
US 20200394458A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0394458 A1

Yu et al . (43) Pub . Date : Dec. 17 , 2020

Publication Classification (54) WEAKLY - SUPERVISED OBJECT
DETECTION USING ONE OR MORE
NEURAL NETWORKS

(71) Applicant : Nvidia Corporation , Santa Clara , CA
(US)

(51) Int . Ci .
G06K 9/62 (2006.01)
GO6N 3/08 (2006.01)
GO6N 3/04 (2006.01)

(52) U.S. CI .
CPC G06K 9/6256 (2013.01) ; G06K 9/6262

(2013.01) ; G06N 3/0454 (2013.01) ; G06N
3/08 (2013.01) ; G06K 9/623 (2013.01)

(72) Inventors : Zhiding Yu , Santa Clara , CA (US) ;
Jason Ren , Davis , CA (US) ; Xiaodong
Yang , Fremont , CA (US) ; Ming - Yu
Liu , San Jose , CA (US) ; Jan Kautz ,
Lexington , MA (US) (57) ABSTRACT

(21) Appl . No .: 16 / 443,346
Apparatuses , systems , and techniques to detect object in
images including digital representations of those objects . In
at least one embodiment , one or more objects are detected in
an image based , at least in part , on one or more pseudo
labels corresponding to said one or more objects . (22) Filed : Jun . 17 , 2019

400

402

404

Patent Application Publication Dec. 17 , 2020 Sheet 1 of 38 US 2020/0394458 A1

100

102

to RI
FIG . 1A

142 140

FIG . 1B

180

182

FIG . 1C

Patent Application Publication Dec. 17 , 2020 Sheet 2 of 38 US 2020/0394458 A1

200

sum over
ROIS 202 204 FCcis

element - wise
multiply

ROI
Scores

image
Scores FCdet

Base Neck Image Branch 206

FCref ROI
Scores

Refinement Branch 208

FCref ROI
Scores

Refinement Branch 210

FCret ROI
Scores

Refinement Branch 212

FIG . 2

Patent Application Publication Dec. 17 , 2020 Sheet 3 of 38 US 2020/0394458 A1

302
306 300

Image Base

Neck Head Proposals
304

FIG . 3A
320

S GM

Image Base ROI - P Neck Head

Ab

FIG . 3B

Sub - batch 1 GA 340 Gni
******** S Neck

Ab1
1 .

Sub - batch 2 Gha Gna

Neck

Apz

FIG . 3C 360

G)

Image Base ROP
FIG . 3D

Patent Application Publication Dec. 17 , 2020 Sheet 4 of 38 US 2020/0394458 A1

400

402

404

FIG . 4A

450

452

.

UYE : 454

IVT

FIG . 4B

Patent Application Publication Dec. 17 , 2020 Sheet 5 of 38 US 2020/0394458 A1

500

Part Domination

Grouped Instance
FIG . 5

V

Missing Instance

Patent Application Publication Dec. 17 , 2020 Sheet 6 of 38 US 2020/0394458 A1

600

602
Obtain image with image - level labeling

604
Determine initial object proposal regions and classifications

606 Determine pseudo - labels for proposal regions using one or
more refinement branches

608
Combine ROI scores from initial proposals and refinement

pseudo - labels to generate a set of
final ROI scores

610 t
Determine a loss function using set of final

ROI scores

612
Update network parameters for neural network

FIG . 6A

650

652

Obtain an image frame for inferencing

654

Provide image frame as input to a trained neural network

656
he

Infer class (es) and location (s) of object (s) represented
in image

FIG . 6B

Patent Application Publication Dec. 17 , 2020 Sheet 7 of 38 US 2020/0394458 A1

700

ST 724 Client Device

Display
726 -702

ML Application
U

772

Processor
728

Memory
-770

724

3P Content
Provider

Network
704

708
Interface

Training and
Inference Mgr .

710

Training
Manager

712

Inference
Module

718 Model
716

Valid .
Data

1 User
Context Training

Data
714 720 722

Provider Environment 706

FIG . 7

Patent Application Publication Dec. 17 , 2020 Sheet 8 of 38 US 2020/0394458 A1

800

Training Data 802

806

Initial
Model 804

Training
Manager

808

Trained
Model

880

Evaluator

Training Mode
Validation Data Inference Mode

808 Classifier Trained
Model 882

884

886

Inferences

FIG . 8

Patent Application Publication Dec. 17 , 2020 Sheet 9 of 38 US 2020/0394458 A1

900

Input Layer 902 Output Layer 906

?

oo OO Loss
Function
908

O
Inference
Scores Validation

Intermediate Layers 904
(weights of network)

FIG . 9

Patent Application Publication Dec. 17 , 2020 Sheet 10 of 38 US 2020/0394458 A1

HARDWARE STRUCTURE (s) 1015

1
1

DATA STORAGE
1001

DATA STORAGE
1005

1

7
ACTIVATION
STORAGE

1020

ARITHMETIC LOGIC
UNIT (s)
1010

FIG . 10

Patent Application Publication Dec. 17 , 2020 Sheet 11 of 38 US 2020/0394458 A1

HARDWARE STRUCTURE (s) 1015

DATA STORAGE
1001

DATA STORAGE
1005

COMPUTATIONAL
HARDWARE

1002

COMPUTATIONAL
HARDWARE

1006

ACTIVATION STORAGE
1020

FIG . 11

Patent Application Publication Dec. 17 , 2020 Sheet 12 of 38 US 2020/0394458 A1

Training Data 1202

1204

Untrained
Network

1206 Training
Framework

-1208

Trained
Model

New Data

Classifier
1212

1210

1214

Inferences

FIG . 12

Patent Application Publication Dec. 17 , 2020 Sheet 13 of 38 US 2020/0394458 A1

DATA CENTER
1300

APPLICATION LAYER 1340

APPLICATION (S) 1342

SOFTWARE LAYER 1330

SOFTWARE 1332

FRAMEWORK LAYER 1320

JOB
SCHEDULER 1332

CONFIGURATION
MANAGER 1334

DISTRIBUTED FILE SYSTEM 1338

RESOURCE MANAGER 1336

DATA CENTER INFRASTRUCTURE LAYER 1310

RESOURCE ORCHESTRATOR 1312

GROUPED COMPUTING RESOURCES 1314
1015

OOO NODE C.R.
1316 (1)
1015

NODE C.R.
1316 (2)

NODE C.R.
1316 (N)

1015 1015

FIG . 13

Patent Application Publication Dec. 17 , 2020 Sheet 14 of 38 US 2020/0394458 A1

PROCESSOR 1402 EXECUTION UNIT 1408
1015

CACHE
1404

REGISTER FILE
1406

PACKED INSTRUCTION
SET 1409

PROCESSOR BUS 1410

many

MEMORY 1420 1414 1418

sa INSTRUCTION (S) 1419 GRAPHICS /
VIDEO CARD

1412

MEMORY
CONTROLLER

HUB
1416 DATA 1421

1422 LEGACY I / O
CONTROLLER 1423

DATA
STORAGE

1424 USER INPUT
INTERFACE 1425

1
1 1

1

WIRELESS
TRANSCEIVER

1426

1/0
CONTROLLER

HUB
1430

SERIAL EXPANSION
PORT 1427

FLASH BIOS
1428 1 AUDIO CONTROLLER

1429

NETWORK
CONTROLLER

1434
1400 FIG . 14

LPDDR3 15 15

1500

USB 3.0 CAMERA 1554

DISPLAY 1524

Patent Application Publication

UART OR 1C

GPS 1555

1 C

TOUCH SCREEN 1525

PROCESSOR 1510
USB 2/3

WWAN 3N ! 1556

NGFF

TOUCH PAD 1530

SMBUS
NFC UNIT 1545

1015

SIM 1557

1²C

ACCELEROMETER 1541

12C

PCIE

SENSOR HUB 1540

SDIO

WLAN UNIT 1550

1 ° C

ALS 1542

UART

SMBUS

Dec. 17 , 2020 Sheet 15 of 38

NGFF

THERMAL SENSOR 1539

USB

BLUETOOTH UNIT 1552

1C

COMPASS 1543

SATA

HDA

SSD OR HDD 1520

LPC

SPI

HDA

1 - C

DSP 1560

GYROSCOPE 1544

SPEAKERS 1563

PS2

EC 1535

TPM 1538

AUDIO CODEC AND CLASS D AMP 1562

HEADPHONES 1564

THERMAL SENSOR 1539

BIOS , FW FLASH 1522

SMBUS

US 2020/0394458 A1

PS2

MIC 1565

FAN 1537

KEYBOARD 1536

FIG . 15

Patent Application Publication Dec. 17 , 2020 Sheet 16 of 38 US 2020/0394458 A1

Computer System
1600 Main

Memory
1604

CPU
1602

Network
Interface
1622

Display
Devices
1606

Input
Devices
1608 1015 Communication

Bus 1610

Interconnect
1618

Switch
1620

PPU 1614 PPU 1614
1616 1616

1015 1015

PPU 1614 PPU 1614
1616 1616

1015 1015

Parallel Processing
System
1612

FIG . 16

COMPUTER SYSTEM 1700

Patent Application Publication

USB STICK 1720

PROCESSING UNIT 1730

USB INTERFACE LOGIC 1750

USB INTERFACE 1740

COMPUTER 1710

1015

Dec. 17 , 2020 Sheet 17 of 38

FIG . 17

US 2020/0394458 A1

Patent Application Publication Dec. 17 , 2020 Sheet 18 of 38 US 2020/0394458 A1

SOC INTEGRATED
CIRCUIT

1800

APPLICATION
PROCESSOR (S)

1805

GRAPHICS
PROCESSOR

1810

1015 1015

VIDEO IMAGE
PROCESSOR

1815
PROCESSOR

1820

1015 1015

USB
1825

UART
1830

SPI / SDIO
1835

125 / 1 ° C
1840

DISPLAY
1845

?
| SECURITY I
| ENGINE
1 1870

}

MEMORY
1865

FLASH
1860

MIPI
1855

HDMI
1850

FIG . 18

Patent Application Publication Dec. 17 , 2020 Sheet 19 of 38 US 2020/0394458 A1

GRAPHICS PROCESSOR
1910

VERTEX PROCESSOR
1905
1015

3
FRAGMENT
PROCESSOR
1915A

FRAGMENT
PROCESSOR
1915C

FRAGMENT
PROCESSOR
1915N - 1 }

} 1015 1015 1015

FRAGMENT
PROCESSOR
1915B

FRAGMENT
PROCESSOR
1915D

FRAGMENT
PROCESSOR
1915N }

1015 1015 1015
L

{ MMU
1920A

1
I

MMU
1920B }

CACHE
1925A

re
1
1

CACHE
1925B

} INTERCONNECT
1930A

1
INTERCONNECT

1930B
1 www

FIG . 19A

Patent Application Publication Dec. 17 , 2020 Sheet 20 of 38 US 2020/0394458 A1

GRAPHICS PROCESSOR
1940

INTER - CORE TASK MANAGER
(e.g. , THREAD DISPATCHER)

1945

SHADER
CORE
1955A

SHADER
CORE
1955C

SHADER
CORE
1955E

SHADER
CORE

1955N - 1

1015 1015 1015 1015

SHADER
CORE
1955B

SHADER
CORE
1955D

SHADER
CORE
1955F

SHADER
CORE
1955N

T 1015 | 1015 1015 1015

TILING UNIT
1958

MMU
1920A

MMU
1920B

CACHE
1925A

CACHE
1925B

INTERCONNECT
1930A

INTERCONNECT
1930B

FIG . 19B

Patent Application Publication Dec. 17 , 2020 Sheet 21 of 38 US 2020/0394458 A1

2000

l 2001A 2001N .

INSTRUCTION CACHE -
2004A

INSTRUCTION CACHE -
2004N

THREAD SCHEDULER -
2006A

THREAD SCHEDULER -
2006N

THREAD DISPATCHER -
2008A

THREAD DISPATCHER -
2008N

REGISTER - 2010A REGISTER - 2010N

AFU
2012A

FPU
2014A

ALU
2016A

AFU
2012N

FPU
2014N

ALU
2016N

ACU
2013A

DPFPU
2015A

MPU
2017A

ACU
2013N TEXTURE UNIT 2018

DPEPU
2015N

MPU
2017N

CACHE / SHARED MEMORY - 2020

1015

FIG . 20A

2030

MEMORY CONTROLLER 2042A

MEMORY CONTROLLER 2042B

Patent Application Publication

HOST INTERFACE 2032 GLOBAL SCHEDULER 2034

COMPUTE CLUSTER 2036A

COMPUTE CLUSTER 2036B

COMPUTE CLUSTER 2036C

COMPUTE CLUSTER 2036D

1015

1015

1015

1015

CACHE MEMORY 2038

COMPUTE CLUSTER 2036E

COMPUTE CLUSTER 2036F

COMPUTE CLUSTER 2036G

COMPUTE CLUSTER 2036H

Dec. 17 , 2020 Sheet 22 of 38

1015

1015

1015

1015

I / O HUB 2039

MEMORY 2044A

MEMORY 2044B

GPU LINK 2040

US 2020/0394458 A1

FIG . 20B

Patent Application Publication Dec. 17 , 2020 Sheet 23 of 38 US 2020/0394458 A1

2100

WIRELESS
NETWORK
ADAPTER

2119

NETWORK
ADAPTER

2118

DISPLAY
DEVICE (S)
2110A

I / O SWITCH
2116

ADD - IN
DEVICE (S)

2120

I / O HUB
2107

SYSTEM
STORAGE

2114
INPUT

DEVICE (S)
2108

10 SUBSYSTEM 2111

COMMUNICATION
LNK 2106

PARALLEL
PROCESSOR (S)

2112
MEMORY
HUB
2105

SYSTEM
MEMORY

2104
1015

COMMUNICATION
LINK 2113

DISPLAY
DEVICE (S)
2110B

1
1

PROCESSOR (S)
2102 PROCESSING

SUBSYSTEM
2101

1 1015

FIG . 21

Patent Application Publication Dec. 17 , 2020 Sheet 24 of 38 US 2020/0394458 A1

????

PARALLEL PROCESSOR MEMORY 2222

MEMORY
UNIT
2224A

MEMORY
UNIT
2224B

MEMORY
UNIT
2224N

PARALLEL
PROCESSOR

2200

PARTITION
UNIT
2220A

PARTITION
UNIT
2220B

OOO

PARTITION
UNIT
2220N

MEMORY INTERFACE 2218

MEMORY CROSSBAR 2216

CLUSTER
2214A

CLUSTER
2214B

CLUSTER
2214N

1015 1015 1015

PROCESSING ARRAY 2212

SCHEDULER 2210

FRONT END
2208

HOST
INTERFACE

2206

1 / O UNIT
2204

PARALLEL PROCESSING UNIT 2202

MEMORY HUB 2205

FIG . 22

Patent Application Publication Dec. 17 , 2020 Sheet 25 of 38 US 2020/0394458 A1

TO / FROM
MEMORY UNIT

2324

FRAME BUFFER
INTERFACE

2325

ROP
2326

L2 CACHE
2321

PARTITION UNIT 2320

TO / FROM
MEMORY
CROSSBAR

2316

FIG . 23

Patent Application Publication Dec. 17 , 2020 Sheet 26 of 38 US 2020/0394458 A1

TO MEMORY
CROSSBAR 2416
AND / OR OTHER
PROCESSING
CLUSTERS

MMU
2445

PREROP
2442

DATA CROSSBAR
2440

TO / FROM
MEMORY
CROSSBAR

2416

GRAPHICS
MULTIPROCESSOR

2434
TEXTURE

UNIT
2436

1015 L1 CACHE
2448

PROCESSING
CLUSTER
2414

PIPELINE MANAGER
2432

TO / FROM
SCHEDULER

2410

FIG . 24

Patent Application Publication Dec. 17 , 2020 Sheet 27 of 38 US 2020/0394458 A1

SHARED MEMORY
2570

CACHE MEMORY
2572

MEMORY AND CACHE INTERCONNECT 2568

LOAD /
STORE UNIT

2566

GPGPU CORES
2562

REGISTER FILE
2558

ADDRESS
MAPPING

UNIT
2556

INSTRUCTION UNIT
2554

INSTRUCTION CACHE
2552

GRAPHICS
MULTIPROCESSOR
2534

1015

FROM
PIPELINE MANAGER

2532

FIG . 25

INSTRUCTION PREFETCHER 2626

FRONT END 2601

PROCESSOR 2600

INSTRUCTION DECODER 2628

MICROCODE ROM 2632 UOP QUEUE 2634

Patent Application Publication

1015

TRACE CACHE 2630

OUT OF ORDER ENGINE 2603

ALLOCATOR / REGISTER RENAMER 2640

12 MEMORY UOP QUEUE 2642

INTEGER / FLOATING POINT UOP QUEUE 2644

MEMORY SCHEDULER 2646

FAST SCHEDULER 2602

SLOW / GENERAL FP SCHEDULER 2604

SIMPLE FP SCHEDULER 2606

Dec. 17 , 2020 Sheet 28 of 38

INTEGER REGISTER FILE / BYPASS NETWORK 2608

FP REGISTER FILE / BYPASS NETWORK 2610

EXE BLOCK 2611

AGU 2612

AGU 2614

FAST ALU 2616

FAST ALU 2618

SLOW ALO / 2620

FP 2622

FP MOVE 2624

US 2020/0394458 A1

TO LEVEL 1 CACHE

TO LEVEL 1 CACHE

FIG . 26

DEEP LEARNING APPLICATION PROCESSOR 2700

ICL 2720

ICL 2720

ICL 2720

ICL 2720

{ ICC 2730

ICL 2720

ICL 2720

ICL 2720

ICL 2720

PROCESSING CLUSTER 2710

PROCESSING CLUSTER 2710

PROCESSING CLUSTER 2710

Patent Application Publication

HBM PHY 2744

MEM CTRLR 2742

1015

1015

1015

MEM CTRLR 2742
HBM PHY 2744

PROCESSING CLUSTER 2710

PROCESSING CLUSTER 2710

PROCESSING CLUSTER 2710

1015

1015

1015

PROCESSING CLUSTER 2710

PROCESSING CLUSTER 2710

PROCESSING CLUSTER 2710
MANAGEMENT CONTROLLER CPU 2750

1015

1015

1015

PROCESSING CLUSTER 2710

PROCESSING CLUSTER 2710

PROCESSING CLUSTER 2710

Dec. 17 , 2020 Sheet 29 of 38

HBM PHY 2744

MEM CTRLR 2742

MEM CTRLR 2742
HBM PHY 2744

1015

1015

1015

PCle CONTROLLER AND DMA BLOCK 2770

ICL 2720

ICL 2720

ICC 2730

ICL 2720

ICL 2720

PCle X16 PORT 2780

1015

US 2020/0394458 A1

FIG . 27

NEUROMORPHIC PROCESSOR 2800
NEURON 2802

NEURON 2802

NEURON 2802

NEURON 2802

NEURON INPUT 2804

NEURON OUPUT 2806

NEURON INPUT 2804
NEURON OUPUT 2806
NEURON INPUT 2804
NEURON OUPUT 2806

NEURON INPUT 2804

NEURON OUPUT 2806

Patent Application Publication

2808

NEURON 2802

NEURON 2802

NEURON 2802

NEURON 2802

NEURON INPUT 2804
NEURON QUPUT 2806

NEURON INPUT 2804

NEURON OUPUT 2806

NEURON INPUT 2804

NEURON OUPUT 2806

NEURON INPUT 2804

NEURON OUPUT 2806

Dec. 17 , 2020 Sheet 30 of 38

2808 NEURON 2802

NEURON 2802

NEURON 2802

NEURON 2802

NEURON INPUT 2804

NEURON OUPUT 2806

NEURON INPUT 2804

NEURON OUPUT 2806

NEURON INPUT 2804

NEURON QUPUT 2806

NEURON INPUT 2804
NEURON OUPUT 2806

US 2020/0394458 A1

2810

FIG . 28 2814

2812

GRAPHICS PROCESSOR 2900 GRAPHICS PROCESSING ENGINE 2910

Patent Application Publication

1015

DISPLAY CONTROLLER

BLIT ENGINE

3D PIPELINE

3D / MEDIA SUB - SYSTEM

MEDIA PIPELIN
1 1 1 I

1 } }

VIDEO CODEC ENGINE

2902

2904

2912

2915

2916

2906

I

1

Dec. 17 , 2020 Sheet 31 of 38

MEMORY INTERFACE - 2914

DISPLAY DEVICE 2920

US 2020/0394458 A1

FIG . 29

AR

.

GEOMETRY & FIXED FUNCTION PIPELINE 3036

GRAPHICS SOC INTERFACE 3037

GRAPHICS MICROCONTROLLER 3038

MEDIA PIPELNE 3039

3030

EU ARRAY 3002A

TDIC 3003A

MEDIA SAMPLER 3006A

SHARED FUNCTION LOGIC 3010
3001A

MEDIA SAMPLER 30060

EU ARRAY 3002D
30010

TDC 3003D

Patent Application Publication

SHADER PROCESSOR 3007A

SHADER PROCESSOR 3007D

EU ARRAY 3004A

3D SAMPLER 3005A

EU ARRAY 3004D

3D SAMPLER 3005D

SHARED MEMORY / CACHE MEMORY 3012

SLM 3008A

SLM 3008D

EU ARRAY 3002B

TD / C 3003B

MEDIA SAMPLER 3006B
3001B

MEDIA SAMPLER 3006E

EU ARRAY 3002E
3001E

TD / IC 3003E

SHADER PROCESSOR 3007B

GEOMETRY & FIXED FUNCTION PIPELINE 3014

SHADER PROCESSOR 3007E

Dec. 17 , 2020 Sheet 32 of 38

EU ARRAY 3004B

3D SAMPLER 3005B

EU ARRAY 3004E

3D SAMPLER 3005E

SLM 3008B

SLM 3008E

ADDITIONAL FIXED FUNCTION LOGIC 3016

EU ARRAY 3002C

TDIC 3003C

MEDIA SAMPLER 3006C

30010

MEDIA SAMPLER 3006F

EU ARRAY 3002F
3001F

TDC 3003F

1015

SHADER PROCESSOR 3007C

SHADER PROCESSOR 3007E

3000

3D SAMPLER 3005C

EU ARRAY 30040

US 2020/0394458 A1

3D SAMPLER 3005F

EU ARRAY 3004F

SLM 3008C

FIG . 30

SLM 3008F

EXECUTION LOGIC 3100

Patent Application Publication

3109A

3109B

3109N
1

EU 3108A

EU 3108C

EU
3108N - 1

SHADER PROCESSOR 3102

THREAD DISPATCHER 3104

SAMPLER (S)
3110

1015

1015

1015

1

TC 3107A

TC 3107B

TC 3107N
1

|

1 1

DATA CACHE 3112

Dec. 17 , 2020 Sheet 33 of 38

INSTRUCTION CACHE 3106

EU 3108B

EU 3108D

EU 3108N

1015

1015

1015

DATA PORT 3114

1

} }

US 2020/0394458 A1

FIG . 31A

GRAPHICS EXECUTION UNIT - 3108

GRF 3124

ARF 3126

1015

Patent Application Publication

OOO

SEND 3130

O

DO

BRANCH 3132

DO

THREAD ARBITER 3122

un

SIMD FPUS 3134

MIID

Dec. 17 , 2020 Sheet 34 of 38

MIO DDT

O

SIMD ALUS 3135

TII OOO MI

A

INSTRUCTION FETCH 3137

US 2020/0394458 A1

FIG . 31B

Patent Application Publication Dec. 17 , 2020 Sheet 35 of 38 US 2020/0394458 A1

Parallel Processing Unit (PPU) 3200
Interconnect

3202 1/0 Unit
3206

Front End Unit
3210

Scheduler Unit
3212

Hub
3216 3208 GPU Interconnect Work Distribution Unit

3214

GPC (X)
3218

1015

3220

XBar

1 Memory
(Y)
3204 75

Memory Partition Unit (U)
3222

FIG . 32

Patent Application Publication Dec. 17 , 2020 Sheet 36 of 38 US 2020/0394458 A1

To / From Xbar

General Processing
Cluster (GPC) 3300

Pipeline Manager
3302

PROP
3304

MPC
3310

111 Primitive
Engine
3312

3

SM
3314

Raster Engine
3308

XX15 $

DPC (V)
3306

WDX
3316

MMU 3318

To / From Xbar To / From Xbar

FIG . 33

Patent Application Publication Dec. 17 , 2020 Sheet 37 of 38 US 2020/0394458 A1

To / From
Xbar

Memory Partition Unit
3400

Raster Operations Unit
3402

L2 Cache
3404

To / From
Xbar

Memory Interface
3406

To / From
Memory

FIG . 34

Patent Application Publication Dec. 17 , 2020 Sheet 38 of 38 US 2020/0394458 A1

Streaming Multiprocessor 3500
1015

Instruction Cache
3502

Scheduler Unit (K) 3504
+

Dispatch
3506

Register File
3508

Core
(L - 1)
3510

SFU
(M - 1)
3512

LSU
(N - 1)
3514

Interconnect Network
3516

Shared Memory / L1 Cache
3518

FIG . 35

US 2020/0394458 Al Dec. 17 , 2020
1

WEAKLY - SUPERVISED OBJECT
DETECTION USING ONE OR MORE

NEURAL NETWORKS

BACKGROUND
[0001] Advances in computer technology have resulted in
improved capabilities in object identification and analysis .
Machine learning has been used as a tool for detecting
objects in image data for purposes of such analysis . In order
to train machine learning , a significant amount of labeled
training data is needed . Creating this training data can be a
long and complicated process .

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG . 21 illustrates a computer system , in at least
one embodiment ;
[0023] FIG . 22 illustrates a parallel processor , in at least
one embodiment ;
[0024] FIG . 23 illustrates a partition unit , in at least one
embodiment ;
[0025] FIG . 24 illustrates a processing cluster , in at least
one embodiment ;
[0026] FIG . 25 illustrates a graphics multiprocessor , in at
least one embodiment ;
[0027] FIG . 26 is a block diagram illustrating a processor
micro - architecture for a processor , in at least one embodi
ment ;
[0028] FIG . 27 illustrates a deep learning application
processor , in at least one embodiment ;
[0029] FIG . 28 is a block diagram illustrating an example
neuromorphic processor , in at least one embodiment ;
[0030] FIG . 29 illustrates at least portions of a graphics
processor , according to one or more embodiments ;
[0031] FIG . 30 is a block diagram of at least portions of a
graphics processor core , in at least one embodiment ;
[0032] FIGS . 31A and 31B illustrates thread execution
logic , in at least one embodiment ;
[0033] FIG . 32 illustrates a parallel processing unit
(“ PPU ”) , in at least one embodiment ;
[0034] FIG . 33 illustrates a general processing cluster
(" GPC ”) , in at least one embodiment ;
[0035] FIG . 34 illustrates a memory partition unit of a
parallel processing unit (“ PPU ”) , in at least one embodi
ment ; and
[0036] FIG . 35 illustrates a streaming multi - processor , in
at least one embodiment .

DETAILED DESCRIPTION

[0002] The present disclosure will be described with ref
erence to the drawings , in which :
[0003] FIGS . 1A , 1B , and 1C illustrates example images
that can be processed or generated using one or more neural
networks , in at least one embodiment ;
[0004] FIG . 2 illustrates components of an example multi
branch network , in at least one embodiment ;
[0005] FIGS . 3A , 3B , 3C , and 3D illustrate components of
an example network , in at least one embodiment ;
[0006] FIGS . 4A and 4B illustrates example drop block
approach , in at least one embodiment ;
[0007] FIG . 5 illustrates example object detections that
can be inferred , in at least one embodiment ;
[0008] FIGS . 6A and 6B illustrate portions of an example
process for training a neural network to infer object repre
sentations , and using such a network for inferencing , in at
least one embodiment ;
[0009] FIG . 7 illustrates an example environment in which
aspects of at least one embodiment can be implemented ;
[0010] FIG . 8 illustrates an example system for training an
image synthesis network that can be utilized , in at least one
embodiment ;
[0011] FIG . 9 illustrates layers of an example statistical
model that can be utilized , in at least one embodiment ;
[0012] FIG . 10 illustrates inference and / or training logic ,
in at least one embodiment ;
[0013] FIG . 11 illustrates inference and / or training logic ,
in at least one embodiment ;
[0014] FIG . 13 illustrates an example data center system ,
in at least one embodiment ;
[0015] FIG . 14 is a block diagram illustrating a computer
system , in at least one embodiment ;
[0016] FIG . 15 is a block diagram illustrating computer
system , in at least one embodiment ;
[0017] FIG . 16 illustrates a computer system , in at least
one embodiment ;
[0018] FIG . 17 illustrates a computer system , according at
least one embodiment ;
[0019] FIG . 18 illustrates exemplary integrated circuits
and associated graphics processors that may be fabricated
using one or more IP cores , in at least one embodiment
described herein ;
[0020] FIGS . 19A - 19B illustrate exemplary integrated cir
cuits and associated graphics processors that may be fabri
cated using one or more IP cores , in at least one embodi
ment ;
[0021] FIGS . 20A - 20B illustrate additional exemplary
graphics processor logic in at least one embodiment ;

[0037] FIG . 1A illustrates an example image 100 that can
be analyzed in at least one embodiment . This example image
includes representations of multiple objects 102 , including a
man and a dog attempting to herd a group of sheep . In at
least one embodiment , such an image used for training
would ha specific labels attached , which would include a
type of object and location of an object in an image . In at
least one embodiment location information could include
coordinates for bounding boxes 142 indicating a portion of
an image corresponding to an object as illustrated in an
example image 140 of FIG . 1B . As mentioned , however , in
at least one embodiment such annotations are not required
for each training image , and can determine locations of
various objects without specific labeling . At least one
embodiment can determine proposals for objects of different
classes , then use one or more refinements to arrive that
locations of each object , such as illustrated in FIG . 1B . In at
least one embodiment classification and location informa
tion can be used to detect and / or segment objects 182
represented in an image , as illustrated in an example image
180 of FIG . 1C . It should be understood that location
information other than bounding box coordinates can be
used as well in at least one embodiment .
[0038] In at least one embodiment a framework is utilized
for instance - aware and context - focused weakly - supervised
object detection that can accept image - level tags , without
other spatial information . In at least one embodiment such a
framework can differentiate between multiple instances of a
same type of object rather than obtaining a single combined
detection . In at least one embodiment an example frame

US 2020/0394458 A1 Dec. 17 , 2020
2

Pw (c) = sw (c , r) ? TER

for class c in an image . In at least one embodiment a
ground - truth class label y (c) E { 0 , 1 } can be used to indicate
image - level existence of category c in a given image , and
multi - label binary cross entropy loss can be used , as may be
given by :

Ling (W) = - ycc) logo w CEC

work can also obtain accurate results for classes with large
intra - class variance , and can be memory friendly . An
example framework 200 in at least one embodiment is
illustrated in FIG . 2 , with a framework including an image
branch 206 and at least one refinement branch 208 , 210 , 212 .
In at least one embodiment an image branch can accept as
input an image - level label and an image , and can supervise
a detection model that produces output and region of interest
(ROI) scores . In at least one embodiment an ROI score can
be an indication of confidence in at least one embodiment
that an object is represented in that region . In at least one
embodiment , one or more refinement branches can take at
least some of these outputs , such as ROI scores , and attempt
to refine or improve accuracy of a score , in order to make a
more accurate object detection determination . In at least one
embodiment , a refinement branch can help to solve instance
ambiguity and part domination .
[0039] In at least one embodiment , detection of objects of
interest can be performed using a multi - label image classi
fication framework . In one embodiment , object categories of
interest can be collected in a set C. Given an input image I
and a set of pre - computed region proposals R , in at least one
embodiment convolutional layers from a set of pre - trained
DNNs (“ Base ' 202 in FIG . 2) can be used to extract features ,
which can then be fed into an ROI pooling component to
produce region features for every region in a set R. In at least
one embodiment these features can be passed through a set
of intermediate layers (“ Neck ’ 204 in FIG . 2) , then passed
through two different fully - connected layers , illustrated via
boxes FCcis FC det in FIG . 2 , to produce classification logits
fc , r) ER and detection logits gw (C , PER for every object
category c E C and for every region rER . Vector w in this
example subsumes all trainable parameters , including Base ,
Neck , and Head . In at least one embodiment a score s (clr) is
obtained for a region r being classified as category c when
using a softmax on classification logits , as may be given by :

to train parameters w . In at least one embodiment this
computation corresponds to an image branch 206 illustrated
in FIG . 2 .
[0043] Instead of computing detections from these ROI
scores sw (c , r) , in at least one embodiment scores can be used
to generate instance - level self - supervision for a refinement
branch . In at least one embodiment an online refinement
module can be used to encourage highly - overlapping pro
posals to be assigned a same classification . For example , in
at least one embodiment an ROI score sw (c , r) can be used
to generate a pseudo - label ? ' (c , re { 0,1 } , where every
region r can only be assigned to one class .
[0044] With pseudo - label y ' (c , r) as self - supervision , in at
least one embodiment a refinement branch can address
instance - level classification in at least one embodiment by :

L'ow) = - Ar gl (c . r) log (CIP) ,
PER CEC

efwlc , r)
Sw (c r) = Ececefw?c , r) 1

roi img

[0040] Similarly , in at least one embodiment a score s (clr)
can be obtained for detecting category c with region r when
using a softmax on detection logits :

where à , are hyper - parameters and ?w (c , r) is output of a
first refinement branch , in this example an output after FCref
in FIG . 2 passed through a class - wise softmax . In at least one
embodiment hyper - parameters à , can be used to adaptively
balance R and R so that more attention can be put on
L roil when pseudo - label ?l gradually improves during
training . In at least one embodiment , multiple refinement
branches R roi ' (w) can be stacked and current ROI scores Sw " (c , r) used to compute pseudo - labels ?k + 1 as illustrated in
FIG . 2. In at least one embodiment a final score can be
obtained after averaging all sw " , not including sw (c , r) .
[0045] In at least one embodiment , such a framework can
yield compelling results for instance - level object detection .
It is possible , however , to obtain more accurate instance
level pseudo - labels , such as by providing adequate focus on
context . In at least one embodiment , to obtain pseudo - labels
Øk + l (c , r) , top scoring proposals can be a point of focus . In
at least one embodiment for every class c , a top ranking can
be located , such as by setting :

Sw (rc) =
€ 8w (c , r)

Erere8w?c , r)

[0041] In at least one embodiment a set of region of
interest (ROI) scores sw (c , r) for assigning category CEC to
region rER can be computed via an element - wise product ,
such as may correspond to sw (c , r) = s . (clr) sw (rlc) E [0 , 1] . For
inferencing , in at least one embodiment these ROI scores
can be used to independently rank all regions for each
category . In at least one embodiment non - maximum sup
pression and thresholding can be applied to remove redun
dant boxes in at least one embodiment .
[0042] Since only image - level labels are available , in at
least one embodiment a loss function can be constructed by
summing ROI scores sw (c , r) for all regions r E R to obtain
image evidence :

pete k (c) = argmax , R. (CIT)
D (+1) (0 , r) = 1

if an intersection over union (“ IOU ”) between region r and
region r *** (c) is larger than 0.5 . It should be noted that in this
example ? ° (clr) s (c , r) .

US 2020/0394458 A1 Dec. 17 , 2020
3

[0046] To find pseudo - labels yk + 1 (c , r) that are more
suitable for instance - level WSOD , in at least one embodi
ment a spatial relationship of multiple instances in an image
can be considered . For example , instead of only operating
with a top - 1 ROI r *** (c) , in at least one embodiment all
proposals r can be sorted according to their ROI score ?k (elr)
for each class c . In at least one embodiment a top p percent
of ranked ROIs for every category c can be selected , and R '
(c) can be used to refer to a resulting set . Subsequently , in
at least one embodiment a greedy algorithm can be utilized
to select instances from R ' (c) , driven at least in part by a
motivation that two non - overlapping and confident propos
als have a high probability of corresponding to different
objects . In at least one embodiment , a top proposal can be
added to a pseudo label pool . Then , in at least one embodi
ment starting from a second highest to a last one , an ROI can
be added if it does not overlap with another one in a pool .
In at least one embodiment , since two instances can be
relatively close together , a very small threshold t can be
sued to reject ROIs , rather than strictly enforcing a zero
overlap rule . Similarly , in at least one embodiment proposals
with an IoU bigger than 0.5 with any pseudo - label in a pool
can be treated as positive examples during training .
[0047] In at least one embodiment memory - efficient
sequential batch forward and backward computation can be
used , which can be tailored for WSOD models . In at least
one embodiment , basic training via backpropagation can
store all intermediate activations during a forward pass ,
which are reused when computing gradients of network
parameters . In at least one embodiment such a method can
be computationally efficient due in part to memorization , yet
memory - demanding for a same reason . In at least one
embodiment only a subset of intermediate activations are
saved during a forward pass at key layers . In at least one
embodiment , an entire model can be divided into smaller
sub - networks at these key layers . In at least one embodiment
when computing gradients for a sub - network , a forward pass
can be applied to obtain intermediate representations for this
subnetwork , starting from stored activations at an input key
layer of a sub - network . Combined with gradients propagated
from earlier sub - networks , in at least one embodiment
gradients of sub - network weights can be computed and
gradients propagated to outputs of earlier sub - networks .
[0048] In at least one embodiment this can be particularly
beneficial for extremely deep networks in at least one
embodiment , where a memory cost may be roughly evenly
distributed along layers . In at least one embodiment , when
these DNNs are adapted for detection , however , activations
(after ROI - Pooling) can grow from 1xCHW (image feature)
to NxCHW (ROI - features) , where N is in thousands for
weakly - supervised models . In at least one embodiment ,
without ground - truth boxes , these proposals can be main
tained to keep good recall and thus good performance .
[0049] In at least one embodiment this training challenge
can be addressed at least in part by using a sequential batch
back - propagation . In at least one embodiment this can be
performed in a Head sub - module as illustrated in an example
300 of FIG . 3A , in a Neck sub - module , as illustrated in
examples 320 and 340 of FIGS . 3B and 3C , and in a Base
sub - module in example 360 of FIG . 3D . In these figures
illustrating sequential batch back - propagation in one itera
tion , an activation , gradients , and a module are shown that
are being updated in that step . In at least one embodiment ,
during a forward pass , an input image is first passed through

a Base and Neck , with only activations A , after Base being
stored . In at least one embodiment , output of a Neck then
goes into a Head for its first forward and backward pass to
update weights of a Head and gradients G , as illustrated . In
at least one embodiment , to update parameters of a Neck ,
ROI - features can be split into batches and backpropagation
run sequentially on small batches . Such an approach can
avoid storing memory - consuming feature maps and their
gradients within a Neck . In at least one embodiment an
example of such a sequential method is shown in FIG . 3C ,
where 2,000 proposals are split into two batches of 1000
proposals each . In at least one embodiment a gradient G , is
accumulated and used to update parameters of a Base
network via regular back - propagation as illustrated in FIG .
4D . For testing , in at least one embodiment a similar strategy
can be applied if either a number of ROIs or a size of a Neck
is too large .
[0050] In at least one embodiment , due at least in part to
intra - category variation , existing WSOD methods often mis
takenly only predict discriminative parts of an object rather
than its full extent . In at least one embodiment a DNN can
be encouraged to focus on a context that can be achieved by
dropping some most discriminative parts , referred to herein
as performing spatial dropout . Since discriminative parts of
objects differ in location and size , in at least one embodi
ment object detection can utilize a structured drop block
approach for each region of interest , such as is illustrated in
an example of FIGS . 4A and 4B . In at least one embodiment ,
during training of points on ROI - feature maps can be
sampled , such as with a Bernoulli distribution of probability
y as blob centers . In at least one embodiment object regions
can be divided into arrays of cells 402 , 402 as illustrated in
an example of FIG . 4A . In at least one embodiment square
or rectangular regions 452 , 454 around these centers of size
www can be zeroed out as illustrated in an example 450 of
FIG . 4B , such as by having relevant pixel values set to zero
or another set value , across all channels on an feature map .
In at least one embodiment feature values can then be
re - scaled by a factor of an area of ROI over an area of an
un - dropped region , for example , such that no normalization
has to be applied for inference where all features are kept .
In at least one embodiment , discriminative parts such as
faces , car fronts , and heads are zeroed out .
[0051] In at least one embodiment a model for object
detection and / or segmentation can be trained using data that
does not contain very detailed labels , and in some instances
might only indicate classes of objects represented in an
image or video frame , without any location or occurrence
information being provided as well . In at least one embodi
ment , labels might only state that there is at least one sheep
and at least one dog represented in an image , but without
indication of how many sheep or dogs are represented , or
where those representations might be located in an image . In
at least one embodiment these types of labels are referred to
herein as image - level labels . In at least one embodiment a
fully supervised method would need bounding box coordi
nates , or other location information , to determine a size of an
object boundary and location of an object representation in
an image , in order to accurately train a model .
[0052] In at least one embodiment , there can be different
numbers and / or selections of refinement branches and func
tionality . In at least one embodiment an image detection
branch can receive and / or provide proposals for a plurality
of bounding boxes that each corresponds to a potential

US 2020/0394458 A1 Dec. 17 , 2020
4

' cls

det

object representation , or at least a representation of a type of
object or object satisfying specific criteria , etc. In at least one
embodiment a separate object region proposal network or
algorithm will generate an initial set of proposals . In at least
one embodiment an image detection branch outputs a score ,
or set of scores , for object proposals , along with one or more
classifications , and in at least one embodiment can reduce a
number of proposals based at least in part upon scores and / or
redundant proposals . In at least one embodiment output of
an image branch for a given table is a matrix of dimension
n (for a number of proposals) by c (for a number of identified
classes) . In at least one embodiment each element of a
matrix is then a confidence score (or other such score)
indicating a confidence that a given object proposal is of a
specific class . In at least one embodiment , these results can
include FC and FC der values that correspond to post
processing results from this table . FC cs and FCd can each
be each a different nxc matrix derived from an original nxo
matrix for initial image proposals . In at least one embodi
ment each matrix can be normalized , such as by utilizing a
softmax function along both a proposal dimension and a
classification dimension . In at least one embodiment nor
malization can provide for easier comparisons . In at least
one embodiment a higher element score can be indicative of
a higher likelihood of a correctly identified object and
classification . In at least one embodiment tables can then be
multiplied back as illustrated in FIG . 2. In at least one
embodiment a result is a new nxc matrix that is output of a
network . In at least one embodiment a global , adaptive ,
and / or other such threshold can be applied , and any score
falling below that threshold can be determined to not cor
respond to a correct actual object representation . In at least
one embodiment elements with scores at or above a thresh
old in at least one embodiment can be determined to be
correct object representations in at least at least one embodi
ment .

[0053] Since image - level labels are available , in at least
one embodiment a sum can be performed across various
instances along n dimension of a matrix . In at least one
embodiment a result is a c - dimensional pool vector , which
is supervised by image - level labels . In at least one embodi
ment such an approach provides a multi - label loss . In at least
one embodiment a loss can supervise a vector , which can
back - propagate a gradient to be used to train a network . In
at least one embodiment a sum pooling process can help to
reduce a large , initial table of proposals to something more
like an image - level representation , which can then be more
easily refined . In at least one embodiment a refinement
branch follows a teacher / student model . In at least one
embodiment it takes labels from initial predictions as a set
of proposals with corresponding detection scores . In at least
one embodiment , for each object class from image - level
labels , proposals can be analyzed and their scores sorted . In
at least one embodiment all scores can be normalized to a
value between 0 and 1. In at least one embodiment a global
threshold can be applied whereby any proposals with values
that meet or exceed thresholds have their value set to 1 , and
any proposals with values less than a threshold can have
their value set to 0. In at least one embodiment this process
results in a quantization of all scores . In at least one
embodiment input is a score from a previous branch , but
because of this quantization a set of pseudo - labels is pro
duced for each refinement branch . An example refinement
branch can produce an nxc matrix with all element values

being either 0 or 1. In at least one embodiment pseudo - labels
can be used to define a loss , which can help to refine this
branch as well .
[0054] In at least one embodiment initial seeds , or posi
tions of various object proposals , are prevented from becom
ing very close to each other . In at least one embodiment , a
sorting of top windows could be performed , where a “ top
window ” can correspond to a bounding box for a seed or
proposal that has a high confidence score . In at least one
embodiment many of these top windows will likely be very
close together in an image , as multiple windows may
correspond to a different view or approximation of an object
represented in an image . In at least one embodiment top
windows that are determined to be very close to another top
window , or similar in size and location , can be excluded
from consideration . In at least one embodiment , a greedy
method with maximum suppression can be used to exclude
redundant windows or proposals from consideration , as
there is a high probability that they correspond to a same
object representation . In at least one embodiment a quanti
zation of a nxc matrix can again be performed , where an
initial (highest value similar) window is set to a value of 1 ,
and redundant or similar windows are set to a value of 0. In
at least one embodiment a large set of diverse seeds can then
be selected or identified that can be used as starting points .
In at least one embodiment elements of a matrix , or pseudo
labels , for various proposals can be adjusted so that any
window that significantly overlaps another window will
drop out of consideration . In at least one embodiment a
process is a form of label propagation , which can help to
prevent a part domination problem .
[0055] In at least one embodiment a refinement approach
is referred to herein as a drop - block refinement . In at least
one embodiment such a refinement approach can remove
one or more sub - regions or portions of an object proposal
region from consideration . FIGS . 4A and 4B illustrate an
example drop - block approach that can be utilized in accor
dance with at least one embodiment . In at least one embodi
ment , a set of “ blocks ” (where blocks represent pixels or
groups of pixels in an image) are dropped , or removed from
consideration for an image proposal region . An example
situation 400 in FIG . 4A illustrates a segmentation of an
object proposal region into blocks , and FIG . 4B illustrates a
situation 450 wherein a subset of these blocks has been
removed from consideration in at least one embodiment . In
at least one embodiment , blocks , and sizes of blocks , can be
selected at random or according to a block selection algo
rithm . In at least one embodiment a remaining portion of
proposal data can be analyzed to determine whether a
similar confidence score is obtained , indicating that a region
likely represents an object of that class . In at least one
embodiment this can also help train a network to infer a
correct classification for an object for various different views
or portions of an object . In at least one embodiment drops
can be selected to drop from a region such as a face that
would otherwise provide a high confidence region for a type
of object . In at least one embodiment a process of randomly
dropping blocks can also effectively introduce some noise
into an image region , which can help to improve an ability
of a network , once trained , to recognize different object
representations .
[0056] In at least one embodiment further advantages can
be obtained that can be at least partially independent of
selected refinement approaches . In at least one embodiment

US 2020/0394458 A1 Dec. 17 , 2020
5

an issue of memory consumption can be addresses by
utilizing a batch back - propagation technique . In at least one
embodiment data can be segmented into smaller batches that
can be processed separately and / or in parallel , such that less
data needs to be stored in memory for any given back
propagation task . In at least one embodiment processing of
various batches can also be staggered such that all data does
not need to be processed and / or stored in processor memory
concurrently . In at least one embodiment this reduction in
memory consumption can also enable object detection and /
or segmentation to be performed on video or other large data
sets , streams , or sources .
[0057] In at least one embodiment refinement branches all
operate in parallel , taking as input proposal data from a
detection branch . In at least one embodiment results from
various refinement branches can then be aggregated with
results from an object detection branch , such as by averaging
or using a selected aggregation function that calculates a
weighted or other function of various values for proposals .
In at least one embodiment a proposal that does not satisfy
requirements of various refinements can have its score
substantially reduced , which may cause that proposal value
to fall below a threshold and therefore be considered to not
correspond to an object of a relevant class .
[0058] In at least one embodiment , refinement branches
can each take output (e.g. , ROI scores) from an earlier
branch in a specified order . In at least one embodiment such
an approach can save an extra processing step , as an ROI
score from an image branch will be refined as it passes
through various refinement branches . In at least one embodi
ment some accurate object representations might have a
corresponding ROI score improperly lowered by a refine
ment branch to an extent where a proposal would be
removed from consideration . In at least one embodiment
performing refinements separately allows an object proposal
to remain under consideration if , for example , all but one
refinement branch indicate a high confidence in object
determination for a given class .
[0059] In at least one embodiment , such a process is
adaptive in that it can be performed for multiple instances of
a type of object , as well as multiple types of objects ,
represented in a single image or video frame . In at least one
embodiment pseudo - labels that are generated serve as a type
of ground truth data , providing at least some constraint to
learning . In at least one embodiment , a number of pseudo
labels with scores above a threshold value are determined ,
which are used to refine scores for object proposals from an
initial object detection branch or process . In at least one
embodiment , initial proposal scores are averaged with
refinement scores to generate a final score , which can then
be compared against a threshold or otherwise processed to
determine which object proposals are accepted as being
accurate .
[0060] FIG . 5 illustrates an example set of images 500
including object detection regions that can be inferred in
accordance with at least one embodiment . In at least one
embodiment , for each pair of images , results of a different
approach are illustrated on left , and results of an approach in
accordance with at least one embodiment are illustrated on
right . In at least one embodiment each column of pairs also
illustrates that an approach in accordance with at least one
embodiment improves results for specific problems . For
example , in at least one embodiment a left column illustrates
that an approach does not miss instances of a type of object

in an image . In at least one embodiment a middle column
illustrates that an approach in accordance with at least one
embodiment does not have problems detecting objects when
an object proposal regions are initially grouped in an image .
Further , in at least one embodiment a right column illustrates
that an approach in accordance with at least one embodiment
does not determine object regions in an image based upon
part dominations , or regions of a face or grill that dominate
a detection and may miss other parts of an object .
[0061] FIG . 6A illustrates an example process 500 for
training a neural network , such as a generative adversarial
network (GAN) , to infer object detections and / or segmen
tations in at least one embodiment . It should be understood
for this and other processes discussed herein that there can
be additional , alternative , or fewer steps performed in simi
lar or alternative orders , or in parallel , in at least one
embodiment unless otherwise stated . Further , this example
discusses training a generative adversarial network (GAN)
using alphanumeric semantic description data , but as dis
cussed elsewhere herein there can be various types of
models trained using a variety of different types of data
within a scope of at least one embodiment . In at least one
embodiment , an image (or video frame , etc.) is obtained 602
that includes at least one representation of an object type of
interest , with an image including one or more image - level
labels indicating one or more classes of objects represented
in an image . In at least one embodiment , labeling may not
include any location or instance data , etc. In at least one
embodiment a set of object proposals can be determined ,
either external or internal to a neural network , such as a
GAN in this example . In at least one embodiment object
proposal regions can be input to a detection branch of a
GAN , which as discussed elsewhere herein can determine a
region of interest (ROI) score or similar such value for
various proposals , and in at least one embodiment can
reduce a number of proposals based at least in part upon
determined scores . In at least one embodiment ROI scores
for various proposals can be passed to one or more refine
ment branches of a network that can determine 606 pseudo
labels for various proposals . In at least one embodiment
these pseudo - labels can be associated with new or updated
ROI scores for various proposals as determined using cri
teria or approaches for relevant refinement branches . In at
least one embodiment , an ROI score from an object detec
tion branch is combined 608 with pseudo - label scores from
refinement branches to generate a set of final ROI scores for
various proposals and classes . In at least one embodiment a
loss function can be determined 610 using a set of final ROI
scores . Network parameters for a GAN can then be updated
612 based at least in part upon a determined loss function .
[0062] FIG . 6B illustrates an example process 650 for
inferring object representations in an image using such a
trained model in at least one embodiment . In at least one
embodiment , an image or video frame is obtained 652 that
is to be used for inferencing . In at least one embodiment an
image can be provided 654 as input to a trained model . In at
least one embodiment a trained model can process data and
infer 656 one or more classes and locations of objects
represented in an image . In at least one embodiment an
inferred location can correspond to segmentation for an
object in at least one embodiment .
[0063] An increasing variety of industries and applications
are taking advantage of machine learning . As an example ,
deep neural networks (DNNs) developed on processors have

US 2020/0394458 A1 Dec. 17 , 2020
6

been used for diverse use cases , from self - driving cars to
faster drug development , from automatic image analysis for
security systems to smart real - time language translation in
video chat applications . Deep learning is a technique that
models a neural learning process of a human brain , continu
ally learning , continually getting smarter , and delivering
more accurate results more quickly over time . A child is
initially taught by an adult to correctly identify and classify
various shapes , eventually being able to identify shapes
without any coaching . Similarly , a deep learning or neural
learning system designed to accomplish a similar task would
need to be trained for it to get smarter and more efficient at
identifying basic objects , occluded objects , etc. , while also
assigning context to those objects .
[0064] At a simplest level , neurons in a human brain look
at various inputs that are received , importance levels are
assigned to each of these inputs , and output is passed on to
other neurons to act upon . An artificial neuron or perceptron
is a most basic model off neural network . In one example , a
perceptron may receive one or more inputs that represent
various features of an object that a perceptron is being
trained to recognize and classify , and each of these features
is assigned a certain weight based on an importance of that
feature in defining a shape of an object .
[0065] A deep neural network (DNN) model includes
multiple layers of many connected perceptrons (e.g. , nodes)
that can be trained with enormous amounts of input data to
quickly solve complex problems with high accuracy . In one
example , a first layer of a DNN model breaks down an input
image of an automobile into various sections and looks for
basic patterns such as lines and angles . A second layer
assembles lines to look for higher - level patterns such as
wheels , windshields , and mirrors . A next layer identifies a
type of vehicle , and a final few layers generate a label for an
input image , identifying a model of a specific automobile
brand . Once a DNN is trained , this DNN can be deployed
and used to identify and classify objects or patterns in a
process known as inference . Examples of inference (a pro
cess through which a DON extracts useful information from
a given input) include identifying handwritten numbers on
checks deposited into ATM machines , identifying images of
friends in photos , delivering movie recommendations , iden
tifying and classifying different types of automobiles , pedes
trians , and road hazards in driverless cars , or translating
human speech in near real - time .
[0066] During training , data flows through a DNN in a
forward propagation phase until a prediction is produced
that indicates a label corresponding to this input . If a neural
network does not correctly label this input , then errors
between a correct label and a predicted label are analyzed ,
and weights are adjusted for each feature during a backward
propagation phase until this DNN correctly labels this input
and other inputs in a training dataset . Training complex
neural networks requires massive amounts of parallel com
puting performance , including floating - point multiplications
and additions that are supported . Inferencing is less com
pute - intensive than training , being a latency - sensitive pro
cess where a trained neural network is applied to new inputs
it has not seen before to classify images , translate speech ,
and infer new information .
[0067] Neural networks rely heavily on matrix math
operations , and complex multi - layered networks require
tremendous amounts of floating - point performance and
bandwidth for both efficiency and speed . With thousands of

processing cores , optimized for matrix math operations , and
delivering tens to hundreds of TFLOPS of performance , a
computing platform can deliver performance required for
deep neural network - based artificial intelligence and
machine learning applications .
[0068] FIG . 7 illustrates components of an example sys
tem 700 that can be used to train and utilize machine
learning in accordance with at least one embodiment . As will
be discussed , various components can be provided by vari
ous combinations of computing devices and resources , or a
single computing system , which may be under control of a
single entity or multiple entities . Further , various aspects
may be triggered , initiated , or requested by different entities .
For example , in at least one embodiment training of a neural
network might be instructed by a provider associated with a
provider environment 706 , while in at least one embodiment
training might be requested by a customer or other user
having access to a provider environment through a client
device 702 or other such resource . Training data (or data to
be analyzed by a trained neural network) can be provided by
a provider , a user , or a third party content provider 724. In
at least one embodiment , client device 702 may be a vehicle
or object that is to be navigated on behalf of a user , for
example , which can submit requests and / or receive instruc
tions that assist in navigation of this device .
[0069] In this example , requests are able to be submitted
across at least one network 704 to be received to a provider
environment 706. A client device may be any appropriate
electronic and / or computing devices enabling a user to
generate and send such requests , as may include desktop
computers , notebook computers , computer servers , smart
phones , tablet computers , gaming consoles (portable or
otherwise) , computer processors , computing logic , and set
top boxes . Network (s) 704 can include any appropriate
network for transmitting a request or other such data , as may
include an Internet , an intranet , an Ethernet , a cellular
network , a local area network (LAN) , a network of direct
wireless connections among peers , and so on .
[0070] Requests can be received to an interface layer 708 ,
which can forward data to a training and inference manager
710 in this example . This manager can be a system or service
including hardware and software for managing requests and
service corresponding data or content in at least one embodi
ment . This manager can receive a request to train a neural
network , and can provide data for this request to a training
manger 712. Training manager 712 can select an appropriate
model or network to be used , if not specified by this request ,
and can train this model using relevant training data . In at
least one embodiment training data can be a batch of data
stored to a training data repository 714 , received from client
device 702 or obtained from a third party provider 724 .
Training manager 712 can be responsible for training this
data , such as by using a LARC - based approach as discussed
herein . A network can be any appropriate network , such as
a recurrent neural network (RNN) or convolutional neural
network (CNN) . Once a network is trained and successfully
evaluated , this trained network can be stored to a model
repository 716 , for example , that may store different models
or networks for users , applications , or services , etc. As
mentioned , in at least one embodiment there may be mul
tiple models for a single application or entity , as may be
utilized based on a number of different factors .
[0071] At a subsequent point in time , a request may be
received from a client device 702 (or another such device)

US 2020/0394458 A1 Dec. 17 , 2020
7

for content (e.g. , path determinations) or data that is at least
partially determined or impacted by a trained neural net
work . A request can include , for example , input data to be
processed using a neural network to obtain one or more
inferences or other output values , classifications , or predic
tions . Input data can be received to interface layer 708 and
directed to inference module 718 , although a different sys
tem or service can be used as well in at least one embodi
ment . Inference module 718 can obtain an appropriate
trained network , such as a trained deep neural network
(DNN) as discussed herein , from model repository 716 if not
already stored locally to inference module 718. Inference
module 718 can provide data as input to a trained network ,
which can then generate one or more inferences as output .
This may include , for example , a classification of an
instance of input data . Inferences can then be transmitted to
client device 702 for display or other communication to a
user . Context data for a user may also be stored to a user
context data repository 722 , which may include data about
a user which may be useful as input to a network in
generating inferences , or determining data to return to a user
after obtaining instances . Relevant data , which may include
at least some of input or inference data , may also be stored
to a local database 720 for processing future requests . In at
least one embodiment , a user can use account or other
information to access resources or functionality of a pro
vider environment . If permitted and available , user data may
also be collected and used to further train models , in order
to provide more accurate inferences for future requests .
Requests may be received through a user interface to a
machine learning application 726 executing on client device
702 in at least one embodiment , and results displayed
through a same interface . A client device can include
resources such as a processor 728 and memory 730 for
generating this request and processing results or a response ,
as well as at least one data storage element 732 for storing
data for machine learning application 726 .
[0072] In at least one embodiment a processor 728 (or a
processor of training manager 712 or inference module 718)
will be a central processing unit (CPU) . As mentioned ,
however , resources in such environments can utilize GPUs
to process data for at least certain types of requests . With
thousands of cores , GPUs are designed to handle substantial
parallel workloads and , therefore , have become popular in
deep learning for training neural networks and generating
predictions . While use of GPUs for offline builds has
enabled faster training of larger and more complex models ,
generating predictions offline implies that either request
time input features cannot be used or predictions must be
generated for all permutations of features and stored in a
lookup table to serve real - time requests . If a deep learning
framework supports a CPU - mode and model is small and
simple enough to perform a feed - forward on a CPU with a
reasonable latency , then a service on a CPU instance could
host a model . In this case , training can be done offline on a
GPU and inference done in real - time on this CPU . If a CPU
approach is not a viable choice , then a service can run on a
GPU instance . Because GPUs have different performance
and cost characteristics than CPUs , however , running a
service that offloads a runtime algorithm to a GPU can
require it to be designed differently from a CPU based
service .
[0073] FIG . 8 illustrates an example system 800 that can
be used to classify data , or generate inferences , in accor

dance with at least one embodiment . Various types of
predictions , labels , or other outputs can be generated for
input data as well , as should be apparent in light of teachings
and suggestions contained herein . Further , both supervised
and unsupervised training can be used in at least one
embodiment discussed herein . In this example , a set of
training data 802 (e.g. , classified or labeled data) is provided
as input to function as training data . Training data can
include instances of at least one type of object for which a
neural network is to be trained , as well as information that
identifies that type of object . For example , training data
might include a set of images that each includes a repre
sentation of a type of object , where each image also
includes , or is associated with , a label , metadata , classifica
tion , or other piece of information identifying a type of
object represented in a respective image . Various other types
of data may be used as training data as well , as may include
text data , audio data , video data , and so on . Training data
802 in this example is provided as training input to a training
manager 804. Training manager 804 can be a system or
service that includes hardware and software , such as one or
more computing devices executing a training application ,
for training a neural network (or other model or algorithm ,
etc.) . In this example , training manager 804 receives an
instruction or request indicating a type of model to be used
for training . A model can be any appropriate statistical
model , network , or algorithm useful for such purposes , as
may include an artificial neural network , deep learning
algorithm , learning classifier , Bayesian network , and so on .
Training manager 804 can select an initial model , or other
untrained model , from an appropriate repository 806 and
utilize training data 802 to train this model , generating a
trained model 808 (e.g. , trained deep neural network) that
can be used to classify similar types of data , or generate
other such inferences . In at least one embodiment where
training data is not used , an appropriate initial model can
still be selected for training on input data per training
manager 804 .
[0074] A model can be trained in a number of different
ways , as may depend in part upon a type of model selected .
For example , in at least one embodiment a machine learning
algorithm can be provided with a set of training data , where
this model is a model artifact created by a training process .
Each instance of training data contains a correct answer
(e.g. , classification) , which can be referred to as a target or
target attribute . A learning algorithm finds patterns in train
ing data that map input data attributes to a target , an answer
to be predicted , and a machine learning model is output that
captures these patterns . A machine learning model can then
be used to obtain predictions on new data for which a target
is not specified .
[0075] In one example , a training manager 804 can select
from a set of machine learning models including binary
classification , multiclass classification , and regression mod
els . A type of model to be used can depend at least in part
upon a type of target to be predicted . Machine learning
models for binary classification problems predict a binary
outcome , such as one of two possible classes . A learning
algorithm such as logistic regression can be used to train
binary classification models . Machine learning models for
multiclass classification problems allow predictions to be
generated for multiple classes , such as to predict one of more
than two outcomes . Multinomial logistic regression can be
useful for training multiclass models . Machine learning

US 2020/0394458 A1 Dec. 17 , 2020
8

models for regression problems predict a numeric value .
Linear regression can be useful for training regression
models .

[0076] In order to train a machine learning model in
accordance with at least one embodiment , a training man
ager must determine an input training data source , as well as
other information such as a name of a data attribute that
contains a target to be predicted , required data transforma
tion instructions , and training parameters to control a learn
ing algorithm . During a training process , a training manager
804 in at least one embodiment may automatically select an
appropriate learning algorithm based on a type of target
specified in a training data source . Machine learning algo
rithms can accept parameters used to control certain prop
erties of a training process and of a resulting machine
learning model . These are referred to herein as training
parameters . If no training parameters are specified , a training
manager can utilize default values that are known to work
well for a large range of machine learning tasks . Examples
of training parameters for which values can be specified
include maximum model size , maximum number of passes
over training data , shuffle type , regularization type , learning
rate , and regularization amount . Default settings may be
specified , with choices to adjust values to fine - tune perfor
mance .

[0077] A maximum model size is a total size , in units of
bytes , of patterns that are created during training of a model .
A model may be created of a specified size by default , such
as a model of 100 MB . If a training manager is unable to
determine enough patterns to fill model size , a smaller model
may be created . If a training manager finds more patterns
than will fit into a specified size , a maximum cut - off may be
enforced by trimming patterns that least affect quality of a
learned model . Choosing a model size provides for control
of a trade - off between a predictive quality of a model and a
cost of use . Smaller models can cause a training manager to
remove many patterns to fit within a maximum size limit ,
affecting quality of predictions . Larger models may cost
more to query for real - time predictions . Larger input data
sets do not necessarily result in larger models because
models store patterns , not input data . If patterns are few and
simple , a resulting model will be small . Input data that has
a large number of raw attributes (input columns) or derived
features (outputs of data transformations) will likely have
more patterns found and stored during a training process .
[0078] In at least one embodiment , training manager 804
can make multiple passes or iterations over training data to
attempt to discover patterns . There may be a default number
of passes , such as ten passes , while in at least one embodi
ment up to a maximum number of passes may be set , such
as up to one hundred passes . In at least one embodiment
there may be no maximum set , or there may be a conver
gence criterion or other factor set that will trigger an end to
a training process . In at least one embodiment training
manager 804 can monitor quality of patterns during training ,
and can automatically stop training when there are no more
data points or patterns to discover . Data sets with only a few
observations may require more passes over data to obtain
sufficiently high model quality . Larger data sets may contain
many similar data points , which can reduce a need for a large
number of passes . Potential impact of choosing more data
passes over data is that model training can takes longer and
cost more in terms of resources and system utilization .

[0079] In at least one embodiment training data is shuffled
before training , or between passes of training . Shuffling in at
least one embodiment is a random or pseudo - random shuf
fling to generate a truly random ordering , although there
may be some constraints in place to ensure that there is no
grouping of certain types of data , or shuffled data may be
reshuffled if such grouping exists , etc. Shuffling changes an
order or arrangement in which data is utilized for training so
that a training algorithm does not encounter groupings of
similar types of data , or a single type of data for too many
observations in succession . For example , a model might be
trained to predict an object . Data might be sorted by object
type before uploading . An algorithm can then process data
alphabetically by object type , encountering only data for a
certain object type first . A model will begin to learn patterns
for that type of object . A model will then encounter only data
for a second object type , and will try to adjust a model to fit
that object type , which can degrade patterns that fit that a
first object type . This sudden switch from between object
types can produce a model that does not learn how to predict
object types accurately . Shuffling can be performed in at
least one embodiment before a training data set is split into
training and evaluation subsets , such that a relatively even
distribution of data types is utilized for both stages . In at
least one embodiment training manager 804 can automati
cally shuffle data using , for example , a pseudo - random
shuffling technique .
[0080] When creating a machine learning model , training
manager 804 in at least one embodiment can enable a user
to specify settings . For example , a user may specify one or
more evaluation settings , indicating a portion of input data
to be reserved for evaluating predictive quality of a machine
learning model . A user may specify a policy that indicates
which attributes and attribute transformations are available
for model training . A user may also specify various training
parameters that control certain properties of a training
process and of a resulting model .
[0081] Once a training manager has determined that train
ing of a model is complete , such as by using at least one end
criterion discussed herein , trained model 808 can be pro
vided for use by a classifier 814 in classifying (or otherwise
generating inferences for) validation data 812. As illustrated ,
this involves a logical transition between a training mode for
a model and an inference mode for a model . In at least one
embodiment , however , trained model 808 will first be passed
to an evaluator 810 , which may include an application ,
process , or service executing on at least one computing
resource (e.g. , a CPU or GPU of at least one server) for
evaluating quality (or another such aspect) of a trained
model . A model is evaluated to determine whether this
model will provide at least a minimum acceptable or thresh
old level of performance in predicting a target on new and
future data . If not , training manager 804 can continue to train
a model . Since future data instances will often have
unknown target values , it can be desirable to check an
accuracy metric of machine learning on data for which a
target answer is known , and use this assessment as a proxy
for predictive accuracy on future data .
[0082] In at least one embodiment , a model is evaluated
using a subset of training data 802 that was provided for
training . A subset can be determined using a shuffle and split
approach as discussed above . This evaluation data subset
will be labeled with a target , and thus can act as a source of
ground truth for evaluation . Evaluating a predictive accu

US 2020/0394458 A1 Dec. 17 , 2020
9

racy of a machine learning model with same data that was
used for training is not useful , as positive evaluations might
be generated for models that remember training data instead
of generalizing from it . Once training has completed , an
evaluation data subset is processed using trained model 808
and evaluator 810 can determine accuracy of a model by
comparing ground truth data against corresponding output
(or predictions / observations) of a model . Evaluator 810 in at
least one embodiment can provide a summary or perfor
mance metric indicating how well predicted and true values
match . If a trained model does not satisfy at least a minimum
performand ance criterion , or other such accuracy threshold ,
then training manager 804 can be instructed to perform
further training , or in some instances try training a new or
different model . If trained model 808 satisfies relevant
criteria , then a trained model can be provided for use by
classifier 814 .
[0083] When creating and training a machine learning
model , it can be desirable in at least one embodiment to
specify model settings or training parameters that will result
in a model capable of making most accurate predictions .
Example parameters include a number of passes to be
performed (forward and / or backward) , regularization , model
size , and shuffle type . As mentioned , however , selecting
model parameter settings that produce best predictive per
formance on evaluation data might result in an overfitting of
a model . Overfitting occurs when a model has memorized
patterns that occur in training and evaluation data sources ,
but has failed to generalize patterns in data . Overfitting often
occurs when training data includes all data used in evalua
tion . A model that has been over fit may perform well during
evaluation , but may fail to make accurate predictions on new
or otherwise validation data . To avoid selecting an over
fitted model as a best model , a training manager can reserve
additional data to validate performance of this model . For
example , a training data set might be divided into 60 percent
for training , and 40 percent for evaluation or validation ,
which may be divided into two or more stages . After
selecting model parameters that work well for evaluation
data , leading to convergence on a subset of validation data ,
such as half validation data , a second validation may be
executed with a remainder of validation data to ensure
performance of this model . If this model meets expectations
on validation data , then this model is not overfitting data .
Alternatively , a test set or held - out set may be used for
testing parameters . Using a second validation or testing step
helps to select appropriate model parameters to prevent
overfitting . However , holding out more data from a training
process for validation makes less data available for training .
This may be problematic with smaller data sets as there may
not be sufficient data available for training . One approach in
such a situation is to perform cross - validation as discussed
elsewhere herein .
[0084] There are many metrics or insights that can be used
to review and evaluate a predictive accuracy of a given
model . One example evaluation outcome contains a predic
tion accuracy metric to report on overall success of a model ,
as well as visualizations to help explore accuracy of this
model beyond a prediction accuracy metric . An outcome can
also provide an ability to review impact of setting a score
threshold , such as for binary classification , and can generate
alerts on criteria to check validity of an evaluation . Choice
of a metric and visualization can depend at least in part upon
a type of model being evaluated .

[0085] Once trained and evaluated satisfactorily , a trained
machine learning model can be used to build or support a
machine learning application . In at least one embodiment
building a machine learning application is an iterative pro
cess that involves a sequence of steps . A core machine
learning problem (s) can be framed in terms of what is
observed and what answer this model is to predict . Data can
then be collected , cleaned , and prepared to make this data
suitable for consumption by machine learning model train
ing algorithms . This data can be visualized and analyzed to
run sanity checks to validate quality of this data and to
understand this data . Raw data (e.g. , input variables) and
answer data (e.g. , target) may not be represented in way
that can be used to train a highly predictive model . There
fore , it may be desirable to construct more predictive input
representations or features from raw variables . Resulting
features can be fed to a learning algorithm to build models
and evaluate quality of models on data that was held out
from model building . A model can then be used to generate
predictions of a target answer for new data instances .
[0086] In an example system 800 of FIG . 8 , trained model
810 after evaluation is provided , or made available , to a
classifier 814 that is able to use this trained model to process
validation data . This may include , for example , data
received from users or third parties that are not classified ,
such as query images that are looking for information about
what is represented in those images . This validation data can
be processed by a classifier using this trained model , and
results 816 that are produced can be sent back to respective
sources or otherwise processed or stored . In s at least one
embodiment , and where such usage is permitted , now
classified data instances can be stored to a training data
repository , which can be used for further training of trained
model 808 by a training manager . In at least one embodi
ment a model will be continually trained as new data is
available , but in at least one embodiment models will be
retrained periodically , such as once a day or week , depend
ing upon factors such as a size of a data set or complexity
of a model .
[0087] Classifier 814 can include appropriate hardware
and software for processing validation data 812 using a
trained model . In at least one embodiment a classifier will
include one or more computer servers each having one or
more graphics processing units (GPUs) that are able to
process data . A configuration and design of GPUs can make
them more desirable to use in processing machine learning
data than CPUs or other such components . A trained model
in at least one embodiment can be loaded into GPU memory
and a received data instance provided to a GPU for process
ing . GPUs can have a much larger number of cores than
CPUs , and GPU cores can also be much less complex .
Accordingly , a given GPU may be able to process thousands
of data instances concurrently via different hardware
threads . A GPU can also be configured to maximize floating
point throughput , which can provide significant additional
processing advantages for a large data set .
[0088] Even when using GPUs , accelerators , and other
such hardware to accelerate tasks such as training of a model
or classification of data using such a model , such tasks can
still require significant time , resource allocation , and cost .
For example , if a machine learning model is to be trained
using 800 passes , and a data set includes 1,000,000 data
instances to be used for training , then all million instances
would need to be processed for each pass . Different portions

US 2020/0394458 A1 Dec. 17 , 2020
10

of an architecture can also be supported by different types of
devices . For example , training may be performed using a set
of servers at a logically centralized location , as may be
offered as a service , while classification of raw data may be
performed by such a service or on a client device . These
devices may also be owned , operated , or controlled by a
same entity or multiple entities in at least one embodiment .
[0089] FIG . 9 illustrates an example neural network 900
that can be trained or otherwise utilized in accordance with
at least one embodiment . In this example a statistical model
is an artificial neural network (ANN) that includes a multiple
layers of nodes , including an input layer 902 , an output layer
906 , and multiple layers 904 of intermediate nodes , often
referred to as “ hidden ” layers , as internal layers and nodes
are typically not visible or accessible in various neural
networks . Although only a few intermediate layers are
illustrated for purposes of explanation , it should be under
stood that there is no limit to a number of intermediate layers
that can be utilized , and any limit on layers will often be a
factor of resources or time required for processed using this
model . As discussed elsewhere herein , there can be addi
tional types of models , networks , algorithms , or processes
used as well , as may include other numbers or selections of
nodes and layers . Validation data can be processed by layers
of this network to generate a set of inferences , or inference
scores , which can then be fed to a loss function 908 .
[0090] In this example network 900 , all nodes of a given
layer are interconnected to all nodes of an adjacent layer . As
illustrated , nodes of an intermediate layer will then each be
connected to nodes of two adjacent layers . Nodes are also
referred to as neurons or connected units in some models ,
and connections between nodes are referred to as edges .
Each node can perform a function for inputs received , such
as by using a specified function . Nodes and edges can obtain
different weightings during training , and individual layers of
nodes can perform specific types of transformations on
received input , where those transformations can also be
learned or adjusted during training . Learning can be super
vised or unsupervised learning , as may depend at least in
part upon a type of information contained in a training data
set . Various types of neural networks can be utilized , as may
include a convolutional neural network (CNN) that includes
a number of convolutional layers and a set of pooling layers ,
and have proven to be beneficial for applications such as
image recognition . CNNs can also be easier to train than
other networks due to a relatively small number of param
eters to be determined .
[0091] In at least one embodiment , such a complex
machine learning model can be trained using various tuning
parameters . Choosing parameters , fitting a model , and
evaluating this model are parts of a model tuning process ,
often referred to as hyperparameter optimization . Such tun
ing can involve introspecting an underlying model or data in
at least one embodiment . In a training or production setting ,
a robust workflow can be important to avoid overfitting of
hyperparameters as discussed elsewhere herein . Cross - vali
dation and adding Gaussian noise to a training dataset are
techniques that can be useful for avoiding overfitting to any
one dataset . For hyperparameter optimization it may be
desirable in at least one embodiment to keep training and
validation sets fixed . In at least one embodiment , hyperpa
rameters can be tuned in certain categories , as may include
data preprocessing , CNN architecture definition (for
example , filter sizes , number of filters) , stochastic gradient

descent (SGD) parameters (for example , learning rate) , and
regularization (for example , dropout probability) .
[0092] In an example pre - processing step , instances of a
dataset can be embedded into a lower dimensional space of
a certain size . A size of this space is a parameter to be tuned .
An architecture of this CNN contains many tunable param
eters . A parameter for filter sizes can represent an interpre
tation of information that corresponds to size of an instance
that will be analyzed . In computational linguistics , this is
known as an n - gram size . An example CNN uses three
different filter sizes , which represent potentially different
n - gram sizes . A number of filters per filter size can corre
spond to a depth of this filter . Each filter attempts to learn
something different from a structure of an instance , such as
a sentence structure for textual data . In a convolutional layer ,
an activation function can be a rectified linear unit and
pooling type set as max pooling . Results can then be
concatenated into a single dimensional vector , and a last
layer is fully connected onto a two - dimensional output . This
corresponds to binary classification to which an optimization
function can be applied . One such function is an implemen
tation of a Root Mean Square (RMS) propagation method of
gradient descent , where example hyperparameters can
include learning rate , batch size , maximum gradient normal ,
and epochs . With neural networks , regularization can be an
extremely important consideration . As mentioned , in at least
one embodiment input data may be relatively sparse . A main
hyperparameter in such a situation can be a dropout at a
penultimate layer , which represents a proportion of nodes
that will not " fire ” at each training cycle . An example
training process can suggest different hyperparameter con
figurations based on feedback for performance of previous
configurations . A model can be trained with a proposed
configuration , evaluated on a designated validation set , and
performance reporting . This process can be repeated to , for
example , trade off exploration (learning more about different
configurations and exploitation (leveraging previous
knowledge to achieve better results) .
[0093] As training CNNs can be parallelized and GPU
enabled computing resources can be utilized , multiple opti
mization strategies can be attempted for different scenarios .
A complex scenario allows tuning model architecture and
preprocessing and stochastic gradient descent parameters .
This expands a model configuration space . In a basic sce
nario , only preprocessing and stochastic gradient descent
parameters are tuned . There can be a greater number of
configuration parameters in this complex scenario than in a
basic scenario . Tuning in a joint space can be performed
using a linear or exponential number of steps , iteration
through an optimization loop for models . A cost for such a
tuning process can be significantly less than for tuning
processes such as random search and grid search , without
any significant performance loss .
[0094] In at least one embodiment backpropagation can be
utilized to calculate a gradient used for determining weights
for a neural network . Backpropagation is a form of differ
entiation , and can be used by a gradient descent optimization
algorithm to adjust weights applied to various nodes or
neurons as discussed above . weights can be determined in at
least one embodiment using gradient of a relevant loss
function . Backpropagation can utilize a derivative of a loss
function with respect to an output generated by a statistical
model . As mentioned , various nodes can have associated
activation functions that define output of respective nodes .

US 2020/0394458 A1 Dec. 17 , 2020
11

Various activation functions can be used as appropriate , as
may include radial basis functions (RBFs) and sigmoids ,
which can be utilized by various support vector machines
(SVMs) for transformation of data . An activation function of
an intermediate layer of nodes is referred to herein as an
inner product kernel . These functions can include , for
example , identity functions , step functions , sigmoidal func
tions , ramp functions , and so on . Activation functions can
also be linear or non - linear .

Inference and Training Logic
[0095] FIG . 10 illustrates inference and / or training logic
1015 used to perform inferencing and / or training operations
associated with one or more embodiments . Details regarding
inference and / or training logic 1015 are provided below in
conjunction with FIGS . 10 and / or 11 .
[0096] In at least one embodiment , inference and / or train
ing logic 1015 may include , without limitation , a data
storage 1001 to store forward and / or output weight and / or
input / output data corresponding to neurons or layers of a
neural network trained and / or used for inferencing in aspects
of one or more embodiments . In at least one embodiment
data storage 1001 stores weight parameters and / or input /
output data of each layer of a neural network trained or used
in conjunction with one or more embodiments during for
ward propagation of input / output data and / or weight param
eters during training and / or inferencing using aspects of one
or more embodiments . In at least one embodiment , any
portion of data storage 1001 may be included with other
on - chip or off - chip data storage , including a processor's L1 ,
L2 , or L3 cache or system memory .
[0097] In at least one embodiment , any portion of data
storage 1001 may be internal or external to one or more
processors or other hardware logic devices or circuits . In at
least one embodiment , data storage 1001 may be cache
memory , dynamic randomly addressable memory
(“ DRAM ") static randomly addressable memory
(" SRAM ”) , non - volatile memory (e.g. , Flash memory) , or
other storage . In at least one embodiment , choice of whether
data storage 1001 is internal or external to a processor , for
example , or comprised of DRAM , SRAM , Flash or some
other storage type may depend on available storage on - chip
versus off - chip , latency requirements of training and / or
inferencing functions being performed , batch size of data
used in inferencing and / or training of a neural network , or
some combination of these factors .
[0098] In at least one embodiment , inference and / or train
ing logic 1015 may include , without limitation , a data
storage 1005 to store backward and / or output weight and / or
input / output data corresponding to neurons or layers of a
neural network trained and / or used for inferencing in aspects
of one or more embodiments . In at least one embodiment ,
data storage 1005 stores weight parameters and / or input /
output data of each layer of a neural network trained or used
in conjunction with one or more embodiments during back
ward propagation of input / output data and / or weight param
eters during training and / or inferencing using aspects of one
or more embodiments . In at least one embodiment , any
portion of data storage 1005 may be included with other
on - chip or off - chip data storage , including a processor's Li ,
L2 , or L3 cache or system memory . In at least one embodi
ment , any portion of data storage 1005 may be internal or
external to on one or more processors or other hardware
logic devices or circuits . In at least one embodiment , data

storage 1005 may be cache memory , DRAM , SRAM , non
volatile memory (e.g. , Flash memory) , or other storage . In at
least one embodiment , choice of whether data storage 1005
is internal or external to a processor , for example , or
comprised of DRAM , SRAM , Flash or some other storage
type may depend on available storage on - chip versus off
chip , latency requirements of training and / or inferencing
functions being performed , batch size of data used in infer
encing and / or training of a neural network , or some com
bination of these factors .

[0099] In at least one embodiment , data storage 1001 and
data storage 1005 may be separate storage structures . In at
least one embodiment , data storage 1001 and data storage
1005 may be same storage structure . In at least one embodi
ment , data storage 1001 and data storage 1005 may be
partially same storage structure and partially separate stor
age structures . In at least one embodiment , any portion of
data storage 1001 and data storage 1005 may be included
with other on - chip or off - chip data storage , including a
processor's L1 , L2 , or L3 cache or system memory .
[0100] In at least one embodiment , inference and / or train
ing logic 1015 may include , without limitation , one or more
arithmetic logic unit (s) (“ ALU (s) ”) 1010 to perform logical
and / or mathematical operations based , at least in part on , or
indicated by , training and / or inference code , result of which
may result in activations (e.g. , output values from layers or
neurons within a neural network) stored in an activation
storage 1020 that are functions of input / output and / or weight
parameter data stored in data storage 1001 and / or data
storage 1005. In at least one embodiment , activations stored
in activation storage 1020 are generated according to linear
algebraic and or matrix - based mathematics performed by
ALU (s) 1010 in response to performing instructions or other
code , wherein weight values stored in data storage 1005
and / or data 1001 are used as operands along with other
values , such as bias values , gradient information , momen
tum values , or other parameters or hyperparameters , any or
all of which may be stored in data storage 1005 or data
storage 1001 or another storage on or off - chip . In at least one
embodiment , ALU (S) 1010 are included within one or more
processors or other hardware logic devices or circuits ,
whereas in another embodiment , ALU (s) 1010 may be
external to a processor or other hardware logic device or
circuit that uses them (e.g. , a co - processor) . In at least one
embodiment , ALUs 1010 may be included within a proces
sor's execution units or otherwise within a bank of ALUS
accessible by a processor's execution units either within
same processor or distributed between different processors
of different types (e.g. , central processing units , graphics
processing units , fixed function units , etc.) . In at least one
embodiment , data storage 1001 , data storage 1005 , and
activation storage 1020 may be on same processor or other
hardware logic device or circuit , whereas in another embodi
ment , they may be in different processors or other hardware
logic devices or circuits , or some combination of same and
different processors or other hardware logic devices or
circuits . In at least one embodiment , any portion of activa
tion storage 1020 may be included with other on - chip or
off - chip data storage , including a processor's L1 , L2 , or L3
cache or system memory . Furthermore , inferencing and / or
training code may be stored with other code accessible to a
processor or other hardware logic or circuit and fetched
and / or processed using a processor's fetch , decode , sched
uling , execution , retirement and / or other logical circuits .

US 2020/0394458 A1 Dec. 17 , 2020
12

input to next “ storage / computational pair 1005/1006 ” of
data storage 1005 and computational hardware 1006 , in
order to mirror conceptual organization of a neural network .
In at least one embodiment , each of storage / computational
pairs 1001/1002 and 1005/1006 may correspond to more
than one neural network layer . In at least one embodiment ,
additional storage / computation pairs (not shown) subse
quent to or in parallel with storage computation pairs
1001/1002 and 1005/1006 may be included in inference
and / or training logic 1015 .

[0101] In at least one embodiment , activation storage 1020
may be cache memory , DRAM , SRAM , non - volatile
memory (e.g. , Flash memory) , or other storage . In at least
one embodiment , activation storage 1020 may be com
pletely or partially within or external to one or more pro
cessors or other logical circuits . In at least one embodiment ,
choice of whether activation storage 1020 is internal or
external to a processor , for example , or comprised of
DRAM , SRAM , Flash or some other storage type may
depend on available storage on - chip versus off - chip , latency
requirements of training and / or inferencing functions being
performed , batch size of data used in inferencing and / or
training of a neural network , or some combination of these
factors . In at least one embodiment , inference and / or train
ing logic 1015 illustrated in FIG . 10 may be used in
conjunction with an application - specific integrated circuit
(“ ASIC ”) , such as Tensorflow® Processing Unit from
Google , an inference processing unit (IPU) from
GraphcoreTM , or a Nervana® (e.g. , “ Lake Crest ”) processor
from Intel Corp. In at least one embodiment , inference
and / or training logic 1015 illustrated in FIG . 10 may be used
in conjunction with central processing unit (“ CPU ”) hard
ware , graphics processing unit (“ GPU ”) hardware or other
hardware , such as field programmable gate arrays (“ FP
GAs ”) .
[0102] FIG . 11 illustrates inference and / or training logic
1015 , in at least one embodiment various . In at least one
embodiment , inference and / or training logic 1015 may
include , without limitation , hardware logic in which com
putational resources are dedicated or otherwise exclusively
used in conjunction with weight values or other information
corresponding to one or more layers of neurons within a
neural network . In at least one embodiment , inference and / or
training logic 1015 illustrated in FIG . 11 may be used in
conjunction with an application - specific integrated circuit
(ASIC) , such as Tensorflow® Processing Unit from Google ,
an inference processing unit (IPU) from GraphcoreTM , or a
Nervana® (e.g. , “ Lake Crest ”) processor from Intel Corp. In
at least one embodiment , inference and / or training logic
1015 illustrated in FIG . 11 may be used in conjunction with
central processing unit (CPU) hardware , graphics processing
unit (GPU) hardware or other hardware , such as field
programmable gate arrays (FPGAs) . In at least one embodi
ment , inference and / or training logic 1015 includes , without
limitation , data storage 1001 and data storage 1005 , which
may be used to store weight values and / or other information ,
including bias values , gradient information , momentum val
ues , and / or other parameter or hyperparameter information .
In at least one embodiment illustrated in FIG . 10.B , each of
data storage 1001 and data storage 1005 is associated with
a dedicated computational resource , such as computational
hardware 1002 and computational hardware 1006 , respec
tively . In at least one embodiment , each of computational
hardware 1002 and computational hardware 1006 comprises
one or more ALUs that perform mathematical functions ,
such as linear algebraic functions , only on information
stored in data storage 1001 and data storage 1005 , respec
tively , result of which is stored in activation storage 1020 .
[0103] In at least one embodiment , each of data storage
1001 and 1005 and corresponding computational hardware
1002 and 1006 , respectively , correspond to different layers
of a neural network , such that resulting activation from one
“ storage / computational pair 1001/1002 ” of data storage
1001 and computational hardware 1002 is provided as an

Neural Network Training and Deployment
[0104] FIG . 12 illustrates training and deployment of a
deep neural network , in at least one embodiment . In at least
one embodiment , untrained neural network 1206 is trained
using a training dataset 1202. In at least one embodiment ,
training framework 1104 is a PyTorch framework , whereas
in other embodiments , training framework 1104 is a Ten
sorflow , Boost , Caffe , Microsoft Cognitive Toolkit / CNTK ,
MXNet , Chainer , Keras , Deeplearning4j , or other training
framework . In at least one embodiment training framework
1104 trains an untrained neural network 1106 and enables it
to be trained using processing resources described herein to
generate a trained neural network 1108. In at least one
embodiment , weights may be chosen randomly or by pre
training using a deep belief network . In at least one embodi
ment , training may be performed in either a supervised ,
partially supervised , or unsupervised manner .
[0105] In at least one embodiment , untrained neural net
work 1106 is trained using supervised learning , wherein
training dataset 1102 includes an input paired with a desired
output for an input , or where training dataset 1102 includes
input having known output and output of a neural network
is manually graded . In at least one embodiment , untrained
neural network 1106 is trained in a supervised manner
processes inputs from training dataset 1102 and compares
resulting outputs against a set of expected or desired outputs .
In at least one embodiment , errors are then propagated back
through untrained neural network 1106. In at least one
embodiment , training framework 1104 adjusts weights that
control untrained neural network 1106. In at least one
embodiment , training framework 1104 includes tools to
monitor how well untrained neural network 1106 is con
verging towards a model , such as trained neural network
1108 , suitable to generating correct answers , such as in
result 1114 , based on known input data , such as new data
1112. In at least one embodiment , training framework 1104
trains untrained neural network 1106 repeatedly while adjust
weights to refine an output of untrained neural network 1106
using a loss function and adjustment algorithm , such as
stochastic gradient descent . In at least one embodiment ,
training framework 1104 trains untrained neural network
1106 until untrained neural network 1106 achieves a desired
accuracy . In at least one embodiment , trained neural network
1108 can then be deployed to implement any number of
machine learning operations .
[0106] In at least one embodiment , untrained neural net
work 1106 is trained using unsupervised learning , wherein
untrained neural network 1106 attempts to train itself using
unlabeled data . In at least one embodiment , unsupervised
learning training dataset 1102 will include input data without
any associated output data or “ ground truth ” data . In at least
one embodiment , untrained neural network 1106 can learn
groupings within training dataset 1102 and can determine

US 2020/0394458 A1 Dec. 17 , 2020
13

how individual inputs are related to untrained dataset 1102 .
In at least one embodiment , unsupervised training can be
used to generate a self - organizing map , which is a type of
trained neural network 1108 capable of performing opera
tions useful in reducing dimensionality of new data 1112. In
at least one embodiment , unsupervised training can also be
used to perform anomaly detection , which allows identifi
cation of data points in a new dataset 1112 that deviate from
normal patterns of new dataset 1112 .
[0107] In at least one embodiment , semi - supervised learn
ing may be used , which is a technique in which in training
dataset 1102 includes a mix of labeled and unlabeled data .
In at least one embodiment , training framework 1104 may be
used to perform incremental learning , such as through
transferred learning techniques . In at least one embodiment ,
incremental learning enables trained neural network 1108 to
adapt to new data 1112 without forgetting knowledge
instilled within network during initial training .

[0112] In at least one embodiment , as shown in FIG . 13 ,
framework layer 1320 includes a job scheduler 1332 , a
configuration manager 1334 , a resource manager 1336 and
a distributed file system 1338. In at least one embodiment ,
framework layer 1320 may include a framework to support
software 1332 of software layer 1330 and / or one or more
application (s) 1342 of application layer 1340. In at least one
embodiment , software 1332 or application (s) 1342 may
respectively include web - based service software or applica
tions , such as those provided by Amazon Web Services ,
Google Cloud and Microsoft Azure . In at least one embodi
ment , framework layer 1320 may be , but is not limited to , a
type of free and open - source software web application
framework such as Apache SparkTM (hereinafter “ Spark ”)
that may utilize distributed file system 1338 for large - scale
data processing (e.g. , “ big data ”) . In at least one embodi
ment , job scheduler 1332 may include a Spark driver to
facilitate scheduling of workloads supported by various
layers of data center 1300. In at least one embodiment ,
configuration manager 1334 may be capable of configuring
different layers such as software layer 1330 and framework
layer 1320 including Spark and distributed file system 1338
for supporting large - scale data processing . In at least one
embodiment , resource manager 1336 may be capable of
managing clustered or grouped computing resources
mapped to or allocated for support of distributed file system
1338 and job scheduler 1332. In at least one embodiment ,
clustered or grouped computing resources may include
grouped computing resource 1314 at data center infrastruc
ture layer 1310. In at least one embodiment , resource
manager 1336 may coordinate with resource orchestrator
1312 to manage these mapped or allocated computing

Data Center

[0108] FIG . 13 illustrates an example data center 1300 , in
which at least one embodiment may be used . In at least one
embodiment , data center 1300 includes a data center infra
structure layer 1310 , a framework layer 1320 , a software
layer 1330 and an application layer 1340 .
[0109] In at least one embodiment , as shown in FIG . 13 ,
data center infrastructure layer 1310 may include a resource
orchestrator 1312 , grouped computing resources 1314 , and
node computing resources (“ node C.R.s ”) 1316 (1) -1316 (N) ,
where “ N ” represents any whole , positive integer . In at least
one embodiment , node C.R.s 1316 (1) -1316 (N) may include ,
but are not limited to , any number of central processing units
(“ CPUs ”) or other processors (including accelerators , field
programmable gate arrays (FPGAs) , graphics processors ,
etc.) , memory devices (e.g. , dynamic read - only memory) ,
storage devices (e.g. , solid state or disk drives) , network
input / output (“ NW I / O ”) devices , network switches , virtual
machines (“ VMs ”) , power modules , and cooling modules ,
etc. In at least one embodiment , one or more node C.R.S
from among node C.R.s 1316 (1) -1316 (N) may be a server
having one more of above - mentioned computing

resources .

or

resources .

[0110] In at least one embodiment , grouped computing
resources 1314 may include separate groupings of node
C.R.s housed within one or more racks (not shown) , or many
racks housed in data centers at various geographical loca
tions (also not shown) . separate groupings of node C.R.S
within grouped computing resources 1314 may include
grouped compute , network , memory or storage resources
that may be configured or allocated to support one or more
workloads . In at least one embodiment , several node C.R.S
including CPUs or processors may grouped within one or
more racks to provide compute resources to support one or
more workloads . In at least one embodiment , one or more
racks may also include any number of power modules ,
cooling modules , and network switches , in any combination .
[0111] In at least one embodiment , resource orchestrator
1322 may configure or otherwise control one or more node
C.R.s 1316 (1) -1316 (N) and / or grouped computing resources
1314. In at least one embodiment , resource orchestrator
1322 may include a software design infrastructure (“ SDI ”)
management entity for data center 1300. In at least one
embodiment , resource orchestrator may include hardware ,
software or some combination thereof .

[0113] In at least one embodiment , software 1332 included
in software layer 1330 may include software used by at least
portions of node C.R.s 1316 (1) -1316 (N) , grouped comput
ing resources 1314 , and / or distributed file system 1338 of
framework layer 1320. one or more types of software may
include , but are not limited to , Internet web page search
software , e - mail virus scan software , database software , and
streaming video content software .
[0114] In at least one embodiment , application (s) 1342
included in application layer 1340 may include one or more
types of applications used by at least portions of node C.R.s
1316 (1) -1316 (N) , grouped computing resources 1314 , and /
or distributed file system 1338 of framework layer 1320. one
or more types of applications may include , but are not
limited to , any number of a genomics application , a cogni
tive compute , and a machine learning application , including
training or inferencing software , machine learning frame
work software (e.g. , PyTorch , TensorFlow , Caffe , etc.) or
other machine learning applications used in conjunction
with one or more embodiments .
[0115] In at least one embodiment , any of configuration
manager 1334 , resource manager 1336 , and resource orches
trator 1312 may implement any number and type of self
modifying actions based on any amount and type of data
acquired in any technically feasible fashion . In at least one
embodiment , self - modifying actions may relieve a data
center operator of data center 1300 from making possibly
bad configuration decisions and possibly avoiding underuti
lized and / or poor performing portions of a data center .
[0116] In at least one embodiment , data center 1300 may
include tools , services , software or other resources to train

US 2020/0394458 A1 Dec. 17 , 2020
14

one or more machine learning models or predict or infer
information using one or more machine learning models
according to one or more embodiments described herein .
For example , in at least one embodiment , a machine learning
model may be trained by calculating weight parameters
according to a neural network architecture using software
and computing resources described above with respect to
data center 1300. In at least one embodiment , trained
machine learning models corresponding to one or more
neural networks may be used to infer or predict information
using resources described above with respect to data center
1300 by using weight parameters calculated through one or
more training techniques described herein .
[0117] In at least one embodiment , data center may use
CPUs , application - specific integrated circuits (ASICs) ,
GPUs , FPGAs , or other hardware to perform training and / or
inferencing using above - described resources . Moreover , one
or more software and / or hardware resources described above
may be configured as a service to allow users to train or
performing inferencing of information , such as image rec
ognition , speech recognition , or other artificial intelligence
services .
[0118] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in system
FIG . 13 for inferencing or predicting operations based , at
least in part , on weight parameters calculated using neural
network training operations , neural network functions and /
or architectures , or neural network use cases described
herein .
[0119] In accordance with at least one embodiment , a data
center infrastructure 1310 can receive input text and cause
that input to be directed to corresponding components of
application layer 1340 and software layer 1330 for purposes
of training and / or inferencing as discussed herein .

[0121] Embodiments may be used in other devices such as
handheld devices and embedded applications . Some
examples of handheld devices include cellular phones , Inter
net Protocol devices , digital cameras , personal digital assis
tants (“ PDAs ”) , and handheld PCs . In at least one embodi
ment , embedded applications may include a microcontroller ,
a digital signal processor (“ DSP ') , system on a chip , net
work computers (“ NetPCs ”) , set - top boxes , network hubs ,
wide area network (“ WAN ”) switches , or any other system
that may perform one or more instructions in accordance
with at least one embodiment .
[0122] In at least one embodiment , computer system 1400
may include , without limitation , processor 1402 that may
include , without limitation , one or more execution units
1408 to perform machine learning model training and / or
inferencing according to techniques described herein . In at
least one embodiment , a system is a single processor desktop
or server system , but in another embodiment this system
may be a multiprocessor system . In at least one embodiment ,
processor 1402 may include , without limitation , a complex
instruction set computer (“ CISC ”) microprocessor , a
reduced instruction set computing (“ RISC ”) microprocessor ,
a very long instruction word (“ VLIW ”) microprocessor , a
processor implementing a combination of instruction sets , or
any other processor device , such as a digital signal proces
sor , for example . In at least one embodiment , processor 1402
may be coupled to a processor bus 1410 that may transmit
data signals between processor 1402 and other components
in computer system 1400 .
[0123] In at least one embodiment , processor 1402 may
include , without limitation , a Level 1 (“ L1 ”) internal cache
memory (“ cache ”) 1404. In at least one embodiment , pro
cessor 1402 may have a single internal cache or multiple
levels of internal cache . In at least one embodiment , cache
memory may reside external to processor 1402. Other
embodiments may also include a combination of both inter
nal and external caches depending on particular implemen
tation and needs . In at least one embodiment , register file
1406 may store different types of data in various registers
including , without limitation , integer registers , floating point
registers , status registers , and instruction pointer register .
[0124] In at least one embodiment , execution unit 1408 ,
including , without limitation , logic to perform integer and
floating point operations , also resides in processor 1402 .
Processor 1402 may also include a microcode (“ ucode ”)
read only memory (“ ROM ”) that stores microcode for
certain macro instructions . In at least one embodiment ,
execution unit 1408 may include logic to handle a packed
instruction set 1409. In at least one embodiment , by includ
ing packed instruction set 1409 in instruction set of a
general - purpose processor 1402 , along with associated cir
cuitry to execute instructions , operations used by many
multimedia applications may be performed using packed
data in a general - purpose processor 1402. In one or more
embodiments , many multimedia applications may be accel
erated and executed more efficiently by using full width of
a processor's data bus for performing operations on packed
data , which may eliminate need to transfer smaller units of
data across processor's data bus to perform one or more
operations one data element at a time .
[0125] In at least one embodiment , execution unit 1408
may also be used in microcontrollers , embedded processors ,
graphics devices , DSPs , and other types of logic circuits . In
at least one embodiment , computer system 1400 may

Computer Systems

[0120] FIG . 14 is a block diagram illustrating an exem
plary computer system , which may be a system with inter
connected devices and components , a system - on - a - chip
(SOC) or some combination thereof 1400 formed with a
processor that may include execution units to execute an
instruction , in at least one embodiment . In at least one
embodiment , computer system 1400 may include , without
limitation , a component , such as a processor 1402 to employ
execution units including logic to perform algorithms for
process data , in accordance with present disclosure , such as
in embodiment described herein . In at least one embodi
ment , computer system 1400 may include processors , such
as PENTIUM® Processor family , XeonTM , Itanium® ,
XScaleTM and / or StrongARMTM , Intel® CoreTM , or Intel®
NervanaTM microprocessors available from Intel Corpora
tion of Santa Clara , Calif . , although other systems (including
PCs having other microprocessors , engineering worksta
tions , set - top boxes and like) may also be used . In at least
one embodiment , computer system 1400 may execute a
version of WINDOWS ’ operating system available from
Microsoft Corporation of Redmond , Wash . , although other
operating systems (UNIX and Linux for example) , embed
ded software , and / or graphical user interfaces , may also be
used .

US 2020/0394458 A1 Dec. 17 , 2020
15

include , without limitation , a memory 1420. In at least one
embodiment , memory 1420 may be implemented as a
Dynamic Random Access Memory (“ DRAM ”) device , a
Static Random Access Memory (" SRAM ”) device , flash
memory device , or other memory device . Memory 1420
may store instruction (s) 1419 and / or data 1421 represented
by data signals that may be executed by processor 1402 .
[0126] In at least one embodiment , system logic chip may
be coupled to processor bus 1410 and memory 1420. In at
least one embodiment , system logic chip may include ,
without limitation , a memory controller hub (“ MCH ”) 1416 ,
and processor 1402 may communicate with MCH 1416 via
processor bus 1410. In at least one embodiment , MCH 1416
may provide a high bandwidth memory path 1418 to
memory 1420 for instruction and data storage and for
storage of graphics commands , data and textures . In at least
one embodiment , MCH 1416 may direct data signals
between processor 1402 , memory 1420 , and other compo
nents in computer system 1400 and to bridge data signals
between processor bus 1410 , memory 1420 , and a system
I / O 1422. In at least one embodiment , system logic chip may
provide a graphics port for coupling to a graphics controller .
In at least one embodiment , MCH 1416 may be coupled to
memory 1420 through a high bandwidth memory path 1418
and graphics / video card 1412 may be coupled to MCH 1416
through an Accelerated Graphics Port (“ AGP ”) interconnect
1414 .
(0127] In at least one embodiment , computer system 1400
may use system I / O 1422 that is a proprietary hub interface
bus to couple MCH 1416 to I / O controller hub (“ ICH ”)
1430. In at least one embodiment , ICH 1430 may provide
direct connections to some I / O devices via a local I / O bus .
In at least one embodiment , local I / O bus may include ,
without limitation , a high - speed I / O bus for connecting
peripherals to memory 1420 , chipset , and processor 1402 .
Examples may include , without limitation , an audio con
troller 1429 , a firmware hub (“ flash BIOS ”) 1428 , a wireless
transceiver 1426 , a data storage 1424 , a legacy I / O controller
1423 containing user input and keyboard interfaces , a serial
expansion port 1427 , such as Universal Serial Bus (“ USB ”) ,
and a network controller 1434. Data storage 1424 may
comprise a hard disk drive , a floppy disk drive , a CD - ROM
device , a flash memory device , or other mass storage device .
[0128] In at least one embodiment , FIG . 14 illustrates a
system , which includes interconnected hardware devices or
“ chips ” , whereas in other embodiments , FIG . 14A may
illustrate an exemplary System on a Chip (“ SOC ”) . In at least
one embodiment , devices illustrated in FIG . 14A may be
interconnected with proprietary interconnects , standardized
interconnects (e.g. , PCIe) or some combination thereof . In at
least one embodiment , one or more components of system
1400 are interconnected using compute express link (CXL)
interconnects .
[0129] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in system
FIG . 14A for inferencing or predicting operations based , at
least in part , on weight parameters calculated using neural
network training operations , neural network functions and /
or architectures , or neural network use cases described
herein .

[0130] In some embodiments , a video data stream may be
received over an expansion port 1427 or wireless transceiver
1426 , for example , then directed to processor 1402 and / or
video graphics card 1412 for processing . Depending on
whether components are part of a device such as an autono
mous vehicle or a separate device , output could then go to
a control system via I / O or transmitted to vehicle via
wireless transceiver .
[0131] FIG . 15 is a block diagram illustrating an electronic
device 1500 for utilizing a processor 1510 , in at least one
embodiment . In at least one embodiment , electronic device
1500 may be , for example and without limitation , a note
book , a tower server , a rack server , a blade server , a laptop ,
a desktop , a tablet , a mobile device , a phone , an embedded
computer , or any other suitable electronic device .
[0132] In at least one embodiment , system 1500 may
include , without limitation , processor 1510 communica
tively coupled to any suitable number or kind of compo
nents , peripherals , modules , or devices . In at least one
embodiment , processor 1510 coupled using a bus or inter
face , such as a 1 ° C. bus , a System Management Bus
(“ SMBus ”) , a Low Pin Count (LPC) bus , a Serial Peripheral
Interface (“ SPI ”) , a High Definition Audio (“ HDA ”) bus , a
Serial Advance Technology Attachment (“ SATA ”) bus , a
Universal Serial Bus (“ USB ”) (versions 1 , 2 , 3) , or a
Universal Asynchronous Receiver / Transmitter (“ UART ”)
bus . In at least one embodiment , FIG . 15 illustrates a system ,
which includes interconnected hardware devices or “ chips ” ,
whereas in other embodiments , FIG . 15 may illustrate an
exemplary System on a Chip (“ SOC ”) . In at least one
embodiment , devices illustrated in FIG . 15 may be inter
connected with proprietary interconnects , standardized
interconnects (e.g. , PCIe) or some combination thereof . In at
least one embodiment , one or more components of FIG . 15
are interconnected using compute express link (CXL) inter
connects .
[0133] In at least one embodiment , FIG . 15 may include a
display 1524 , a touch screen 1525 , a touch pad 1530 , a Near
Field Communications unit (“ NFC ”) 1545 , a sensor hub
1540 , a thermal sensor 1546 , an Express Chipset (“ EC ”)
1535 , a Trusted Platform Module (“ TPM ") 1538 , BIOS /
firmware / flash memory (“ BIOS , FW Flash ”) 1522 , a DSP
1560 , a drive “ SSD or HDD ”) 1520 such as a Solid State
Disk (“ SSD ”) or a Hard Disk Drive (“ HDD ”) , a wireless
local area network unit (“ WLAN ”) 1550 , a Bluetooth unit
1552 , a Wireless Wide Area Network unit (“ WWAN ") 1556 ,
a Global Positioning System (GPS) 1555 , a camera (“ USB
3.0 camera ") 1554 such as a USB 3.0 camera , or a Low
Power Double Data Rate (“ LPDDR ”) memory unit
(“ LPDDR3 ") 1515 implemented in , for example , LPDDR3
standard . These components may each be implemented in
any suitable manner .
[0134] In at least one embodiment , other components may
be communicatively coupled to processor 1510 through
components discussed above . In at least one embodiment , an
accelerometer 1541 , Ambient Light Sensor (“ ALS ”) 1542 ,
compass 1543 , and a gyroscope 1544 may be communica
tively coupled to sensor hub 1540. In at least one embodi
ment , thermal sensor 1539 , a fan 1537 , a keyboard 1546 , and
a touch pad 1530 may be communicatively coupled to EC
1535. In at least one embodiment , speaker 1563 , a head
phones 1564 , and a microphone (“ mic ”) 1565 may be
communicatively coupled to an audio unit (“ audio codec and
class d amp ”) 1564 , which may in turn be communicatively

US 2020/0394458 A1 Dec. 17 , 2020
16

coupled to DSP 1560. In at least one embodiment , audio unit
1564 may include , for example and without limitation , an
audio coder / decoder (" codec ”) and a class D amplifier . In at
least one embodiment , SIM card (“ SIM ”) 1557 may be
communicatively coupled to WWAN unit 1556. In at least
one embodiment , components such as WLAN unit 1550 and
Bluetooth unit 1552 , as well as WWAN unit 1556 may be
implemented in a Next Generation Form Factor (“ NGFF ”) .
[0135] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in system
FIG . 15 for inferencing or predicting operations based , at
least in part , on weight parameters calculated using neural
network training operations , neural network functions and /
or architectures , or neural network use cases described
herein .
[0136] FIG . 16 illustrates a computer system 1600 , in at
least one embodiment . In at least one embodiment , computer
system 1600 is configured to implement various processes
and methods described throughout this disclosure .
[0137] In at least one embodiment , computer system 1600
comprises , without limitation , at least one central processing
unit (" CPU ”) 1602 that is connected to a communication bus
1610 implemented using any suitable protocol , such as PCI
(" Peripheral Component Interconnect ”) , peripheral compo
nent interconnect express (“ PCI - Express ”) , AGP (“ Acceler
ated Graphics Port ”) , HyperTransport , or any other bus or
point - to - point communication protocol (s) . In at least one
embodiment , computer system 1600 includes , without limi
tation , a main memory 1604 and control logic (e.g. , imple
mented as hardware , software , or a combination thereof) and
data are stored in main memory 1604 which may take form
of random access memory (RAM ”) . In at least one embodi
ment , a network interface subsystem (“ network interface ”)
1622 provides an interface to other computing devices and
networks for receiving data from and transmitting data to
other systems from computer system 1600 .
[0138] In at least one embodiment , computer system 1600 ,
in at least one embodiment , includes , without limitation ,
input devices 1608 , parallel processing system 1612 , and
display devices 1606 which can be implemented using a
cathode ray tube (“ CRT ”) , liquid crystal display (“ LCD ") ,
light emitting diode (“ LED ") , plasma display , or other
suitable display technologies . In at least one embodiment ,
user input is received from input devices 1608 such as
keyboard , mouse , touchpad , microphone , and more . In at
least one embodiment , each of foregoing modules can be
situated on a single semiconductor platform to form a
processing system .
[0139] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in system
FIG . 16 for inferencing or predicting operations based , at
least in part , on weight parameters calculated using neural
network training operations , neural network functions and /
or architectures , or neural network use cases described
herein .

[0140] FIG . 17 illustrates a computer system 1700 , in at
least one embodiment . In at least one embodiment , computer
system 1700 includes , without limitation , a computer 1710
and a USB stick 1720. In at least one embodiment , computer
1710 may include , without limitation , any number and type
of processor (s) (not shown) and a memory (not shown) . In
at least one embodiment , computer 1710 includes , without
limitation , a server , a cloud instance , a laptop , and a desktop
computer .
[0141] In at least one embodiment , USB stick 1720
includes , without limitation , a processing unit 1730 , a USB
interface 1740 , and USB interface logic 1750. In at least one
embodiment , processing unit 1730 may be any instruction
execution system , apparatus , or device capable of executing
instructions . In at least one embodiment , processing unit
1730 may include , without limitation , any number and type
of processing cores (not shown) . In at least one embodiment ,
processing core 1730 comprises an application specific
integrated circuit (“ ASIC ”) that is optimized to perform any
amount and type of operations associated with machine
learning . For instance , in at least one embodiment , process
ing core 1730 is a tensor processing unit (“ TPC ”) that is
optimized to perform machine learning inference operations .
In at least one embodiment , processing core 1730 is a vision
processing unit (“ VPU ") that is optimized to perform
machine vision and machine learning inference operations .
[0142] In at least one embodiment , USB interface 1740
may be any type of USB connector or USB socket . For
instance , in at least one embodiment , USB interface 1740 is
a USB 3.0 Type - C socket for data and power . In at least one
embodiment , USB interface 1740 is a USB 3.0 Type - A
connector . In at least one embodiment , USB interface logic
1750 may include any amount and type of logic that enables
processing unit 1730 to interface with or devices (e.g. ,
computer 1710) via USB connector 1740 .
[0143] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in system
FIG . 17 for inferencing or predicting operations based , at
least in part , on weight parameters calculated using neural
network training operations , neural network functions and /
or architectures , or neural network use cases described
herein .
[0144] FIG . 18 is a block diagram illustrating an exem
plary system on a chip integrated circuit 1800 that may be
fabricated using one or more IP cores , in at least one
embodiment . In at least one embodiment , integrated circuit
1800 includes one or more application processor (s) 1805
(e.g. , CPUs) , at least one graphics processor 1810 , and may
additionally include an image processor 1815 and / or a video
processor 1820 , any of which may be a modular IP core . In
at least one embodiment , integrated circuit 1800 includes
peripheral or bus logic including a USB controller 1825 ,
UART controller 1830 , an SPI / SDIO controller 1835 , and an
I.sup.2S / I.sup.2C controller 1840. In at least one embodi
ment , integrated circuit 1800 can include a display device
1845 coupled to one or more of a high - definition multimedia
interface (HDMI) controller 1850 and a mobile industry
processor interface (MIPI) display interface 1855. In at least
one embodiment , storage may be provided by a flash
memory subsystem 1860 including flash memory and a flash

US 2020/0394458 A1 Dec. 17 , 2020
17

memory controller . In at least one embodiment , memory
interface may be provided via a memory controller 1865 for
access to SDRAM or SRAM memory devices . In at least one
embodiment , some integrated circuits additionally include
an embedded security engine 1870 .
[0145] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in inte
grated circuit 1800 for inferencing or predicting operations
based , at least in part , on weight parameters calculated using
neural network training operations , neural network functions
and / or architectures , or neural network use cases described
herein .

[0146] For example , inference and / or training logic 1015
can accept an input video stream and generate inferences for
objects represented in video stream as discussed herein .
Image processor 1815 can be used to process video frames
as they are received , in at least some embodiments .
[0147] FIGS . 19A - 19B illustrate exemplary integrated cir
cuits and associated graphics processors that may be fabri
cated using one or more IP cores , according to various
embodiments described herein . In addition to what is illus
trated , other logic and circuits may be included in at least
one embodiment , including additional graphics processors /
cores , peripheral interface controllers , or general - purpose
processor cores .
[0148] FIGS . 19A - 19B are block diagrams illustrating
exemplary graphics processors for use within an SoC ,
according to embodiments described herein . FIG . 19A illus
trates an exemplary graphics processor 1910 of a system on
a chip integrated circuit that may be fabricated using one or
more IP cores , in at least one embodiment . FIG . 19B
illustrates an additional exemplary graphics processor 1940
of a system on a chip integrated circuit that may be fabri
cated using one or more IP cores , in at least one embodi
ment . In at least one embodiment , graphics processor 1910
of FIG . 19A is a low power graphics processor core . In at
least one embodiment , graphics processor 1940 of FIG . 19B
is a higher performance graphics processor core . In at least
one embodiment , each of graphics processors 1910 , 1940
can be variants of graphics processor 1810 of FIG . 18 .
[0149] In at least one embodiment , graphics processor
1910 includes a vertex processor 1905 and one or more
fragment processor (s) 1915A - 1915N (e.g. , 1915A , 1915B ,
1915C , 1915D , through 1915N - 1 , and 1915N) . In at least
one embodiment , graphics processor 1910 can execute dif
ferent shader programs via separate logic , such that vertex
processor 1905 is optimized to execute operations for vertex
shader programs , while one or more fragment processor (s)
1915A - 1915N execute fragment (e.g. , pixel) shading opera
tions for fragment or pixel shader programs . In at least one
embodiment , vertex processor 1905 performs a vertex pro
cessing stage of a 3D graphics pipeline and generates
primitives and vertex data . In at least one embodiment ,
fragment processor (s) 1915A - 1915N use primitive and ver
tex data generated by vertex processor 1905 to produce a
framebuffer that is displayed on a display device . In at least
one embodiment , fragment processor (s) 1915A - 1915N are
optimized to execute fragment shader programs as provided

for in an OpenGL API , which may be used to perform
similar operations as a pixel shader program as provided for
in a Direct 3D API .
[0150] In at least one embodiment , graphics processor
1910 additionally includes one or more memory manage
ment units (MMUS) 1920A - 1920B , cache (s) 1925A - 1925B ,
and circuit interconnect (s) 1930A - 1930B . In at least one
embodiment , one or more MMU (s) 1920A - 1920B provide
for virtual to physical address mapping for graphics proces
sor 1910 , including for vertex processor 1905 and / or frag
ment processor (s) 1915A - 1915N , which may reference ver
tex or image / texture data stored in memory , in addition to
vertex or image / texture data stored in one or more cache (s)
1925A - 1925B . In at least one embodiment , one or more
MMU (S) 1920A - 1920B may be synchronized with other
MMUs within system , including one or more MMUs asso
ciated with one or more application processor (s) 1805 ,
image processors 1815 , and / or video processors 1820 of
FIG . 18 , such that each processor 1805-1820 can participate
in a shared or unified virtual memory system . In at least one
embodiment , one or more circuit interconnect (s) 1930A
1930B enable graphics processor 1910 to interface with
other IP cores within SoC , either via an internal bus of SoC
or via a direct connection .
[0151] In at least one embodiment , graphics processor
1940 includes one or more MMU (s) 1920A - 1920B , caches
1925A - 1925B , and circuit interconnects 1930A - 1930B of
graphics processor 1910 of FIG . 19A . In at least one
embodiment , graphics processor 1940 includes one or more
shader core (s) 1955A - 1955N (e.g. , 1955A , 1955B , 1955C ,
1955D , 1955E , 1955F , through 1955N - 1 , and 1955N) ,
which provides for a unified shader core architecture in
which a single core or type or core can execute all types of
programmable shader code , including shader program code
to implement vertex shaders , fragment shaders , and / or com
pute shaders . In at least one embodiment , a number of shader
cores can vary . In at least one embodiment , graphics pro
cessor 1940 includes an inter - core task manager 1945 , which
acts as a thread dispatcher to dispatch execution threads to
one or more shader cores 1955A - 1955N and a tiling unit
1958 to accelerate tiling operations for tile - based rendering ,
in which rendering operations for a scene are subdivided in
image space , for example to exploit local spatial coherence
within a scene or to optimize use of internal caches .
[0152] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in inte
grated circuit 19A and / or 19B for inferencing or predicting
operations based , at least in part , on weight parameters
calculated using neural network training operations , neural
network functions and / or architectures , or neural network
use cases described herein . For example , inference and / or
training logic 1015 can accept an input video stream and
generate inferences for objects represented in video stream
as discussed herein .
[0153] FIGS . 20A - 20B illustrate additional exemplary
graphics processor logic according to embodiments
described herein . FIG . 20A illustrates a graphics core 2000
that may be included within graphics processor 1810 of FIG .
18 , in at least one embodiment , and may be a unified shader
core 1955A - 1955N as in FIG . 19B in at least one embodi

US 2020/0394458 A1 Dec. 17 , 2020
18

ment . FIG . 20B illustrates a highly - parallel general - purpose
graphics processing unit 2030 suitable for deployment on a
multi - chip module in at least one embodiment .
[0154] In one embodiment , graphics core 2000 includes a
shared instruction cache 2002 , a texture unit 2018 , and a
cache / shared memory 2020 that may be shared with execu
tion resources within graphics core 2000. In one embodi
ment , graphics core 2000 can include multiple slices 2001A
2001N or partition for each core , and a graphics processor
can include multiple instances of graphics core 2000. Slices
2001A - 2001N can include support logic including a local
instruction cache 2004A - 2004N , a thread scheduler 2006A
2006N , a thread dispatcher 2008A - 2008N , and a set of
registers 2010A - 2010N . In one embodiment , slices 2001A
2001N can include a set of additional function units (AFUS
2012A - 2012N) , floating - point units (FPU 2014A - 2014N) ,
integer arithmetic logic units (ALUS 2016-2016N) , address
computational units (ACU 2013A - 2013N) , double - precision
floating - point units (DPFPU 2015A - 2015N) , and matrix
processing units (MPU 2017A - 2017N) .
[0155] In one embodiment , FPUS 2014A - 2014N can per
form single - precision (32 - bit) and half - precision (16 - bit)
floating point operations , while DPFPUs 2015A - 2015N
perform double precision (64 - bit) floating point operations .
In one embodiment , ALUS 2016A - 2016N can perform vari
able precision integer operations at 8 - bit , 16 - bit , and 32 - bit
precision , and can be configured for mixed precision opera
tions . In one embodiment , MPUS 2017A - 2017N can also be
configured for mixed precision matrix operations , including
half - precision floating point and 8 - bit integer operations . In
one embodiment , MPUs 2017-2017N can perform a variety
of matrix operations to accelerate machine learning appli
cation frameworks , including enabling support for acceler
ated general matrix to matrix multiplication (GEMM) . In
one embodiment , AFUs 2012A - 2012N can perform addi
tional logic operations not supported by floating - point or
integer units , including trigonometric operations (e.g. , Sine ,
Cosine , etc.) .
[0156] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in graphics
core 2000 for inferencing or predicting operations based , at
least in part , on weight parameters calculated using neural
network training operations , neural network functions and /
or architectures , or neural network use cases described
herein .
[0157] FIG . 20B illustrates a general - purpose processing
unit (GPGPU) 2030 that can be configured to enable highly
parallel compute operations to be performed by an array of
graphics processing units , in at least one embodiment . In at
least one embodiment , GPGPU 2030 can be linked directly
to other instances of GPGPU 2030 to create a multi - GPU
cluster to improve training speed for deep neural networks .
In at least one embodiment , GPGPU 2030 includes a host
interface 2032 to enable a connection with a host processor .
In at least one embodiment , host interface 2032 is a PCI
Express interface . In at least one embodiment , host interface
2032 can be a vendor specific communications interface or
communications fabric . In at least one embodiment , GPGPU
2030 receives commands from a host processor and uses a
global scheduler 2034 to distribute execution threads asso

ciated with those commands to a set of compute clusters
2036A - 2036H . In at least one embodiment , compute clusters
2036A - 2036H share a cache memory 2038. In at least one
embodiment , cache memory 2038 can serve as a higher
level cache for cache memories within compute clusters
2036A - 2036H .
[0158] In at least one embodiment , GPGPU 2030 includes
memory 2044A - 2044B coupled with compute clusters
2036A - 2036H via a set of memory controllers 2042A
2042B . In at least one embodiment , memory 2044A - 2044B
can include various types of memory devices including
dynamic random access memory (DRAM) or graphics ran
dom access memory , such as synchronous graphics random
access memory (SGRAM) , including graphics double data
rate (GDDR) memory .
[0159] In at least one embodiment , compute clusters
2036A - 2036H each include a set of graphics cores , such as
graphics core 2000 of FIG . 20A , which can include multiple
types of integer and floating point logic units that can
perform computational operations at a range of precisions
including suited for machine learning computations . For
example , in at least one embodiment , at least a subset of
floating point units in each of compute clusters 2036A
2036H can be configured to perform 16 - bit or 32 - bit floating
point operations , while a different subset of floating point
units can be configured to perform 64 - bit floating point
operations .
[0160] In at least one embodiment , multiple instances of
GPGPU 2030 can be configured to operate as a compute
cluster . In at least one embodiment , communication used by
compute clusters 2036A - 2036H for synchronization and
data exchange varies across embodiments . In at least one
embodiment , multiple instances of GPGPU 2030 commu
nicate over host interface 2032. In at least one embodiment ,
GPGPU 2030 includes an I / O hub 2039 that couples
GPGPU 2030 with a GPU link 2040 that enables a direct
connection to other instances of GPGPU 2030. In at least
one embodiment , GPU link 2040 is coupled to a dedicated
GPU - to - GPU bridge that enables communication and syn
chronization between multiple instances of GPGPU 2030. In
at least one embodiment GPU link 2040 couples with a high
speed interconnect to transmit and receive data to other
GPGPUs or parallel processors . In at least one embodiment ,
multiple instances of GPGPU 2030 are located in separate
data processing systems and communicate via a network
device that is accessible via host interface 2032. In at least
one embodiment GPU link 2040 can be configured to enable
a connection to a host processor in addition to or as an
alternative to host interface 2032 .
[0161] In at least one embodiment , GPGPU 2030 can be
configured to train neural networks . In at least one embodi
ment , GPGPU 2030 can be used within a inferencing
platform . In at least one embodiment , in which GPGPU
2030 is used for inferencing , GPGPU may include fewer
compute clusters 2036A - 2036H relative to when GPGPU is
used for training a neural network . In at least one embodi
ment , memory technology associated with memory 2044A
2044B may differ between inferencing and training configu
rations , with higher bandwidth memory technologies
devoted to training configurations . In at least one embodi
ment , inferencing configuration of GPGPU 2030 can sup
port inferencing specific instructions . For example , in at
least one embodiment , an inferencing configuration can
provide support for one or more 8 - bit integer dot product

US 2020/0394458 A1 Dec. 17 , 2020
19

instructions , which may be used during inferencing opera
tions for deployed neural networks .
[0162] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in GPGPU
2030 for inferencing or predicting operations based , at least
in part , on weight parameters calculated using neural net
work training operations , neural network functions and / or
architectures , or neural network use cases described herein .
[0163] FIG . 21 is a block diagram illustrating a computing
system 2100 in at least one embodiment . In at least one
embodiment , computing system 2100 includes a processing
subsystem 2101 having one or more processor (s) 2102 and
a system memory 2104 communicating via an interconnec
tion path that may include a memory hub 2105. In at least
one embodiment , memory hub 2105 may be a separate
component within a chipset component or may be integrated
within one or more processor (s) 2102. In at least one
embodiment , memory hub 2105 couples with an I / O sub
system 2111 via a communication link 2106. In at least one
embodiment , I / O subsystem 2111 includes an I / O hub 2107
that can enable computing system 2100 to receive input
from one or more input device (s) 2108. In at least one
embodiment , I / O hub 2107 can enable a display controller ,
which may be included in one or more processor (s) 2102 , to
provide outputs to one or more display device (s) 2110A . In
at least one embodiment , one or more display device (s)
2110A coupled with I / O hub 2107 can include a local ,
internal , or embedded display device .
[0164] In at least one embodiment , processing subsystem
2101 includes one or more parallel processor (s) 2112
coupled to memory hub 2105 via a bus or other communi
cation link 2113. In at least one embodiment , communica
tion link 2113 may be one of any number of standards based
communication link technologies or protocols , such as , but
not limited to PCI Express , or may be a vendor specific
communications interface or communications fabric . In at
least one embodiment , one or more parallel processor (s)
2112 form a computationally focused parallel or vector
processing system that can include a large number of pro
cessing cores and / or processing clusters , such as a many
integrated core (MIC) processor . In at least one embodiment ,
one or more parallel processor (s) 2112 form a graphics
processing subsystem that can output pixels to one of one or
more display device (s) 2110A coupled via I / O Hub 2107. In
at least one embodiment , one or more parallel processor (s)
2112 can also include a display controller and display
interface (not shown) to enable a direct connection to one or
more display device (s) 2110B .
[0165] In at least one embodiment , a system storage unit
2114 can connect to I / O hub 2107 to provide a storage
mechanism for computing system 2100. In at least one
embodiment , an I / O switch 2116 can be used to provide an
interface mechanism to enable connections between I / O hub
2107 and other components , such as a network adapter 2118
and / or wireless network adapter 2119 that may be integrated
into a platform , and various other devices that can be added
via one or more add - in device (s) 2120. In at least one
embodiment , network adapter 2118 can be an Ethernet
adapter or another wired network adapter . In at least one
embodiment , wireless network adapter 2119 can include one

or more of a Wi - Fi , Bluetooth , near field communication
(NFC) , or other network device that includes one or more
wireless radios .
[0166] In at least one embodiment , computing system
2100 can include other components not explicitly shown ,
including USB or other port connections , optical storage
drives , video capture devices , and so on , may also be
connected to I / O hub 2107. In at least one embodiment ,
communication paths interconnecting various components
in FIG . 21 may be implemented using any suitable proto
cols , such as PCI (Peripheral Component Interconnect)
based protocols (e.g. , PCI - Express) , or other bus or point
to - point communication interfaces and / or protocol (s) , such
as NV - Link high - speed interconnect , or interconnect proto
cols .
[0167] In at least one embodiment , one or more parallel
processor (s) 2112 incorporate circuitry optimized for graph
ics and video processing , including , for example , video
output circuitry , and constitutes a graphics processing unit
(GPU) . In at least one embodiment , one or more parallel
processor (s) 2112 incorporate circuitry optimized for gen
eral purpose processing . In at least embodiment , compo
nents of computing system 2100 may be integrated with one
or more other system elements on a single integrated circuit .
For example , in at least one embodiment , one or more
parallel processor (s) 2112 , memory hub 2105 , processor (s)
2102 , and I / O hub 2107 can be integrated into a system on
chip (SOC) integrated circuit . In at least one embodiment ,
components of computing system 2100 can be integrated
into a single package to form a system in package (SIP)
configuration . In at least one embodiment , at least a portion
of components of computing system 2100 can be integrated
into a multi - chip module (MCM) , which can be intercon
nected with other multi - chip modules into a modular com puting system .
[0168] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in system
FIG . 2100 for inferencing or predicting operations based , at
least in part , on weight parameters calculated using neural
network training operations , neural network functions and /
or architectures , or neural network use cases described
herein .

Processors

[0169] FIG . 22 illustrates a parallel processor 2200
according to at least on embodiment . In at least one embodi
ment , various components of parallel processor 2200 may be
implemented using one or more integrated circuit devices ,
such as programmable processors , application specific inte
grated circuits (ASICs) , or field programmable gate arrays
(FPGA) . In at least one embodiment , illustrated parallel
processor 2200 is a variant of one or more parallel processor
(s) 2112 shown in FIG . 21 according to an exemplary
embodiment .
[0170] In at least one embodiment , parallel processor 2200
includes a parallel processing unit 2202. In at least one
embodiment , parallel processing unit 2202 includes an I / O
unit 2204 that enables communication with other devices ,
including other instances of parallel processing unit 2202. In
at least one embodiment , 1/0 unit 2204 may be directly

US 2020/0394458 A1 Dec. 17 , 2020
20

connected to other devices . In at least one embodiment , I / O
unit 2204 connects with other devices via use of a hub or
switch interface , such as memory hub 2105. In at least one
embodiment , connections between memory hub 2105 and
I / O unit 2204 form a communication link 2113. In at least
one embodiment , I / O unit 2204 connects with a host inter
face 2206 and a memory crossbar 2216 , where host interface
2206 receives commands directed to performing processing
operations and memory crossbar 2216 receives commands
directed to performing memory operations .
[0171] In at least one embodiment , when host interface
2206 receives a command buffer via 1/0 unit 2204 , host
interface 2206 can direct work operations to perform those
commands to a front end 2208. In at least one embodiment ,
front end 2208 couples with a scheduler 2210 , which is
configured to distribute commands or other work items to a
processing cluster array 2212. In at least one embodiment ,
scheduler 2210 ensures that processing cluster array 2212 is
properly configured , and in a valid state , before tasks are
distributed to processing cluster array 2212 of processing
cluster array 2212. In at least one embodiment , scheduler
2210 is implemented via firmware logic executing on a
microcontroller . In at least one embodiment , microcontroller
implemented scheduler 2210 is configurable to perform
complex scheduling and work distribution operations at
coarse and fine granularity , enabling rapid preemption and
context switching of threads executing on processing array
2212. In at least one embodiment , host software can prove
workloads for scheduling on processing array 2212 via one
of multiple graphics processing doorbells . In at least one
embodiment , workloads can then be automatically distrib
uted across processing array 2212 by scheduler 2210 logic
within a microcontroller including scheduler 2210 .
[0172] In at least one embodiment , processing cluster
array 2212 can include up to “ N ” processing clusters (e.g. ,
cluster 2214A , cluster 2214B , through cluster 2214N) . In at
least one embodiment , each cluster 2214A - 2214N of pro
cessing cluster array 2212 can execute a large number of
concurrent threads . In at least one embodiment , scheduler
2210 can allocate work to clusters 2214A - 2214N of pro
cessing cluster array 2212 using various scheduling and / or
work distribution algorithms , which may vary depending on
workload arising for each type of program or computation .
In at least one embodiment , scheduling can be handled
dynamically by scheduler 2210 , or can be assisted in part by
compiler logic during compilation of program logic config
ured for execution by processing cluster array 2212. In at
least one embodiment , different clusters 2214A - 2214N of
processing cluster array 2212 can be allocated for processing
different types of grams or for performing different types
of computations .
[0173] In at least one embodiment , processing cluster
array 2212 can be configured to perform various types of
parallel processing operations . In at least one embodiment ,
processing cluster array 2212 is configured to perform
general - purpose parallel compute operations . For example ,
in at least one embodiment , processing cluster array 2212
can include logic to execute processing tasks including
filtering of video and / or audio data , performing modeling
operations , including physics operations , and performing
data transformations .
[0174] In at least one embodiment , processing cluster
array 2212 is configured to perform parallel graphics pro
cessing operations . In at least one embodiment , processing

cluster array 2212 can include additional logic to support
execution of such graphics processing operations , including ,
but not limited to texture sampling logic to perform texture
operations , as well as tessellation logic and other vertex
processing logic . In at least one embodiment , processing
cluster array 2212 can be configured to execute graphics
processing related shader programs such as , but not limited
to vertex shaders , tessellation shaders , geometry shaders ,
and pixel shaders . In at least one embodiment , parallel
processing unit 2202 can transfer data from system memory
via I / O unit 2204 for processing . In at least one embodiment ,
during processing , transferred data can be stored to on - chip
memory (e.g. , parallel processor memory 2222) during
processing , then written back to system memory .
[0175] In at least one embodiment , when parallel process
ing unit 2202 is used to perform graphics processing ,
scheduler 2210 can be configured to divide a processing
workload into approximately equal sized tasks , to better
enable distribution of graphics processing operations to
multiple clusters 2214A - 2214N of processing cluster array
2212. In at least one embodiment , portions of processing
cluster array 2212 can be configured to perform different
types of processing . For example , in at least one embodi
ment , a first portion may be configured to perform vertex
shading and topology generation , a second portion may be
configured to perform tessellation and geometry shading ,
and a third portion may be configured to perform pixel
shading or other screen space operations , to produce a
rendered image for display . In at least one embodiment ,
intermediate data produced by one or more of clusters
2214A - 2214N may be stored in buffers to allow intermedi
ate data to be transmitted between clusters 2214A - 2214N for
further processing .
[0176] In at least one embodiment , processing cluster
array 2212 can receive processing tasks to be executed via
scheduler 2210 , which receives commands defining process
ing tasks from front end 2208. In at least one embodiment ,
processing tasks can include indices of data to be processed ,
such as may include surface (patch) data , primitive data ,
vertex data , and / or pixel data , as well as state rameters and
commands defining how data is to be processed (e.g. , what
program is to be executed) . In at least one embodiment ,
scheduler 2210 may be configured to fetch indices corre
sponding to tasks or may receive indices from front end
2208. In at least one embodiment , front end 2208 can be
configured to ensure processing cluster array 2212 is con
figured to a valid state before a workload specified by
incoming command buffers (e.g. , batch - buffers , push buf
fers , etc.) is initiated .
[0177] In at least one embodiment , each of one or more
instances of parallel processing unit 2202 can couple with
parallel processor memory 2222. In at least one embodi
ment , parallel processor memory 2222 can be accessed via
memory crossbar 2216 , which can receive memory requests
from processing cluster array 2212 as well as 1/0 unit 2204 .
In at least one embodiment , memory crossbar 2216 can
access parallel processor memory 2222 via a memory inter
face 2218. In at least one embodiment , memory interface
2218 can include multiple partition units (e.g. , partition unit
2220A , partition unit 2220B , through partition unit 2220N)
that can each couple to a portion (e.g. , memory unit) of
parallel processor memory 2222. In at least one embodi
ment , a number of partition units 2220A - 2220N is config
ured to be equal to a number of memory units , such that a

US 2020/0394458 A1 Dec. 17 , 2020
21

first partition unit 2220A has a corresponding first memory
unit 2224A , a second partition unit 2220B has a correspond
ing memory unit 2224B , and an Nth partition unit 2220N has
a corresponding Nth memory unit 2224N . In at least one
embodiment , a number of partition units 2220A - 2220N may
not be equal to a number of memory devices .
[0178] In at least one embodiment , memory units 2224A
2224N can include various types of memory devices , includ
ing dynamic random access memory (DRAM) or graphics
random access memory , such as synchronous graphics ran
dom access memory (SGRAM) , including graphics double
data rate (GDDR) memory . In at least one embodiment ,
memory units 2224A - 2224N may also include 3D stacked
memory , including but not limited to high bandwidth
memory (HBM) . In at least one embodiment , render targets ,
such as frame buffers or texture maps may be stored across
memory units 2224A - 2224N , allowing partition units
2220A - 2220N to write portions of each render target in
parallel to efficiently use available bandwidth of parallel
processor memory 2222. In at least one embodiment , a local
instance of parallel processor memory 2222 may be
excluded in favor of a unified memory design that utilizes
system memory in conjunction with local cache memory .
[0179] In at least one embodiment , any one of clusters
2214A - 2214N of processing cluster array 2212 can process
data that will be written to any of memory units 2224A
2224N within parallel processor memory 2222. In at least
one embodiment , memory crossbar 2216 can be configured
to transfer an output of each cluster 2214A - 2214N to any
partition unit 2220A - 2220N or to another cluster 2214A
2214N , which can perform additional processing operations
on an output . In at least one embodiment , each cluster
2214A - 2214N can communicate with memory interface
2218 through memory crossbar 2216 to read from or write
to various external memory devices . In at least one embodi
ment , memory crossbar 2216 has a connection to memory
interface 2218 to communicate with I / O unit 2204 , as well
as a connection to a local instance of parallel processor
memory 2222 , enabling processing units within different
processing clusters 2214A - 2214N to communicate with
system memory or other memory that is not local to parallel
processing unit 2202. In at least one embodiment , memory
crossbar 2216 can use virtual channels to separate traffic
streams between clusters 2214A - 2214N and partition units
2220A - 2220N .
[0180] In at least one embodiment , multiple instances of
parallel processing unit 2202 can be provided on a single
add - in card , or multiple add - in cards can be interconnected .
In at least one embodiment , different instances of parallel
processing unit 2202 can be configured to inter - operate even
if different instances have different numbers of processing
cores , different amounts of local parallel processor memory ,
and / or other configuration differences . For example , in at
least one embodiment , some instances of parallel processing
unit 2202 can include higher precision floating point units
relative to other instances . In at least one embodiment ,
systems incorporating one or more instances of parallel
processing unit 2202 or parallel processor 2200 can be
implemented in a variety of configurations and form factors ,
including but not limited to desktop , laptop , or handheld
personal computers , servers , workstations , game consoles ,
and / or embedded systems .
[0181] FIG . 23 is a block diagram of a partition unit 2320
in at least one embodiment . In at least one embodiment ,

partition unit 2320 is an instance of one of partition units
2220A - 2220N of FIG . 22. In at least one embodiment ,
partition unit 2320 includes an L2 cache 2321 , a frame
buffer interface 2325 , and a ROP 2326 (raster operations
unit) . L2 cache 2321 is a read / write cache that is configured
to perform load and store operations received from memory
crossbar 2316 and ROP 2326. In at least one embodiment ,
read misses and urgent write - back requests are output by L2
cache 2321 to frame buffer interface 2325 for processing . In
at least one embodiment , updates can also be sent to a frame
buffer via frame buffer interface 2325 for processing . In at
least one embodiment , frame buffer interface 2325 inter
faces with one of memory units in parallel processor
memory , such as memory units 2224A - 2224N of FIG . 22
(e.g. , within parallel processor memory 2222) .
[0182] In at least one embodiment , ROP 2326 is a pro
cessing unit that performs raster operations such as stencil ,
z test , blending , and like . In at least one embodiment , ROP
2326 then outputs processed graphics data that is stored in
graphics memory . In at least one embodiment , ROP 2326
includes compression logic to compress depth or color data
that is written to memory and decompress depth or color
data that is read from memory . In at least one embodiment ,
compression logic can be lossless compression logic that
makes use of one or more of multiple compression algo
rithms . A type of compression that is performed by ROP
2326 can vary based on statistical characteristics of data to
be compressed . For example , in at least one embodiment ,
delta color compression is performed on depth and color
data on a per - tile basis .
[0183] In at least one embodiment , ROP 2326 is included
within each processing cluster (e.g. , cluster 2214A - 2214N
of FIG . 22) instead of within partition unit 2320. In at least
one embodiment , read and write requests for pixel data are
transmitted over memory crossbar 2316 instead of pixel
fragment data . In at least one embodiment , processed graph
ics data may be displayed on a display device , such as one
of one or more display device (s) 2110 of FIG . 21 , routed for
further processing by processor (s) 2102 , or routed for further
processing by one of processing entities within parallel
processor 2200 of FIG . 22 .
[0184] FIG . 24 is a block diagram of a processing cluster
2414 within a parallel processing unit in at least one embodi
ment . In at least one embodiment , a processing cluster is an
instance of one of processing clusters 2214A - 2214N of FIG .
22. In at least one embodiment , processing cluster 2414 can
be configured to execute many threads in parallel , where a
term “ thread ” refers to an instance of a particular program
executing on a particular set of input data . In at least one
embodiment , single - instruction , multiple - data (SIMD)
instruction issue techniques are used to support parallel
execution of a large number of threads without providing
multiple independent instruction units . In at least one
embodiment , single - instruction , multiple - thread (SIMT)
techniques are used to support parallel execution of a large
number of synchronized threads , using a instruction unit
configured to issue instructions to a set of processing
engines within each one of processing clusters .
[0185] In at least one embodiment , operation of process
ing cluster 2214 can be controlled via a pipeline manager
2432 that distributes processing tasks to SIMT parallel
processors . In at least one embodiment , pipeline manager
2432 receives instructions from scheduler 2210 of FIG . 22
and manages execution of those instructions via a graphics

US 2020/0394458 A1 Dec. 17 , 2020
22

multiprocessor 2434 and / or a texture unit 2436. In at least
one embodiment , graphics multiprocessor 2434 is an exem
plary instance of a SIMT parallel processor . However , in at
least one embodiment , various types of SIMT parallel pro
cessors of differing architectures may be included within
processing cluster 2414. In at least one embodiment , one or
more instances of graphics multiprocessor 2434 can be
included within a processing cluster 2414. In at least one
embodiment , graphics multiprocessor 2434 can process data
and a data crossbar 2440 can be used to distribute processed
data to one of multiple possible destinations , including other
shader units . In at least one embodiment , pipeline manager
2432 can facilitate distribution of processed data by speci
fying destinations for processed data to be distributed via
data crossbar 2440 .
[0186] In at least one embodiment , each graphics multi
processor 2434 within processing cluster 2414 can include
an identical set of functional execution logic (e.g. , arithmetic
logic units , load - store units , etc.) . In at least one embodi
ment , functional execution logic can be configured in a
pipelined manner in which new instructions can be issued
before previous instructions are complete . In at least one
embodiment , functional execution logic supports a variety
of operations including integer and floating point arithmetic ,
comparison operations , Boolean operations , bit - shifting , and
computation of various algebraic functions . In at least one
embodiment , a same functional - unit hardware can be lev
eraged to perform different operations and any combination
of functional units may be present .
[0187] In at least one embodiment , instructions transmit
ted to processing cluster 2414 constitute a thread . In at least
one embodiment , a set of threads executing across a set of
parallel processing engines is a thread group . In at least one
embodiment , a thread group executes a program on different
input data . In at least one embodiment , each thread within a
thread group can be assigned to a different processing engine
within a graphics multiprocessor 2434. In at least one
embodiment , a thread group may include fewer threads than
a number of processing engines within graphics multipro
cessor 2434. In at least one embodiment , when a thread
group includes fewer threads than a number of processing
engines , one or more of processing engines may be idle
during cycles in which that thread group is being processed .
In at least one embodiment , a thread group may also include
more threads than a number of processing engines within
graphics multiprocessor 2434. In at least one embodiment ,
when a thread group includes more threads than a number of
processing engines within graphics multiprocessor 2434 ,
processing can be performed over consecutive clock cycles .
In at least one embodiment , multiple thread groups can be
executed concurrently on a graphics multiprocessor 2434 .
[0188] In at least one embodiment , graphics multiproces
sor 2434 includes an internal cache memory to perform load
and store operations . In at least one embodiment , graphics
multiprocessor 2434 can forego an internal cache and use a
cache memory (e.g. , L1 cache 2448) within processing
cluster 2414. In at least one embodiment , each graphics
multiprocessor 2434 also has access to L2 caches within
partition units (e.g. , partition units 2220A - 2220N of FIG .
22) that are shared among all processing clusters 2414 and
may be used to transfer data between threads . In at least one
embodiment , graphics multiprocessor 2434 may also access
off - chip global memory , which can include one or more of
local parallel processor memory and / or system memory . In

at least one embodiment , any memory external to parallel
processing unit 2402 may be used as global memory . In at
least one embodiment , processing cluster 2414 includes
multiple instances of graphics multiprocessor 2434 can
share instructions and data , which may be stored in L1 cache
2448 .
[0189] In at least one embodiment , each processing cluster
2414 may include an MMU 2445 (memory management
unit) that is configured to map virtual addresses into physical
addresses . In at least one embodiment , one or more instances
of MMU 2445 may reside within memory interface 2218 of
FIG . 22. In at least one embodiment , MMU 2445 includes
a set of page table entries (PTEs) used to map a virtual
address to a physical address of a tile (talk more about tiling)
and a cache line index in at least one embodiment . In at least
one embodiment , MMU 2445 may include address transla
tion lookaside buffers (TLB) or caches that may reside
within graphics multiprocessor 2434 or L1 cache or pro
cessing cluster 2414. In at least one embodiment , physical
address is processed to distribute surface data access locality
to allow efficient request interleaving among partition units .
In at least one embodiment , cache line index may be used to
determine whether a request for a cache line is a hit or miss .
[0190] In at least one embodiment , a processing cluster
2414 may be configured such that each graphics multipro
cessor 2434 is coupled to a texture unit 2436 for performing
texture mapping operations , such as may involve determin
ing texture sample positions , reading texture data , and
filtering texture data . In at least one embodiment , texture
data is read from an internal texture L1 cache (not shown)
or from an L1 cache within graphics multiprocessor 2434
and is fetched from an L2 cache , local parallel processor
memory , or system memory , as needed . In at least one
embodiment , each graphics multiprocessor 2434 outputs
processed tasks to data crossbar 2440 to provide processed
task to another processing cluster 2414 for further process
ing or to store processed task in an L2 cache , local parallel
processor memory , or system memory via memory crossbar
2416. In at least one embodiment , preROP 2442 (pre - raster
operations unit) is configured to receive data from graphics
multiprocessor 2434 , direct data to ROP units , which may be
located with partition units as described herein (e.g. , parti
tion units 2220A - 2220N of FIG . 22) . In at least one embodi
ment , PreROP 2442 unit can perform optimizations for color
blending , organize pixel color data , and perform address
translations .
[0191] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in graphics
processing cluster 2214 for inferencing or predicting opera
tions based , at least in part , on weight parameters calculated
using neural network training operations , neural network
functions and / or architectures , or neural network use cases
described herein .
[0192] FIG . 25 shows a graphics multiprocessor 2534 in at
least one embodiment . In at least one embodiment , graphics
multiprocessor 2534 couples with pipeline manager 2532 of
processing cluster 2514. In at least one embodiment , graph
ics multiprocessor 2534 has an execution pipeline including
but not limited to an instruction cache 2552 , an instruction
unit 2554 , an address mapping unit 2556 , a register file

US 2020/0394458 A1 Dec. 17 , 2020
23

2558 , one or more general purpose graphics processing unit
(GPGPU) cores 2562 , and one or more load / store units
2566. GPGPU cores 2562 and load / store units 2566 are
coupled with cache memory 2572 and shared memory 2570
via a memory and cache interconnect 2568 .
[0193] In at least one embodiment , instruction cache 2552
receives a stream of instructions to execute from pipeline
manager 2532. In at least one embodiment , instructions are
cached in instruction cache 2552 and dispatched for execu
tion by instruction unit 2554. In at least one embodiment ,
instruction unit 2554 can dispatch instructions as thread
groups (e.g. , warps) , with each thread of thread group
assigned to a different execution unit within GPGPU core
2562. In at least one embodiment , an instruction can access
any of a local , shared , or global address space by specifying
an address within a unified address space . In at least one
embodiment , address mapping unit 2556 can be used to
translate addresses in a unified address space into a distinct
memory address that can be accessed by load / store units
2566 .
[0194] In at least one embodiment , register file 2558
provides a set of registers for functional units of graphics
multiprocessor 2534. In at least one embodiment , register
file 2558 provides temporary storage for operands connected
to data paths of functional units (e.g. , GPGPU cores 2562 ,
load / store units 2566) of graphics multiprocessor 2534. In at
least one embodiment , register file 2558 is divided between
each of functional units such that each functional unit is
allocated a dedicated portion of register file 2558. In one
embodiment , register file 2558 is divided between different
warps being executed by graphics multiprocessor 2534 .
[0195] In at least one embodiment , GPGPU cores 2562
can each include floating point units (FPUs) and / or integer
arithmetic logic units (ALUS) that are used to execute
instructions of graphics multiprocessor 2534. GPGPU cores
2562 can be similar in architecture or can differ in archi
tecture . In at least one embodiment , a first portion of
GPGPU cores 2562 include a single precision FPU and an
integer ALU while a second portion of GPGPU cores
include a double precision FPU . In at least one embodiment ,
FPUs can implement IEEE 754-2008 standard for floating
point arithmetic or enable variable precision floating point
arithmetic . In at least one embodiment , graphics multipro
cessor 2534 can additionally include one or more fixed
function or special function units to perform specific func
tions such as copy rectangle or pixel blending operations . In
at least one embodiment one or more GPGPU cores can also
include fixed or special function logic .
[0196] In at least one embodiment , GPGPU cores 2562
include SIMD logic capable of performing a single instruc
tion on multiple sets of data . In one embodiment GPGPU
cores 2562 can physically execute SIMD4 , SIMD8 , and
SIMD16 instructions and logically execute SIMD1 , SIMD2 ,
and SIMD32 instructions . In at least one embodiment ,
SIMD instructions for GPGPU cores can be generated at
compile time by a shader compiler or automatically gener
ated when executing programs written and compiled for
single program multiple data (SPMD) or SIMT architec
tures . In at least one embodiment , multiple threads of a
program configured for an SIMT execution model can
executed via a single SIMD instruction . For example , in at
least one embodiment , eight SIMT threads that perform
same or similar operations can be executed in parallel via a
single SIMD8 logic unit .

[0197] In at least one embodiment , memory and cache
interconnect 2568 is an interconnect network that connects
each functional unit of graphics multiprocessor 2534 to
register file 2558 and to shared memory 2570. In at least one
embodiment , memory and cache interconnect 2568 is a
crossbar interconnect that allows load / store unit 2566 to
implement load and store operations between shared
memory 2570 and register file 2558. In at least one embodi
ment , register file 2558 can operate at a same frequency as
GPGPU cores 2562 , thus data transfer between GPGPU
cores 2562 and register file 2558 is very low latency . In at
least one embodiment , shared memory 2570 can be used to
enable communication between threads that execute on
functional units within graphics multiprocessor 2534. In at
least one embodiment , cache memory 2572 can be used as
a data cache for example , to cache texture data communi
cated between functional units and texture unit 2536. In at
least one embodiment , shared memory 2570 can also be
used as a program managed cached . In at least one embodi
ment , threads executing on GPGPU cores 2562 can pro
grammatically store data within shared memory in addition
to automatically cached data that is stored within cache
memory 2572 .
[0198] In at least one embodiment , a parallel processor or
GPGPU as described herein is communicatively coupled to
host / processor cores to accelerate graphics operations ,
machine - learning operations , pattern analysis operations ,
and various general purpose GPU (GPGPU) functions . In at
least one embodiment , GPU may be communicatively
coupled to host processor / cores over a bus or other inter
connect (e.g. , a high speed interconnect such as PCIe or
NVLink) . In at least one embodiment , a GPU may be
integrated on same package or chip as cores and communi
catively coupled to cores over an internal processor bus /
interconnect , as may be internal to a package or chip . In at
least one embodiment , regardless of manner in which GPU
is connected , processor cores may allocate work to a GPU
in form of sequences of commands / instructions contained in
a work descriptor . In at least one embodiment , a GPU then
uses dedicated circuitry / logic for efficiently processing these
commands / instructions .
[0199] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
inference and / or training logic 1015 may be used in graphics
multiprocessor 2234 for inferencing or predicting operations
based , at least in part , on weight parameters calculated using
neural network training operations , neural network functions
and / or architectures , or neural network use cases described
herein .
[0200] FIG . 26 is a block diagram illustrating micro
architecture for a processor 2600 that may include logic
circuits to perform instructions , in at least one embodiment .
In at least one embodiment , processor 2600 may perform
instructions , including X86 instructions , ARM instructions , specialized instructions for application - specific integrated
circuits (ASICs) , etc. In at least one embodiment , processor
2610 may include registers to store packed data , such as
64 - bit wide MMXTM registers in microprocessors enabled
with MMX technology from Intel Corporation of Santa
Clara , Calif . In at least one embodiment , MMX registers ,
available in both integer and floating point forms , may

US 2020/0394458 A1 Dec. 17 , 2020
24

operate with packed data elements that accompany single
instruction , multiple data (“ SIMD ”) and streaming SIMD
extensions (“ SSE ”) instructions . In at least one embodiment ,
128 - bit wide XMM registers relating to SSE2 , SSE3 , SSE4 ,
AVX , or beyond (referred to generically as “ SSEx ”) tech
nology may hold such packed data operands . In at least one
embodiment , processors 2610 may perform instructions to
accelerate machine learning or deep learning algorithms ,
training , or inferencing .
[0201] In at least one embodiment , processor 2600
includes an in - order front end (“ front end ”) 2601 to fetch
instructions to be executed and prepare instructions to be
used later in processor pipeline . In at least one embodiment ,
front end 2601 may include several units . In at least one
embodiment , an instruction prefetcher 2626 fetches instruc
tions from memory and feeds instructions to an instruction
decoder 2628 which in turn decodes or interprets instruc
tions . For example , in at least one embodiment , instruction
decoder 2628 decodes a received instruction into one or
more operations called “ micro - instructions ” or “ micro - op
erations ” (also called “ micro ops ” or “ uops ”) that machine
may execute . In at least one embodiment , instruction
decoder 2628 parses instruction into an opcode and corre
sponding data and control fields that may be used by
micro - architecture to perform operations in accordance with
at least one embodiment . In at least one embodiment , a trace
cache 2630 may assemble decoded uops into program
ordered sequences or traces in a uop queue 2634 for execu
tion . In at least one embodiment , when trace cache 2630
encounters a complex instruction , a microcode ROM 2632
provides uops needed to complete operation .
[0202] In at least one embodiment , some instructions may
be converted into a single micro - op , whereas others need
several micro - ops to complete full operation . In at least one
embodiment , if more than four micro - ops are needed to
complete an instruction , instruction decoder 2628 may
access microcode ROM 2632 to perform instruction . In at
least one embodiment , an instruction may be decoded into a
small number of micro - ops for processing at instruction
decoder 2628. In at least one embodiment , an instruction
may be stored within microcode ROM 2632 should a
number of micro - ops be needed to accomplish operation . In
at least one embodiment , trace cache 2630 refers to an entry
point programmable logic array (" PLA ") to determine a
correct micro - instruction pointer for reading microcode
sequences to complete one or more instructions from micro
code ROM 2632 in accordance with at least one embodi
ment . In at least one embodiment , after microcode ROM
2632 finishes sequencing micro - ops for an instruction , front
end 2601 of a machine may resume fetching micro - ops from
trace cache 2630 .
[0203] In at least one embodiment , out - of - order execution
engine (“ out of order engine ”) 2603 may prepare instruc
tions for execution . In at least one embodiment , out - of - order
execution logic has a number of buffers to smooth out and
re - order flow of instructions to optimize performance as they
go down pipeline and get scheduled for execution . out - of
order execution engine 2603 includes , without limitation , an
allocator / register renamer 2640 , a memory uop queue 2642 ,
an integer / floating point uop queue 2644 , a memory sched
uler 2646 , a fast scheduler 2602 , a slow / general floating
point scheduler (“ slow / general FP scheduler ”) 2604 , and a
simple floating point scheduler (“ simple FP scheduler ”)
2606. In at least one embodiment , fast schedule 2602 ,

slow / general floating point scheduler 2604 , and simple
floating point scheduler 2606 are also collectively referred to
herein as “ uop schedulers 2602 , 2604 , 2606. " allocator /
register renamer 2640 allocates machine buffers and
resources that each uop needs in order to execute . In at least
one embodiment , allocator / register renamer 2640 renames
logic registers onto entries in a register file . In at least one
embodiment , allocator / register renamer 2640 also allocates
an entry for each uop in one of two uop queues , memory uop
queue 2642 for memory operations and integer / floating
point uop queue 2644 for non - memory operations , in front
of memory scheduler 2646 and uop schedulers 2602 , 2604 ,
2606. In at least one embodiment , uop schedulers 2602 ,
2604 , 2606 , determine when a uop is ready to execute based
on readiness of their dependent input register operand
sources and availability of execution resources uops need to
complete their operation . In at least one embodiment , fast
scheduler 2602 of at least one embodiment may schedule on
each half of main clock cycle while slow / general floating
point scheduler 2604 and simple floating point scheduler
2606 may schedule once per main processor clock cycle . In
at least one embodiment , uop schedulers 2602 , 2604 , 2606
arbitrate for dispatch ports to schedule uops for execution .
[0204] In at least one embodiment , execution block b 11
includes , without limitation , an integer register file / bypass
network 2608 , a floating point register file / bypass network
(“ FP register file / bypass network ”) 2610 , address generation
units (“ AGUs ”) 2612 and 2614 , fast Arithmetic Logic Units
(ALUS) (“ fast ALUs ”) 2616 and 2618 , a slow Arithmetic
Logic Unit (“ slow ALU ”) 2620 , a floating point ALU (“ FP ”)
2622 , and a floating point move unit (“ FP move ”) 2624. In
at least one embodiment , integer register file / bypass network
2608 and floating point register file / bypass network 2610 are
also referred to herein as “ register files 2608 , 2610. ” In at
least one embodiment , AGUSs 2612 and 2614 , fast ALUS
2616 and 2618 , slow ALU 2620 , floating point ALU 2622 ,
and floating point move unit 2624 are also referred to herein
as “ execution units 2612 , 2014 , 2616 , 2618 , 2620 , 2622 , and
2624. ” In at least one embodiment , execution block b11 may
include , without limitation , any number (including zero) and
type of register files , bypass networks , address generation
units , and execution units , in any combination .
[0205] In at least one embodiment , register files 2608 ,
2610 may be arranged between uop schedulers 2602 , 2604 ,
2606 , and execution units 2612 , 2614 , 2616 , 2618 , 2620 ,
2622 , and 2624. In at least one embodiment , integer register
file / bypass network 2608 performs integer operations . In at
least one embodiment , floating point register file / bypass
network 2610 performs floating point operations . In at least
one embodiment , each of register files 2608 , 2610 may
include , without limitation , a bypass network that may
bypass or forward just completed results that have not yet
been written into register file to new dependent uops . In at
least one embodiment , register files 2608 , 2610 may com
municate data with each other . In at least one embodiment ,
integer register file / bypass network 2608 may include , with
out limitation , two separate register files , one register file for
low - order thirty - two bits of data and a second register file for
high order thirty - two bits of data . In at least one embodi
ment , floating point register file / bypass network 2610 may
include , without limitation , 128 - bit wide entries because
floating point instructions typically have operands from 64
to 128 bits in width .

US 2020/0394458 A1 Dec. 17 , 2020
25

[0206] In at least one embodiment , execution units 2612 ,
2614 , 2616 , 2618 , 2620 , 2622 , 2624 may execute instruc
tions . In at least one embodiment , register files 2608 , 2610
store integer and floating point data operand values that
micro - instructions need to execute . In at least one embodi
ment , processor 2600 may include , without limitation , any
number and combination of execution units 2612 , 2614 ,
2616 , 2618 , 2620 , 2622 , 2624. In at least one embodiment ,
floating point ALU 2622 and floating point move unit 2624 ,
may execute floating point , MMX , SIMD , AVX and SSE , or
other operations , including specialized machine learning
instructions . In at least one embodiment , floating point ALU
2622 may include , without limitation , a 64 - bit by 64 - bit
floating point divider to execute divide , square root , and
remainder micro ops . In at least one embodiment , instruc
tions involving a floating point value may be handled with
floating point hardware . In at least one embodiment , ALU
operations may be passed to fast ALUS 2616 , 2618. In at
least one embodiment , fast ALUS 2616 , 2618 may execute
fast operations with an effective latency of half a clock cycle .
In at least one embodiment , most complex integer opera
tions go to slow ALU 2620 as slow ALU 2620 may include ,
without limitation , integer execution hardware for long
latency type of operations , such as a multiplier , shifts , flag
logic , and branch processing . In at least one embodiment ,
memory load / store operations may be executed by AGUS
2612 , 2614. In at least one embodiment , fast ALU 2616 , fast
ALU 2618 , and slow ALU 2620 may perform integer
operations on 64 - bit data operands . In at least one embodi
ment , fast ALU 2616 , fast ALU 2618 , and slow ALU 2620
may be implemented to support a variety of data bit sizes
including sixteen , thirty - two , 128 , 256 , etc. In at least one
embodiment , floating point ALU 2622 and floating point
move unit 2624 may be implemented to support a range of
operands having bits of various widths . In at least one
embodiment , floating point ALU 2622 and floating point
move unit 2624 may operate on 128 - bit wide packed data
operands in conjunction with SIMD and multimedia instruc
tions .

[0207] In at least one embodiment , uop schedulers 2602 ,
2604 , 2606 , dispatch dependent operations before parent
load has finished executing . In at least one embodiment , as
uops may be speculatively scheduled and executed in pro
cessor 2600 , processor 2600 may also include logic to
handle memory misses . In at least one embodiment , if a data
load misses in data cache , there may be dependent opera
tions in flight in pipeline that have left scheduler with
temporarily incorrect data . In at least one embodiment , a
replay mechanism tracks and re - executes instructions that
use incorrect data . In at least one embodiment , dependent
operations might need to be replayed and independent ones
may be allowed to complete . In at least one embodiment ,
schedulers and replay mechanism of at least one embodi
ment of a processor may also be designed to catch instruc
tion sequences for text string comparison operations .
[0208] In at least one embodiment , term “ registers ” may
refer to on - board processor storage locations that may be
used as part of instructions to identify operands . In at least
one embodiment , registers may be those that may be usable
from outside of processor (from a programmer's perspec
tive) . In at least one embodiment , registers might not be
limited to a particular type of circuit . Rather , in at least one
embodiment , a register may store data , provide data , and
perform functions described herein . In at least one embodi

ment , registers described herein may be implemented by
circuitry within a processor using any number of different
techniques , such as dedicated physical registers , dynami
cally allocated physical registers using register renaming ,
combinations of dedicated and dynamically allocated physi
cal registers , etc. In at least one embodiment , integer reg
isters store 32 - bit integer data . A register file of at least one
embodiment also contains eight multimedia SIMD registers
for packed data .
[0209] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment
portions or all of inference and / or training logic 1015 may
be incorporated into EXE Block 2611 and other memory or
registers shown or not shown . For example , in at least one
embodiment , training and / or inferencing techniques
described herein may use one or more of ALUs illustrated in
EXE Block 2611. Moreover , weight parameters may be
stored in on - chip or off - chip memory and / or registers
(shown or not shown) that configure ALUs of EXE Block
2611 to perform one or more machine learning algorithms ,
neural network architectures , use cases , or training tech
niques described herein .
[0210] FIG . 27 illustrates a deep learning application
processor 2700 , in at least one embodiment . In at least one
embodiment , deep learning application processor 2700 uses
instructions that , if executed by deep learning application
processor 2700 , cause deep learning application processor
2700 to perform some or all of processes and techniques
described throughout this disclosure . In at least one embodi
ment , deep learning application processor 2700 is an appli
cation - specific integrated circuit (ASIC) . In at least one
embodiment , application processor 2700 performs matrix
multiply operations either “ hard - wired ” into hardware as a
result of performing one or more instructions or both . In at
least one embodiment , deep learning application processor
2700 includes , without limitation , processing clusters 2710
(1) -2710 (12) , Inter - Chip Links (“ ICLs ”) 2720 (1) -2720 (12) ,
Inter - Chip Controllers (“ ICCs ”) 2730 (1) -2730 (2) , high
bandwidth memory second generation (“ HBM2 ") 2740 (1) .
2740 (4) , memory controllers (“ Mem Ctrlrs ”) 2742 (1) -2742
(4) , high bandwidth memory physical layer (“ HBM PHY ”)
2744 (1) -2744 (4) , a management - controller central process
ing unit (“ management - controller CPU ”) 2750 , a Serial
Peripheral Interface , Inter - Integrated Circuit , and General
Purpose Input / Output block (" SPI , 12C , GPIO ") 2760 , a
peripheral component interconnect express controller and
direct memory access block (“ PCIe Controller and DMA ”
2770 , and a sixteen - lane peripheral component interconnect
express port (“ PCI Expressx16 ”) 2780 .
[0211] In at least one embodiment , processing clusters
2710 may perform deep learning operations , including infer
ence or prediction operations based on weight parameters
calculated one or more training techniques , including those
described herein . In at least one embodiment , each process
ing cluster 2710 may include , without limitation , any num
ber and type of processors . In at least one embodiment , deep
learning application processor 2700 may include any num
ber and type of processing clusters 2700. In at least one
embodiment , Inter - Chip Links 2720 are bi - directional . In at
least one embodiment , Inter - Chip Links 2720 and Inter - Chip
Controllers 2730 enable multiple deep learning application

US 2020/0394458 A1 Dec. 17 , 2020
26

processors 2700 to exchange information , including activa
tion information resulting from performing one or more
machine learning algorithms embodied in one or more
neural networks . In at least one embodiment , deep learning
application processor 2700 may include any number (includ
ing zero) and type of ICLs 2720 and ICCs 2730 .
[0212] In at least one embodiment , HBM2s 2740 provide
a total of 32 Gigabytes (GB) of memory . HBM2 2740 (i) is
associated with both memory controller 2742 (i) and HBM
PHY 2744 (i) . In at least one embodiment , any number of
HBM2s 2740 may provide any type and total amount of high
bandwidth memory and may be associated with any number
(including zero) and type of memory controllers 2742 and
HBM PHYs 2744. In at least one embodiment , SPI , 12C ,
GPIO 2760 , PCIe Controller and DMA 2770 , and / or PCIe
2780 may be replaced with any number and type of blocks
that enable any number and type of communication stan
dards in any technically feasible fashion .
[0213] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment , deep
learning application processor is used to train a machine
learning model , such as a neural network , to predict or infer
information provided to deep learning application processor
2700. In at least one embodiment , deep learning application
processor 2700 is used to infer or predict information based
on a trained machine learning model (e.g. , neural network)
that has been trained by another processor or system or by
deep learning application processor 2700. In at least one
embodiment , processor 2700 may be used to perform one or
more neural network use cases described herein .
[0214] FIG . 28 is a block diagram of a neuromorphic
processor 2800 , in at least one embodiment . In at least one
embodiment , neuromorphic processor 2800 may receive one
or more inputs from sources external to neuromorphic
processor 2800. In at least one embodiment , these inputs
may be transmitted to one or more neurons 2802 within
neuromorphic processor 2800. In at least one embodiment ,
neurons 2802 and components thereof may be implemented
using circuitry or logic , including one or more arithmetic
logic units (ALUS) . In at least one embodiment , neuromor
phic processor 2800 may include , without limitation , thou
sands or millions of instances of neurons 2802 , but any
suitable number of neurons 2802 may be used . In at least one
embodiment , each instance of neuron 2802 may include a
neuron input 2804 and a neuron output 2806. In at least one
embodiment , neurons 2802 may generate outputs that may
be transmitted to inputs of other instances of neurons 2802 .
For example , in at least one embodiment , neuron inputs
2804 and neuron outputs 2806 may be interconnected via
synapses 2808 .
[0215] In at least one embodiment , neurons 2802 and
synapses be interconnected such that neuromor
phic processor 2800 operates to process or analyze infor
mation received by neuromorphic processor 2800. In at least
one embodiment , neurons 2802 may transmit an output
pulse (or “ fire ” or “ spike ”) when inputs received through
neuron input 2804 exceed a threshold . In at least one
embodiment , neurons 2802 may sum or integrate signals
received at neuron inputs 2804. For example , in at least one
embodiment , neurons 2802 may be implemented as leaky
integrate - and - fire neurons , wherein if a sum (referred to as

a “ membrane potential ”) exceeds a threshold value , neuron
2802 may generate an output (or “ fire ”) using a transfer
function such as a sigmoid or threshold function . In at least
one embodiment , a leaky integrate - and - fire neuron may sum
signals received at neuron inputs 2804 into a membrane
potential and may also apply a decay factor (or leak) to
reduce a membrane potential . In at least one embodiment , a
leaky integrate - and - fire neuron may fire if multiple input
signals are received at neuron inputs 2804 rapidly enough to
exceed a threshold value , such as before a membrane
potential decays too low to fire . In at least one embodiment ,
neurons 2802 may be implemented using circuits or logic
that receive inputs , integrate inputs into a membrane poten
tial , and decay a membrane potential . In at least one embodi
ment , inputs may be averaged , or any other suitable transfer
function may be used . Furthermore , in at least one embodi
ment , neurons 2802 may include , without limitation , com
parator circuits or logic that generate an output spike at
neuron output 2806 when result of applying a transfer
function to neuron input 2804 exceeds a threshold . In at least
one embodiment , once neuron 2802 fires , it may disregard
previously received input information by , for example , reset
ting a membrane potential to 0 or another suitable default
value . In at least one embodiment , once membrane potential
is reset to 0 , neuron 2802 may resume normal operation after
a suitable period of time (or refractory period) .
[0216] In at least one embodiment , neurons 2802 may be
interconnected through synapses 2808. In at least one
embodiment , synapses 2808 may operate to transmit signals
from an output of a first neuron 2802 to an input of a second
neuron 2802. In at least one embodiment , neurons 2802 may
transmit information over more than one instance of synapse
2808. In at least one embodiment , one or more instances of
neuron output 2806 may be connected , via an instance of
synapse 2808 , to an instance of neuron input 2804 in same
neuron 2802. In at least one embodiment , an instance of
neuron 2802 generating an output to be transmitted over an
instance of synapse 2808 may be referred to as a " pre
synaptic neuron ” with respect to that instance of synapse
2808. In at least one embodiment , an instance of neuron
2802 receiving an input transmitted over an instance of
synapse 2808 may be referred to as a “ post - synaptic neuron ”
with respect to that instance of synapse 2808. Because an
instance of neuron 2802 may receive inputs from one or
more instances of synapse 2808 , and may also transmit
outputs over one or more instances of synapse 2808 , a single
instance of neuron 2802 may therefore be both a “ pre
synaptic neuron ” and “ post - synaptic neuron , ” with respect
to various instances of synapses 2808 , in at least one
embodiment .
[0217] In at least one embodiment , neurons 2802 may be
organized into one or more layers . Each instance of neuron
2802 may have one neuron output 2806 that may fan out
through one or more synapses 2808 to one or more neuron
inputs 2804. In at least one embodiment , neuron outputs
2806 of neurons 2802 in a first layer 2810 may be connected
to neuron inputs 2804 of neurons 2802 in a second layer
2812. In at least one embodiment , layer 2810 may be
referred to as a “ feed - forward layer . ” In at least one embodi
ment , each instance of neuron 2802 in an instance of first
layer 2810 may fan out to each instance of neuron 2802 in
second layer 2812. In at least one embodiment , first layer
2810 may be referred to as a “ fully connected feed - forward
layer . ” In at least one embodiment , each instance of neuron

2808 may

US 2020/0394458 A1 Dec. 17 , 2020
27

2802 in an instance of second layer 2812 may fan out to
fewer than all instances of neuron 2802 in a third layer 2814 .
In at least one embodiment , second layer 2812 may be
referred to as a “ sparsely connected feed - forward layer . " In
at least one embodiment , neurons 2802 in second layer 2812
may fan out to neurons 2802 in multiple other layers ,
including to neurons 2802 in (same) second layer 2812. In
at least one embodiment , second layer 2812 may be referred
to as a “ recurrent layer . ” Neuromorphic processor 2800 may
include , without limitation , any suitable combination of
recurrent layers and feed - forward layers , including , without
limitation , both sparsely connected feed - forward layers and
fully connected feed - forward layers .
[0218] In at least one embodiment , neuromorphic proces
sor 2800 may include , without limitation , a reconfigurable
interconnect architecture or dedicated hard wired intercon
nects to connect synapse 2808 to neurons 2802. In at least
one embodiment , neuromorphic processor 2800 may
include , without limitation , circuitry or logic that allows
synapses to be allocated to different neurons 2802 as needed
based on neural network topology and neuron fan - in / out .
For example , in at least one embodiment , synapses 2808
may be connected to neurons 2802 using an interconnect
fabric , such as network - on - chip , or with dedicated connec
tions . In at least one embodiment , synapse interconnections
and components thereof may be implemented using circuitry
or logic .
[0219] FIG . 29 is a block diagram of a graphics processor
2900 , which may be a discrete graphics processing unit , or
may be a graphics processor integrated with a plurality of
processing cores . In at least one embodiment , graphics
processor 2900 communicates via a memory mapped I / O
interface to registers on graphics processor 2900 and with
commands placed into memory . In at least one embodiment ,
graphics processor 2900 includes a memory interface 2914
to access memory . In at least one embodiment , memory
interface 2914 is an interface to local memory , one or more
internal caches , one or more shared external caches , and / or
to system memory .
[0220] In at least one embodiment , graphics processor
2900 also includes a display controller 2902 to drive display
output data to a display device 2920. In at least one
embodiment , display controller 2902 includes hardware for
one or more overlay planes for display device 2920 and
composition of multiple layers of video or user interface
elements . In at least one embodiment , display device 2920
can be an internal or external display device . In at least one
embodiment , display device 2920 is a head mounted display
device , such as a virtual reality (VR) display device or an
augmented reality (AR) display device . In at least one
embodiment , graphics processor 2900 includes a video
codec engine 2906 to encode , decode , or transcode media to ,
from , or between one or more media encoding formats ,
including , but not limited to Moving Picture Experts Group
(MPEG) formats such as MPEG - 2 , Advanced Video Coding
(AVC) formats such as H.264 / MPEG - 4 AVC , as well as a
Society of Motion Picture & Television Engineers (SMPTE)
421M / VC - 1 , and Joint Photographic Experts Group (JPEG)
formats such as JPEG , and Motion JPEG (MJPEG) formats .
[0221] In at least one embodiment , graphics processor
2900 includes a block image transfer (BLIT) engine 2904 to
perform two - dimensional (2D) rasterizer operations includ
ing , for example , bit - boundary block transfers . However , in
at least one embodiment , 2D graphics operations are per

formed using one or more components of graphics process
ing engine (GPE) 2910. In at least one embodiment , GPE
2910 is a compute engine for performing graphics opera
tions , including three - dimensional (3D) graphics operations
and media operations .
[0222] In at least one embodiment , GPE 2910 includes a
3D pipeline 2912 for performing 3D operations , such as
rendering three - dimensional images and scenes using pro
cessing functions that act upon 3D primitive shapes (e.g. ,
rectangle , triangle , etc.) . 3D pipeline 2912 includes pro
grammable and fixed function elements that perform various
tasks and / or spawn execution threads to a 3D / Media sub
system 2915. While 3D pipeline 2912 can be used to
perform media operations , in at least one embodiment , GPE
2910 also includes a media pipeline 2916 that is used to
perform media operations , such as video post - processing
and image enhancement .
[0223] In at least one embodiment , media pipeline 2916
includes fixed function or programmable logic units to
perform one or more specialized media operations , such as
video decode acceleration , video de - interlacing , and video
encode acceleration in place of , or on behalf of video codec
engine 2906. In at least one embodiment , media pipeline
2916 additionally includes a thread spawning unit to spawn
threads for execution on 3D / Media sub - system 2915. In at
least one embodiment , spawned threads perform computa
tions for media operations on one or more graphics execu
tion units included in 3D / Media sub - system 2915 .
[0224] In at least one embodiment , 3D / Media subsystem
2915 includes logic for executing threads spawned by 3D
pipeline 2912 and media pipeline 2916. In at least one
embodiment , 3D pipeline 2912 and media pipeline 2916
send thread execution requests to 3D / Media subsystem
2915 , which includes thread dispatch logic for arbitrating
and dispatching various requests to available thread execu
tion resources . In at least one embodiment , execution
resources include an array of graphics execution units to
process 3D and media threads . In at least one embodiment ,
3D / Media subsystem 2915 includes one or more internal
caches for thread instructions and data . In at least one
embodiment , subsystem 2915 also includes shared memory ,
including registers and addressable memory , to share data
between threads and to store output data .
[0225] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment
portions or all of inference and / or training logic 1015 may
be incorporated into graphics processor 2900. For example ,
in at least one embodiment , training and / or inferencing
techniques described herein may use one or more of ALUS
embodied in 3D pipeline 2912. Moreover , in at least one
embodiment , inferencing and / or training operations
described herein may be done using logic other than logic
illustrated in FIG . 10 or 11. In at least one embodiment ,
weight parameters may be stored in on - chip or off - chip
memory and / or registers (shown or not shown) that config
ure ALUs of graphics processor 2900 to perform one or
more machine learning algorithms , neural network architec
tures , use cases , or training techniques described herein .
[0226] FIG . 30 is a block diagram of hardware logic of a
graphics processor core 3000 , in at least one embodiment
described herein . In at least one embodiment , graphics

US 2020/0394458 A1 Dec. 17 , 2020
28

processor core 3000 is included within a graphics core array .
In at least one embodiment , graphics processor core 3000 ,
sometimes referred to as a core slice , can be one or multiple
graphics cores within a modular graphics processor . In at
least one embodiment , graphics processor core 3000 is
exemplary of one graphics core slice , and a graphics pro
cessor as described herein may include multiple graphics
core slices based on target power and performance enve
lopes . In at least one embodiment , each graphics core 3000
can include a fixed function block 3030 coupled with
multiple sub - cores 3001A - 3001F , also referred to as sub
slices , that include modular blocks of general - purpose and
fixed function logic .
[0227] In at least one embodiment , fixed function block
3030 includes a geometry / fixed function pipeline 3036 that
can be shared by all sub - cores in graphics processor 3000 ,
for example , in lower performance and / or lower power
graphics processor implementations . In at least one embodi
ment , geometry / fixed function pipeline 3036 includes a 3D
fixed function pipeline , a video front - end unit , a thread
spawner and thread dispatcher , and a unified return buffer
manager , which manages unified return buffers .
[0228] In at least one embodiment fixed function block
3030 also includes a graphics SoC interface 3037 , a graphics
microcontroller 3038 , and a media pipeline 3039. Graphics
SOC interface 3037 provides an interface between graphics
core 3000 and other processor cores within a system on a
chip integrated circuit . In at least one embodiment , graphics
microcontroller 3038 is a programmable sub - processor that
is configurable to manage various functions of graphics
processor 3000 , including thread dispatch , scheduling , and
pre - emption . In at least one embodiment , media pipeline
3039 includes logic to facilitate decoding , encoding , pre
processing , and / or post - processing of multimedia data ,
including image and video data . In at least one embodiment ,
media pipeline 3039 implement media operations via
requests to compute or sampling logic within sub - cores
3001-3001F .
[0229] In at least one embodiment , SoC interface 3037
enables graphics core 3000 to communicate with general
purpose application processor cores (e.g. , CPUs) and / or
other components within an SoC , including memory hier
archy elements such as a shared last level cache memory ,
system RAM , and / or embedded on - chip or on - package
DRAM . In at least one embodiment , SoC interface 3037 can
also enable communication with fixed function devices
within an SoC , such as camera imaging pipelines , and
enables use of and / or implements global memory atomics
that may be shared between graphics core 3000 and CPUs
within an SoC . In at least one embodiment , SoC interface
3037 can also implement power management controls for
graphics core 3000 and enable an interface between a clock
domain of graphic core 3000 and other clock domains within
an SoC . In at least one embodiment , SoC interface 3037
enables receipt of command buffers from a command
streamer and global thread dispatcher that are configured to
provide commands and instructions to each of one or more
graphics cores within a graphics processor . In at least one
embodiment , commands and instructions can be dispatched
to media pipeline 3039 , when media operations are to be
performed , or a geometry and fixed function pipeline (e.g. ,
geometry and fixed function pipeline 3036 , geometry and
fixed function pipeline 3014) when graphics processing
operations are to be performed .

[0230] In at least one embodiment , graphics microcon
troller 3038 can be configured to perform various scheduling
and management tasks for graphics core 3000. In at least one
embodiment , graphics microcontroller 3038 can perform
graphics and / or compute workload scheduling on various
graphics parallel engines within execution unit (EU) arrays
3002A - 3002F , 3004A - 3004F within sub - cores 3001A
3001F . In at least one embodiment , host software executing
on a CPU core of an SoC including graphics core 3000 can
submit workloads one of multiple graphic processor door
bells , which invokes a scheduling operation on an appro
priate graphics engine . In at least one embodiment , sched
uling operations include determining which workload to run
next , submitting a workload to a command streamer , pre
empting existing workloads running on an engine , monitor
ing progress of a workload , and notifying host software
when a workload is complete . In at least one embodiment ,
graphics microcontroller 3038 can also facilitate low - power
or idle states for graphics core 3000 , providing graphics core
3000 with an ability to save and restore registers within
graphics core 3000 across low - power state transitions inde
pendently from an operating system and / or graphics driver
software on a system .
[0231] In at least one embodiment , graphics core 3000
may have greater than or fewer than illustrated sub - cores
3001A - 3001F , up to N modular sub - cores . For each set of N sub - cores , in at least one embodiment , graphics core 3000
can also include shared function logic 3010 , shared and / or
cache memory 3012 , a geometry / fixed function pipeline
3014 , as well as additional fixed function logic 3016 to
accelerate various graphics and compute processing opera
tions . In at least one embodiment , shared function logic
3010 can include logic units (e.g. , sampler , math , and / or
inter - thread communication logic) that can be shared by
each N sub - cores within graphics core 3000. Shared and / or
cache memory 3012 can be a last - level cache for N sub
cores 3001A - 3001F within graphics core 3000 and can also
serve as shared memory that is accessible by multiple
sub - cores . In at least one embodiment , geometry / fixed func
tion pipeline 3014 can be included instead of geometry / fixed
function pipeline 3036 within fixed function block 3030 and
can include same or similar logic units .
[0232] In at least one embodiment , graphics core 3000
includes additional fixed function logic 3016 that can
include various fixed function acceleration logic for use by
graphics core 3000. In at least one embodiment , additional
fixed function logic 3016 includes an additional geometry
pipeline for use in position - only shading . In position - only
shading , at least two geometry pipelines exist , whereas in a
full geometry pipeline within geometry / fixed function pipe
line 3016 , 3036 , and a cull pipeline , which is an additional
geometry pipeline which may be included within additional
fixed function logic 3016. In at least one embodiment , cull
pipeline is a trimmed down version of a full geometry
pipeline . In at least one embodiment , a full pipeline and a
cull pipeline can execute different instances of an applica
tion , each instance having a separate context . In at least one
embodiment , position only shading can hide long cull runs
of discarded triangles , enabling shading to be completed
earlier in some instances . For example , in at least one
embodiment , cull pipeline logic within additional fixed
function logic 3016 can execute position shaders in parallel
with a main application and generates critical results faster
than a full pipeline , as cull pipeline fetches and shades

US 2020/0394458 A1 Dec. 17 , 2020
29

position attribute of vertices , without performing rasteriza
tion and rendering of pixels to a frame buffer . In at least one
embodiment , cull pipeline can use generated critical results
to compute visibility information for all triangles without
regard to whether those triangles are culled . In at least one
embodiment , full pipeline (which in this instance may be
referred to as a replay pipeline) can consume visibility
information to skip culled triangles to shade only visible
triangles that are finally passed to a rasterization phase .
[0233] In at least one embodiment , additional fixed func
tion logic 3016 can also include machine learning accelera
tion logic , such as fixed function matrix multiplication logic ,
for implementations including optimizations for machine
learning training or inferencing .
[0234] In at least one embodiment , within each graphics
sub - core 3001A - 3001F includes a set of execution resources
that may be used to perform graphics , media , and compute
operations in response to requests by graphics pipeline ,
media pipeline , or shader programs . In at least one embodi
ment , graphics sub - cores 3001A - 3001F include multiple EU
arrays 3002A - 3002F , 3004A - 3004F , thread dispatch and
inter - thread communication (TD / IC) logic 3003A - 3003F , a
3D (e.g. , texture) sampler 3005A - 3005F , a media sampler
3006A - 3006F , a shader processor 3007A - 3007F , and shared
local memory (SLM) 3008A - 3008F . EU arrays 3002A
3002F , 3004A - 3004F each include multiple execution units ,
which are general - purpose graphics processing units capable
of performing floating - point and integer / fixed - point logic
operations in service of a graphics , media , or compute
operation , including graphics , media , or compute shader
programs . In at least one embodiment , TD / IC logic 3003A
3003F performs local thread dispatch and thread control
operations for execution units within a sub - core and facili
tate communication between threads executing on execution
units of a sub - core . In at least one embodiment , 3D sampler
3005A - 3005F can read texture or other 3D graphics related
data into memory . In at least one embodiment , 3D sampler
can read texture data differently based on a configured
sample state and texture format associated with a given
texture . In at least one embodiment , media sampler 3006A
3006F can perform similar read operations based on a type
and format associated with media data . In at least one
embodiment , each graphics sub - core 3001A - 3001F can
alternately include a unified 3D and media sampler . In at
least one embodiment , threads executing on execution units
within each of sub - cores 3001A - 3001F can make use of
shared local memory 3008A - 3008F within each sub - core , to
enable threads executing within a thread group to execute
using a pool of on - chip memory .
[0235] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment ,
portions or all of inference and / or training logic 1015 may
be incorporated into graphics processor 3010. For example ,
in at least one embodiment , training and / or inferencing
techniques described herein may use one or more of ALUS
embodied in 3D pipeline 3010 , graphics microcontroller
3038 , geometry & fixed function pipeline 3014 and 3036 , or
other logic in FIG . 29B . Moreover , in at least one embodi
ment , inferencing and / or training operations described
herein may be done using logic other than logic illustrated
in FIG . 10 or 11. In at least one embodiment , weight

parameters may be stored in on - chip or off - chip memory
and / or registers (shown or not shown) that configure ALUS
of graphics processor 3000 to perform one or more machine
learning algorithms , neural network architectures , use cases ,
or training techniques described herein .
[0236] FIGS . 31A - 31B illustrate thread execution logic
3100 including an array of processing elements of a graphics
processor core in at least one embodiment . FIG . 31A illus
trates at least one embodiment , in which thread execution
logic 3100 is used . FIG . 31B illustrates exemplary internal
details of an execution unit , in at least one embodiment .
[0237] As illustrated in FIG . 31A , in at least one embodi
ment , thread execution logic 3100 includes a shader proces
sor 3102 , a thread dispatcher 3104 , instruction cache 3106 ,
a scalable execution unit array including a plurality of
execution units 3108A - 3108N , a sampler 3110 , a data cache
3112 , and a data port 3114. In at least one embodiment a
scalable execution unit array can dynamically scale by
enabling or disabling one or more execution units (e.g. , any
of execution unit 3108A , 3108B , 3108C , 3108D , through
3108N - 1 and 3108N) based on computational requirements
of a workload , for example . In at least one embodiment ,
scalable execution units are interconnected via an intercon
nect fabric that links to each execution unit . In at least one
embodiment , thread execution logic 3100 includes one or
more connections to memory , such as system memory or
cache memory , through one or more of instruction cache
3106 , data port 3114 , sampler 3110 , and execution units
3108A - 3108N . In at least one embodiment , each execution
unit (e.g. , 3108A) is a stand - alone programmable general
purpose computational unit that is capable of executing
multiple simultaneous hardware threads while processing
multiple data elements in parallel for each thread . In at least
one embodiment , array of execution units 3108A - 3108N is
scalable to include any number individual execution units .
[0238] In at least one embodiment , execution units
3108A - 3108N are primarily used to execute shader pro
grams . In at least one embodiment , shader processor 3102
can process various shader programs and dispatch execution
threads associated with shader programs via a thread dis
patcher 3104. In at least one embodiment , thread dispatcher
3104 includes logic to arbitrate thread initiation requests
from graphics and media pipelines and instantiate requested
threads on one or more execution units in execution units
3108A - 3108N . For example , in at least one embodiment , a
geometry pipeline can dispatch vertex , tessellation , or geom
etry shaders to thread execution logic for processing . In at
least one embodiment , thread dispatcher 3104 can also
process runtime thread spawning requests from executing
shader programs .
[0239] In at least one embodiment , execution units
3108A - 3108N support an instruction set that includes native
support for many standard 3D graphics shader instructions ,
such that shader programs from graphics libraries (e.g. ,
Direct 3D and OpenGL) are executed with minimal trans
lation . In at least one embodiment , execution units support
vertex and geometry processing (e.g. , vertex programs ,
geometry programs , vertex shaders) , pixel processing (e.g. ,
pixel shaders , fragment shaders) and general - purpose pro
cessing (e.g. , compute and media shaders) . In at least one
embodiment , each of execution units 3108A - 3108N , which
include one or more arithmetic logic units (ALUs) , is
capable of multi - issue single instruction multiple data
(SIMD) execution and multi - threaded operation enables an

US 2020/0394458 A1 Dec. 17 , 2020
30

efficient execution environment despite higher latency
memory accesses . In at least one embodiment , each hard
ware thread within each execution unit has a dedicated
high - bandwidth register file and associated independent
thread - state . In at least one embodiment , execution is multi
issue per clock to pipelines capable of integer , single and
double precision floating point operations , SIMD branch
capability , logical operations , transcendental operations , and
other miscellaneous operations . In at least one embodiment ,
while waiting for data from memory or one or more shared
functions , dependency logic within execution units 3108A
3108N causes a waiting thread to sleep until requested data
has been returned . In at least one embodiment , hardware
resources may be devoted to processing other threads while
a specific , waiting thread is sleeping . For example , in at least
one embodiment , during a delay associated with a vertex
shader operation , an execution unit can perform operations
for a pixel shader , fragment shader , or another type of shader
program , including a different vertex shader .
[0240] In at least one embodiment , each execution unit in
execution units 3108A - 3108N operates on arrays of data
elements . In at least one embodiment , a number of data
elements is “ execution size , ” or a number of channels for an
instruction . In at least one embodiment , an execution chan
nel is a logical unit of execution for data element access ,
masking , and flow control within instructions . In at least one
embodiment , a number of channels may be independent of
a number of physical Arithmetic Logic Units (ALUS) or
Floating Point Units (FPUs) for a particular graphics pro
cessor . In at least one embodiment , execution units 3108A
3108N support integer and floating - point data types .
[0241] In at least one embodiment , an execution unit
instruction set includes SIMD instructions . In at least one
embodiment , various data elements can be stored as a
packed data type in a register and an execution unit will
process various elements based on a data size of those
elements . For example , in at least one embodiment , when
operating on a 256 - bit wide vector , 256 bits of a vector are
stored in a register and an execution unit operates on a vector
as four separate 64 - bit packed data elements (Quad - Word
(QW) size data elements) , eight separate 32 - bit packed data
elements (Double Word (DW) size data elements) , sixteen
separate 16 - bit packed data elements (Word (W) size data
elements) , or thirty - two separate 8 - bit data elements (byte
(B) size data elements) . However , in at least one embodi
ment , different vector widths and register sizes are possible .
[0242] In at least one embodiment , one or more execution
units can be combined into a fused execution unit 3109A
3109N having thread control logic (3107A - 3107N) that is
used for fused EUs . In at least one embodiment , multiple
EUs can be fused into an EU group . In at least one
embodiment , each EU in fused EU group can be configured
to execute a separate SIMD hardware thread . A number of
EUs in a fused EU group can vary according to various
embodiments . In at least one embodiment , various SIMD
widths can be performed per - EU , including but not limited
to SIMD8 , SIMD16 , and SIMD32 . In at least one embodi
ment , each fused graphics execution unit 3109A - 3109N
includes at least two execution units . For example , in at least
one embodiment , fused execution unit 3109A includes a first
EU 3108A , second EU 3108B , and thread control logic
3107 A that is shared with first EU 3108A and second EU
3108B . In at least one embodiment , thread control logic
3107A controls threads executed on fused graphics execu

tion unit 3109A , allowing each EU within fused execution
units 3109A - 3109N to execute using an instruction pointer
register .
[0243] In at least one embodiment , one or more internal
instruction caches (e.g. , 3106) are included in thread execu
tion logic 3100 to cache thread instructions for execution
units . In at least one embodiment , one or more data caches
(e.g. , 3112) are included to cache thread data during thread
execution . In at least one embodiment , a sampler 3110 is
included to provide texture sampling for 3D operations and
media sampling for media operations . In at least one
embodiment , sampler 3110 includes specialized texture or
media sampling functionality to process texture or media
data during a sampling process before providing sampled
data to an execution unit .
[0244] During execution , in at least one embodiment ,
graphics and media pipelines send thread initiation requests
to thread execution logic 3100 via thread spawning and
dispatch logic . In at least one embodiment , once a group of
geometric objects has been processed and rasterized into
pixel data , pixel processor logic (e.g. , pixel shader logic ,
fragment shader logic , etc.) within shader processor 3102 is
invoked to further compute output information and cause
results to be written to output surfaces (e.g. , color buffers ,
depth buffers , stencil buffers , etc.) . In at least one embodi
ment , a pixel shader or fragment shader calculates values of
various vertex attributes that are to be interpolated across a
rasterized object . In at least one embodiment , pixel proces
sor logic within shader processor 3102 then executes an
application programming interface (API) -supplied pixel or
fragment shader program . In at least one embodiment , to
execute a shader program , shader processor 3102 dispatches
threads to an execution unit (e.g. , 3108A) via thread dis
patcher 3104. In at least one embodiment , shader processor
3102 uses texture sampling logic in sampler 3110 to access
texture data in texture maps stored in memory . In at least one
embodiment , arithmetic operations on texture data and input
geometry data compute pixel color data for each geometric
fragment , or discards one or more pixels from further
processing .
[0245] In at least one embodiment , data port 3114 pro
vides a memory access mechanism for thread execution
logic 3100 to output processed data to memory for further
processing on a graphics processor output pipeline . In at
least one embodiment , data port 3114 includes or couples to
one or more cache memories (e.g. , data cache 3112) to cache
data for memory access via a data port .
[0246] As illustrated in FIG . 31B , in at least one embodi
ment , a graphics execution unit 3108 can include an instruc
tion fetch unit 3137 , a general register file array (GRF) 3124 ,
an architectural register file array (ARF) 3126 , a thread
arbiter 3122 , a send unit 3130 , a branch unit 3132 , a set of
SIMD floating point units (FPUs) 3134 , and In at least one
embodiment a set of dedicated integer SIMD ALUS 3135. In
at least one embodiment , GRF 3124 and ARF 3126 includes
a set of general register files and architecture register files
associated with each simultaneous hardware thread that may
be active in graphics execution unit 3108. In at least one
embodiment , per thread architectural state is maintained in
ARF 3126 , while data used during thread execution is stored
in GRF 3124. In at least one embodiment , execution state of
each thread , including instruction pointers for each thread ,
can be held in thread - specific registers in ARF 3126 .

US 2020/0394458 A1 Dec. 17 , 2020
31

[0247] In at least one embodiment , graphics execution unit
3108 has an architecture that is a combination of Simulta
neous Multi - Threading (SMT) and fine - grained Interleaved
Multi - Threading (IMT) . In at least one embodiment , archi
tecture has a modular configuration that can be fine - tuned at
design time based on a target number of simultaneous
threads and number of registers per execution unit , where
execution unit resources are divided across logic used to
execute multiple simultaneous threads .
[0248] In at least one embodiment , graphics execution unit
3108 can co - issue multiple instructions , which may each be
different instructions . In at least one embodiment , thread
arbiter 3122 of graphics execution unit thread 3108 can
dispatch instructions to one of send unit 3130 , branch unit
3142 , or SIMD FPU (s) 3134 for execution . In at least one
embodiment , each execution thread can access 128 general
purpose registers within GRF 3124 , where each register can
store 32 bytes , accessible as a SIMD 8 - element vector of
32 - bit data elements . In at least one embodiment , each
execution unit thread has access to 4 Kbytes within GRF
3124 , although embodiments are not so limited , and greater
or fewer register resources may be provided in other
embodiments . In at least one embodiment , up to seven
threads can execute simultaneously , although a number of
threads per execution unit can also vary according to
embodiments . In at least one embodiment , in which seven
threads may access 4 Kbytes , GRF 3124 can store a total of
28 Kbytes . In at least one embodiment , flexible addressing
modes can permit registers to be addressed together to build
effectively wider registers or to represent strided rectangular
block data structures .
[0249] In at least one embodiment , memory operations ,
sampler operations , and other longer - latency system com
munications are dispatched via “ send ” instructions that are
executed by message passing send unit 3130. In at least one
embodiment , branch instructions are dispatched to a dedi
cated branch unit 3132 to facilitate SIMD divergence and
eventual convergence .
[0250] In at least one embodiment graphics execution unit
3108 includes one or more SIMD floating point units
(FPU (s)) 3134 to perform floating - point operations . In at
least one embodiment , FPU (s) 3134 also support integer
computation . In at least one embodiment FPU (s) 3134 can
SIMD execute up to M number of 32 - bit floating - point (or
integer) operations , or SIMD execute up to 2M 16 - bit
integer or 16 - bit floating - point operations . In at least one
embodiment , at least one of FPU (s) provides extended math
capability to support high - throughput transcendental math
functions and double precision 64 - bit floating - point . In at
least one embodiment , a set of 8 - bit integer SIMD ALUS
3135 are also present , and may be specifically optimized to
perform operations associated with machine learning com
putations .
[0251] In at least one embodiment , arrays of multiple
instances of graphics execution unit 3108 can be instantiated
in a graphics sub - core grouping (e.g. , a sub - slice) . In at least
one embodiment execution unit 3108 can execute instruc
tions across a plurality of execution channels . In at least one
embodiment , each thread executed on graphics execution
unit 3108 is executed on a different channel .
[0252] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction

with FIGS . 10 and / or 11. In at least one embodiment ,
portions or all of inference and / or training logic 1015 may
be incorporated into execution logic 3100. Moreover , in at
least one embodiment , inferencing and / or training opera
tions described herein may be done using logic other than
logic illustrated in FIG . 10 or 11. In at least one embodiment ,
weight parameters may be stored in on - chip or off - chip
memory and / or registers (shown or not shown) that config
ure ALUs of execution logic 3100 to perform one or more
machine learning algorithms , neural network architectures ,
use cases , or training techniques described herein .
[0253] FIG . 32 illustrates a parallel processing unit
(“ PPU ”) 3200 , in at least one embodiment . In at least one
embodiment , PPU 3200 is configured with machine - read
able code that , if executed by PPU 3200 , causes PPU 3200
to perform some or all of processes and techniques described
throughout this disclosure . In at least one embodiment , PPU
3200 is a multi - threaded processor that is implemented on
one or more integrated circuit devices and that utilizes
multithreading as a latency - hiding technique designed to
process computer - readable instructions (also referred to as
machine - readable instructions or simply instructions) on
multiple threads in parallel . In at least one embodiment , a
thread refers to a thread of execution and is an instantiation
of a set of instructions configured to be executed by PPU
3200. In at least one embodiment , PPU 3200 is a graphics
processing unit (“ GPU ") configured to implement a graphics
rendering pipeline for processing three - dimensional (" 3D ")
graphics data in order to generate two - dimensional (“ 2D ”)
image data for display on a display device such as a liquid
crystal display (“ LCD ") device . In at least one embodiment ,
PPU 3200 is utilized to perform computations such as linear
algebra operations and machine - learning operations . FIG .
32 illustrates an example parallel processor for illustrative
purposes only and should be construed as a non - limiting
example of processor architectures contemplated within
scope of this disclosure and that any suitable processor may
be employed to supplement and / or substitute for same .
[0254] In at least one embodiment , one or more PPUS
3200 are configured to accelerate High Performance Com
puting (“ HPC ”) , data center , and machine learning applica
tions . In at least one embodiment , PPU 3200 is configured
to accelerate deep learning systems and applications includ
ing following non - limiting examples : autonomous vehicle
platforms , deep learning , high - accuracy speech , image , text
recognition systems , intelligent video analytics , molecular
simulations , drug discovery , disease diagnosis , weather fore
casting , big data analytics , astronomy , molecular dynamics
simulation , financial modeling , robotics , factory automation ,
real - time language translation , online search optimizations ,
and personalized user recommendations , and more .
[0255] In at least one embodiment , PPU 3200 includes ,
without limitation , an Input / Output (“ I / O ”) unit 3206 , a
front - end unit 3210 , a scheduler unit 3212 , a work distri
bution unit 3214 , a hub 3216 , a crossbar (“ Xbar ”) 3220 , one
or more general processing clusters (“ GPCs ”) 3218 , and one
or more partition units (“ memory partition units ”) 3222. In
at least one embodiment , PPU 3200 is connected to host
processor or other PPUs 3200 via one or more high - speed
GPU interconnects (“ GPU interconnects ”) 3208. In at least
one embodiment , PPU 3200 is connected to a host processor
or other peripheral devices via an interconnect 3202. In at
least one embodiment , PPU 3200 is connected to a local
memory comprising one memory devices or more

US 2020/0394458 A1 Dec. 17 , 2020
32

(“ memory ”) 3204. In at least one embodiment , memory
devices 3204 include , without limitation , one or more
dynamic random access memory (“ DRAM ”) devices . In at
least one embodiment , one or more DRAM devices are
configured and / or configurable as high - bandwidth memory
(“ HBM ”) subsystems , with multiple DRAM dies stacked
within each device .
[0256] In at least one embodiment , high - speed GPU inter
connect 3208 may refer to a wire - based multi - lane commu
nications link that is used by systems to scale and include
one or more PPUS 3200 combined with one or more central
processing units (“ CPUs ”) , supports cache coherence
between PPUs 3200 and CPUs , and CPU mastering . In at
least one embodiment , data and / or commands are transmit
ted by high - speed GPU interconnect 3208 through hub 3216
to / from other units of PPU 3200 such as one or more copy
engines , video encoders , video decoders , power manage
ment units , and other components which may not be explic
itly illustrated in FIG . 32 .
[0257] In at least one embodiment , I / O unit 3206 is
configured to transmit and receive communications (e.g. ,
commands , data) from a host processor (not illustrated in
FIG . 32) over system bus 3202. In at least one embodiment ,
I / O unit 3206 communicates with host processor directly via
system bus 3202 or through one or more intermediate
devices such as a memory bridge . In at least one embodi
ment , I / O unit 3206 may communicate with one or more
other processors , such as one or more of PPUs 3200 via
system bus 3202. In at least one embodiment , I / O unit 3206
implements a Peripheral Component Interconnect Express
(“ PCIe ”) interface for communications over a PCIe bus . In
at least one embodiment , I / O unit 3206 implements inter
faces for communicating with external devices .
[0258] In at least one embodiment , 1/0 unit 3206 decodes
packets received via system bus 3202. In at least one
embodiment , at least some packets represent commands
configured to cause PPU 3200 to perform various opera
tions . In at least one embodiment , I / O unit 3206 transmits
decoded commands to various other units of PPU 3200 as
specified by commands . In at least one embodiment , com
mands are transmitted to front - end unit 3210 and / or trans
mitted to hub 3216 or other units of PPU 3200 such as one
or more copy engines , a video encoder , a video decoder , a
power management unit , etc. (not explicitly illustrated in
FIG . 32) . In at least one embodiment , I / O unit 3206 is
configured to route communications between and among
various logical units of PPU 3200 .
[0259] In at least one embodiment , a program executed by
host processor encodes a command stream in a buffer that
provides workloads to PPU 3200 for processing . In at least
one embodiment , a workload comprises instructions and
data to be processed by those instructions . In at least one
embodiment , buffer is a region in a memory that is acces
sible (e.g. , read / write) by both host processor and PPU 3200 .
A host interface unit may be configured to access buffer in
a system memory connected to system bus 3202 via memory
requests transmitted over system bus 3202 by I / O unit 3206 .
In at least one embodiment , host processor writes command
stream to buffer and then transmits a pointer to start of
command stream to PPU 3200 such that front - end unit 3210
receives pointers to one or more command streams and
manages one or more command streams , reading commands
from command streams and forwarding commands to vari
ous units of PPU 3200 .

[0260] In at least one embodiment , front - end unit 3210 is
coupled to scheduler unit 3212 that configures various GPCs
3218 to process tasks determined by one or more command
streams . In at least one embodiment , scheduler unit 3212 is
configured to track state information related to various tasks
managed by scheduler unit 3212 where state information
may indicate which of GPCs 3218 a task is assigned to ,
whether task is active or inactive , a priority level associated
with task , and so forth . In at least one embodiment , sched
uler unit 3212 manages execution of a plurality of tasks on
one or more of GPCs 3218 .
[0261] In at least one embodiment , scheduler unit 3212 is
coupled to work distribution unit 3214 that is configured to
dispatch tasks for execution on GPCs 3218. In at least one
embodiment , work distribution unit 3214 tracks a number of
scheduled tasks received from scheduler unit 3212 and work
distribution unit 3214 manages a pending task pool and an
active task pool for each of GPCs 3218. In at least one
embodiment , pending task pool comprises a number of slots
(e.g. , 32 slots) that contain tasks assigned to be processed by
a particular GPC 3218 ; active task pool may comprise a
number of slots (e.g. , 4 slots) for tasks that are actively being
processed by GPCs 3218 such that as one of GPCs 3218
completes execution of a task , that task is evicted from
active task pool for GPC 3218 and one of other tasks from
pending task pool is selected and scheduled for execution on
GPC 3218. In at least one embodiment , if an active task is
idle on GPC 3218 , such as while waiting for a data depen
dency to be resolved , then active task is evicted from GPC
3218 and returned to pending task pool while another task in
pending task pool is selected and scheduled for execution on
GPC 3218 .
[0262] In at least one embodiment , work distribution unit
3214 communicates with one or more GPCs 3218 via XBar
3220. In at least one embodiment , XBar 3220 is an inter
connect network that couples many of units of PPU 3200 to
other units of PPU 3200 and can be configured to couple
work distribution unit 3214 to a particular GPC 3218. In at
least one embodiment , one or more other units of PPU 3200
may also be connected to XBar 3220 via hub 3216 .
[0263] In at least one embodiment , tasks are managed by
scheduler unit 3212 and dispatched to one of GPCs 3218 by
work distribution unit 3214. GPC 3218 is configured to
process task and generate results . In at least one embodi
ment , results may be consumed by other tasks within GPC
3218 , routed to a different GPC 3218 via XBar 3220 , or
stored in memory 3204. In at least one embodiment , results
can be written to memory 3204 via partition units 3222 ,
which implement a memory interface for reading and writ
ing data to / from memory 3204. In at least one embodiment ,
results can be transmitted to another PPU 3204 or CPU via
high - speed GPU interconnect 3208. In at least one embodi
ment , PPU 3200 includes , without limitation , a number U of
partition units 3222 that is equal to number of separate and
distinct memory devices 3204 coupled to PPU 3200. In at
least one embodiment , partition unit 3222 will be described
in more detail below in conjunction with FIG . 34 .
(0264] In at least one embodiment , a host processor
executes a driver kernel that implements an application
programming interface (“ API ”) that enables one or more
applications executing on host processor to schedule opera
tions for execution on PPU 3200. In at least one embodi
ment , multiple compute applications are simultaneously
executed by PPU 3200 and PPU 3200 provides isolation ,

US 2020/0394458 A1 Dec. 17 , 2020
33

quality of service (“ QoS ”) , and independent address spaces
for multiple compute applications . In at least one embodi
ment , an application generates instructions (e.g. , in form of
API calls) that cause driver kernel to generate one or more
tasks for execution by PPU 3200 and driver kernel outputs
tasks to one or more streams being processed by PPU 3200 .
In at least one embodiment , each task comprises one or more
groups of related threads , which may be referred to as a
warp . In at least one embodiment , a warp comprises a
plurality of related threads (e.g. , 32 threads) that can be
executed in parallel . In at least one embodiment , cooperating
threads can refer to a plurality of threads including instruc
tions to perform task and that exchange data through shared
memory . In at least one embodiment , threads and cooperat
ing threads are described in more detail , in accordance with
at least one embodiment , in conjunction with FIG . 34 .
[0265] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment , deep
learning application processor is used to train a machine
learning model , such as a neural network , to predict or infer
information provided to PPU 3200. In at least one embodi
ment , deep learning application processor 3200 is used to
infer or predict information based on a trained machine
learning model (e.g. , neural network) that has been trained
by another processor or system or by PPU 3200. In at least
one embodiment , PPU 3200 may be used to perform one or
more neural network use cases described herein .
[0266] FIG . 33 illustrates a general processing cluster
(“ GPC ”) 3300 , in at least one embodiment . In at least one
embodiment , GPC 3300 is GPC 3218 of FIG . 32. In at least
one embodiment , each GPC 3300 includes , without limita
tion , a number of hardware units for processing tasks and
each GPC 3300 includes , without limitation , a pipeline
manager 3302 , a pre - raster operations unit (“ PROP ”) 3304 ,
a raster engine 3308 , a work distribution crossbar (“ WDX ”)
3316 , a memory management unit (“ MMU ”) 3318 , one or
more Data Processing Clusters (“ DPCs ”) 3306 , and any
suitable combination of parts .
[0267] In at least one embodiment , operation of GPC 3300
is controlled by pipeline manager 3302. In at least one
embodiment , pipeline manager 3302 manages configuration
of one or more DPCs 3306 for processing tasks allocated to
GPC 3300. In at least one embodiment , pipeline manager
3302 configures at least one of one or more DPCs 3306 to
implement at least a portion of a graphics rendering pipeline .
In at least one embodiment , DPC 3306 is configured to
execute a vertex shader program on a programmable stream
ing multi - processor (“ SM ”) 3314. In at least one embodi
ment , pipeline manager 3302 is configured to route packets
received from a work distribution unit to appropriate logical
units within GPC 3300 , in at least one embodiment , and
some packets may be routed to fixed function hardware units
in PROP 3304 and / or raster engine 3308 while other packets
may be routed to DPCs 3306 for processing by a primitive
engine 3312 or SM 3314. In at least one embodiment ,
pipeline manager 3302 configures at least one of DPCs 3306
to implement a neural network model and / or a computing
pipeline .
[0268] In at least one embodiment , PROP unit 3304 is
configured , in at least one embodiment , to route data gen
erated by raster engine 3308 and DPCs 3306 to a Raster

Operations (“ ROP ”) unit in partition unit 3222 , described in
more detail above in conjunction with FIG . 32. In at least
one embodiment , PROP unit 3304 is configured to perform
optimizations for color blending , organize pixel data , per
form address translations , and more . In at least one embodi
ment , raster engine 3308 includes , without limitation , a
number of fixed function hardware units configured to
perform various raster operations , in at least one embodi
ment , and raster engine 3308 includes , without limitation , a
setup engine , a coarse raster engine , a culling engine , a
clipping engine , a fine raster engine , a tile coalescing engine ,
and any suitable combination thereof . In at least one
embodiment , setup engine receives transformed vertices and
generates plane equations associated with geometric primi
tive defined by vertices ; plane equations are transmitted to
coarse raster engine to generate coverage information (e.g. ,
an x , y coverage mask for a tile) for primitive ; output of
coarse raster engine is transmitted to culling engine where
fragments associated with primitive that fail a z - test are
culled , and transmitted to a clipping engine where fragments
lying outside a viewing frustum are clipped . In at least one
embodiment , fragments that survive clipping and culling are
passed to fine raster engine to generate attributes for pixel
fragments based on plane equations generated by setup
engine . In at least one embodiment , output of raster engine
3308 comprises fragments to be processed by any suitable
entity such as by a fragment shader implemented within
DPC 3306 .
[0269] In at least one embodiment , each DPC 3306
included in GPC 3300 comprise , without limitation , an
M - Pipe Controller (“ MPC ”) 3310 ; primitive engine 3312 ;
one or more SMs 3314 ; and any suitable combination
thereof . In at least one embodiment , MPC 3310 controls
operation of DPC 3306 , routing packets received from
pipeline manager 3302 to appropriate units in DPC 3306. In
at least one embodiment , packets associated with a vertex
are routed to primitive engine 3312 , which is configured to
fetch vertex attributes associated with vertex from memory ;
in contrast , packets associated with a shader program may be
transmitted to SM 3314 .

[0270] In at least one embodiment , SM 3314 comprises ,
without limitation , a programmable streaming processor that
is configured to process tasks represented by a number of
threads . In at least one embodiment , SM 3314 is multi
threaded and configured to execute a plurality of threads
(e.g. , 32 threads) from a particular group of threads concur
rently and implements a Single - Instruction , Multiple - Data
(" SIMD ”) architecture where each thread in a group of
threads (e.g. , a warp) is configured to process a different set
of data based on same set of instructions . In at least one
embodiment , all threads in group of threads execute same
instructions . In at least one embodiment , SM 3314 imple
ments a Single - Instruction , Multiple Thread (“ SIMT ”)
architecture wherein each thread in a group of threads is
configured to process a different set of data based on same
set of instructions , but where individual threads in group of
threads are allowed to diverge during execution . In at least
one embodiment , a program counter , call stack , and execu
tion state is maintained for each warp , enabling concurrency
between warps and serial execution within warps when
threads within warp diverge . In another embodiment , a
program counter , call stack , and execution state are main
tained for each individual thread , enabling equal concur
rency between all threads , within and between warps . In at

US 2020/0394458 A1 Dec. 17 , 2020
34

least one embodiment , execution state is maintained for each
individual thread and threads executing same instructions
may be converged and executed in parallel for better effi
ciency . At least one embodiment of SM 3314 is described in
more detail below .
[0271] In at least one embodiment , MMU 3318 provides
an interface between GPC 3300 and memory partition unit
(e.g. , partition unit 3222 of FIG . 32) and MMU 3318
provides translation of virtual addresses into physical
addresses , memory protection , and arbitration of memory
requests . In at least one embodiment , MMU 3318 provides
one or more translation lookaside buffers (“ TLBs ”) for
performing translation of virtual addresses into physical
addresses in memory
[0272] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment , deep
learning application processor is used to train a machine
learning model , such as a neural network , to predict or infer
information provided to GPC 3300. In at least one embodi
ment , GPC 3300 is used to infer or predict information based
on a trained machine learning model (e.g. , neural network)
that has been trained by another processor or system or by
GPC 3300. In at least one embodiment , GPC 3300 may be
used to perform one or more neural network use cases
described herein .
[0273] FIG . 34 illustrates a memory partition unit 3400 of
a parallel processing unit (“ PPU ”) , in accordance with at
least one embodiment . In at least one embodiment , memory
partition unit 3400 includes , without limitation , a Raster
Operations (“ ROP ”) unit 3402 ; a level two (“ L2 ”) cache
3404 ; a memory interface 3406 ; and any suitable combina
tion thereof . Memory interface 3406 is coupled to memory .
Memory interface 3406 may implement 32 , 64 , 128 , 1024
bit data buses , or like , for high - speed data transfer . In at least
one embodiment , PPU incorporates U memory interfaces
3406 , one memory interface 3406 per pair of partition units
3400 , where each pair of partition units 3400 is connected to
a corresponding memory device . For example , in at least one
embodiment , PPU may be connected to up to Y memory
devices , such as high bandwidth memory stacks or graphics
double - data - rate , version 5 , synchronous dynamic random
access memory (“ GDDR5 SDRAM ”) .
[0274] In at least one embodiment , memory interface 3406
implements a high bandwidth memory second generation
(“ HBM2 ”) memory interface and Y equals half U. In at least
one embodiment , HBM2 memory stacks are located on
same physical package as PPU , providing substantial power
and area savings compared with GDDR5 SDRAM systems .
In at least one embodiment , each HBM2 stack includes ,
without limitation , four memory dies and Y equals 4 , with
each HBM2 stack including two 128 - bit channels per die for
a total of 8 channels and a data bus width of 1024 bits . In at
least one embodiment , memory supports Single - Error Cor
recting Double - Error Detecting (“ SECDED ") Error Correc
tion Code (“ ECC ”) to protect data . ECC provides higher
reliability for compute applications that are sensitive to data
corruption .
[0275] In at least one embodiment , PPU implements a
multi - level memory hierarchy . In at least one embodiment ,
memory partition unit 3400 supports a unified memory to
provide a single unified virtual address space for central

processing unit (" CPU ') and PPU memory , enabling data
sharing between virtual memory systems . In at least one
embodiment frequency of accesses by a PPU to memory
located on other processors is traced to ensure that memory
pages are moved to physical memory of PPU that is access
ing pages more frequently . In at least one embodiment ,
high - speed GPU interconnect 3208 supports address trans
lation services allowing PPU to directly access a CPU's
page tables and providing full access to CPU memory by
PPU .
[0276] In at least one embodiment , copy engines transfer
data between multiple PPUs or between PPUs and CPUs . In
at least one embodiment , copy engines can generate page
faults for addresses that are not mapped into page tables and
memory partition unit 3400 then services page faults , map
ping addresses into page table , after which copy engine
performs transfer . In at least one embodiment , memory is
pinned (or non - pageable) for multiple copy engine opera
tions between multiple processors , substantially reducing
available memory . In at least one embodiment , with hard
ware page faulting , addresses can be passed to copy engines
without regard as to whether memory pages are resident , and
copy process is transparent .
[0277] Data from memory 3204 of FIG . 32 or other system
memory is fetched by memory partition unit 3400 and stored
in L2 cache 3404 , which is located on - chip and is shared
between various GPCs , in accordance with at least one
embodiment . Each memory partition unit 3400 , in at least
one embodiment , includes , without limitation , at least a
portion of L2 cache associated with a corresponding
memory device . In at least one embodiment , lower level
caches are implemented in various units within GPCs . In at
least one embodiment , each of SMs 3314 may implement a
level one (“ L1 ”) cache wherein L1 cache is private memory
that is dedicated to a particular SM 3314 and data from L2
cache 3404 is fetched and stored in each of L1 caches for
processing in functional units of SMs 3314. In at least one
embodiment , L2 cache 3404 is coupled to memory interface
3406 and XBar 3220 .
[0278] ROP unit 3402 performs graphics raster operations
related to pixel color , such as color compression , pixel
blending , and more , in at least one embodiment . ROP unit
3402 , in at least one embodiment , implements depth testing
in conjunction with raster engine 3308 , receiving a depth for
a sample location associated with a pixel fragment from
culling engine of raster engine 3308. In at least one embodi
ment , depth is tested against a corresponding depth in a
depth buffer for a sample location associated with fragment .
In at least one embodiment , if fragment passes depth test for
sample location , then ROP unit 3402 updates depth buffer
and transmits a result of depth test to raster engine 3308. It
will be appreciated that number of partition units 3400 may
be different than number of GPCs and , therefore , each ROP
unit 3402 can , in at least one embodiment , be coupled to
each of GPCs . In at least one embodiment , ROP unit 3402
tracks packets received from different GPCs and determines
which that a result generated by ROP unit 3402 is routed to
through XBar 3220 .
[0279] FIG . 35 illustrates a streaming multi - processor
(“ SM ”) 3500 , in at least one embodiment . In at least one
embodiment , SM 3500 is SM of FIG . 33. In at least one
embodiment , SM 3500 includes , without limitation , an
instruction cache 3502 ; one or more scheduler units 3504 ; a
register file 3508 ; one or more processing cores (" cores ”)

US 2020/0394458 A1 Dec. 17 , 2020
35

3510 ; one or more special function units (“ SFUs ”) 3512 ; one
or more load / store units (“ LSUs ”) 3514 ; an interconnect
network 3516 ; a shared memory / level one (“ L1 ”) cache
3518 ; and any suitable combination thereof . In at least one
embodiment , a work distribution unit dispatches tasks for
execution on general processing clusters (“ GPCs ”) of par
allel processing units (“ PPUs ”) and each task is allocated to
a particular Data Processing Cluster (“ DPC ”) within a GPC
and , if task is associated with a shader program , task is
allocated to one of SMs 3500. In at least one embodiment ,
scheduler unit 3504 receives tasks from work distribution
unit and manages instruction scheduling for one or more
thread blocks assigned to SM 3500. In at least one embodi
ment , scheduler unit 3504 schedules thread blocks for
execution as warps of parallel threads , wherein each thread
block is allocated at least one warp . In at least one embodi
ment , each warp executes threads . In at least one embodi
ment , scheduler unit 3504 manages a plurality of different
thread blocks , allocating warps to different thread blocks and
then dispatching instructions from plurality of different
cooperative groups to various functional units (e.g. , process
ing cores 3510 , SFUs 3512 , and LSUs 3514) during each
clock cycle .
[0280] In at least one embodiment , Cooperative Groups
may refer to a programming model for organizing groups of
communicating threads that allows developers to express
granularity at which threads are communicating , enabling
expression of richer , more efficient parallel decompositions .
In at least one embodiment , cooperative launch APIs support
synchronization amongst thread blocks for execution of
parallel algorithms . In at least one embodiment , applications
of programming models provide a single , simple construct
for synchronizing cooperating threads : a barrier across all
threads of a thread block (e.g. , a syncthreads () function) .
However , In at least one embodiment , programmers may
define groups of threads at smaller than thread block granu
larities and synchronize within defined groups to enable greater performance , design flexibility , and software reuse in
form of collective group - wide function interfaces . In at least
one embodiment , Cooperative Groups enables programmers
to define groups of threads explicitly at sub - block and
multi - block granularities , and to perform collective opera
tions such as synchronization on threads in a cooperative
group . A programming model supports clean composition
across software boundaries , so that libraries and utility
functions can synchronize safely within their local context
without having to make assumptions about convergence . In
at least one embodiment , Cooperative Groups primitives
enable new patterns of cooperative parallelism , including ,
without limitation , producer - consumer parallelism , oppor
tunistic parallelism , and global synchronization across an
entire grid of thread blocks .
[0281] In at least one embodiment , a dispatch unit 3506 is
configured to transmit instructions to one or more of func
tional units and scheduler unit 3504 includes , without limi
tation , two dispatch units 3506 that enable two different
instructions from same warp to be dispatched during each
clock cycle . In at least one embodiment , each scheduler unit
3504 includes a single dispatch unit 3506 or additional
dispatch units 3506 .
[0282] In at least one embodiment , each SM 3500 , in at
least one embodiment , includes , without limitation , register
file 3508 that provides a set of registers for functional units
of SM 3500. In at least one embodiment , register file 3508

is divided between each of functional units such that each
functional unit is allocated a dedicated portion of register file
3508. In at least one embodiment , register file 3508 is
divided between different warps being executed by SM 3500
and register file 3508 provides temporary storage for oper
ands connected to data paths of functional units . In at least
one embodiment , each SM 3500 comprises , without limita
tion , a plurality of L processing cores 3510. In at least one
embodiment , SM 3500 includes , without limitation , a large
number (e.g. , 128 or more) of distinct processing cores
3510. In at least one embodiment , each processing core
3510 , in at least one embodiment , includes , without limita
tion , a fully - pipelined , single - precision , double - precision ,
and / or mixed precision processing unit that includes , with
out limitation , a floating point arithmetic logic unit and an
integer arithmetic logic unit . In at least one embodiment ,
floating point arithmetic logic units implement IEEE 754
2008 standard for floating point arithmetic . In at least one
embodiment , processing cores 3510 include , without limi
tation , 64 single - precision (32 - bit) floating point cores , 64
integer cores , 32 double - precision (64 - bit) floating point
cores , and 8 tensor cores .
[0283] Tensor cores are configured to perform matrix
operations in accordance with at least one embodiment . In at
least one embodiment , one or more tensor cores are included
in processing cores 3510. In at least one embodiment , tensor
cores are configured to perform deep learning matrix arith
metic , such as convolution operations for neural network
training and inferencing . In at least one embodiment , each
tensor core operates on a 4x4 matrix and performs a matrix
multiply and accumulate operation D = AxB + C , where A , B ,
C , and D are 4x4 matrices .
[0284] In at least one embodiment , matrix multiply inputs
A and B are 16 - bit floating point matrices and accumulation
matrices C and D are 16 - bit floating point or 32 - bit floating
point matrices . In at least one embodiment , tensor cores
operate on 16 - bit floating point input data with 32 - bit
floating point accumulation . In at least one embodiment ,
16 - bit floating point multiply uses 64 operations and results
in a full precision product that is then accumulated using
32 - bit floating point addition with other intermediate prod
ucts for a 4x4x4 matrix multiply . Tensor cores are used to
perform much larger two - dimensional or higher dimensional
matrix operations , built up from these smaller elements , in
at least one embodiment . In at least one embodiment , an
API , such as CUDA 9 C ++ API , exposes specialized matrix
load , matrix multiply and accumulate , and matrix store
operations to efficiently use tensor cores from a CUDA - C ++
program . In at least one embodiment , at CUDA level ,
warp - level interface assumes 16x16 size matrices spanning
all 32 threads of warp .
[0285] In at least one embodiment , each SM 3500 com
prises , without limitation , M SFUs 3512 that perform special
functions (e.g. , attribute evaluation , reciprocal square root ,
and like) . In at least one embodiment , SFUS 3512 include ,
without limitation , a tree traversal unit configured to traverse
a hierarchical tree data structure . In at least one embodiment ,
SFUs 3512 include , without limitation , a texture unit con
figured to perform texture map filtering operations . In at
least one embodiment , texture units are configured to load
texture maps (e.g. , a 2D array of texels) from memory and
sample texture maps to produce sampled texture values for
use in shader programs executed by SM 3500. In at least one
embodiment , texture maps are stored in shared memory / L1

US 2020/0394458 A1 Dec. 17 , 2020
36

cache 3518. In at least one embodiment , texture units implement texture operations such as filtering operations
using mip - maps (e.g. , texture maps of varying levels of
detail) , in accordance with at least one embodiment . In at
least one embodiment , each SM 3500 includes , without
limitation , two texture units .
[0286] Each SM 3500 comprises , without limitation , N
LSUs 3514 that implement load and store operations
between shared memory / L1 cache 3518 and register file
3508 , in at least one embodiment . Each SM 3500 includes ,
without limitation , interconnect network 3516 that connects
each of functional units to register file 3508 and LSU 3514
to register file 3508 and shared memory / L1 cache 3518 in at
least one embodiment . In at least one embodiment , inter
connect network 3516 is a crossbar that can be configured to
connect any of functional units to any of registers in register
file 3508 and connect LSUs 3514 to register file 3508 and
memory locations in shared memory / L1 cache 3518 .
[0287] In at least one embodiment , shared memory / L1
cache 3518 is an array of on - chip memory that allows for
data storage and communication between SM 3500 and
primitive engine and between threads in SM 3500 , in at least
one embodiment . In at least one embodiment , shared
memory / L1 cache 3518 comprises , without limitation , 128
KB of storage capacity and is in path from SM 3500 to
partition unit . In at least one embodiment , shared memory /
L1 cache 3518 , in at least one embodiment , is used to cache
reads and writes . In at least one embodiment , one or more of
shared memory / L1 cache 3518 , L2 cache , and memory are
backing stores .
[0288] Combining data cache and shared memory func
tionality into a single memory block provides improved
performance for both types of memory accesses , in at least
one embodiment . In at least one embodiment , capacity is
used or is usable as a cache by programs that do not use
shared memory , such as if shared memory is configured to
use half of capacity , texture and load / store operations can
use remaining capacity . Integration within shared memory
Ll cache 3518 enables shared memory / L1 cache 3518 to
function as a high - throughput conduit for streaming data
while simultaneously providing high - bandwidth and low
latency access to frequently reused data , in accordance with
at least one embodiment . In at least one embodiment , when
configured for general purpose parallel computation , a sim
pler configuration can be used compared with graphics
processing . In at least one embodiment , fixed function
graphics processing units are bypassed , creating a much
simpler programming model . In general purpose parallel
computation configuration , work distribution unit assigns
and distributes blocks of threads directly to DPCs , in at least
one embodiment . In at least one embodiment , threads in a
block execute same program , using a unique thread ID in
calculation to ensure each thread generates unique results ,
using SM 3500 to execute program and perform calcula
tions , shared memory / L1 cache 3518 to communicate
between threads , and LSU 3514 to read and write global
memory through shared memory / L1 cache 3518 and
memory partition unit . In at least one embodiment , when
configured for general purpose parallel computation , SM
3500 writes commands that scheduler unit 3504 can use to
launch new work on DPCs .
[0289] In at least one embodiment , PPU is included in or
coupled to a desktop computer , a laptop computer , a tablet
computer , servers , supercomputers , a smart - phone (e.g. , a

wireless , hand - held device) , personal digital assistant
(“ PDA ”) , a digital camera , a vehicle , a head mounted
display , a hand - held electronic device , and more . In at least
one embodiment , PPU is embodied on a single semicon
ductor substrate . In at least one embodiment , PPU is
included in a system - on - a - chip (“ SOC ”) along with one or
more other devices such as additional PPUs , memory , a
reduced instruction set computer (“ RISC ”) CPU , a memory
management unit (“ MMU ”) , a digital - to - analog converter
(“ DAC ”) , and like .
[0290] In at least one embodiment , PPU may be included
on a graphics card that includes one or more memory
devices . A graphics card may be configured to interface with
a PCIe slot on a motherboard of a desktop computer . In at
least one embodiment , PPU may be an integrated graphics
processing unit (“ iGPU ”) included in chipset of mother
board .
[0291] Inference and / or training logic 1015 are used to
perform inferencing and / or training operations associated
with one or more embodiments . Details regarding inference
and / or training logic 1015 are provided below in conjunction
with FIGS . 10 and / or 11. In at least one embodiment , deep
learning application processor is used to train a machine
learning model , such as a neural network , to predict or infer
information provided to SM 3500. In at least one embodi
ment , SM 3500 is used to infer or predict information based
on a trained machine learning model (e.g. , neural network)
that has been trained by another processor or system or by
SM 3500. In at least one embodiment , SM 3500 may be used
to perform one or more neural network use cases described
herein .
[0292] In at least one embodiment , a single semiconductor
platform may refer to a sole unitary semiconductor - based
integrated circuit or chip . In at least one embodiment ,
multi - chip modules may be used with increased connectivity
which simulate on - chip operation , and make substantial
improvements over utilizing a central processing unit
(" CPU ”) and bus implementation . In at least one embodi
ment , various modules may also be situated separately or in
various combinations of semiconductor platforms per
desires of user .
[0293] Other variations are within spirit of present disclo
sure . Thus , while disclosed techniques are susceptible to
various modifications and alternative constructions , certain
illustrated embodiments thereof are shown in drawings and
have been described above in detail . It should be understood ,
however , that there is no intention to limit disclosure to
specific form or forms disclosed , but on contrary , intention
is to cover all modifications , alternative constructions , and
equivalents falling within spirit and scope of disclosure , as
defined in appended claims .
[0294] Use of terms “ a ” and “ an ” and “ the ” and similar
referents in context of describing disclosed embodiments
(especially in context of following claims) are to be con
strued to cover both singular and plural , unless otherwise
indicated herein or clearly contradicted by context . Terms
" comprising , " " having , " " including , " and " containing " are
to be construed as open - ended terms (meaning “ including ,
but not limited to , ”) unless otherwise noted . term " con
nected , ” when unmodified and referring to physical connec
tions , is to be construed as partly or wholly contained within ,
attached to , or joined together , even if there is something
intervening . Recitation of ranges of values herein are merely
intended to serve as a shorthand method of referring indi

US 2020/0394458 A1 Dec. 17 , 2020
37

vidually to each separate value falling within range , unless
otherwise indicated herein and each separate value is incor
porated into specification as if it were individually recited
herein . use of term “ set ” (e.g. , " a set of items ”) or " subset ”
unless otherwise noted or contradicted by context , is to be
construed as a nonempty collection comprising one or more
members . Further , unless otherwise noted or contradicted by
context , term " subset ” of a corresponding set does not
necessarily denote a proper subset of corresponding set , but
subset and corresponding set may be equal .
[0295] Conjunctive language , such as phrases of form “ at
least one of A , B , and C , " or at least one of A , B and C , "
unless specifically stated otherwise or otherwise clearly
contradicted by context , is otherwise understood with con
text as used in general to present that an item , term , etc. , may
be either A or B or C , or any nonempty subset of set of A and
B and C. For instance , in illustrative example of a set having
three members , conjunctive phrases " at least one of A , B ,
and C ” and “ at least one of A , B and C ” refer to any of
following sets : { A } , { B } , { C } , { A , B } , { A , C } , { B , C } , { A ,
B , C } . Thus , such conjunctive language is not intended to
imply that certain embodiments require at least one of A , at
least one of B and at least one of C each to be present . In
addition , unless otherwise noted or contradicted by context ,
term “ plurality ” indicates a state of being plural (e.g. , “ a
plurality of items ” indicates multiple items) . A number of
items in a plurality is at least two , but can be more when so
indicated either explicitly or by context . Further , unless
stated otherwise or otherwise clear from context , phrase
" based on ” means “ based at least in part on ” and not “ based
solely on . ”
[0296] Operations of processes described herein can be
performed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context . In at
least one embodiment , a process such as those processes
described herein (or variations and / or combinations thereof)
is performed under control of one or more computer systems
configured with executable instructions and is implemented
as code (e.g. , executable instructions , one or more computer
programs or one or more applications) executing collec
tively on one or more processors , by hardware or combina
tions thereof . In at least one embodiment , code is stored on
a computer - readable storage medium , for example , in form
of a computer program comprising a plurality of instructions
executable by one or more processors . In at least one
embodiment , a computer - readable storage medium is a
non - transitory computer - readable storage medium that
excludes transitory signals (e.g. , a propagating transient
electric or electromagnetic transmission) but includes non
transitory data storage circuitry (e.g. , buffers , cache , and
queues) within transceivers of transitory signals . In at least
one embodiment , code (e.g. , executable code or source
code) is stored on a set of one or more non - transitory
computer - readable storage media having stored thereon
executable instructions (or other memory to store executable
instructions) that , when executed by one or more processors
of a computer system , cause computer system to perform
operations described herein . A set of non - transitory com
puter - readable storage media , in at least one embodiment ,
comprises multiple non - transitory computer - readable stor
age media and one or more of individual non - transitory
storage media of multiple non - transitory computer - readable
storage media lack all of code while multiple non - transitory
computer - readable storage media collectively store all of

code . In at least one embodiment , executable instructions are
executed such that different instructions are executed by
different processors . For example , a non - transitory com
puter - readable storage medium store instructions and a main
central processing unit (“ CPU ”) executes some of instruc
tions while a graphics processing unit (“ GPU ”) executes
other instructions . In at least one embodiment , different
components of a computer system have separate processors
and different processors execute different subsets of instruc
tions .
[0297] Accordingly , in at least one embodiment , computer
systems are configured to implement one or more services
that singly or collectively perform operations of processes
described herein and such computer systems are configured
with applicable hardware and / or software that enable per
formance of operations . Further , a computer system that
implements at least one embodiment of present disclosure is
a single device and , in another embodiment , is a distributed
computer system comprising multiple devices that operate
differently such that distributed computer system performs
operations described herein and such that a single device
does not perform all operations .
[0298] Use of any and all examples , or exemplary lan
guage (e.g. , " such as ”) provided herein , is intended merely
to better illuminate embodiments of disclosure and does not
pose a limitation on scope of disclosure unless otherwise
claimed . No language in specification should be construed
as indicating any non - claimed element as essential to prac
tice of disclosure .
[0299] All references , including publications , patent appli
cations , and patents , cited herein are hereby incorporated by
reference to same extent as if each reference were individu
ally and specifically indicated to be incorporated by refer
ence and were set forth in its entirety herein .
[0300] In description and claims , terms " coupled ” and
" connected , ” along with their derivatives , may be used . It
should be understood that these terms may be not intended
as synonyms for each other . Rather , in particular examples ,
" connected ” or “ coupled ” may be used to indicate that two
or more elements are in direct or indirect physical or
electrical contact with each other . “ Coupled ” may also mean
that two or more elements are not in direct contact with each
other , but yet still co - operate or interact with each other .
[0301] Unless specifically stated otherwise , it may be
appreciated that throughout specification terms such as
“ processing , " " computing , ” “ calculating , ” “ determining , " or
like , refer to action and / or processes of a computer or
computing system , or similar electronic computing device ,
that manipulate and / or transform data represented as physi
cal , such as electronic , quantities within computing system's
registers and / or memories into other data similarly repre
sented as physical quantities within computing system's
memories , registers or other such information storage , trans
mission or display devices .
[0302] In a similar manner , term “ processor ” may refer to
any device or portion of a device that processes electronic
data from registers and / or memory and transform that elec
tronic data into other electronic data that may be stored in
registers and / or memory . As non - limiting examples , “ pro
cessor ” may be a CPU or a GPU . A " computing platform ”
may comprise one or more processors . As used herein ,
" software ” processes may include , for example , software
and / or hardware entities that perform work over time , such
as tasks , threads , and intelligent agents . Also , each process

US 2020/0394458 A1 Dec. 17 , 2020
38

5. The processor of claim 1 , wherein the one or more
ALUs are further to be configured to :

detect the one or more objects using a neural network that
is trained in part by selecting the one or more pseudo
labels corresponding to the one or more objects having
refined ROI scores that exceed an object threshold .

6. A system comprising :
one or more processors to be configured to detect , using

one or more neural networks , one or more objects in an
image based , at least in part , on one or more pseudo
labels corresponding to the one or more objects ; and

one or more memories to store the one or more neural
networks .

7. The system of claim 6 , wherein the one or more
processors are further to be configured to :

detect the one or more objects using a neural network that
is trained in part by generating a region of interest
(ROI) score for each of a set of object proposals , the
one or more pseudo - labels determined using the ROI
scores .

may refer to multiple processes , for carrying out instructions
in sequence or in parallel , continuously or intermittently .
Terms “ system ” and “ method ” are used herein interchange
ably insofar as system may embody one or more methods
and methods may be considered a system .
[0303] In present document , references may be made to
obtaining , acquiring , receiving , or inputting analog or digital
data into a subsystem , computer system , or computer - imple
mented machine . A process of obtaining , acquiring , receiv
ing , or inputting analog and digital data can be accomplished
in a variety of ways such as by receiving data as a parameter
of a function call or a call to an application programming
interface . In some implementations , process of obtaining ,
acquiring , receiving , or inputting analog or digital data can
be accomplished by transferring data via a serial or parallel
interface . In another implementation , process of obtaining ,
acquiring , receiving , or inputting analog or digital data can
be accomplished by transferring data via a computer net
work from providing entity to acquiring entity . References
may also be made to providing , outputting , transmitting ,
sending , or presenting analog or digital data . In various
examples , process of providing , outputting , transmitting ,
sending , or presenting analog or digital data can be accom
plished by transferring data as an input or output parameter
of a function call , a parameter of an application program
ming interface or inter - process communication mechanism .
[0304] Although discussion above sets forth example
implementations of described techniques , other architec
tures may be used to implement described functionality , and
are intended to be within scope of this disclosure . Further
more , although specific distributions of responsibilities are
defined above for purposes of discussion , various functions
and responsibilities might be distributed and divided in
different ways , depending on circumstances .
[0305] Furthermore , although subject matter has been
described in language specific to structural features and / or
methodological acts , it is to be understood that subject
matter claimed in appended claims is not necessarily limited
to specific features or acts described . Rather , specific fea
tures and acts are disclosed as exemplary forms of imple
menting claims .

What is claimed is :
1. A processor , comprising :
one or more arithmetic logic units (ALUS) to help detect

one or more objects in an image based , at least in part ,
on one or more pseudo - labels corresponding to the one
or more objects .

2. The processor of claim 1 , wherein the one or more
ALUs are further to be configured to :

detect the one or more objects using a neural network that
is trained in part by generating a region of interest
(ROI) score for each of a set of object proposals , the
one or more pseudo - labels determined using the ROI

8. The system of claim 7 , wherein the one or more
processors are further to be configured to :

detect the one or more objects using a neural network that
is trained in part by providing the ROI score to at least
one refinement branch capable of producing a refined
ROI score for the one or more pseudo - labels .

9. The system of claim 8 , wherein the at least one
refinement branch performs at least one of ROI quantization
and selection , or removal of pseudo - labels for redundant
proposals .

10. The system of claim 6 , wherein the one or more
processors are further to be configured to :

detect the one or more objects using a neural network that
is trained in part by selecting the one or more pseudo
labels corresponding to the one or more objects having
refined ROI scores that exceed an object threshold .

11. A processor comprising :
one or more arithmetic logic units (ALUs) to help train

one or more neural networks to be used to detect one or
more objects in an image based , at least in part , on one
or more pseudo - labels corresponding to the one or
more objects .

12. The processor of claim 11 , wherein the one or more
ALUs are further to be configured to :

generate a region of interest (ROI) score for each of a set
of object proposals , the one or more pseudo - labels
determined using the ROI scores .

13. The processor of claim 12 , wherein the one or more
ALUs are further to be configured to :

provide the ROI score to at least one refinement branch
capable of producing a refined ROI score for the one or
more pseudo - labels .

14. The processor of claim 13 , wherein the at least one
refinement branch performs at least one of ROI quantization
and selection , or removal of pseudo - labels for redundant
proposals .

15. The processor of claim 11 , wherein the one or more
ALUs are further to be configured to :

select the one or more pseudo - labels corresponding to the
one or more objects having refined ROI scores that
exceed an object threshold .

16. A system comprising :
one or more processors to help train one or more neural

networks to be used to detect one or more objects in an

scores .

3. The processor of claim 2 , wherein the one or more
ALUs are further to be configured to :

detect the one or more objects using a neural network that
is trained in part by providing the ROI score to at least
one refinement branch capable of producing a refined
ROI score for the one or more pseudo - labels .

4. The processor of claim 3 , wherein the at least one
refinement branch performs at least one of ROI quantization
and selection , or removal of pseudo - labels for redundant
proposals .

US 2020/0394458 A1 Dec. 17 , 2020
39

25. The method of claim 21 , further comprising :
selecting the one or more pseudo - labels corresponding to

the one or more objects having refined ROI scores that
exceed an object threshold .

26. A system , comprising :
a camera configured to capture an image ;
one or more processors to be configured to detect , using

one or more neural networks , one or more objects in the
image based , at least in part , on one or more pseudo
labels corresponding to the one or more objects ; and

a storage device to store information regarding the
detected objects .

27. The system of claim 26 , wherein the one or more
processors are further to be configured to :

detect the one or more objects using a neural network that
is trained in part by generating a region of interest
(ROI) score for each of a set of object proposals , the
one or more pseudo - labels determined using the ROI

image based , at least in part , on one or more pseudo
labels corresponding to the one or more objects .

17. The system of claim 16 , wherein the one or more
processors are further to be configured to :

generate a region of interest (ROI) score for each of a set
of object proposals , the one or more pseudo - labels
determined using the ROI scores .

18. The system of claim 17 , wherein the one or more
processors are further to be configured to :

provide the ROI score to at least one refinement branch
capable of producing a refined ROI score for the one or
more pseudo - labels .

19. The system of claim 18 , wherein the at least one
refinement branch performs at least one of ROI quantization
and selection , or removal of pseudo - labels for redundant
proposals .

20. The system of claim 17 , wherein the one or more
processors are further to be configured to :

select the one or more pseudo - labels corresponding to the
one or more objects having refined ROI scores that
exceed an object threshold .

21. A method comprising :
training one or more neural networks to detect one or
more objects in an image based , at least in part , on one
or more pseudo - labels corresponding to the one or
more objects .

22. The method of claim 21 , further comprising :
generating a region of interest (ROI) score for each of a

set of object proposals , the one or more pseudo - labels
determined using the ROI scores .

23. The method of claim 22 , further comprising :
providing the ROI score to at least one refinement branch

capable of producing a refined ROI score for the one or
more pseudo - labels .

24. The method of claim 23 , wherein the at least one
refinement branch performs at least one of ROI quantization
and selection , or removal of pseudo - labels for redundant
proposals .

scores .

28. The system of claim 27 , wherein the one or more
processors are further to be configured to :

detect the one or more objects using a neural network that
is trained in part by providing the ROI score to at least
one refinement branch capable of producing a refined
ROI score for the one or more pseudo - labels .

29. The system of claim 28 , wherein the at least one
refinement branch performs at least one of ROI quantization
and selection , or removal of pseudo - labels for redundant
proposals .

30. The system of claim 26 , wherein the one or more
processors are further to be configured to :

detect the one or more objects using a neural network that
is trained in part by selecting the one or more pseudo
labels corresponding to the one or more objects having
refined ROI scores that exceed an object threshold .

