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IMAGE IDENTIFICATION USING NEURAL 
NETWORKS 

BACKGROUND 

[ 0001 ] Re - identification involves the task of establishing 
correspondence between entities depicted across different 
images . For example , a person depicted in an image cap 
tured by one camera might or might not be the same 
individual captured in an image captured by another camera . 
The re - identification task remains challenging , even in view 
of existing neural network techniques , for a variety of 
reasons . These may include differences such as those caused 
by camera angles , lighting , and so forth . Moreover , differ 
ences such as body pose , image resolution , and background 
may further compound the difficulty of performing re 
identification . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0002 ] Various techniques will be described with refer 
ence to the drawings , in which : 
[ 0003 ] FIG . 1 illustrates an example re - identification sys 
tem , in accordance with an embodiment ; 
[ 0004 ] FIG . 2 illustrates an example of training a neural 
network for re - identification , in accordance with an embodi 
ment ; 
[ 0005 ] FIG . 3 illustrates training a neural network for 
performing re - identification , in accordance with an embodi 
ment ; 
[ 0006 ] FIG . 4 illustrates aspects of self - identity generation 
in a generative portion of a neural network , in accordance 
with an embodiment ; 
[ 0007 ] FIG . 5 illustrates aspects of cross - identity genera 
tion in a generative portion of a neural network , in accor 
dance with an embodiment ; 
[ 0008 ] FIG . 6 illustrates complementary features learned 
by a discriminative portion of a neural network , in accor 
dance with an embodiment ; 
[ 0009 ] FIG . 7 illustrates an example of parallel processing 
unit ( “ PPU ” ) , in accordance with an embodiment ; 
[ 0010 ] FIG . 8 illustrates an example of a general process 
ing cluster ( “ GPC ” ) , in accordance with one embodiment ; 
[ 0011 ] FIG.9 illustrates an example of a memory partition 
unit , in accordance with one embodiment ; 
[ 0012 ] FIG . 10 illustrates an example of a streaming 
multi - processor , in accordance with one embodiment ; and 
[ 0013 ] FIG . 11 illustrates a computer system in which the 
various examples can be implemented , in accordance with 
one embodiment . 

networks comprises a generative portion which shares the 
encoder with the discriminative portion . 
[ 0015 ] In an embodiment , the generative portion generates 
image data during training . The generated image data com 
prises various generated representations of the feature being 
re - identified , in which each variation changes the appear 
ance of the feature in some way . This approach may permit 
the neural network to learn to recognize fine - grained aspects 
of the features being analyzed . In an embodiment , the 
feature is an individual person whose appears in at least the 
first image , and whose presence in the second image is 
confirmed by the processor and its 
[ 0016 ] ALUs . The generative portion is jointly trained 
with the discriminative portion , according to a loss function 
which includes loss from both portions . 
[ 0017 ] In an embodiment , the generative portion includes 
an appearance encoder shared with the discriminative por 
tion , and a structure encoder . The appearance encoder 
encodes information about the one or more features , such as 
clothes , color , and texture , which relate to the appearance of 
the one or more features . The structure encoder encodes 
positional and geometric information related to the structure 
of the analyzed features , such as size , pose , background , 
viewpoint , etc. 
[ 0018 ] As described herein , re - identification involves 
detecting correspondence between images , and in particular 
to determining whether a feature present in one image is 
present in another image . For example , an embodiment 
directed to person re - identification might determine whether 
the same individual is depicted in two or more images , by 
identifying correspondence between a person or persons 
depicted in the images . Person re - identification , and re 
identification generally , may be adaptive to various com 
plexities . Images captured by different cameras , or even by 
the same camera , may contain intra - class variations such as 
those caused by changes in background , viewpoint , the pose 
of the subject , and so forth . 
[ 0019 ] In an embodiment , a learning framework jointly 
couples discriminative and generative learning . A generative 
module decomposes each pedestrian image into two latent 
spaces , an appearance space that mostly encodes appear 
ance - related information , and a structure space that encodes 
attributes such as shape and position . The attributes encoded 
in the appearance and structure latent spaces may be referred 
to herein as codes . 
[ 0020 ] In an embodiment , the appearance encoder is 
shared with the discriminative module , serving as a re 
identification learning backbone . This design presents a 
unified framework that subsumes interactions between the 
generative and discriminative modules . The generative mod 
ule produces synthesized images that are taken to refine the 
appearance encoder online , and the encoder influences the 
generative module with improved appearance encoding . 
Further , both modules are jointly optimized , given the 
shared appearance encoder . 
[ 0021 ] In an embodiment , image generation is formulated 
as switching the appearance or structure codes between two 
images . Given pairwise images with the same or different 
identities , embodiments may generate realistic and diverse 
intra - composed or cross - id composed images by manipulat 
ing the codes . Unlike unconditional generative adversarial 
networks ( “ GANs ” ) , this approach may allow for more 
controllable generation , or higher - quality generation . Unlike 
pose - guided generation , embodiments may not require addi 

DETAILED DESCRIPTION 

[ 0014 ] Embodiments disclosed herein include systems , 
methods , and computer program products related to detect 
ing whether a feature that appear in an image also appear in 
a second image . Here , a feature refers to a person , entity , or 
object that may be depicted in the image . In an example 
embodiment , a processor comprises one or more arithmetic 
logic units ( ALUS ) that determine whether a feature appears 
in both a first and second image . The processor and its 
associated ALUS make the determination based , at least in 
part , on one or more neural networks that include a dis 
criminative portion ( an encoder portion and two small 
headers ) that encodes information for use by the discrimi 
native portion . During training , the one or more neural 
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tional auxiliary data , while still taking advantage of intra 
dataset pose variations and other diversities beyond pose . 
[ 0022 ] In embodiments , the generative module generates 
multiple images by retaining appearance codes and combin 
ing or varying structure codes . The generative module may , 
for example , generate images in which clothing or shoes 
worn by a person are retained in the generated image , but 
pose , viewpoint , or background is varied . 
[ 0023 ] In embodiments , primary attribute learning is intro 
duced via a dynamic soft labeling strategy . Other embodi 
ments keep one structure code and combine with different 
appearance codes to produce images which maintain the 
pose , background , and identity - related fine detail but alter 
appearance - related cues such as clothes or shoes . This may 
permit more finely grained mining of attributes in order to 
enable learning of more subtle identity - related properties . 
[ 0024 ] FIG . 1 illustrates an example re - identification sys 
tem , in accordance with an embodiment . The example 100 
of FIG . 1 may be implemented , in an embodiment , on one 
or more computers which include one or more processors to 
load into memory the parameters of a trained neural network 
110 , and to apply the neural network 110 to solve a problem 
106 . 
[ 0025 ] In embodiments , the images “ A ” and “ B ” 102 , 104 
are obtained by respective different video sources , such as a 
pair of cameras . Alternatively , the images “ A ” and “ B ” are 
obtained by the same camera . The images may be obtained 
at different times . The images “ A ” and “ B ” 102 , 104 can be 
recorded and / or provided to the neural network 110 as image 
data , in any of a wide variety of formats for image or video 
representation , such as “ JPEG , ” “ GIF , ” “ MP4 , " “ AVI , ” and 
so forth . 
[ 0026 ] In an embodiment , images “ A ” 102 and “ B ” 104 
are provided to the neural network 110. The neural network 
110 can comprise various parameters and coefficients 
derived through a training process to enable a computing 
device to solve a problem 106. The problem 106 may be 
described , in general , as determining whether a feature 
present in image “ A ” 102 is also present in image “ B ” 104 . 
In the example 100 of FIG . 1 , the neural network 110 
determines whether a person depicted in image “ A ” 102 is 
the same person depicted in image “ B ” 104. Although 
depicted as a “ YES ” or “ NO ” decision in FIG . 1 , the 
problem 106 may also be expressed as determining a prob 
ability or likelihood that the depicted person is the same 
individual . Note that the images “ A ” and “ B ” 102 , 104 may 
exhibit a variety of differences which may make this “ re 
identification ” task challenging . The differences may 
include , but are not limited to , camera angle , lighting , 
resolution , colorization , and so forth . The differences may 
also include , but are not limited to , posture , position , pose , 
and so forth . The problem 106 may be referred to herein as 
re - identification , or detecting corr orrespondence between 
image data . The re - identification task may be performed on 
a variety of features that are amendable to encodings of 
appearance and structure similar to those described herein . 
[ 0027 ] In embodiments , the neural network 110 comprises 
an encoding portion 116 and a discriminative portion 114 . 
The training of the neural network 110 , which is described 
in more detail below , involves a generative portion whose 
encoding portion 116 is shared with the discriminative 
portion 114 during training . When deployed , the neural 
network 110 retains at least some of the encoding portion 
116 . 

[ 0028 ] FIG . 2 illustrates an example of training a neural 
network for re - identification , in accordance with an embodi 
ment . In the example 200 of FIG . 2 , a neural network is 
trained to perform a re - identification task . For example , the 
neural network 110 of FIG . 1 may be trained , in an embodi 
ment , in accordance with the process described here with 
respect to FIG . 2. Further details of the training are described 
in more detail with respect to FIGS . 3-6 . 
[ 0029 ] In an embodiment , input data 202 comprises one or 
more images . Input image data may be sized to a 258x128 
grid , although this is not required , and various embodiments 
may employ other sizes in addition to or instead of 258x128 . 
[ 0030 ] In an embodiments of the training process , a neural 
network 210 comprises a generative portion 212 and a 
discriminative portion 214 that are jointly trained with an 
appearance encoder 216 that serves as a backbone for 
re - identification learning . The generative portion comprises 
the appearance encoder 216 and a structure encoder 218 . 
The appearance encoder encodes appearance - related attri 
butes of the input data 202. The appearance - related attri 
butes may include , but are not necessarily limited to , cloth 
ing , footwear , styles , and textures . The structure encoder 216 
encodes attributes of the input data 202 that relate to position 
and shape , which may include , but are not necessarily 
limited to , body size , pose , hair , carried objects , background , 
viewpoint , etc. 
[ 0031 ] In an embodiment , the generative portion 212 of 
the network generates variations of the input data 202 by 
switching appearance or structure codes generated by the 
appearance and structure encoders 216 , 218. The generative 
portion 212 may generate variations of the input images , for 
example by performing self - identity and cross - identity gen 
eration , to generate a wide variety of training samples in the 
generated data 204 . 
[ 0032 ] In an embodiment , the appearance encoder 216 is 
shared between the generative and the discriminative por 
tions 212 , 214 of the neural network 210 during training . 
During training , the discriminative portion 214 makes use of 
the generated data by manipulating the appearance and 
structure codes . Embodiments treat the generated images in 
two different perspectives through primary attribute learning 
and fine - grained attribute mining , where the former focuses 
on structure - invariant appearance cues ( which may , for 
example , include clothing , footwear , or stylistic choices , as 
non - limiting examples ) , and the latter attends to appearance 
invariant structural properties , such as position and geom 
etry . Examples of positional and geometric properties may 
include , but are not necessarily limited to , body size , pose , 
hairstyle , objects carried , background , viewpoint , etc. 
[ 0033 ] In an embodiment , a machine readable medium has 
stored thereon instructions which , in response to being 
performed by one or more processors , cause the processors 
to train one or more neural networks . The training may be 
performed in accordance with the procedures described 
herein with respect to FIGS . 3-6 . The neural networks during 
training include a generative portion and a discriminative 
portion , which are trained by execution of the instructions to 
determine whether one or more features which appear in a 
first image also appear in a second image , using encoded 
information about the appearance and shape of the one or 
more features . 
[ 0034 ] In an embodiment , the neural network trained by 
performing the instructions comprises an encoder which is 
shared between the generative and discriminative portions of 
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can be viewed , in embodiments , as an auto - encoder , in 
which X , X , where X , is a generated image . 
[ 0041 ] In an embodiment , a structure code S ; 340 main 
tains more spatial resolution than an appearance code a , 342 , 
to preserve structural or geometric properties . However , this 
may result in a trivial solution for G to only use S ; but ignore 
a ; in image generation since decoders tend to rely on the 
attribute with more spatial information . In an embodiment , 
input images of Es are converted into gray - scale to drive G 
to leverage both a and Sjo In embodiments , two objectives 
are enforced for the generative module : ( 1 ) self - identity 
generation to regularize the generator and ( 2 ) cross - identity 
generation to make generated images controllable and match 
real data distribution . 
[ 0042 ] In an embodiment , as illustrated in FIG . 4 , given an 
image x ; 402 , the generative module learns how to recon 
struct x ; from itself , to obtain x . 406. This simple self 
reconstruction task serves a regularization role in the gen 
eration . Embodiments may reconstruct the image using a 
pixel - wise loss : 

Lreconing ! = E [ || xz - G ( a ;, S ; ) || 1 ] 

[ 0043 ] In an embodiment , it may be assumed that the 
appearance codes of the same person in different images are 
close . Another reconstruction task may be performed 
between any two images of the same identity . The generator 
should be able to reconstruct x ; 402 through an image x , 404 
with the same identity y ; Yz , to obtain x 408 : 

Lreconimg2 = E [ | lx ; -G ( Q , S ; ) || . ] 

the network during training . The encoder encodes the infor 
mation about the appearance and shape of the one or more 
features . The encoder may , in an embodiment , be an appear 
ance encoder . Alternatively , or in addition , the encoder may 
be a structure encoder . The generative portion uses the 
encoded information output by the encoder during training , 
such that the discriminative portion of the network is better 
able to identify fine - grained attributes indicative of identity . 
[ 0035 ] In an embodiment , a system for training the neural 
network 210 comprises one or more computers , including 
one or more processors . The processors train the network , 
using the procedures described herein with respect to FIGS . 
3-6 , to determine whether one or more features appear in 
both a first image and a second image . The neural network 
210 is trained to make the determination based , at least in 
part , on a generative portion 212 and a discriminative 
portion 214 , and an encoding portion 218 used by both the 
generative portion and discriminative portion . 
( 0036 ] In an embodiment , the generative and discrimina 
tive portions are jointly trained , by using a joint loss function 
which includes weighted sums to account for generative and 
discriminative loss . 
[ 0037 ] In an embodiment , two encoders are used by the 
generative portion 212. An appearance encode encodes 
attributes associated with appearance . These attributes may 
include , but are not necessarily limited to , clothing , color , 
and texture . The appearance code , in embodiments , is shared 
between the generative 212 and discriminative 214 portions 
of the network 210. The second encoder used by the 
generative portion 212 is a structure encoder , which encodes 
structural and other attributes , such as size , pose , back 
ground , viewpoint , etc. 
[ 0038 ] In an embodiment , the generative portion 212 
generates images , where the generated images include varia 
tions in the appearance of the feature being re - identified . For 
example , in the case of person re - identification , the genera 
tive portion may generate a plurality of images in which the 
same individual is depicted wearing different clothing . Simi 
larly , the generative portion may generate a plurality of 
images in which the same clothing is worn by different 
individuals . In embodiments , this is accomplished by train 
ing the generative portion to perform self - identity generation 
and cross - identity generation . 
[ 0039 ] FIG . 3 illustrates training a neural network for 
performing re - identification , in accordance with an embodi 
ment . The neural network 300 depicted in FIG . 3 employs 
tight coupling between a generative module for image 
generation and a discriminative portion for re - identification 
learning . The neural network 300 uses two image mappings , 
self - identity generation and cross - identity generation , which 
are fed into the re - identification learning process . The dis 
criminative portions use primary attribute learning and fine 
grained attribute learning . These are co - learned with the 
generative portion to better leverage generated data . 
[ 0040 ] In the example 300 of FIG . 3 , real or input images 
are indicated as X? , Xj , and X , 302. Given two real images 
Xi and Xj , the generative portions of the neural network 300 
generates a new image by swapping the appearance or 
structure codes of the two images . The generative portion 
includes an appearance encoder Eq : X ; > a ; 312 , a structure 
encoder Ex : * ; - > s ; 310 , a decoder G : ( a ;, S ; ) ?x ; ' , and a 
discriminator D 330 to distinguish between generated 
images and real ones . In the case of i = j , the generator 320 

[ 0044 ] In an embodiment , this same - identity but cross 
image reconstruction loss encourages the appearance 
encoder to pull appearance codes of the same identity 
together so that intra - class attribute variations are reduced . 
To force the appearance codes of different images to stay 
apart , embodiments may use identification loss to distin 
guish different identities : 

Lid = E [ -log ( p ( y ; \ x ; ) ) ] 

[ 0045 ] Here , p ( y ; \ x , ) is the predicted probability that x , 
belongs to a ground truth class y , based on its appearance 
code . 

[ 0046 ] In an embodiment , self - identity generation works 
with image reconstruction using the same identity , and 
cross - identity generation focuses on image generation with 
different identities . In cross - identity generation , there is no 
pixel - level ground - truth supervision . Instead , embodiments 
use latent code reconstruction based on appearance and 
structure codes to control image generation . As shown in 
FIG . 5 , given two images x , 502 and x ; 504 of different 
identities y , y ;, the generated image x = ( az , s ; ) is used to 
retain the information of appearance and structure codes 
540 , specifically appearance code a ; from x ; and structure 
code S ; from X ;, respectively . These two latent codes may 
then be reconstructed after encoding the generated image : 

codel = E [ || a , -E , ( Gla ; s ; ) || 1 ] Lrecon 
Lreconcode2 = E [ || s ; -E , ( G ( a ;, S ; ) | . ] 

[ 0047 ] In an embodiment , similar to self - identity genera 
tion , identification loss is enforced on the generated image 
based on its appearance code . , to keep identity consistency : 

Lid = E [ -log ( p ( y lx ; ' ) ) ] 
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img + recon code + Lid + 

img1 + L recon img2 recon 

code 

[ 0048 ] Here , p ( y ; 1x ) is the predicted probability of x , 506 
belonging to the ground - truth class y , of x ,, the image that 
provides appearance code in generating x ,. 
[ 0049 ] In an embodiment , adversarial loss is employed to 
match the distribution of generated images to the real data 
distribution : 

Lady = E [ log D ( x ; ) + log ( 1 - D ( G ( a ; s ; ) ) ) ] 
[ 0050 ] In an embodiment , the generation mechanism is 
used to enable the generative module to learn appearance 
and ucture codes with explicit and complementary mean 
ings and generate high - quality pedestran images based on 
the latent codes . This largely eases the generation complex 
ity . This may help to avoid having to learn image generation 
either from random noise or managing the pose factor only , 
which may make it hard to manipulate the outputs and may 
introduce artifacts . Moreover , due to using the latent codes , 
the variants in images generated by embodiments disclosed 
herein may be explainable and constrained in the existing 
contents of real images , which also promotes generation 
realism . In cases and embodiments , given O ( N ) training 
images , O ( NxN ) different images are generated by sampling 
various image pairs , resulting in a much large online gen 
erated training sample pool . 
[ 0051 ] In an embodiment , a discriminative module is 
embedded in the generative module by sharing the appear 
ance encoder as a backbone for re - identification learning . In 
accordance with the images generated by switching either 
appearance or structure codes , primary attribute learning and 
fine - grained attribute mining are employed to better take 
advantage of the online generated images . Since the two 
tasks focus on different aspects of generated images , 
embodiments may branchut two headers of the 
appearance encoder for the two types of attribute learning . 
[ 0052 ] FIG . 6 illustrates the two complementary attri 
butes , frm 1620 and 622 , eared in the discriminative 
portion of the network , in accordance with an embodiment . 
053an embodiment , teacher - student typesupervi 

sion with dynamic soft labeling is employed . Embodiments 
may use a teacher model to dynamically assign a soft label 
to x ; or x 604 , depending on their compound appearance 
and structure from x ; and x ; 602. The teacher model is a 
baseline convolutional neural network trained with identi 
fication on the original training set train the dis 
criminative module for primary attribute arning , embodi , 
ments may minimize the Kullback - Leibler divergence 
between the probability distribution p ( x ; ) predicted by the 
discriminative module and the probability distribution q ( x ; " ) 
predicted by the teacher , as in the following , where K is the 
number of identities : 

codel e - Lrecon code2 
recon 

appearance encoder 610 as the same class as the real image 
providing the structure code . To train the discriminative 
module for fine - grained attribute mining , embodiments 
enforce identification loss on this particular categorizing : 

Line = E [ -log ( ly ; x ; ' ) ) ] 
[ 0055 ] In an embodiment , this loss function imposes addi 
tional identity supervision to the discriminative module in a 
multitasking manner . Moreover , rather than using manually 
labeled pedestrian attributes , this approach performs fine 
grained attribute mining by leveraging the synthetic images . 
There may also be no need to explicitly search for the hard 
training samples that usually share fine - grained details , since 
the discriminative module learns to pay attention to subtle identity properties through this fine - grained attribute min 
ing . 
[ 0056 ] In an embodiment , the appearance and structure 
encoders , decoder , and discriminator are jointly trained to 
optimize the total objective . The objective may be expressed 
as a weighted sum of the following losses : 

Ltotal ( Em E , G , D ) = himg recon 
Dichid + Lady + hxprimL prim + hfinet fine 

Here , Lreconimg = L is the image recon 
struction loss in self - identity generation , and 
L recon + L , is the latent code recon 
struction loss in cross - identity generation . The weights Wimg 
Nido àprim , and Nefine are weights to control the importance of 
the various loss - related terms . 
[ 0057 ] In an embodiment , a large weight Aimg is used for 
the image reconstruction loss . Since the quality of cross - id 
generated images is not great at the beginning , the identi 
fication loss Lid may make the training unstable , so a small 
weight may be set for did . Embodiments may fix the two 
weights during the training process . In embodiments , the 
discriminative attribute learning losses Lprim are not 
involved until the generation quality is stable . In an embodi 
ment , in the cross - identity generation as shown in FIG . 3 , Eq , 
Es , and G as well as E? , Es , and D are trained alternatively . 
[ 0058 ] In an embodiment , one training phase is used for 
joint image generation and re - identification learning . This is 
in contrast with other techniques , which require two training 
phases to sequentially train a generative model and a re 
identification model . 
[ 0059 ] In an embodiment , a method for training a neural 
network to detect correspondence between images com 
prises configuring a first portion of a neural network to 
generate image data , and a second portion of the neural 
network to detect the correspondence between the images . 
The second portion detects the correspondence based , at 
least in part , on the generated image data . The first portion 
may comprise a generative portion , and the second portion 
may comprise a discriminative portion . The two portions are 
jointly trained , using a weighted loss function that includes 
components for both the generative and discriminative por 
tions . The joint training may occur in the same pass , so that 
both the generative and discriminative portions are trained , 
at the same time , to optimize for the re - identification task . 
[ 0060 ] FIG . 7 illustrates a parallel processing unit ( “ PPU ” ) 
700 , in accordance with one embodiment . In an embodi 
ment , the PPU 700 is configured with machine - readable 
code that , if executed by the PPU , causes the PPU to perform 
some or all of processes and techniques described through 
out this disclosure . For example , the PPU 700 may be 
configured with machine - readable code that , if executed by 

and L fine 

K 

Lprim ? p ( k | x ' ; ) qk | x ) log q ( k | x ' ; ) 
k = 1 

[ 0054 ] In an embodiment , simulated changes of attributes 
of clothing , for the same individual , are enabled by the 
disclosed generative portion of the network . When training 
on images organized in this way , the discriminative module 
is forced to learn fine - grained identity attributes , such as 
hair , body size , and so on , that are independent to clothing . 
Embodiments may view the images generated by one struc 
ture code combining with different appearance codes by the 
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the PPU , causes the PPU to train a neural network in 
accordance with the disclosed embodiments , or to solve a 
re - identification problem using a neural network trained in 
accordance with the disclosed embodiments . 
[ 0061 ] In an embodiment , the PPU 700 is a multi - threaded 
processor that is implemented on one or more integrated 
circuit devices and that utilizes multithreading as a latency 
hiding technique designed to process computer - readable 
instructions ( also referred to as machine - readable instruc 
tions or simply instructions ) on multiple threads in parallel . 
In an embodiment , a thread refers to a thread of execution 
and is an instantiation of a set of instructions configured to 
be executed by the PPU 700. In an embodiment , the PPU 
700 is a graphics processing unit ( “ GPU ” ) configured to 
implement a graphics rendering pipeline for processing 
three - dimensional ( “ 3D " ) graphics data in order to generate 
two - dimensional ( “ 2D ” ) image data for display on a display 
device such as a liquid crystal display ( LCD ) device . In an 
embodiment , the PPU 700 is utilized to perform computa 
tions such as linear algebra operations and machine - learning 
operations . FIG . 7 illustrates an example parallel processor 
for illustrative purposes only and should be construed as a 
non - limiting example of processor architectures contem 
plated within the scope of this disclosure and that any 
suitable processor may be employed to supplement and / or 
substitute for the same . 
[ 0062 ] In an embodiment , one or more PPUs are config 
ured to accelerate High Performance Computing ( “ HPC ” ) , 
data center , and machine learning applications . In an 
embodiment , the PPU 700 is configured to accelerate deep 
learning systems and applications including the following 
non - limiting examples : autonomous vehicle platforms , deep 
learning , high - accuracy speech , image , text recognition sys 
tems , intelligent video analytics , molecular simulations , 
drug discovery , disease diagnosis , weather forecasting , big 
data analytics , astronomy , molecular dynamics simulation , 
financial modeling , robotics , factory automation , real - time 
language translation , online search optimizations , and per 
sonalized user recommendations , and more . 
[ 0063 ] In an embodiment , the PPU 700 includes an Input / 
Output ( “ I / O ” ) unit 706 , a front - end unit 710 , a scheduler 
unit 712 , a work distribution unit 714 , a hub 716 , a crossbar 
( “ Xbar ” ) 720 , one or more general processing clusters 
( “ GPCs ” ) 718 , and one or more partition units 722. In an 
embodiment , the PPU 700 is connected to a host processor 
or other PPUs 700 via one or more high - speed GPU inter 
connects 708. In an embodiment , the PPU 700 is connected 
to a host processor or other peripheral devices via an 
interconnect or system bus 702. In an embodiment , the PPU 
700 is connected to a local memory comprising one or more 
memory devices 704. In an embodiment , the local memory 
comprises one or more dynamic random access memory 
( “ DRAM ” ) devices . In an embodiment , the one or more 
DRAM devices are configured and / or configurable as high 
bandwidth memory ( “ HBM ” ) subsystems , with multiple 
DRAM dies stacked within each device . 
[ 0064 ] The high - speed GPU interconnect 708 may refer to 
a wire - based multi - lane communications link that is used by 
systems to scale and include one or more PPUS 700 com 
bined with one or more CPUs , supports cache coherence 
between the PPUs 700 and CPUs , and CPU mastering . In an 
embodiment , data and / or commands are transmitted by the 
high - speed GPU interconnect 708 through the hub 716 
to / from other units of the PPU 700 such as one or more copy 

engines , video encoders , video decoders , power manage 
ment units , and other components which may not be explic 
itly illustrated in FIG . 7 . 
[ 0065 ] In an embodiment , the I / O unit 706 is configured to 
transmit and receive communications ( e.g. , commands , 
data ) from a host processor ( not illustrated in FIG . 7 ) over 
the system bus 702. In an embodiment , the I / O unit 706 
communicates with the host processor directly via the sys 
tem bus 702 or through one or more intermediate devices 
such as a memory bridge . In an embodiment , the I / O unit 
706 may communicate with one or more other processors , 
such as one or more of the PPUs 700 via the system bus 702 . 
In an embodiment , the I / O unit 705 implements a Peripheral 
Component Interconnect Express ( “ PCIe ” ) interface for 
communications over a PCIe bus . In an embodiment , the I / O 
unit 706 implements interfaces for communicating with 
external devices . 
[ 0066 ] In an embodiment , the I / O unit 706 decodes pack 
ets received via the system bus 702. In an embodiment , at 
least some packets represent commands configured to cause 
the PPU 700 to perform various operations . In an embodi 
ment , the I / O unit 706 transmits the decoded commands to 
various other units of the PPU 700 as specified by the 
commands . In an embodiment , commands are transmitted to 
the front - end unit 710 and / or transmitted to the hub 716 or 
other units of the PPU 700 such as one or more copy 
engines , a video encoder , a video decoder , a power man 
agement unit , etc. ( not explicitly illustrated in FIG . 7 ) . In an 
embodiment , the I / O unit 706 is configured to route com 
munications between and among the various logical units of 
the PPU 700 . 
[ 0067 ] In an embodiment , a program executed by the host 
processor encodes a command stream in a buffer that pro 
des workloads thPfor processing an 
embodiment workload comprises instructions and data to 
be processed by those instructions . In an embodiment , the 
buffer a region in memory that is accessible.g . , 
read / write ) by both the host processor and the PPU 700 — the 
host interface unit may be configured to access the buffer in 
a system memory connected to the system bus 702 via 
memory requests transmitted over the system bus 702 by the 
I / O unit 706. In an embodiment , the host processor writes 
the command stream to the buffer and then transmits a 
pointer to the start of the command stream to the PPU 700 
such that the front - end unit 710 receives pointers to one or 
more command streams and manages the one or more 
streams , reading commands from the streams and forward 
ing commands to the various units of the PPU 700 . 
[ 0068 ] In an embodiment , the front - end unit 710 is 
coupled to a scheduler unit 712 that configures the various 
GPCs 718 to process tasks defined by the one or more 
streams . In an embodiment , the scheduler unit 712 is con 
figured to track state information related to the various tasks 
managed by the scheduler unit 712 where the state infor 
mation may indicate which GPC 718 a task is assigned to , 
whether the task activer inactive , à priority level 
associated with the task , and so forth . In an embodiment , the 
scheduleruntmanages the execution of plurality of 
tasks on the one or more GPCs 718 . 
[ 0069 ] In an embodiment , the scheduler unit 712 is 
coupled to a work distribution unit 714 that is configured to 
dispatch tasks for execution on the GPCs 718. In an embodi 
ment , the work distribution unit 714 tracks a number of 
scheduledaksreceived from the schedulerun12andthe 
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work distribution unit 714 manages a pending task pool and 
an active task pool for each of the GPCs 718. In an 
embodiment , the pending task pool comprises a number of 
slots ( e.g. , 32 slots ) that contain tasks assigned to be 
processed by a particular GPC 718 ; the active task pool may 
comprise a number of slots ( e.g. , 4 slots ) for tasks that are 
actively being processed by the GPCs 718 such that as a 
GPC 718 completes the execution of a task , that task is 
evicted from the active task pool for the GPC 718 and one 
of the other tasks from the pending task pool is selected and 
scheduled for execution on the GPC 718. In an embodiment , 
if an active task is idle on the GPC 718 , such as while 
waiting for a data dependency to be resolved , then the active 
task is evicted from the GPC 718 and returned to the pending 
task pool while another task in the pending task pool is 
selected and scheduled for execution on the GPC 718 . 
[ 0070 ] In an embodiment , the work distribution unit 714 
communicates with the one or more GPCs 718 via XBar 
720. In an embodiment , the XBar 720 is an interconnect 
network that couples many of the units of the PPU 700 to 
other units of the PPU 700 and can be configured to couple 
the work distribution unit 714 to a particular GPC 718 . 
Although not shown explicitly , one or more other units of 
the PPU 700 may also be connected to the XBar 720 via the 
hub 716 . 
[ 0071 ] The tasks are managed by the scheduler unit 712 
and dispatched to a GPC 718 by the work distribution unit 
714. The GPC 718 is configured to process the task and 
generate results . The results may be consumed by other tasks 
within the GPC 718 , routed to a different GPC 718 via the 
XBar 720 , or stored in the memory 704. The results can be 
written to the memory 704 via the partition units 722 , which 
implement a memory interface for reading and writing data 
to / from the memory 704. The results can be transmitted to 
another PPU 700 or CPU via the high - speed GPU intercon 
nect 708. In an embodiment , the PPU 700 includes a number 
U of partition units 722 that is equal to the number of 
separate and distinct memory devices 704 coupled to the 
PPU 700. A partition unit 722 will be described in more 
detail below in conjunction with FIG . 9 . 
[ 0072 ] In an embodiment , a host processor executes a 
driver kernel that implements an application programming 
interface ( “ API ” ) that enables one or more applications 
executing on the host processor to schedule operations for 
execution on the PPU 700. In an embodiment , multiple 
compute applications are simultaneously executed by the 
PPU 700 and the PPU 700 provides isolation , quality of 
service ( “ QoS ” ) , and independent address spaces for the 
multiple compute applications . In an embodiment , an appli 
cation generates instructio ( e.g. , in the form of API calls ) 
that cause the driver kernel to generate one or more tasks for 
execution by the PPU 700 and the driver kernel outputs tasks 
to one or more streams being processed by the PPU 700. In 
an embodiment , each task comprises one or more groups 
related threads , which may be referred to as a warp . In an 
embodiment , a warp comprises a plurality of related threads 
( e.g. , 32 threads ) that can be executed in parallel . In an 
embodiment , cooperating threads can refer to a plurality of 
threads including instructions to perform the task and that 
exchange data through shared memory . 
[ 0073 ] FIG . 8 illustrates a GPC 800 such as the GPC 
illustrated of the PPU 700 of FIG . 7 , in accordance with one 
embodiment . In an embodiment , each GPC 800 includes a 
number of hardware units for processing tasks and each 

GPC 800 includes a pipeline manager 802 , a pre - raster 
operations unit ( “ PROP ” ) 804 , a raster engine 808 , a work 
distribution crossbar ( “ WDX ” ) 816 , a memory management 
unit ( “ MMU ” ) 818 , one or more Data Processing Clusters 
( “ DPCs ” ) 806 , and any suitable combination of parts . It will 
be appreciated that the GPC 800 of FIG . 8 may include other 
hardware units in lieu of or in addition to the units shown in 
FIG . 8 . 
[ 0074 ] In an embodiment , the operation of the GPC 800 is 
controlled by the pipeline manager 802. The pipeline man 
ager 802 manages the configuration of the one or more DPCs 
806 for processing tasks allocated to the GPC 800. In an 
embodiment , the pipeline manager 802 configures at least 
one of the one or more DPCs 806 to implement at least a 
portion of a graphics rendering pipeline . In an embodiment , 
a DPC 806 is configured to execute a vertex shader program 
on the programmable streaming multiprocessor ( “ SM ” ) 814 . 
The pipeline manager 802 is configured to route packets 
received from a work distribution to the appropriate logical 
units within the GPC 800 , in an embodiment , and some 
packets may be routed to fixed function hardware units in the 
PROP 804 and / or raster engine 808 while other packets may 
be routed to the DPCs 806 for processing by the primitive 
engine 812 or the SM 814. In an embodiment , the pipeline 
manager 802 configures at least one of the one or more 
DPCs 806 to implement a neural network model and / or a 
computing pipeline . 
[ 0075 ] The PROP unit 804 is configured , in an embodi 
ment , to route data generated by the raster engine 808 and 
the DPCs 806 to a Raster Operations ( “ ROP ” ) unit in the 
memory partition unit , described in more detail above . In an 
embodiment , the PROP unit 804 is configured to perform 
optimizations for color blending , organize pixel data , per 
form address translations , and more . The raster engine 808 
includes a number of fixed function hardware units config 
ured to perform various raster operations , in an embodiment , 
and the raster engine 808 includes a setup engine , a coarse 
raster engine , a culling engine , a clipping engine , a fine 
raster engine , a tile coalescing engine , and any suitable 
combination thereof . The setup engine , in an embodiment , 
receives transformed vertices and generates plane equations 
associated with the geometric primitive defined by the 
vertices ; the plane equations are transmitted to the coarse 
raster engine to generate coverage information ( e.g. , an x , y 
coverage mask for a tile ) for the primitive ; the output of the 
coarse raster engine is transmitted to the culling engine 
where fragments associated with the primitive that fail a 
z - test are culled , and transmitted to a clipping engine where 
fragments lying outside a viewing frustum are clipped . In an 
embodiment , the fragments that survive clipping and culling 
are passed to the fine raster engine to generate attributes for 
the pixel fragments based on the plane equations generated 
by the setup engine . In an embodiment , the output of the 
raster engine 808 comprises fragments to be processed by 
any suitable entity such as by a fragment shader imple 
mented within a DPC 806 . 
[ 0076 ] In an embodiment , each DPC 806 included in the 
GPC 800 comprises an M - Pipe Controller ( “ MPC ” ) 810 ; a 
primitive engine 812 ; one or more SMs 814 ; and any 
suitable combination thereof . In an embodiment , the MPC 
810 controls the operation of the DPC 806 , routing packets 
received from the pipeline manager 802 to the appropriate 
units in the DPC 806. In an embodiment , packets associated 
with a vertex are routed to the primitive engine 812 , which 

of 
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is configured to fetch vertex attributes associated with the 
vertex from memory ; in contrast , packets associated with a 
shader program may be transmitted to the SM 814 . 
[ 0077 ] In an embodiment , the SM 814 comprises a pro 
grammable streaming processor that is configured to process 
tasks represented by a number of threads . In an embodiment , 
the SM 814 is multi - threaded and configured to execute a 
plurality of threads ( e.g. , 32 threads ) from a particular group 
of threads concurrently and implements a SIMD ( Single 
Instruction , Multiple - Data ) architecture where each thread 
in a group of threads ( e.g. , a warp ) is configured to process 
a different set of data based on the same set of instructions . 
In an embodiment , all threads in the group of threads 
execute the same instructions . In an embodiment , the SM 
814 implements a SIMT ( Single - Instruction , Multiple 
Thread ) architecture wherein each thread in a group of 
threads is configured to process a different set of data based 
on the same set of instructions , but where individual threads 
in the group of threads are allowed to diverge during 
execution . In an embodiment , a program counter , call stack , 
and execution state is maintained for each warp , enabling 
concurrency between warps and serial execution within 
warps when threads within the warp diverge . In another 
embodiment , a program counter , call stack , and execution 
state is maintained for each individual thread , enabling equal 
concurrency between all threads , within and between warps . 
In an embodiment , execution state is maintained for each 
individual thread and threads executing the same instruc 
tions may be converged and executed in parallel for better 
efficiency . In an embodiment , the SM 814 is described in 
more detail below . 
[ 0078 ] In an embodiment , the MMU 818 provides an 
interface between the GPC 800 and the memory partition 
unit and the MMU 818 provides translation of virtual 
addresses into physical addresses , memory protection , and 
arbitration of memory requests . In an embodiment , the 
MMU 818 provides one or more translation lookaside 
buffers ( “ TLBs ” ) for performing translation of virtual 
addresses into physical addresses in memory . 
[ 0079 ] FIG . 9 illustrates a memory partition unit of a PPU , 
in accordance with one embodiment . In an embodiment , the 
memory partition unit 900 includes a Raster Operations 
( “ ROP ” ) unit 902 ; a level two ( “ L2 ” ) cache 904 ; a memory 
interface 906 ; and any suitable combination thereof . The 
memory interface 906 is coupled to the memory . Memory 
interface 906 may implement 32 , 64 , 128 , 1024 - bit data 
buses , or the like , for high - speed data transfer . In an embodi 
ment , the PPU incorporates U memory interfaces 906 , one 
memory interface 906 per pair of partition units 900 , where 
each pair of partition units 900 is connected to a correspond 
ing memory device . For example , PPU may be connected to 
up to Y memory devices , such as high bandwidth memory 
stacks or graphics double - data - rate , version 5 , synchronous 
dynamic random access memory ( " GDDR5 SDRAM ” ) . 
[ 0080 ] In an embodiment , the memory interface 906 
implements an HBM2 memory interface and Y equals half 
U. In an embodiment , the HBM2 memory stacks are located 
on the same physical package as the PPU , providing sub 
stantial power and area savings compared with conventional 
GDDR5 SDRAM systems . In an embodiment , each HBM2 
stack includes four memory dies and Y equals 4 , with HBM2 
stack including two 128 - bit channels per die for a total of 8 
channels and a data bus width of 1024 bits . 

[ 0081 ] In an embodiment , the memory supports Single 
Error Correcting Double - Error Detecting ( " SECDED " ) 
Error Correction Code ( “ ECC ” ) to protect data . ECC pro 
vides higher reliability for compute applications that are 
sensitive to data corruption . Reliability is especially impor 
tant in large - scale cluster computing environments where 
PPUs process very large datasets and / or run applications for 
extended periods . 
[ 0082 ] In an embodiment , the PPU implements a multi 
level memory hierarchy . In an embodiment , the memory 
partition unit 900 supports a unified memory to provide a 
single unified virtual address space for CPU and PPU 
memory , enabling data sharing between virtual memory 
systems . In an embodiment the frequency of accesses by a 
PPU to memory located on other processors is trace to 
ensure that memory pages are moved to the physical 
memory of the PPU that is accessing the pages more 
frequently . In an embodiment , the high - speed GPU inter 
connect 708 supports address translation services allowing 
the PPU to directly access a CPU's page tables and provid 
ing full access to CPU memory by the PPU . 
[ 0083 ] In an embodiment , copy engines transfer data 
between multiple PPUs or between PPUs and CPUs . In an 
embodiment , the copy engines can generate page faults for 
addresses that are not mapped into the page tables and the 
memory partition unit 900 then services the page faults , 
mapping the addresses into the page table , after which the 
copy engine performs the transfer . In an embodiment , 
memory is pinned ( i.e. , non - pageable ) for multiple copy 
engine operations between multiple processors , substan 
tially reducing the available memory . In an embodiment , 
with hardware page faulting , addresses can be passed to the 
copy engines without regard as to whether the memory 
pages are resident , and the copy process is transparent . 
[ 0084 ] Data from the memory of FIG . 7 or other system 
memory is fetched by the memory partition unit 900 and 
stored in the L2 cache 904 , which is located on - chip and is 
shared between the various GPCs , in accordance with one 
embodiment . Each memory partition unit 900 , in an embodi 
ment , includes at least a portion of the L2 cache 860 
associated with a corresponding memory device . In an 
embodiment , lower level caches are implemented in various 
units within the GPCs . In an embodiment , each of the SMS 
940 may implement a level one ( “ L1 ” ) cache wherein the Li 
cache is private memory that is dedicated to a particular SM 
940 and data from the L2 cache 904 is fetched and stored in 
each of the L1 caches for processing in the functional units 
of the SMS 940. In an embodiment , the L2 cache 904 is 
coupled to the memory interface 906 and the XBar 720 . 
[ 0085 ] The ROP unit 902 performs graphics raster opera 
tions related to pixel color , such as color compression , pixel 
blending , and more , in an embodiment . The ROP unit 902 , 
in an embodiment , implements depth testing in conjunction 
with the raster engine 925 , receiving a depth for a sample 
location associated with a pixel fragment from the culling 
engine of the raster engine 925. In an embodiment , the depth 
is tested against a corresponding depth in a depth buffer for 
a sample location associated with the fragment . In an 
embodiment , if the fragment passes the depth test for the 
sample location , then the ROP unit 902 updates the depth 
buffer and transmits a result of the depth test to the raster 
engine 925. It will be appreciated that the number of 
partition units 900 may be different than the number of 
GPCs and , therefore , each ROP unit 902 can , in an embodi 
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ment , be coupled to each of the GPCs . In an embodiment , 
the ROP unit 902 tracks packets received from the different 
GPCs and determines which that a result generated by the 
ROP unit 902 is routed to through the Xbar . 
[ 0086 ] FIG . 10 illustrates a streaming multi - processor 
such as the streaming multi - processor of FIG . 8 , in accor 
dance with one embodiment . In an embodiment , the SM 
1000 includes : an instruction cache 1002 ; one or more 
scheduler units 1004 ; a register file 1008 ; one or more 
processing cores 1010 ; one or more special function units 
( “ SFUs ” ) 1012 ; one or more load / store units ( “ LSUs ” ) 1014 ; 
an interconnect network 1016 ; a shared memory / L1 cache 
1018 ; and any suitable combination thereof . In an embodi 
ment , the work distribution unit dispatches tasks for execu 
tion on the GPCs of the PPU and each task is allocated to a 
particular DPC within a GPC and , if the task is associated 
with a shader program , the task is allocated to an SM 1000 . 
In an embodiment , the scheduler unit 1004 receives the tasks 
from the work distribution unit and manages instruction 
scheduling for one or more thread blocks assigned to the SM 
1000. In an embodiment , the scheduler unit 1004 schedules 
thread blocks for execution as warps of parallel threads , 
wherein each thread block is allocated at least one warp . In 
an embodiment , each warp executes threads . In an embodi 
ment , the scheduler unit 1004 manages a plurality of dif 
ferent thread blocks , allocating the warps to the different 
thread blocks and then dispatching instructions from the 
plurality of different cooperative groups to the various 
functional units ( e.g. , cores 1010 , SFUS 1012 , and LSUS 
1014 ) during each clock cycle . 
[ 0087 ] Cooperative Groups may refer to a programming 
model for organizing groups of communicating threads that 
allows developers to express the granularity at which threads 
are communicating , enabling the expression of richer , more 
efficient parallel decompositions . In an embodiment , coop 
erative launch APIs support synchronization amongst thread 
blocks for the execution of parallel algorithms . In an 
embodiment , applications of conventional programming 
models provide a single , simple construct for synchronizing 
cooperating threads : a barrier across all threads of a thread 
block ( e.g. , the syncthreads ( ) ) function ) . However , pro 
grammers would often like to define groups of threads at 
smaller than thread block granularities and synchronize 
within the defined groups to enable greater performance , 
design flexibility , and software reuse in the form of collec 
tive group - wide function interfaces . Cooperative Groups 
enables programmers to define groups of threads explicitly 
at sub - block ( i.e. , as small as a single thread ) and multi 
block granularities , and to perform collective operations 
such as synchronization on the threads in a cooperative 
group . The programming model supports clean composition 
across software boundaries , so that libraries and utility 
functions can synchronize safely within their local context 
without having to make assumptions about convergence . 
Cooperative Groups primitives enable new patterns of coop 
erative parallelism , including producer - consumer parallel 
ism , opportunistic parallelism , and global synchronization 
across an entire grid of thread blocks . 
[ 0088 ] In an embodiment , a dispatch unit 1006 is config 
ured to transmit instructions to one or more of the functional 
units and the scheduler unit 1004 includes two dispatch units 
1006 that enable two different instructions from the same 
warp to be dispatched during each clock cycle . In an 

embodiment , each scheduler unit 1004 includes a single 
dispatch unit 1006 or additional dispatch units 1006 . 
[ 0089 ] Each SM 1000 , in an embodiment , includes a 
register file 1008 that provides a set of registers for the 
functional units of the SM 1000. In an embodiment , the 
register file 1008 is divided between each of the functional 
units such that each functional unit is allocated a dedicated 
portion of the register file 1008. In an embodiment , the 
register file 1008 is divided between the different warps 
being executed by the SM 1000 and the register file 1008 
provides temporary storage for operands connected to the 
data paths of the functional units . In an embodiment , each 
SM 1000 comprises a plurality of L processing cores 1010 . 
In an embodiment , the SM 1000 includes a large number 
( e.g. , 128 or more ) of distinct processing cores 1010. Each 
core 1010 , in an embodiment , includes a fully - pipelined , 
single - precision , double - precision , and / or mixed precision 
processing unit that includes a floating point arithmetic logic 
unit and an integer arithmetic logic unit . In an embodiment , 
the floating point arithmetic logic units implement the IEEE 
754-2008 standard for floating point arithmetic . In an 
embodiment , the cores 1010 include 64 single - precision 
( 32 - bit ) floating point cores , 64 integer cores , 32 double 
precision ( 64 - bit ) floating point cores , and 8 tensor cores . 
[ 0090 ] Tensor cores are configured to perform matrix 
operations in accordance with an embodiment . In an 
embodiment , one or more tensor cores are included in the 
cores 1010. In an embodiment , the tensor cores are config 
ured to perform deep learning matrix arithmetic , such as 
convolution operations for neural network training and 
inferencing . In an embodiment , each tensor core operates on 
a 4x4 matrix and performs a matrix multiply and accumulate 
operation D = AxB + C , where A , B , C , and D are 4x4 matri 
ces . 

[ 0091 ] In an embodiment , the matrix multiply inputs A 
and B are 16 - bit floating point matrices and the accumula 
tion matrices C and D are 16 - bit floating point or 32 - bit 
floating point matrices . In an embodiment , the tensor cores 
operate on 16 - bit floating point input data with 32 - bit 
floating int accumulation . In an embodiment , the 16 - bit 
floating point multiply requires 64 operations and results in 
a full precision product that is then accumulated using 32 - bit 
floating point addition with the other intermediate products 
for a 4x4x4 matrix multiply . Tensor cores are used to 
perform much larger two - dimensional or higher dimensional 
matrix operations , built up from these smaller elements , in 
an embodiment . In an embodiment , an API , such as CUDA 
9 C ++ API , exposes specialized matrix load , matrix multiply 
and accumulate , and matrix store operations to efficiently 
use tensor cores from a CUDA - C ++ program . In an embodi 
ment , at the CUDA level , the warp - level interface assumes 
16x16 size matrices spanning all 32 threads of the warp . 
[ 0092 ] In an embodiment , each SM 1000 comprises M 
SFUS 1012 that perform special functions ( e.g. , attribute 
evaluation , reciprocal square root , and the like ) . In an 
embodiment , the SFUs 1012 include a tree traversal unit 
configured to traverse a hierarchical tree data structure . In an 
embodiment , the SFUs 1012 include texture unit configured 
to perform texture map filtering operations . In an embodi 
ment , the texture units are configured to load texture maps 
( e.g. , a 2D array of texels ) from the memory and sample the 
texture maps to produce sampled texture values for use in 
shader programs executed by the SM 1000. In an embodi 
ment , the texture maps are stored in the shared memory / L1 
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cache . The texture units implement texture operations such 
as filtering operations using mip - maps ( e.g. , texture maps of 
varying levels of detail ) , in accordance with one embodi 
ment . In an embodiment , each SM 1000 includes two texture 
units . 
[ 0093 ] Each SM 1000 comprises N LSUs 854 that imple 
ment load and store operations between the shared memory / 
L1 cache 1018 and the register file 1008 , in an embodiment . 
Each SM 1000 includes an interconnect network 1016 that 
connects each of the functional units to the register file 1008 
and the LSU 1014 to the register file 1008 , shared memory ! 
L1 cache 1018 in an embodiment . In an embodiment , the 
interconnect network 1016 is a crossbar that can be config 
ured to connect any of the functional units to any of the 
registers in the register file 1008 and connect the LSUs 1014 
to the register file and memory locations in shared memory / 
L1 cache 1018 . 
[ 0094 ] The shared memory / L1 cache 1018 is an array 
on - chip memory that allows for data storage and commu 
nication between the SM 1000 and the primitive engine and 
between threads in the SM 1000 in an embodiment . In an 
embodiment , the shared memory / L1 cache 1018 comprises 
128 KB of storage capacity and is in the path from the SM 
1000 to the partition unit . The shared memory / L1 cache 
1018 , in an embodiment , is used to cache reads and writes . 
One or more of the shared memory / L1 cache 1018 , L2 
cache , and memory are backing stores . 
[ 0095 ] Combining data cache and shared memory func 
tionality into a single memory block provides improved 
performance for both types of memory accesses , in an 
embodiment . The capacity , in an embodiment , is used or is 
usable as a cache by programs that do not use shared 
memory , such as if shared memory is configured to use half 
of the capacity , texture and load / store operations can use the 
remaining capacity . Integration within the shared memory / 
L1 cache 1018 enables the shared memory / L1 cache 1018 to 
function as a high - throughput conduit for streaming data 
while simultaneously providing high - bandwidth and low 
latency access to frequently reused data , in accordance with 
an embodiment . When configured for general purpose par 
allel computation , a simpler configuration can be used 
compared with graphics processing . In an embodiment , 
fixed function graphics processing units are bypassed , cre 
ating a much simpler programming model . In the general 
purpose parallel computation configuration , the work distri 
bution unit assigns and distributes blocks of threads directly 
to the DPCs , in an embodiment . The threads in a block 
execute the same program , using a unique thread ID in the 
calculation to ensure each thread generates unique results , 
using the SM 1000 to execute the program and perform 
calculations , shared memory / L1 cache 1018 to communicate 
between threads , and the LSU 1014 to read and write global 
memory through the shared memory / L1 cache 1018 and the 
memory partition unit , in accordance with one embodiment . 
In an embodiment , when configured for general purpose 
parallel computation , the SM 1000 writes commands that 
the scheduler unit can use to launch new work on the DPCs . 
[ 0096 ] In an embodiment , the PPU is included in or 
coupled to a desktop computer , a laptop computer , a tablet 
computer , servers , supercomputers , a smart - phone ( e.g. , a 
wireless , hand - held device ) , personal digital assistant 
( “ PDA ” ) , a digital camera , a vehicle , a head mounted 
display , a hand - held electronic device , and more . In an 
embodiment , the PPU is embodied on a single semiconduc 

tor substrate.ambodiment , the PUs included in a 
system - on - a - chip ( “ SOC ” ) along with one or more other 
devices such as additional PPUs , the memory , a reduced 
instruction set computer ( “ RISC ” ) CPU , a memory manage 
ment unit ( “ MMU ” ) , a digital - to - analog converter ( “ DAC ” ) , 
and the like . 
[ 0097 ] In an embodiment , the PPU may be included on a 
graphics card that includes one or more memory devices . 
The graphics card may be configured to interface with a 
Plesna motherboard of desktop computer yet 
another embodiment , the Umaybe an integrate graphics 
processing unit ( “ IGPU ” ) included in the chipset of the 
motherboard . 
[ 0098 ] FIG . 11 illustrates a computer system 1100 in 
which the various architecture and / or functionality can be 
implemented , in accordance with one embodiment . The 
computer system 1100 , in an embodiment , is configured to 
implement various processes and methods described 
throughout this disclosure . 
[ 0099 ] In an embodiment , the computer system 1100 
comprises at least one central processing unit 1102 that is 
connected to a communication bus 1110 implemented using 
any suitable protocol , such as PCI ( Peripheral Component 
Interconnect ) , PCI - Express , AGP ( Accelerated Graphics 
Port ) , HyperTransport , or any other bus or point - to - point 
communication protocol ( s ) . In an embodiment , the com 
puter system 1100 includes a main memory 1104 and control 
logic ( e.g. , implemented as hardware , software , or a com 
bination thereof ) and data are stored in the main memory 
1104 which may take the form of random access memory 
( “ RAM ” ) . In an embodiment , a network interface subsystem 
1122 provides an interface to other computing devices and 
networks for receiving data from and transmitting data to 
other systems from the computer system 1100 . 
[ 0100 ] The computer system 1100 , in an embodiment , 
includes input devices 108 , the parallel processing system 
1112 , and display devices 1106 which can be implemented 
using a conventional CRT ( cathode ray tube ) , LCD ( liquid 
crystal display ) , LED ( light emitting diode ) , plasma display , 
or other suitable display technologies . In an embodiment , 
user input is received from input devices 1108 such as 
keyboard , mouse , touchpad , microphone , and more . In an 
embodiment , each of the foregoing modules can be situated 
on a single semiconductor platform to form a processing 
system . 
[ 0101 ] In the present description , a single semiconductor 
platform may refer to a sole unitary semiconductor - based 
integrated circuit or chip . It should be noted that the term 
single semiconductor platform may also refer to multi - chip 
modules with increased connectivity which simulate on - chip 
operation , and make substantial improvements over utilizing 
conventional central processing uit ( CPandbu 
implementation . Of course , the various modules may also be 
situated separately or in various combinations of semicon 
ductor platforms per the desires of the user . 
[ 0102 ] In an embodiment , computer programs in the form 
of machine - readable executable code or computer control 
logic algorithms are stored in the main memory 1104 and / or 
secondary storage . Computer programs , if executed by one 
or more processors , enable the system 1100 to perform 
various functions in accordance with one embodiment . The 
memory 1104 , the storage , and / or any other storage are 
possible examples of computer - readable media . Secondary 
storage may refer to any suitable storage device or system 



US 2020/0302176 A1 Sep. 24 , 2020 
10 

such as a hard disk drive and / or a removable storage drive , 
representing a floppy disk drive , a magnetic tape drive , a 
compact disk drive , digital versatile disk ( “ DVD ” ) drive , 
recording device , universal serial bus ( “ USB ” ) flash 
memory . 
[ 0103 ] In an embodiment , the architecture and / or func 
tionality of the various previous figures are implemented in 
the context of the central processor 1102 ; parallel processing 
system 1112 ; an integrated circuit capable of at least a 
portion of the capabilities of both the central processor 1102 ; 
the parallel processing system 1112 ; a chipset ( e.g. , a group 
of integrated circuits designed to work and sold as a unit for 
performing related functions , etc. ) ; and any suitable combi 
nation of integrated circuit . 
[ 0104 ] In an embodiment , the architecture and / or func 
tionality of the various previous figures is be implemented in 
the context of a general computer system , a circuit board 
system , a game console system dedicated for entertainment 
purposes , an application - specific system , and more . 
[ 0105 ] In an embodiment , the computer system 1100 may 
take the form of a desktop computer , a laptop computer , a 
tablet computer , servers , supercomputers , a smart - phone 
( e.g. , a wireless , hand - held device ) , personal digital assistant 
( “ PDA ” ) , a digital camera , a vehicle , a head mounted 
display , a hand - held electronic device , a mobile phone 
device , a television , workstation , game consoles , embedded 
system , and / or any other type of logic . 
[ 0106 ] In an embodiment , a parallel processing system 
1112 includes a plurality of PPUs 1114 and associated 
memories 1116. In an embodiment , the PPUs are connected 
to a host processor or other peripheral devices via an 
interconnect 1118 and a switch 1120 or multiplexer . In an 
embodiment , the parallel processing system 1112 distributes 
computational tasks across the PPUs 1114 which can be 
parallelizable — for example , as part of the distribution of 
computational tasks across multiple GPU thread blocks . In 
an embodiment , memory is shared and accessible ( e.g. , for 
read and / or write access ) across some or all of the PPUS 
1114 , although such shared memory may incur performance 
penalties relative to the use of local memory and registers 
resident to a PPU . In an embodiment , the operation of the 
PPUs 1114 is synchronized through the use of a command 
such as syncthreads ( which requires all threads in a block 
( e.g. , executed across multiple PPUs 1114 ) to reach a certain 
point of execution of code before proceeding . 
[ 0107 ] The specification and drawings are , accordingly , to 
be regarded in an illustrative rather than a restrictive sense . 
It will , however , be evident that various modifications and 
changes may be made thereunto without departing from the 
broader spirit and scope of the invention as set forth in the 
claims . 
[ 0108 ] Other variations are within the spirit of the present 
disclosure . Thus , while the disclosed techniques are suscep 
tible to various modifications and alternative constructions , 
certain illustrated embodiments thereof are shown in the 
drawings and have been described above in detail . It should 
be understood , however , that there is no intention to limit the 
invention to the specific form or forms disclosed , but on the 
contrary , the intention is to cover all modifications , alterna 
tive constructions , and equivalents falling within the spirit 
and scope of the invention , as defined in the appended 
claims . 
[ 0109 ] The use of the terms “ a ” and “ an ” and “ the ” and 
similar referents in the context of describing the disclosed 

embodiments ( especially in the context of the following 
claims ) are to be construed to cover both the singular and the 
plural , unless otherwise indicated herein or clearly contra 
dicted by context . The terms “ comprising , ” “ having , " 
“ including , ” and “ containing ” are to be construed as open 
ended terms ( i.e. , meaning " including , but not limited to , " ) 
unless otherwise noted . The term “ connected , ” when 
unmodified and referring to physical connections , is to be 
construed as partly or wholly contained within , attached to , 
or joined together , even if there is something intervening . 
Recitation of ranges of values herein are merely intended to 
serve as a shorthand method of referring individually to each 
separate value falling within the range , unless otherwise 
indicated herein and each separate value is incorporated into 
the specification as if it were individually recited herein . The 
use of the term “ set ” ( e.g. , " a set of items ” ) or " subset ” 
unless otherwise noted or contradicted by context , is to be 
construed as a nonempty collection comprising one or more 
members . Further , unless otherwise noted or contradicted by 
context , the term “ subset ” of a corresponding set does not 
necessarily denote a proper subset of the corresponding set , 
but the subset and the corresponding set may be equal . 
[ 0110 ] Conjunctive language , such as phrases of the form 
“ at least one of A , B , and C , ” or “ at least one of A , B and 
C , " unless specifically stated otherwise or otherwise clearly 
contradicted by context , is otherwise understood with the 
context as used in general to present that an item , term , etc. , 
may be either A or B or C , or any nonempty subset of the set 
of A and B and C. For instance , in the illustrative example 
of a set having three members , the conjunctive phrases “ at 
least one of A , B , and C ” and “ at least one of A , B and Cº 
refer to any of the following sets : { A } , { B } , { C } , { A , B } , 
{ A , C } , { B , C } , { A , B , C } . Thus , such conjunctive language 
is not generally intended to imply that certain embodiments 
require at least one of A , at least one of B and at least one 
of C each to be present . In addition , unless otherwise noted 
or contradicted by context , the term “ plurality ” indicates a 
state of being plural ( e.g. , “ a plurality of items ” indicates 
multiple items ) . The number of items in a plurality is at least 
two , but can be more when so indicated either explicitly or 
by context . Further , unless stated otherwise or otherwise 
clear from context , the phrase “ based on ” means “ based at 
least in part on ” and not “ based solely on . ” 
[ 0111 ] Operations of processes described herein can be 
performed in any suitable order unless otherwise indicated 
herein or otherwise clearly contradicted by context . In an 
embodiment , a process such as those processes described 
herein ( or variations and / or combinations thereof ) is per 
formed under the control of one or more computer systems 
configured with executable instructions and is implemented 
as code ( e.g. , executable instructions , one or more computer 
programs or one or more applications ) executing collec 
tively on one or more processors , by hardware or combina 
tions thereof . In an embodiment , the code is stored on a 
computer - readable storage medium , for example , in the 
form of a computer program comprising a plurality of 
instructions executable by one or more processors . In an 
embodiment , a computer - readable storage medium is a 
non - transitory computer - readable storage medium that 
excludes transitory signals ( e.g. , a propagating transient 
electric or electromagnetic transmission ) but includes non 
transitory data storage circuitry ( e.g. , buffers , cache , and 
queues ) within transceivers of transitory signals . In an 
embodiment , code ( e.g. , executable code or source code ) is 
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stored on a set of one or more non - transitory computer 
readable storage media having stored thereon executable 
instructions ( or other memory to store executable instruc 
tions ) that , when executed ( i.e. , as a result of being executed ) 
by one or more processors of a computer system , cause the 
computer system to perform operations described herein . 
The set of non - transitory computer - readable storage media , 
in an embodiment , comprises multiple non - transitory com 
puter - readable storage media and one or more of individual 
non - transitory storage media of the multiple non - transitory 
computer - readable storage media lack all of the code while 
the multiple non - transitory computer - readable storage 
media collectively store all of the code . In an embodiment , 
the executable instructions are executed such that different 
instructions are executed by different processors — for 
example , a non - transitory computer - readable storage 
medium store instructions and a main CPU execute some of 
the instructions while a graphics processor unit executes 
other instructions . In an embodiment , different components 
of a computer system have separate processors and different 
processors execute different subsets of the instructions . 
[ 0112 ] Accordingly , in an embodiment , computer systems 
are configured to implement one or more services that singly 
or collectively perform operations of processes described 
herein and such computer systems are configured with 
applicable hardware and / or software that enable the perfor 
mance of the operations . Further , a computer system that 
implement an embodiment of the present disclosure is a 
single device and , in another embodiment , is a distributed 
computer system comprising multiple devices that operate 
differently such that the distributed computer system per 
forms the operations described herein and such that a single 
device does not perform all operations . 
[ 0113 ] The use of any and all examples , or exemplary 
language ( e.g. , " such as ” ) provided herein , is intended 
merely to better illuminate embodiments of the invention 
and does not pose a limitation on the scope of the invention 
unless otherwise claimed . No language in the specification 
should be construed as indicating any non - claimed element 
as essential to the practice of the invention . 
[ 0114 ] Embodiments of this disclosure are described 
herein , including the best mode known to the inventors for 
carrying out the invention . Variations of those embodiments 
may become apparent to those of ordinary skill in the art 
upon reading the foregoing description . The inventors 
expect skilled artisans to employ such variations as appro 
priate and the inventors intend for embodiments of the 
present disclosure to be practiced otherwise than as specifi 
cally described herein . Accordingly , the scope of the present 
disclosure includes all modifications and equivalents of the 
subject matter recited in the claims appended hereto as 
permitted by applicable law . Moreover , any combination of 
the above - described elements in all possible variations 
thereof is encompassed by the scope of the present disclo 
sure unless otherwise indicated herein or otherwise clearly 
contradicted by context . 
[ 0115 ] All references , including publications , patent appli 
cations , and patents , cited herein are hereby incorporated by 
reference to the same extent as if each reference were 
individually and specifically indicated to be incorporated by 
reference and were set forth in its entirety herein . 
[ 0116 ] In the description and claims , the terms " coupled ” 
and “ connected , ” along with their derivatives , may be used . 
It should be understood that these terms may be not intended 

as synonyms for each other . Rather , in particular examples , 
“ connected ” or “ coupled ” may be used to indicate that two 
or more elements are in direct or indirect physical or 
electrical contact with each other . “ Coupled ” may also mean 
that two or more elements are not in direct contact with each 
other , but yet still co - operate or interact with each other . 
[ 0117 ] Unless specifically stated otherwise , it may be 
appreciated that throughout the specification terms such as 
" processing , " " computing , " " calculating , " " determining , " or 
the like , refer to the action and / or processes of a computer 
or computing system , or similar electronic computing 
device , that manipulate and / or transform data represented as 
physical , such as electronic , quantities within the computing 
system's registers and / or memories into other data similarly 
represented as physical quantities within the computing 
system's memories , registers or other such information 
storage , transmission or display devices . 
[ 0118 ] In a similar manner , the term “ processor ” may refer 
to any device or portion of a device that processes electronic 
data from registers and / or memory and transform that elec 
tronic data into other electronic data that may be stored in 
registers and / or memory . As non - limiting examples , " pro 
cessor ” may be a Central Processing Unit ( CPU ) or a Graphics Processing Unit ( GPU ) . A " computing platform " 
may comprise one or more processors . As used herein , 
“ software ” processes may include , for example , software 
and / or hardware entities that perform work over time , such 
as tasks , threads , and intelligent agents . Also , each process 
may refer to multiple processes , for carrying out instructions 
in sequence or in parallel , continuously or intermittently . 
The terms “ system ” and “ method ” are used herein inter 
changeably insofar as the system may embody one or more 
methods and the methods may be considered a system . 
[ 0119 ] In the present document , references may be made 
to obtaining , acquiring , receiving , or inputting analog or 
digital data into a subsystem , computer system , or computer 
implemented machine . The process of obtaining , acquiring , 
receiving , or inputting analog and digital data can be accom 
plished in a variety of ways such as by receiving the data as 
a parameter of a function call or a call to an application 
programming interface . In some implementations , the pro 
cess of obtaining , acquiring , receiving , or inputting analog 
or digital data can be accomplished by transferring the data 
via a serial or parallel interface . In another implementation , 
the process of obtaining , acquiring , receiving , or inputting 
analog or digital data can be accomplished by transferring 
the data via a computer network from the providing entity to 
the acquiring entity . References may also be made to pro 
viding , outputting , transmitting , sending , or presenting ana 
log or digital data . In various examples , the process of 
providing , outputting , transmitting , sending , or presenting 
analog or digital data can be accomplished by transferring 
the data as an input or output parameter of a function call , 
a parameter of an application programming interface or 
interprocess communication mechanism . 
[ 0120 ] Although the discussion above sets forth example 
implementations of the described techniques , other archi 
tectures may be used to implement the described function 
ality , and are intended to be within the scope of this 
disclosure . Furthermore , although specific distributions of 
responsibilities are defined above for purposes of discussion , 
the various functions and responsibilities might be distrib 
uted and divided in different ways , depending on circum 
stances . 
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[ 0121 ] Furthermore , although the subject matter has been 
described in language specific to structural features and / or 
methodological acts , it is to be understood that the subject 
matter defined in the appended claims is not necessarily 
limited to the specific features or acts described . Rather , the 
specific features and acts are disclosed as exemplary forms 
of implementing the claims . 

What is claimed is : 
1. A processor comprising : 
one or more arithmetic logic units ( ALUS ) to determine 

whether one or more features appear in at least a first 
and second image based , at least in part , on one or more 
neural networks including a discriminative portion and 
at least one encoder portion to encode information to be 
used by the discriminative portion . 

2. The processor of claim 1 , wherein the encoder portion 
encodes information indicative of appearance of the one or 
more features . 

3. The processor of claim 1 , wherein the one or more 
neural networks are jointly trained with a generative portion . 

4. The processor of claim 3 , wherein the generative 
portion comprises a second encoder portion to encode 
positional or geometric information . 

5. The processor of claim 3 , wherein the generative 
portion generates image data comprises a plurality of rep 
resentations of the one or more features , each of the plurality 
of representations comprising a variation in appearance of 
the one or more features . 

6. The processor of claim 1 , wherein the one or more 
features comprise a person depicted in at least the first 
image . 

7. A system comprising : 
one or more computers including one or more processors 

to train one or more neural networks to determine 
whether one or more features appear in at least a first 
and second image based , at least in part , on a generative 
portion and a discriminative portion and at least one 
encoder portion to encode information to be used by the 
generative and discriminative portions . 

8. The system of claim 7 , wherein the generative and 
discriminative portions are jointly trained . 

9. The system of claim 8 , wherein jointly training the 
generative and discriminative portions comprises minimiz 
ing generative and discriminative loss . 

10. The system of claim 7 , wherein the encoder portion is 
an appearance encoder to encode features associated with 
one or more of clothing , color , and texture . 

11. The system of claim 7 , wherein the generative portion 
comprises a structure encoder portion to encode features 
associated with one or more of size , pose , background , 
viewpoint , and lighting . 

12. The system of claim 7 , wherein the generative portion 
generates a plurality of images , wherein of the plurality of 
images comprise variations in appearance of the one or more 
features . 

13. The system of claim 7 , wherein the generative portion 
is trained to perform self - identity generation and cross 
identity generation . 

14. A machine - readable medium having stored thereon a 
set of instructions , which if performed by one or more 
processors , cause the one or more processors to at least : 

cause one or more neural networks including a generative 
portion and a discriminative portion to be trained to 
determine whether one or more features appear in at 
least a first and second image using encoded informa 
tion about appearance and shape of the one or more 
features . 

15. The machine - readable medium of claim 14 , wherein 
the encoded information is generated by an encoder portion 
shared by the generative and discriminative portions . 

16. The machine - readable medium of claim 14 , having 
stored thereon a further set of instructions , which if per 
formed by one or more processors , cause the one or more 
processors to at least train the generative and discriminative 
portions together . 

17. The machine - readable medium of claim 14 , wherein 
the generative portion comprises an appearance encoder to 
encode features associated with one or more of clothing , 
color , and texture . 

18. The machine - readable medium of claim 14 , wherein 
the generative portion comprises a structure encoder to 
encode features associated with one or more of size , pose , 
background , viewpoint , and lighting . 

19. The machine - readable medium of claim 14 , wherein 
the generative portion generates a plurality of images per 
mitting the discriminative portion to be trained to recognize 
fine - grained identity features . 

20. The machine - readable medium of claim 14 , wherein 
the generative portion is trained to perform self - identity 
generation and cross - identity generation . 


