floating - point operations . In at 
least one embodiment , FPU ( s ) 3134 also support integer 
computation . In at least one embodiment FPU ( s ) 3134 can 
SIMD execute up to M number of 32 - bit floating - point ( or 
integer ) operations , or SIMD execute up to 2M 16 - bit 
integer or 16 - bit floating - point operations . In at least one 
embodiment , at least one of FPU ( s ) provides extended math 
capability to support high - throughput transcendental math 
functions and double precision 64 - bit floating - point . In at 
least one embodiment , a set of 8 - bit integer SIMD ALUS 
3135 are also present , and may be specifically optimized to 
perform operations associated with machine learning com 
putations . 
[ 0251 ] In at least one embodiment , arrays of multiple 
instances of graphics execution unit 3108 can be instantiated 
in a graphics sub - core grouping ( e.g. , a sub - slice ) . In at least 
one embodiment execution unit 3108 can execute instruc 
tions across a plurality of execution channels . In at least one 
embodiment , each thread executed on graphics execution 
unit 3108 is executed on a different channel . 
[ 0252 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 

with FIGS . 10 and / or 11. In at least one embodiment , 
portions or all of inference and / or training logic 1015 may 
be incorporated into execution logic 3100. Moreover , in at 
least one embodiment , inferencing and / or training opera 
tions described herein may be done using logic other than 
logic illustrated in FIG . 10 or 11. In at least one embodiment , 
weight parameters may be stored in on - chip or off - chip 
memory and / or registers ( shown or not shown ) that config 
ure ALUs of execution logic 3100 to perform one or more 
machine learning algorithms , neural network architectures , 
use cases , or training techniques described herein . 
[ 0253 ] FIG . 32 illustrates a parallel processing unit 
( “ PPU ” ) 3200 , in at least one embodiment . In at least one 
embodiment , PPU 3200 is configured with machine - read 
able code that , if executed by PPU 3200 , causes PPU 3200 
to perform some or all of processes and techniques described 
throughout this disclosure . In at least one embodiment , PPU 
3200 is a multi - threaded processor that is implemented on 
one or more integrated circuit devices and that utilizes 
multithreading as a latency - hiding technique designed to 
process computer - readable instructions ( also referred to as 
machine - readable instructions or simply instructions ) on 
multiple threads in parallel . In at least one embodiment , a 
thread refers to a thread of execution and is an instantiation 
of a set of instructions configured to be executed by PPU 
3200. In at least one embodiment , PPU 3200 is a graphics 
processing unit ( “ GPU " ) configured to implement a graphics 
rendering pipeline for processing three - dimensional ( " 3D " ) 
graphics data in order to generate two - dimensional ( “ 2D ” ) 
image data for display on a display device such as a liquid 
crystal display ( “ LCD " ) device . In at least one embodiment , 
PPU 3200 is utilized to perform computations such as linear 
algebra operations and machine - learning operations . FIG . 
32 illustrates an example parallel processor for illustrative 
purposes only and should be construed as a non - limiting 
example of processor architectures contemplated within 
scope of this disclosure and that any suitable processor may 
be employed to supplement and / or substitute for same . 
[ 0254 ] In at least one embodiment , one or more PPUS 
3200 are configured to accelerate High Performance Com 
puting ( “ HPC ” ) , data center , and machine learning applica 
tions . In at least one embodiment , PPU 3200 is configured 
to accelerate deep learning systems and applications includ 
ing following non - limiting examples : autonomous vehicle 
platforms , deep learning , high - accuracy speech , image , text 
recognition systems , intelligent video analytics , molecular 
simulations , drug discovery , disease diagnosis , weather fore 
casting , big data analytics , astronomy , molecular dynamics 
simulation , financial modeling , robotics , factory automation , 
real - time language translation , online search optimizations , 
and personalized user recommendations , and more . 
[ 0255 ] In at least one embodiment , PPU 3200 includes , 
without limitation , an Input / Output ( “ I / O ” ) unit 3206 , a 
front - end unit 3210 , a scheduler unit 3212 , a work distri 
bution unit 3214 , a hub 3216 , a crossbar ( “ Xbar ” ) 3220 , one 
or more general processing clusters ( “ GPCs ” ) 3218 , and one 
or more partition units ( “ memory partition units ” ) 3222. In 
at least one embodiment , PPU 3200 is connected to host 
processor or other PPUs 3200 via one or more high - speed 
GPU interconnects ( “ GPU interconnects ” ) 3208. In at least 
one embodiment , PPU 3200 is connected to a host processor 
or other peripheral devices via an interconnect 3202. In at 
least one embodiment , PPU 3200 is connected to a local 
memory comprising one memory devices or more 
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( “ memory ” ) 3204. In at least one embodiment , memory 
devices 3204 include , without limitation , one or more 
dynamic random access memory ( “ DRAM ” ) devices . In at 
least one embodiment , one or more DRAM devices are 
configured and / or configurable as high - bandwidth memory 
( “ HBM ” ) subsystems , with multiple DRAM dies stacked 
within each device . 
[ 0256 ] In at least one embodiment , high - speed GPU inter 
connect 3208 may refer to a wire - based multi - lane commu 
nications link that is used by systems to scale and include 
one or more PPUS 3200 combined with one or more central 
processing units ( “ CPUs ” ) , supports cache coherence 
between PPUs 3200 and CPUs , and CPU mastering . In at 
least one embodiment , data and / or commands are transmit 
ted by high - speed GPU interconnect 3208 through hub 3216 
to / from other units of PPU 3200 such as one or more copy 
engines , video encoders , video decoders , power manage 
ment units , and other components which may not be explic 
itly illustrated in FIG . 32 . 
[ 0257 ] In at least one embodiment , I / O unit 3206 is 
configured to transmit and receive communications ( e.g. , 
commands , data ) from a host processor ( not illustrated in 
FIG . 32 ) over system bus 3202. In at least one embodiment , 
I / O unit 3206 communicates with host processor directly via 
system bus 3202 or through one or more intermediate 
devices such as a memory bridge . In at least one embodi 
ment , I / O unit 3206 may communicate with one or more 
other processors , such as one or more of PPUs 3200 via 
system bus 3202. In at least one embodiment , I / O unit 3206 
implements a Peripheral Component Interconnect Express 
( “ PCIe ” ) interface for communications over a PCIe bus . In 
at least one embodiment , I / O unit 3206 implements inter 
faces for communicating with external devices . 
[ 0258 ] In at least one embodiment , 1/0 unit 3206 decodes 
packets received via system bus 3202. In at least one 
embodiment , at least some packets represent commands 
configured to cause PPU 3200 to perform various opera 
tions . In at least one embodiment , I / O unit 3206 transmits 
decoded commands to various other units of PPU 3200 as 
specified by commands . In at least one embodiment , com 
mands are transmitted to front - end unit 3210 and / or trans 
mitted to hub 3216 or other units of PPU 3200 such as one 
or more copy engines , a video encoder , a video decoder , a 
power management unit , etc. ( not explicitly illustrated in 
FIG . 32 ) . In at least one embodiment , I / O unit 3206 is 
configured to route communications between and among 
various logical units of PPU 3200 . 
[ 0259 ] In at least one embodiment , a program executed by 
host processor encodes a command stream in a buffer that 
provides workloads to PPU 3200 for processing . In at least 
one embodiment , a workload comprises instructions and 
data to be processed by those instructions . In at least one 
embodiment , buffer is a region in a memory that is acces 
sible ( e.g. , read / write ) by both host processor and PPU 3200 . 
A host interface unit may be configured to access buffer in 
a system memory connected to system bus 3202 via memory 
requests transmitted over system bus 3202 by I / O unit 3206 . 
In at least one embodiment , host processor writes command 
stream to buffer and then transmits a pointer to start of 
command stream to PPU 3200 such that front - end unit 3210 
receives pointers to one or more command streams and 
manages one or more command streams , reading commands 
from command streams and forwarding commands to vari 
ous units of PPU 3200 . 

[ 0260 ] In at least one embodiment , front - end unit 3210 is 
coupled to scheduler unit 3212 that configures various GPCs 
3218 to process tasks determined by one or more command 
streams . In at least one embodiment , scheduler unit 3212 is 
configured to track state information related to various tasks 
managed by scheduler unit 3212 where state information 
may indicate which of GPCs 3218 a task is assigned to , 
whether task is active or inactive , a priority level associated 
with task , and so forth . In at least one embodiment , sched 
uler unit 3212 manages execution of a plurality of tasks on 
one or more of GPCs 3218 . 
[ 0261 ] In at least one embodiment , scheduler unit 3212 is 
coupled to work distribution unit 3214 that is configured to 
dispatch tasks for execution on GPCs 3218. In at least one 
embodiment , work distribution unit 3214 tracks a number of 
scheduled tasks received from scheduler unit 3212 and work 
distribution unit 3214 manages a pending task pool and an 
active task pool for each of GPCs 3218. In at least one 
embodiment , pending task pool comprises a number of slots 
( e.g. , 32 slots ) that contain tasks assigned to be processed by 
a particular GPC 3218 ; active task pool may comprise a 
number of slots ( e.g. , 4 slots ) for tasks that are actively being 
processed by GPCs 3218 such that as one of GPCs 3218 
completes execution of a task , that task is evicted from 
active task pool for GPC 3218 and one of other tasks from 
pending task pool is selected and scheduled for execution on 
GPC 3218. In at least one embodiment , if an active task is 
idle on GPC 3218 , such as while waiting for a data depen 
dency to be resolved , then active task is evicted from GPC 
3218 and returned to pending task pool while another task in 
pending task pool is selected and scheduled for execution on 
GPC 3218 . 
[ 0262 ] In at least one embodiment , work distribution unit 
3214 communicates with one or more GPCs 3218 via XBar 
3220. In at least one embodiment , XBar 3220 is an inter 
connect network that couples many of units of PPU 3200 to 
other units of PPU 3200 and can be configured to couple 
work distribution unit 3214 to a particular GPC 3218. In at 
least one embodiment , one or more other units of PPU 3200 
may also be connected to XBar 3220 via hub 3216 . 
[ 0263 ] In at least one embodiment , tasks are managed by 
scheduler unit 3212 and dispatched to one of GPCs 3218 by 
work distribution unit 3214. GPC 3218 is configured to 
process task and generate results . In at least one embodi 
ment , results may be consumed by other tasks within GPC 
3218 , routed to a different GPC 3218 via XBar 3220 , or 
stored in memory 3204. In at least one embodiment , results 
can be written to memory 3204 via partition units 3222 , 
which implement a memory interface for reading and writ 
ing data to / from memory 3204. In at least one embodiment , 
results can be transmitted to another PPU 3204 or CPU via 
high - speed GPU interconnect 3208. In at least one embodi 
ment , PPU 3200 includes , without limitation , a number U of 
partition units 3222 that is equal to number of separate and 
distinct memory devices 3204 coupled to PPU 3200. In at 
least one embodiment , partition unit 3222 will be described 
in more detail below in conjunction with FIG . 34 . 
( 0264 ] In at least one embodiment , a host processor 
executes a driver kernel that implements an application 
programming interface ( “ API ” ) that enables one or more 
applications executing on host processor to schedule opera 
tions for execution on PPU 3200. In at least one embodi 
ment , multiple compute applications are simultaneously 
executed by PPU 3200 and PPU 3200 provides isolation , 
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quality of service ( “ QoS ” ) , and independent address spaces 
for multiple compute applications . In at least one embodi 
ment , an application generates instructions ( e.g. , in form of 
API calls ) that cause driver kernel to generate one or more 
tasks for execution by PPU 3200 and driver kernel outputs 
tasks to one or more streams being processed by PPU 3200 . 
In at least one embodiment , each task comprises one or more 
groups of related threads , which may be referred to as a 
warp . In at least one embodiment , a warp comprises a 
plurality of related threads ( e.g. , 32 threads ) that can be 
executed in parallel . In at least one embodiment , cooperating 
threads can refer to a plurality of threads including instruc 
tions to perform task and that exchange data through shared 
memory . In at least one embodiment , threads and cooperat 
ing threads are described in more detail , in accordance with 
at least one embodiment , in conjunction with FIG . 34 . 
[ 0265 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , deep 
learning application processor is used to train a machine 
learning model , such as a neural network , to predict or infer 
information provided to PPU 3200. In at least one embodi 
ment , deep learning application processor 3200 is used to 
infer or predict information based on a trained machine 
learning model ( e.g. , neural network ) that has been trained 
by another processor or system or by PPU 3200. In at least 
one embodiment , PPU 3200 may be used to perform one or 
more neural network use cases described herein . 
[ 0266 ] FIG . 33 illustrates a general processing cluster 
( “ GPC ” ) 3300 , in at least one embodiment . In at least one 
embodiment , GPC 3300 is GPC 3218 of FIG . 32. In at least 
one embodiment , each GPC 3300 includes , without limita 
tion , a number of hardware units for processing tasks and 
each GPC 3300 includes , without limitation , a pipeline 
manager 3302 , a pre - raster operations unit ( “ PROP ” ) 3304 , 
a raster engine 3308 , a work distribution crossbar ( “ WDX ” ) 
3316 , a memory management unit ( “ MMU ” ) 3318 , one or 
more Data Processing Clusters ( “ DPCs ” ) 3306 , and any 
suitable combination of parts . 
[ 0267 ] In at least one embodiment , operation of GPC 3300 
is controlled by pipeline manager 3302. In at least one 
embodiment , pipeline manager 3302 manages configuration 
of one or more DPCs 3306 for processing tasks allocated to 
GPC 3300. In at least one embodiment , pipeline manager 
3302 configures at least one of one or more DPCs 3306 to 
implement at least a portion of a graphics rendering pipeline . 
In at least one embodiment , DPC 3306 is configured to 
execute a vertex shader program on a programmable stream 
ing multi - processor ( “ SM ” ) 3314. In at least one embodi 
ment , pipeline manager 3302 is configured to route packets 
received from a work distribution unit to appropriate logical 
units within GPC 3300 , in at least one embodiment , and 
some packets may be routed to fixed function hardware units 
in PROP 3304 and / or raster engine 3308 while other packets 
may be routed to DPCs 3306 for processing by a primitive 
engine 3312 or SM 3314. In at least one embodiment , 
pipeline manager 3302 configures at least one of DPCs 3306 
to implement a neural network model and / or a computing 
pipeline . 
[ 0268 ] In at least one embodiment , PROP unit 3304 is 
configured , in at least one embodiment , to route data gen 
erated by raster engine 3308 and DPCs 3306 to a Raster 

Operations ( “ ROP ” ) unit in partition unit 3222 , described in 
more detail above in conjunction with FIG . 32. In at least 
one embodiment , PROP unit 3304 is configured to perform 
optimizations for color blending , organize pixel data , per 
form address translations , and more . In at least one embodi 
ment , raster engine 3308 includes , without limitation , a 
number of fixed function hardware units configured to 
perform various raster operations , in at least one embodi 
ment , and raster engine 3308 includes , without limitation , a 
setup engine , a coarse raster engine , a culling engine , a 
clipping engine , a fine raster engine , a tile coalescing engine , 
and any suitable combination thereof . In at least one 
embodiment , setup engine receives transformed vertices and 
generates plane equations associated with geometric primi 
tive defined by vertices ; plane equations are transmitted to 
coarse raster engine to generate coverage information ( e.g. , 
an x , y coverage mask for a tile ) for primitive ; output of 
coarse raster engine is transmitted to culling engine where 
fragments associated with primitive that fail a z - test are 
culled , and transmitted to a clipping engine where fragments 
lying outside a viewing frustum are clipped . In at least one 
embodiment , fragments that survive clipping and culling are 
passed to fine raster engine to generate attributes for pixel 
fragments based on plane equations generated by setup 
engine . In at least one embodiment , output of raster engine 
3308 comprises fragments to be processed by any suitable 
entity such as by a fragment shader implemented within 
DPC 3306 . 
[ 0269 ] In at least one embodiment , each DPC 3306 
included in GPC 3300 comprise , without limitation , an 
M - Pipe Controller ( “ MPC ” ) 3310 ; primitive engine 3312 ; 
one or more SMs 3314 ; and any suitable combination 
thereof . In at least one embodiment , MPC 3310 controls 
operation of DPC 3306 , routing packets received from 
pipeline manager 3302 to appropriate units in DPC 3306. In 
at least one embodiment , packets associated with a vertex 
are routed to primitive engine 3312 , which is configured to 
fetch vertex attributes associated with vertex from memory ; 
in contrast , packets associated with a shader program may be 
transmitted to SM 3314 . 

[ 0270 ] In at least one embodiment , SM 3314 comprises , 
without limitation , a programmable streaming processor that 
is configured to process tasks represented by a number of 
threads . In at least one embodiment , SM 3314 is multi 
threaded and configured to execute a plurality of threads 
( e.g. , 32 threads ) from a particular group of threads concur 
rently and implements a Single - Instruction , Multiple - Data 
( " SIMD ” ) architecture where each thread in a group of 
threads ( e.g. , a warp ) is configured to process a different set 
of data based on same set of instructions . In at least one 
embodiment , all threads in group of threads execute same 
instructions . In at least one embodiment , SM 3314 imple 
ments a Single - Instruction , Multiple Thread ( “ SIMT ” ) 
architecture wherein each thread in a group of threads is 
configured to process a different set of data based on same 
set of instructions , but where individual threads in group of 
threads are allowed to diverge during execution . In at least 
one embodiment , a program counter , call stack , and execu 
tion state is maintained for each warp , enabling concurrency 
between warps and serial execution within warps when 
threads within warp diverge . In another embodiment , a 
program counter , call stack , and execution state are main 
tained for each individual thread , enabling equal concur 
rency between all threads , within and between warps . In at 



US 2020/0394458 A1 Dec. 17 , 2020 
34 

least one embodiment , execution state is maintained for each 
individual thread and threads executing same instructions 
may be converged and executed in parallel for better effi 
ciency . At least one embodiment of SM 3314 is described in 
more detail below . 
[ 0271 ] In at least one embodiment , MMU 3318 provides 
an interface between GPC 3300 and memory partition unit 
( e.g. , partition unit 3222 of FIG . 32 ) and MMU 3318 
provides translation of virtual addresses into physical 
addresses , memory protection , and arbitration of memory 
requests . In at least one embodiment , MMU 3318 provides 
one or more translation lookaside buffers ( “ TLBs ” ) for 
performing translation of virtual addresses into physical 
addresses in memory 
[ 0272 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , deep 
learning application processor is used to train a machine 
learning model , such as a neural network , to predict or infer 
information provided to GPC 3300. In at least one embodi 
ment , GPC 3300 is used to infer or predict information based 
on a trained machine learning model ( e.g. , neural network ) 
that has been trained by another processor or system or by 
GPC 3300. In at least one embodiment , GPC 3300 may be 
used to perform one or more neural network use cases 
described herein . 
[ 0273 ] FIG . 34 illustrates a memory partition unit 3400 of 
a parallel processing unit ( “ PPU ” ) , in accordance with at 
least one embodiment . In at least one embodiment , memory 
partition unit 3400 includes , without limitation , a Raster 
Operations ( “ ROP ” ) unit 3402 ; a level two ( “ L2 ” ) cache 
3404 ; a memory interface 3406 ; and any suitable combina 
tion thereof . Memory interface 3406 is coupled to memory . 
Memory interface 3406 may implement 32 , 64 , 128 , 1024 
bit data buses , or like , for high - speed data transfer . In at least 
one embodiment , PPU incorporates U memory interfaces 
3406 , one memory interface 3406 per pair of partition units 
3400 , where each pair of partition units 3400 is connected to 
a corresponding memory device . For example , in at least one 
embodiment , PPU may be connected to up to Y memory 
devices , such as high bandwidth memory stacks or graphics 
double - data - rate , version 5 , synchronous dynamic random 
access memory ( “ GDDR5 SDRAM ” ) . 
[ 0274 ] In at least one embodiment , memory interface 3406 
implements a high bandwidth memory second generation 
( “ HBM2 ” ) memory interface and Y equals half U. In at least 
one embodiment , HBM2 memory stacks are located on 
same physical package as PPU , providing substantial power 
and area savings compared with GDDR5 SDRAM systems . 
In at least one embodiment , each HBM2 stack includes , 
without limitation , four memory dies and Y equals 4 , with 
each HBM2 stack including two 128 - bit channels per die for 
a total of 8 channels and a data bus width of 1024 bits . In at 
least one embodiment , memory supports Single - Error Cor 
recting Double - Error Detecting ( “ SECDED " ) Error Correc 
tion Code ( “ ECC ” ) to protect data . ECC provides higher 
reliability for compute applications that are sensitive to data 
corruption . 
[ 0275 ] In at least one embodiment , PPU implements a 
multi - level memory hierarchy . In at least one embodiment , 
memory partition unit 3400 supports a unified memory to 
provide a single unified virtual address space for central 

processing unit ( " CPU ' ) and PPU memory , enabling data 
sharing between virtual memory systems . In at least one 
embodiment frequency of accesses by a PPU to memory 
located on other processors is traced to ensure that memory 
pages are moved to physical memory of PPU that is access 
ing pages more frequently . In at least one embodiment , 
high - speed GPU interconnect 3208 supports address trans 
lation services allowing PPU to directly access a CPU's 
page tables and providing full access to CPU memory by 
PPU . 
[ 0276 ] In at least one embodiment , copy engines transfer 
data between multiple PPUs or between PPUs and CPUs . In 
at least one embodiment , copy engines can generate page 
faults for addresses that are not mapped into page tables and 
memory partition unit 3400 then services page faults , map 
ping addresses into page table , after which copy engine 
performs transfer . In at least one embodiment , memory is 
pinned ( or non - pageable ) for multiple copy engine opera 
tions between multiple processors , substantially reducing 
available memory . In at least one embodiment , with hard 
ware page faulting , addresses can be passed to copy engines 
without regard as to whether memory pages are resident , and 
copy process is transparent . 
[ 0277 ] Data from memory 3204 of FIG . 32 or other system 
memory is fetched by memory partition unit 3400 and stored 
in L2 cache 3404 , which is located on - chip and is shared 
between various GPCs , in accordance with at least one 
embodiment . Each memory partition unit 3400 , in at least 
one embodiment , includes , without limitation , at least a 
portion of L2 cache associated with a corresponding 
memory device . In at least one embodiment , lower level 
caches are implemented in various units within GPCs . In at 
least one embodiment , each of SMs 3314 may implement a 
level one ( “ L1 ” ) cache wherein L1 cache is private memory 
that is dedicated to a particular SM 3314 and data from L2 
cache 3404 is fetched and stored in each of L1 caches for 
processing in functional units of SMs 3314. In at least one 
embodiment , L2 cache 3404 is coupled to memory interface 
3406 and XBar 3220 . 
[ 0278 ] ROP unit 3402 performs graphics raster operations 
related to pixel color , such as color compression , pixel 
blending , and more , in at least one embodiment . ROP unit 
3402 , in at least one embodiment , implements depth testing 
in conjunction with raster engine 3308 , receiving a depth for 
a sample location associated with a pixel fragment from 
culling engine of raster engine 3308. In at least one embodi 
ment , depth is tested against a corresponding depth in a 
depth buffer for a sample location associated with fragment . 
In at least one embodiment , if fragment passes depth test for 
sample location , then ROP unit 3402 updates depth buffer 
and transmits a result of depth test to raster engine 3308. It 
will be appreciated that number of partition units 3400 may 
be different than number of GPCs and , therefore , each ROP 
unit 3402 can , in at least one embodiment , be coupled to 
each of GPCs . In at least one embodiment , ROP unit 3402 
tracks packets received from different GPCs and determines 
which that a result generated by ROP unit 3402 is routed to 
through XBar 3220 . 
[ 0279 ] FIG . 35 illustrates a streaming multi - processor 
( “ SM ” ) 3500 , in at least one embodiment . In at least one 
embodiment , SM 3500 is SM of FIG . 33. In at least one 
embodiment , SM 3500 includes , without limitation , an 
instruction cache 3502 ; one or more scheduler units 3504 ; a 
register file 3508 ; one or more processing cores ( " cores ” ) 
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3510 ; one or more special function units ( “ SFUs ” ) 3512 ; one 
or more load / store units ( “ LSUs ” ) 3514 ; an interconnect 
network 3516 ; a shared memory / level one ( “ L1 ” ) cache 
3518 ; and any suitable combination thereof . In at least one 
embodiment , a work distribution unit dispatches tasks for 
execution on general processing clusters ( “ GPCs ” ) of par 
allel processing units ( “ PPUs ” ) and each task is allocated to 
a particular Data Processing Cluster ( “ DPC ” ) within a GPC 
and , if task is associated with a shader program , task is 
allocated to one of SMs 3500. In at least one embodiment , 
scheduler unit 3504 receives tasks from work distribution 
unit and manages instruction scheduling for one or more 
thread blocks assigned to SM 3500. In at least one embodi 
ment , scheduler unit 3504 schedules thread blocks for 
execution as warps of parallel threads , wherein each thread 
block is allocated at least one warp . In at least one embodi 
ment , each warp executes threads . In at least one embodi 
ment , scheduler unit 3504 manages a plurality of different 
thread blocks , allocating warps to different thread blocks and 
then dispatching instructions from plurality of different 
cooperative groups to various functional units ( e.g. , process 
ing cores 3510 , SFUs 3512 , and LSUs 3514 ) during each 
clock cycle . 
[ 0280 ] In at least one embodiment , Cooperative Groups 
may refer to a programming model for organizing groups of 
communicating threads that allows developers to express 
granularity at which threads are communicating , enabling 
expression of richer , more efficient parallel decompositions . 
In at least one embodiment , cooperative launch APIs support 
synchronization amongst thread blocks for execution of 
parallel algorithms . In at least one embodiment , applications 
of programming models provide a single , simple construct 
for synchronizing cooperating threads : a barrier across all 
threads of a thread block ( e.g. , a syncthreads ( ) function ) . 
However , In at least one embodiment , programmers may 
define groups of threads at smaller than thread block granu 
larities and synchronize within defined groups to enable greater performance , design flexibility , and software reuse in 
form of collective group - wide function interfaces . In at least 
one embodiment , Cooperative Groups enables programmers 
to define groups of threads explicitly at sub - block and 
multi - block granularities , and to perform collective opera 
tions such as synchronization on threads in a cooperative 
group . A programming model supports clean composition 
across software boundaries , so that libraries and utility 
functions can synchronize safely within their local context 
without having to make assumptions about convergence . In 
at least one embodiment , Cooperative Groups primitives 
enable new patterns of cooperative parallelism , including , 
without limitation , producer - consumer parallelism , oppor 
tunistic parallelism , and global synchronization across an 
entire grid of thread blocks . 
[ 0281 ] In at least one embodiment , a dispatch unit 3506 is 
configured to transmit instructions to one or more of func 
tional units and scheduler unit 3504 includes , without limi 
tation , two dispatch units 3506 that enable two different 
instructions from same warp to be dispatched during each 
clock cycle . In at least one embodiment , each scheduler unit 
3504 includes a single dispatch unit 3506 or additional 
dispatch units 3506 . 
[ 0282 ] In at least one embodiment , each SM 3500 , in at 
least one embodiment , includes , without limitation , register 
file 3508 that provides a set of registers for functional units 
of SM 3500. In at least one embodiment , register file 3508 

is divided between each of functional units such that each 
functional unit is allocated a dedicated portion of register file 
3508. In at least one embodiment , register file 3508 is 
divided between different warps being executed by SM 3500 
and register file 3508 provides temporary storage for oper 
ands connected to data paths of functional units . In at least 
one embodiment , each SM 3500 comprises , without limita 
tion , a plurality of L processing cores 3510. In at least one 
embodiment , SM 3500 includes , without limitation , a large 
number ( e.g. , 128 or more ) of distinct processing cores 
3510. In at least one embodiment , each processing core 
3510 , in at least one embodiment , includes , without limita 
tion , a fully - pipelined , single - precision , double - precision , 
and / or mixed precision processing unit that includes , with 
out limitation , a floating point arithmetic logic unit and an 
integer arithmetic logic unit . In at least one embodiment , 
floating point arithmetic logic units implement IEEE 754 
2008 standard for floating point arithmetic . In at least one 
embodiment , processing cores 3510 include , without limi 
tation , 64 single - precision ( 32 - bit ) floating point cores , 64 
integer cores , 32 double - precision ( 64 - bit ) floating point 
cores , and 8 tensor cores . 
[ 0283 ] Tensor cores are configured to perform matrix 
operations in accordance with at least one embodiment . In at 
least one embodiment , one or more tensor cores are included 
in processing cores 3510. In at least one embodiment , tensor 
cores are configured to perform deep learning matrix arith 
metic , such as convolution operations for neural network 
training and inferencing . In at least one embodiment , each 
tensor core operates on a 4x4 matrix and performs a matrix 
multiply and accumulate operation D = AxB + C , where A , B , 
C , and D are 4x4 matrices . 
[ 0284 ] In at least one embodiment , matrix multiply inputs 
A and B are 16 - bit floating point matrices and accumulation 
matrices C and D are 16 - bit floating point or 32 - bit floating 
point matrices . In at least one embodiment , tensor cores 
operate on 16 - bit floating point input data with 32 - bit 
floating point accumulation . In at least one embodiment , 
16 - bit floating point multiply uses 64 operations and results 
in a full precision product that is then accumulated using 
32 - bit floating point addition with other intermediate prod 
ucts for a 4x4x4 matrix multiply . Tensor cores are used to 
perform much larger two - dimensional or higher dimensional 
matrix operations , built up from these smaller elements , in 
at least one embodiment . In at least one embodiment , an 
API , such as CUDA 9 C ++ API , exposes specialized matrix 
load , matrix multiply and accumulate , and matrix store 
operations to efficiently use tensor cores from a CUDA - C ++ 
program . In at least one embodiment , at CUDA level , 
warp - level interface assumes 16x16 size matrices spanning 
all 32 threads of warp . 
[ 0285 ] In at least one embodiment , each SM 3500 com 
prises , without limitation , M SFUs 3512 that perform special 
functions ( e.g. , attribute evaluation , reciprocal square root , 
and like ) . In at least one embodiment , SFUS 3512 include , 
without limitation , a tree traversal unit configured to traverse 
a hierarchical tree data structure . In at least one embodiment , 
SFUs 3512 include , without limitation , a texture unit con 
figured to perform texture map filtering operations . In at 
least one embodiment , texture units are configured to load 
texture maps ( e.g. , a 2D array of texels ) from memory and 
sample texture maps to produce sampled texture values for 
use in shader programs executed by SM 3500. In at least one 
embodiment , texture maps are stored in shared memory / L1 
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cache 3518. In at least one embodiment , texture units implement texture operations such as filtering operations 
using mip - maps ( e.g. , texture maps of varying levels of 
detail ) , in accordance with at least one embodiment . In at 
least one embodiment , each SM 3500 includes , without 
limitation , two texture units . 
[ 0286 ] Each SM 3500 comprises , without limitation , N 
LSUs 3514 that implement load and store operations 
between shared memory / L1 cache 3518 and register file 
3508 , in at least one embodiment . Each SM 3500 includes , 
without limitation , interconnect network 3516 that connects 
each of functional units to register file 3508 and LSU 3514 
to register file 3508 and shared memory / L1 cache 3518 in at 
least one embodiment . In at least one embodiment , inter 
connect network 3516 is a crossbar that can be configured to 
connect any of functional units to any of registers in register 
file 3508 and connect LSUs 3514 to register file 3508 and 
memory locations in shared memory / L1 cache 3518 . 
[ 0287 ] In at least one embodiment , shared memory / L1 
cache 3518 is an array of on - chip memory that allows for 
data storage and communication between SM 3500 and 
primitive engine and between threads in SM 3500 , in at least 
one embodiment . In at least one embodiment , shared 
memory / L1 cache 3518 comprises , without limitation , 128 
KB of storage capacity and is in path from SM 3500 to 
partition unit . In at least one embodiment , shared memory / 
L1 cache 3518 , in at least one embodiment , is used to cache 
reads and writes . In at least one embodiment , one or more of 
shared memory / L1 cache 3518 , L2 cache , and memory are 
backing stores . 
[ 0288 ] Combining data cache and shared memory func 
tionality into a single memory block provides improved 
performance for both types of memory accesses , in at least 
one embodiment . In at least one embodiment , capacity is 
used or is usable as a cache by programs that do not use 
shared memory , such as if shared memory is configured to 
use half of capacity , texture and load / store operations can 
use remaining capacity . Integration within shared memory 
Ll cache 3518 enables shared memory / L1 cache 3518 to 
function as a high - throughput conduit for streaming data 
while simultaneously providing high - bandwidth and low 
latency access to frequently reused data , in accordance with 
at least one embodiment . In at least one embodiment , when 
configured for general purpose parallel computation , a sim 
pler configuration can be used compared with graphics 
processing . In at least one embodiment , fixed function 
graphics processing units are bypassed , creating a much 
simpler programming model . In general purpose parallel 
computation configuration , work distribution unit assigns 
and distributes blocks of threads directly to DPCs , in at least 
one embodiment . In at least one embodiment , threads in a 
block execute same program , using a unique thread ID in 
calculation to ensure each thread generates unique results , 
using SM 3500 to execute program and perform calcula 
tions , shared memory / L1 cache 3518 to communicate 
between threads , and LSU 3514 to read and write global 
memory through shared memory / L1 cache 3518 and 
memory partition unit . In at least one embodiment , when 
configured for general purpose parallel computation , SM 
3500 writes commands that scheduler unit 3504 can use to 
launch new work on DPCs . 
[ 0289 ] In at least one embodiment , PPU is included in or 
coupled to a desktop computer , a laptop computer , a tablet 
computer , servers , supercomputers , a smart - phone ( e.g. , a 

wireless , hand - held device ) , personal digital assistant 
( “ PDA ” ) , a digital camera , a vehicle , a head mounted 
display , a hand - held electronic device , and more . In at least 
one embodiment , PPU is embodied on a single semicon 
ductor substrate . In at least one embodiment , PPU is 
included in a system - on - a - chip ( “ SOC ” ) along with one or 
more other devices such as additional PPUs , memory , a 
reduced instruction set computer ( “ RISC ” ) CPU , a memory 
management unit ( “ MMU ” ) , a digital - to - analog converter 
( “ DAC ” ) , and like . 
[ 0290 ] In at least one embodiment , PPU may be included 
on a graphics card that includes one or more memory 
devices . A graphics card may be configured to interface with 
a PCIe slot on a motherboard of a desktop computer . In at 
least one embodiment , PPU may be an integrated graphics 
processing unit ( “ iGPU ” ) included in chipset of mother 
board . 
[ 0291 ] Inference and / or training logic 1015 are used to 
perform inferencing and / or training operations associated 
with one or more embodiments . Details regarding inference 
and / or training logic 1015 are provided below in conjunction 
with FIGS . 10 and / or 11. In at least one embodiment , deep 
learning application processor is used to train a machine 
learning model , such as a neural network , to predict or infer 
information provided to SM 3500. In at least one embodi 
ment , SM 3500 is used to infer or predict information based 
on a trained machine learning model ( e.g. , neural network ) 
that has been trained by another processor or system or by 
SM 3500. In at least one embodiment , SM 3500 may be used 
to perform one or more neural network use cases described 
herein . 
[ 0292 ] In at least one embodiment , a single semiconductor 
platform may refer to a sole unitary semiconductor - based 
integrated circuit or chip . In at least one embodiment , 
multi - chip modules may be used with increased connectivity 
which simulate on - chip operation , and make substantial 
improvements over utilizing a central processing unit 
( " CPU ” ) and bus implementation . In at least one embodi 
ment , various modules may also be situated separately or in 
various combinations of semiconductor platforms per 
desires of user . 
[ 0293 ] Other variations are within spirit of present disclo 
sure . Thus , while disclosed techniques are susceptible to 
various modifications and alternative constructions , certain 
illustrated embodiments thereof are shown in drawings and 
have been described above in detail . It should be understood , 
however , that there is no intention to limit disclosure to 
specific form or forms disclosed , but on contrary , intention 
is to cover all modifications , alternative constructions , and 
equivalents falling within spirit and scope of disclosure , as 
defined in appended claims . 
[ 0294 ] Use of terms “ a ” and “ an ” and “ the ” and similar 
referents in context of describing disclosed embodiments 
( especially in context of following claims ) are to be con 
strued to cover both singular and plural , unless otherwise 
indicated herein or clearly contradicted by context . Terms 
" comprising , " " having , " " including , " and " containing " are 
to be construed as open - ended terms ( meaning “ including , 
but not limited to , ” ) unless otherwise noted . term " con 
nected , ” when unmodified and referring to physical connec 
tions , is to be construed as partly or wholly contained within , 
attached to , or joined together , even if there is something 
intervening . Recitation of ranges of values herein are merely 
intended to serve as a shorthand method of referring indi 
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vidually to each separate value falling within range , unless 
otherwise indicated herein and each separate value is incor 
porated into specification as if it were individually recited 
herein . use of term “ set ” ( e.g. , " a set of items ” ) or " subset ” 
unless otherwise noted or contradicted by context , is to be 
construed as a nonempty collection comprising one or more 
members . Further , unless otherwise noted or contradicted by 
context , term " subset ” of a corresponding set does not 
necessarily denote a proper subset of corresponding set , but 
subset and corresponding set may be equal . 
[ 0295 ] Conjunctive language , such as phrases of form “ at 
least one of A , B , and C , " or at least one of A , B and C , " 
unless specifically stated otherwise or otherwise clearly 
contradicted by context , is otherwise understood with con 
text as used in general to present that an item , term , etc. , may 
be either A or B or C , or any nonempty subset of set of A and 
B and C. For instance , in illustrative example of a set having 
three members , conjunctive phrases " at least one of A , B , 
and C ” and “ at least one of A , B and C ” refer to any of 
following sets : { A } , { B } , { C } , { A , B } , { A , C } , { B , C } , { A , 
B , C } . Thus , such conjunctive language is not intended to 
imply that certain embodiments require at least one of A , at 
least one of B and at least one of C each to be present . In 
addition , unless otherwise noted or contradicted by context , 
term “ plurality ” indicates a state of being plural ( e.g. , “ a 
plurality of items ” indicates multiple items ) . A number of 
items in a plurality is at least two , but can be more when so 
indicated either explicitly or by context . Further , unless 
stated otherwise or otherwise clear from context , phrase 
" based on ” means “ based at least in part on ” and not “ based 
solely on . ” 
[ 0296 ] Operations of processes described herein can be 
performed in any suitable order unless otherwise indicated 
herein or otherwise clearly contradicted by context . In at 
least one embodiment , a process such as those processes 
described herein ( or variations and / or combinations thereof ) 
is performed under control of one or more computer systems 
configured with executable instructions and is implemented 
as code ( e.g. , executable instructions , one or more computer 
programs or one or more applications ) executing collec 
tively on one or more processors , by hardware or combina 
tions thereof . In at least one embodiment , code is stored on 
a computer - readable storage medium , for example , in form 
of a computer program comprising a plurality of instructions 
executable by one or more processors . In at least one 
embodiment , a computer - readable storage medium is a 
non - transitory computer - readable storage medium that 
excludes transitory signals ( e.g. , a propagating transient 
electric or electromagnetic transmission ) but includes non 
transitory data storage circuitry ( e.g. , buffers , cache , and 
queues ) within transceivers of transitory signals . In at least 
one embodiment , code ( e.g. , executable code or source 
code ) is stored on a set of one or more non - transitory 
computer - readable storage media having stored thereon 
executable instructions ( or other memory to store executable 
instructions ) that , when executed by one or more processors 
of a computer system , cause computer system to perform 
operations described herein . A set of non - transitory com 
puter - readable storage media , in at least one embodiment , 
comprises multiple non - transitory computer - readable stor 
age media and one or more of individual non - transitory 
storage media of multiple non - transitory computer - readable 
storage media lack all of code while multiple non - transitory 
computer - readable storage media collectively store all of 

code . In at least one embodiment , executable instructions are 
executed such that different instructions are executed by 
different processors . For example , a non - transitory com 
puter - readable storage medium store instructions and a main 
central processing unit ( “ CPU ” ) executes some of instruc 
tions while a graphics processing unit ( “ GPU ” ) executes 
other instructions . In at least one embodiment , different 
components of a computer system have separate processors 
and different processors execute different subsets of instruc 
tions . 
[ 0297 ] Accordingly , in at least one embodiment , computer 
systems are configured to implement one or more services 
that singly or collectively perform operations of processes 
described herein and such computer systems are configured 
with applicable hardware and / or software that enable per 
formance of operations . Further , a computer system that 
implements at least one embodiment of present disclosure is 
a single device and , in another embodiment , is a distributed 
computer system comprising multiple devices that operate 
differently such that distributed computer system performs 
operations described herein and such that a single device 
does not perform all operations . 
[ 0298 ] Use of any and all examples , or exemplary lan 
guage ( e.g. , " such as ” ) provided herein , is intended merely 
to better illuminate embodiments of disclosure and does not 
pose a limitation on scope of disclosure unless otherwise 
claimed . No language in specification should be construed 
as indicating any non - claimed element as essential to prac 
tice of disclosure . 
[ 0299 ] All references , including publications , patent appli 
cations , and patents , cited herein are hereby incorporated by 
reference to same extent as if each reference were individu 
ally and specifically indicated to be incorporated by refer 
ence and were set forth in its entirety herein . 
[ 0300 ] In description and claims , terms " coupled ” and 
" connected , ” along with their derivatives , may be used . It 
should be understood that these terms may be not intended 
as synonyms for each other . Rather , in particular examples , 
" connected ” or “ coupled ” may be used to indicate that two 
or more elements are in direct or indirect physical or 
electrical contact with each other . “ Coupled ” may also mean 
that two or more elements are not in direct contact with each 
other , but yet still co - operate or interact with each other . 
[ 0301 ] Unless specifically stated otherwise , it may be 
appreciated that throughout specification terms such as 
“ processing , " " computing , ” “ calculating , ” “ determining , " or 
like , refer to action and / or processes of a computer or 
computing system , or similar electronic computing device , 
that manipulate and / or transform data represented as physi 
cal , such as electronic , quantities within computing system's 
registers and / or memories into other data similarly repre 
sented as physical quantities within computing system's 
memories , registers or other such information storage , trans 
mission or display devices . 
[ 0302 ] In a similar manner , term “ processor ” may refer to 
any device or portion of a device that processes electronic 
data from registers and / or memory and transform that elec 
tronic data into other electronic data that may be stored in 
registers and / or memory . As non - limiting examples , “ pro 
cessor ” may be a CPU or a GPU . A " computing platform ” 
may comprise one or more processors . As used herein , 
" software ” processes may include , for example , software 
and / or hardware entities that perform work over time , such 
as tasks , threads , and intelligent agents . Also , each process 
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5. The processor of claim 1 , wherein the one or more 
ALUs are further to be configured to : 

detect the one or more objects using a neural network that 
is trained in part by selecting the one or more pseudo 
labels corresponding to the one or more objects having 
refined ROI scores that exceed an object threshold . 

6. A system comprising : 
one or more processors to be configured to detect , using 

one or more neural networks , one or more objects in an 
image based , at least in part , on one or more pseudo 
labels corresponding to the one or more objects ; and 

one or more memories to store the one or more neural 
networks . 

7. The system of claim 6 , wherein the one or more 
processors are further to be configured to : 

detect the one or more objects using a neural network that 
is trained in part by generating a region of interest 
( ROI ) score for each of a set of object proposals , the 
one or more pseudo - labels determined using the ROI 
scores . 

may refer to multiple processes , for carrying out instructions 
in sequence or in parallel , continuously or intermittently . 
Terms “ system ” and “ method ” are used herein interchange 
ably insofar as system may embody one or more methods 
and methods may be considered a system . 
[ 0303 ] In present document , references may be made to 
obtaining , acquiring , receiving , or inputting analog or digital 
data into a subsystem , computer system , or computer - imple 
mented machine . A process of obtaining , acquiring , receiv 
ing , or inputting analog and digital data can be accomplished 
in a variety of ways such as by receiving data as a parameter 
of a function call or a call to an application programming 
interface . In some implementations , process of obtaining , 
acquiring , receiving , or inputting analog or digital data can 
be accomplished by transferring data via a serial or parallel 
interface . In another implementation , process of obtaining , 
acquiring , receiving , or inputting analog or digital data can 
be accomplished by transferring data via a computer net 
work from providing entity to acquiring entity . References 
may also be made to providing , outputting , transmitting , 
sending , or presenting analog or digital data . In various 
examples , process of providing , outputting , transmitting , 
sending , or presenting analog or digital data can be accom 
plished by transferring data as an input or output parameter 
of a function call , a parameter of an application program 
ming interface or inter - process communication mechanism . 
[ 0304 ] Although discussion above sets forth example 
implementations of described techniques , other architec 
tures may be used to implement described functionality , and 
are intended to be within scope of this disclosure . Further 
more , although specific distributions of responsibilities are 
defined above for purposes of discussion , various functions 
and responsibilities might be distributed and divided in 
different ways , depending on circumstances . 
[ 0305 ] Furthermore , although subject matter has been 
described in language specific to structural features and / or 
methodological acts , it is to be understood that subject 
matter claimed in appended claims is not necessarily limited 
to specific features or acts described . Rather , specific fea 
tures and acts are disclosed as exemplary forms of imple 
menting claims . 

What is claimed is : 
1. A processor , comprising : 
one or more arithmetic logic units ( ALUS ) to help detect 

one or more objects in an image based , at least in part , 
on one or more pseudo - labels corresponding to the one 
or more objects . 

2. The processor of claim 1 , wherein the one or more 
ALUs are further to be configured to : 

detect the one or more objects using a neural network that 
is trained in part by generating a region of interest 
( ROI ) score for each of a set of object proposals , the 
one or more pseudo - labels determined using the ROI 

8. The system of claim 7 , wherein the one or more 
processors are further to be configured to : 

detect the one or more objects using a neural network that 
is trained in part by providing the ROI score to at least 
one refinement branch capable of producing a refined 
ROI score for the one or more pseudo - labels . 

9. The system of claim 8 , wherein the at least one 
refinement branch performs at least one of ROI quantization 
and selection , or removal of pseudo - labels for redundant 
proposals . 

10. The system of claim 6 , wherein the one or more 
processors are further to be configured to : 

detect the one or more objects using a neural network that 
is trained in part by selecting the one or more pseudo 
labels corresponding to the one or more objects having 
refined ROI scores that exceed an object threshold . 

11. A processor comprising : 
one or more arithmetic logic units ( ALUs ) to help train 

one or more neural networks to be used to detect one or 
more objects in an image based , at least in part , on one 
or more pseudo - labels corresponding to the one or 
more objects . 

12. The processor of claim 11 , wherein the one or more 
ALUs are further to be configured to : 

generate a region of interest ( ROI ) score for each of a set 
of object proposals , the one or more pseudo - labels 
determined using the ROI scores . 

13. The processor of claim 12 , wherein the one or more 
ALUs are further to be configured to : 

provide the ROI score to at least one refinement branch 
capable of producing a refined ROI score for the one or 
more pseudo - labels . 

14. The processor of claim 13 , wherein the at least one 
refinement branch performs at least one of ROI quantization 
and selection , or removal of pseudo - labels for redundant 
proposals . 

15. The processor of claim 11 , wherein the one or more 
ALUs are further to be configured to : 

select the one or more pseudo - labels corresponding to the 
one or more objects having refined ROI scores that 
exceed an object threshold . 

16. A system comprising : 
one or more processors to help train one or more neural 

networks to be used to detect one or more objects in an 

scores . 

3. The processor of claim 2 , wherein the one or more 
ALUs are further to be configured to : 

detect the one or more objects using a neural network that 
is trained in part by providing the ROI score to at least 
one refinement branch capable of producing a refined 
ROI score for the one or more pseudo - labels . 

4. The processor of claim 3 , wherein the at least one 
refinement branch performs at least one of ROI quantization 
and selection , or removal of pseudo - labels for redundant 
proposals . 
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25. The method of claim 21 , further comprising : 
selecting the one or more pseudo - labels corresponding to 

the one or more objects having refined ROI scores that 
exceed an object threshold . 

26. A system , comprising : 
a camera configured to capture an image ; 
one or more processors to be configured to detect , using 

one or more neural networks , one or more objects in the 
image based , at least in part , on one or more pseudo 
labels corresponding to the one or more objects ; and 

a storage device to store information regarding the 
detected objects . 

27. The system of claim 26 , wherein the one or more 
processors are further to be configured to : 

detect the one or more objects using a neural network that 
is trained in part by generating a region of interest 
( ROI ) score for each of a set of object proposals , the 
one or more pseudo - labels determined using the ROI 

image based , at least in part , on one or more pseudo 
labels corresponding to the one or more objects . 

17. The system of claim 16 , wherein the one or more 
processors are further to be configured to : 

generate a region of interest ( ROI ) score for each of a set 
of object proposals , the one or more pseudo - labels 
determined using the ROI scores . 

18. The system of claim 17 , wherein the one or more 
processors are further to be configured to : 

provide the ROI score to at least one refinement branch 
capable of producing a refined ROI score for the one or 
more pseudo - labels . 

19. The system of claim 18 , wherein the at least one 
refinement branch performs at least one of ROI quantization 
and selection , or removal of pseudo - labels for redundant 
proposals . 

20. The system of claim 17 , wherein the one or more 
processors are further to be configured to : 

select the one or more pseudo - labels corresponding to the 
one or more objects having refined ROI scores that 
exceed an object threshold . 

21. A method comprising : 
training one or more neural networks to detect one or 
more objects in an image based , at least in part , on one 
or more pseudo - labels corresponding to the one or 
more objects . 

22. The method of claim 21 , further comprising : 
generating a region of interest ( ROI ) score for each of a 

set of object proposals , the one or more pseudo - labels 
determined using the ROI scores . 

23. The method of claim 22 , further comprising : 
providing the ROI score to at least one refinement branch 

capable of producing a refined ROI score for the one or 
more pseudo - labels . 

24. The method of claim 23 , wherein the at least one 
refinement branch performs at least one of ROI quantization 
and selection , or removal of pseudo - labels for redundant 
proposals . 

scores . 

28. The system of claim 27 , wherein the one or more 
processors are further to be configured to : 

detect the one or more objects using a neural network that 
is trained in part by providing the ROI score to at least 
one refinement branch capable of producing a refined 
ROI score for the one or more pseudo - labels . 

29. The system of claim 28 , wherein the at least one 
refinement branch performs at least one of ROI quantization 
and selection , or removal of pseudo - labels for redundant 
proposals . 

30. The system of claim 26 , wherein the one or more 
processors are further to be configured to : 

detect the one or more objects using a neural network that 
is trained in part by selecting the one or more pseudo 
labels corresponding to the one or more objects having 
refined ROI scores that exceed an object threshold . 


