
US 20200302176A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0302176 A1

Yang et al . (43) Pub . Date : Sep. 24 , 2020

(54) IMAGE IDENTIFICATION USING NEURAL
NETWORKS

(71) Applicant : NVIDIA Corporation , Santa Clara , CA
(US)

(72) Inventors : Xiaodong Yang , Fremont , CA (US) ;
Zhedong Zheng , Ultimo (AU) ;
Zhiding Yu , Santa Clara , CA (US)

GOON 3/08 (2006.01)
G06F 7/57 (2006.01)

(52) U.S. CI .
CPC G06K 9/00677 (2013.01) ; G06F 7/57

(2013.01) ; G06N 3/086 (2013.01) ; G06N
3/0454 (2013.01)

(57) ABSTRACT
A neural network is trained to perform a re - identification
task in which it is determined whether one or more features
present in a first image appear also in a second image .
During training , a generative portion of one or more neural
networks generates variations of an input image , and a
discriminative portion of the one or more neural networks
learns to perform the re - identification task based at least in
part on the variations of the image . During training , the
generative and discriminative portions of the one or more
neural networks share an encoder which encodes informa
tion used by the generative and discriminative portions .

(21) Appl . No .: 16 / 357,047

(22) Filed : Mar. 18 , 2019

Publication Classification

(51) Int . Ci .
G06K 9/00
GO6N 3/04

(2006.01)
(2006.01)

200 input data for
training
202

8
generative
portion
212 input and

generated data
for training

204

structure
encoder
218 8

8
appearance
encoder
216 8 8

8
discriminitive

portion
214

neural network
210

Patent Application Publication Sep. 24 , 2020 Sheet 1 of 11 US 2020/0302176 A1

100

Image " B " Image “ A ”
102 104

8 8
neural network

110

encoding
portion
116

discriminitive
portion
114

Yes same
person ? No

106

FIG . 1

Patent Application Publication Sep. 24 , 2020 Sheet 2 of 11 US 2020/0302176 A1

200 input data for
training
202

8
generative

portion
212

input and
generated data

for training
204

structure
encoder
218 8

8 8
appearance
encoder
216 8

8
discriminitive

portion
214

neural network
210

FIG . 2

300

input images 302

structure code 340

Patent Application Publication

X ; -- >

structure encoder 310

generator 320

discriminator 330
-real / fake Lady

Loid

appearance encoder 312

appearance code 342

Lcode_1_recon

Lprimary

appearance encoder 312

Lfine

structure encoder 310

Xi

Lcode_2_recon

Lid

generator 320

xi

structure encoder 310

Sep. 24 , 2020 Sheet 3 of 11

Limg_1_recon

X + - -

appearance encoder 312

generator 320

x

Limg_2_recon

L'id

US 2020/0302176 A1

FIG . 3

400

/

structure and appearance codes

Patent Application Publication

a ;

Xi

xi 406

402

Si

Sep. 24 , 2020 Sheet 4 of 11

at

Xt

X 408

404

US 2020/0302176 A1

FIG . 4

structure and appearance codes 540
ai

Patent Application Publication

Xi 502

Si

Sep. 24 , 2020 Sheet 5 of 11

Sj

X

xi

504

aj

US 2020/0302176 A1

FIG . 5

fprimary 620 , Lºid

Xi Xj

Kon
Patent Application Publication

602

Lprimary

appearance encoder 610

L'id

x } x

V

Sep. 24 , 2020 Sheet 6 of 11

604

Line
fine 622

FIG . 6

US 2020/0302176 A1

Patent Application Publication Sep. 24 , 2020 Sheet 7 of 11 US 2020/0302176 A1

Parallel Processing Unit (PPU) 700
Interconnect

7
702 I / O Unit

706
Front End Unit

710

Scheduler Unit
712

Hub
716 708 GPU Interconnect Work Distribution Unit

714

GPC (X)
718

720

XBar

Memory
(Y)
704 Memory Partition Unit (U)

722

FIG . 7

Patent Application Publication Sep. 24 , 2020 Sheet 8 of 11 US 2020/0302176 A1

To / From Xbar

General Processing
Cluster (GPC) 800

Pipeline Manager
802

PROP
804

1

MPC
810

111 Primitive
Engine
812

SM
814

Raster Engine
808

DPC (V)
806

WDX
816

MMU 818

To / From Xbar To / From Xbar

FIG . 8

Patent Application Publication Sep. 24 , 2020 Sheet 9 of 11 US 2020/0302176 A1

To / From
Xbar

Memory Partition Unit
900

Raster Operations Unit
902

L2 Cache
904

To / From
Xbar

Memory Interface
906

To / From
Memory

FIG . 9

Patent Application Publication Sep. 24 , 2020 Sheet 10 of 11 US 2020/0302176 A1

Streaming Multiprocessor 1000

Instruction Cache
1002

Scheduler Unit (K) 1004

Dispatch
1006

Register File
1008

Core
(L - 1)
1010

SFU
(M - 1)
1012

LSU
(N - 1)
1014

Interconnect Network
1016

Shared Memory / L1 Cache
1018

FIG . 10

Patent Application Publication Sep. 24 , 2020 Sheet 11 of 11 US 2020/0302176 A1

Computer System
1100

Main
Memory
1104

Network
Interface
1122

CPU
1102

Display
Devices
1106

Input
Devices
1108 Communication

Bus 1110

Interconnect
1118

Switch
1120

1116 PPU
1114

PPU
1114 1116

1116 PPU
1114

PPU
1114 1116

Parallel Processing
System
1112

FIG . 11

US 2020/0302176 A1 Sep. 24 , 2020
1

IMAGE IDENTIFICATION USING NEURAL
NETWORKS

BACKGROUND

[0001] Re - identification involves the task of establishing
correspondence between entities depicted across different
images . For example , a person depicted in an image cap
tured by one camera might or might not be the same
individual captured in an image captured by another camera .
The re - identification task remains challenging , even in view
of existing neural network techniques , for a variety of
reasons . These may include differences such as those caused
by camera angles , lighting , and so forth . Moreover , differ
ences such as body pose , image resolution , and background
may further compound the difficulty of performing re
identification .

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Various techniques will be described with refer
ence to the drawings , in which :
[0003] FIG . 1 illustrates an example re - identification sys
tem , in accordance with an embodiment ;
[0004] FIG . 2 illustrates an example of training a neural
network for re - identification , in accordance with an embodi
ment ;
[0005] FIG . 3 illustrates training a neural network for
performing re - identification , in accordance with an embodi
ment ;
[0006] FIG . 4 illustrates aspects of self - identity generation
in a generative portion of a neural network , in accordance
with an embodiment ;
[0007] FIG . 5 illustrates aspects of cross - identity genera
tion in a generative portion of a neural network , in accor
dance with an embodiment ;
[0008] FIG . 6 illustrates complementary features learned
by a discriminative portion of a neural network , in accor
dance with an embodiment ;
[0009] FIG . 7 illustrates an example of parallel processing
unit (“ PPU ”) , in accordance with an embodiment ;
[0010] FIG . 8 illustrates an example of a general process
ing cluster (“ GPC ”) , in accordance with one embodiment ;
[0011] FIG.9 illustrates an example of a memory partition
unit , in accordance with one embodiment ;
[0012] FIG . 10 illustrates an example of a streaming
multi - processor , in accordance with one embodiment ; and
[0013] FIG . 11 illustrates a computer system in which the
various examples can be implemented , in accordance with
one embodiment .

networks comprises a generative portion which shares the
encoder with the discriminative portion .
[0015] In an embodiment , the generative portion generates
image data during training . The generated image data com
prises various generated representations of the feature being
re - identified , in which each variation changes the appear
ance of the feature in some way . This approach may permit
the neural network to learn to recognize fine - grained aspects
of the features being analyzed . In an embodiment , the
feature is an individual person whose appears in at least the
first image , and whose presence in the second image is
confirmed by the processor and its
[0016] ALUs . The generative portion is jointly trained
with the discriminative portion , according to a loss function
which includes loss from both portions .
[0017] In an embodiment , the generative portion includes
an appearance encoder shared with the discriminative por
tion , and a structure encoder . The appearance encoder
encodes information about the one or more features , such as
clothes , color , and texture , which relate to the appearance of
the one or more features . The structure encoder encodes
positional and geometric information related to the structure
of the analyzed features , such as size , pose , background ,
viewpoint , etc.
[0018] As described herein , re - identification involves
detecting correspondence between images , and in particular
to determining whether a feature present in one image is
present in another image . For example , an embodiment
directed to person re - identification might determine whether
the same individual is depicted in two or more images , by
identifying correspondence between a person or persons
depicted in the images . Person re - identification , and re
identification generally , may be adaptive to various com
plexities . Images captured by different cameras , or even by
the same camera , may contain intra - class variations such as
those caused by changes in background , viewpoint , the pose
of the subject , and so forth .
[0019] In an embodiment , a learning framework jointly
couples discriminative and generative learning . A generative
module decomposes each pedestrian image into two latent
spaces , an appearance space that mostly encodes appear
ance - related information , and a structure space that encodes
attributes such as shape and position . The attributes encoded
in the appearance and structure latent spaces may be referred
to herein as codes .
[0020] In an embodiment , the appearance encoder is
shared with the discriminative module , serving as a re
identification learning backbone . This design presents a
unified framework that subsumes interactions between the
generative and discriminative modules . The generative mod
ule produces synthesized images that are taken to refine the
appearance encoder online , and the encoder influences the
generative module with improved appearance encoding .
Further , both modules are jointly optimized , given the
shared appearance encoder .
[0021] In an embodiment , image generation is formulated
as switching the appearance or structure codes between two
images . Given pairwise images with the same or different
identities , embodiments may generate realistic and diverse
intra - composed or cross - id composed images by manipulat
ing the codes . Unlike unconditional generative adversarial
networks (“ GANs ”) , this approach may allow for more
controllable generation , or higher - quality generation . Unlike
pose - guided generation , embodiments may not require addi

DETAILED DESCRIPTION

[0014] Embodiments disclosed herein include systems ,
methods , and computer program products related to detect
ing whether a feature that appear in an image also appear in
a second image . Here , a feature refers to a person , entity , or
object that may be depicted in the image . In an example
embodiment , a processor comprises one or more arithmetic
logic units (ALUS) that determine whether a feature appears
in both a first and second image . The processor and its
associated ALUS make the determination based , at least in
part , on one or more neural networks that include a dis
criminative portion (an encoder portion and two small
headers) that encodes information for use by the discrimi
native portion . During training , the one or more neural

US 2020/0302176 A1 Sep. 24 , 2020
2

tional auxiliary data , while still taking advantage of intra
dataset pose variations and other diversities beyond pose .
[0022] In embodiments , the generative module generates
multiple images by retaining appearance codes and combin
ing or varying structure codes . The generative module may ,
for example , generate images in which clothing or shoes
worn by a person are retained in the generated image , but
pose , viewpoint , or background is varied .
[0023] In embodiments , primary attribute learning is intro
duced via a dynamic soft labeling strategy . Other embodi
ments keep one structure code and combine with different
appearance codes to produce images which maintain the
pose , background , and identity - related fine detail but alter
appearance - related cues such as clothes or shoes . This may
permit more finely grained mining of attributes in order to
enable learning of more subtle identity - related properties .
[0024] FIG . 1 illustrates an example re - identification sys
tem , in accordance with an embodiment . The example 100
of FIG . 1 may be implemented , in an embodiment , on one
or more computers which include one or more processors to
load into memory the parameters of a trained neural network
110 , and to apply the neural network 110 to solve a problem
106 .
[0025] In embodiments , the images “ A ” and “ B ” 102 , 104
are obtained by respective different video sources , such as a
pair of cameras . Alternatively , the images “ A ” and “ B ” are
obtained by the same camera . The images may be obtained
at different times . The images “ A ” and “ B ” 102 , 104 can be
recorded and / or provided to the neural network 110 as image
data , in any of a wide variety of formats for image or video
representation , such as “ JPEG , ” “ GIF , ” “ MP4 , " “ AVI , ” and
so forth .
[0026] In an embodiment , images “ A ” 102 and “ B ” 104
are provided to the neural network 110. The neural network
110 can comprise various parameters and coefficients
derived through a training process to enable a computing
device to solve a problem 106. The problem 106 may be
described , in general , as determining whether a feature
present in image “ A ” 102 is also present in image “ B ” 104 .
In the example 100 of FIG . 1 , the neural network 110
determines whether a person depicted in image “ A ” 102 is
the same person depicted in image “ B ” 104. Although
depicted as a “ YES ” or “ NO ” decision in FIG . 1 , the
problem 106 may also be expressed as determining a prob
ability or likelihood that the depicted person is the same
individual . Note that the images “ A ” and “ B ” 102 , 104 may
exhibit a variety of differences which may make this “ re
identification ” task challenging . The differences may
include , but are not limited to , camera angle , lighting ,
resolution , colorization , and so forth . The differences may
also include , but are not limited to , posture , position , pose ,
and so forth . The problem 106 may be referred to herein as
re - identification , or detecting corr orrespondence between
image data . The re - identification task may be performed on
a variety of features that are amendable to encodings of
appearance and structure similar to those described herein .
[0027] In embodiments , the neural network 110 comprises
an encoding portion 116 and a discriminative portion 114 .
The training of the neural network 110 , which is described
in more detail below , involves a generative portion whose
encoding portion 116 is shared with the discriminative
portion 114 during training . When deployed , the neural
network 110 retains at least some of the encoding portion
116 .

[0028] FIG . 2 illustrates an example of training a neural
network for re - identification , in accordance with an embodi
ment . In the example 200 of FIG . 2 , a neural network is
trained to perform a re - identification task . For example , the
neural network 110 of FIG . 1 may be trained , in an embodi
ment , in accordance with the process described here with
respect to FIG . 2. Further details of the training are described
in more detail with respect to FIGS . 3-6 .
[0029] In an embodiment , input data 202 comprises one or
more images . Input image data may be sized to a 258x128
grid , although this is not required , and various embodiments
may employ other sizes in addition to or instead of 258x128 .
[0030] In an embodiments of the training process , a neural
network 210 comprises a generative portion 212 and a
discriminative portion 214 that are jointly trained with an
appearance encoder 216 that serves as a backbone for
re - identification learning . The generative portion comprises
the appearance encoder 216 and a structure encoder 218 .
The appearance encoder encodes appearance - related attri
butes of the input data 202. The appearance - related attri
butes may include , but are not necessarily limited to , cloth
ing , footwear , styles , and textures . The structure encoder 216
encodes attributes of the input data 202 that relate to position
and shape , which may include , but are not necessarily
limited to , body size , pose , hair , carried objects , background ,
viewpoint , etc.
[0031] In an embodiment , the generative portion 212 of
the network generates variations of the input data 202 by
switching appearance or structure codes generated by the
appearance and structure encoders 216 , 218. The generative
portion 212 may generate variations of the input images , for
example by performing self - identity and cross - identity gen
eration , to generate a wide variety of training samples in the
generated data 204 .
[0032] In an embodiment , the appearance encoder 216 is
shared between the generative and the discriminative por
tions 212 , 214 of the neural network 210 during training .
During training , the discriminative portion 214 makes use of
the generated data by manipulating the appearance and
structure codes . Embodiments treat the generated images in
two different perspectives through primary attribute learning
and fine - grained attribute mining , where the former focuses
on structure - invariant appearance cues (which may , for
example , include clothing , footwear , or stylistic choices , as
non - limiting examples) , and the latter attends to appearance
invariant structural properties , such as position and geom
etry . Examples of positional and geometric properties may
include , but are not necessarily limited to , body size , pose ,
hairstyle , objects carried , background , viewpoint , etc.
[0033] In an embodiment , a machine readable medium has
stored thereon instructions which , in response to being
performed by one or more processors , cause the processors
to train one or more neural networks . The training may be
performed in accordance with the procedures described
herein with respect to FIGS . 3-6 . The neural networks during
training include a generative portion and a discriminative
portion , which are trained by execution of the instructions to
determine whether one or more features which appear in a
first image also appear in a second image , using encoded
information about the appearance and shape of the one or
more features .
[0034] In an embodiment , the neural network trained by
performing the instructions comprises an encoder which is
shared between the generative and discriminative portions of

US 2020/0302176 A1 Sep. 24 , 2020
3

can be viewed , in embodiments , as an auto - encoder , in
which X , X , where X , is a generated image .
[0041] In an embodiment , a structure code S ; 340 main
tains more spatial resolution than an appearance code a , 342 ,
to preserve structural or geometric properties . However , this
may result in a trivial solution for G to only use S ; but ignore
a ; in image generation since decoders tend to rely on the
attribute with more spatial information . In an embodiment ,
input images of Es are converted into gray - scale to drive G
to leverage both a and Sjo In embodiments , two objectives
are enforced for the generative module : (1) self - identity
generation to regularize the generator and (2) cross - identity
generation to make generated images controllable and match
real data distribution .
[0042] In an embodiment , as illustrated in FIG . 4 , given an
image x ; 402 , the generative module learns how to recon
struct x ; from itself , to obtain x . 406. This simple self
reconstruction task serves a regularization role in the gen
eration . Embodiments may reconstruct the image using a
pixel - wise loss :

Lreconing ! = E [|| xz - G (a ;, S ;) || 1]

[0043] In an embodiment , it may be assumed that the
appearance codes of the same person in different images are
close . Another reconstruction task may be performed
between any two images of the same identity . The generator
should be able to reconstruct x ; 402 through an image x , 404
with the same identity y ; Yz , to obtain x 408 :

Lreconimg2 = E [| lx ; -G (Q , S ;) || .]

the network during training . The encoder encodes the infor
mation about the appearance and shape of the one or more
features . The encoder may , in an embodiment , be an appear
ance encoder . Alternatively , or in addition , the encoder may
be a structure encoder . The generative portion uses the
encoded information output by the encoder during training ,
such that the discriminative portion of the network is better
able to identify fine - grained attributes indicative of identity .
[0035] In an embodiment , a system for training the neural
network 210 comprises one or more computers , including
one or more processors . The processors train the network ,
using the procedures described herein with respect to FIGS .
3-6 , to determine whether one or more features appear in
both a first image and a second image . The neural network
210 is trained to make the determination based , at least in
part , on a generative portion 212 and a discriminative
portion 214 , and an encoding portion 218 used by both the
generative portion and discriminative portion .
(0036] In an embodiment , the generative and discrimina
tive portions are jointly trained , by using a joint loss function
which includes weighted sums to account for generative and
discriminative loss .
[0037] In an embodiment , two encoders are used by the
generative portion 212. An appearance encode encodes
attributes associated with appearance . These attributes may
include , but are not necessarily limited to , clothing , color ,
and texture . The appearance code , in embodiments , is shared
between the generative 212 and discriminative 214 portions
of the network 210. The second encoder used by the
generative portion 212 is a structure encoder , which encodes
structural and other attributes , such as size , pose , back
ground , viewpoint , etc.
[0038] In an embodiment , the generative portion 212
generates images , where the generated images include varia
tions in the appearance of the feature being re - identified . For
example , in the case of person re - identification , the genera
tive portion may generate a plurality of images in which the
same individual is depicted wearing different clothing . Simi
larly , the generative portion may generate a plurality of
images in which the same clothing is worn by different
individuals . In embodiments , this is accomplished by train
ing the generative portion to perform self - identity generation
and cross - identity generation .
[0039] FIG . 3 illustrates training a neural network for
performing re - identification , in accordance with an embodi
ment . The neural network 300 depicted in FIG . 3 employs
tight coupling between a generative module for image
generation and a discriminative portion for re - identification
learning . The neural network 300 uses two image mappings ,
self - identity generation and cross - identity generation , which
are fed into the re - identification learning process . The dis
criminative portions use primary attribute learning and fine
grained attribute learning . These are co - learned with the
generative portion to better leverage generated data .
[0040] In the example 300 of FIG . 3 , real or input images
are indicated as X? , Xj , and X , 302. Given two real images
Xi and Xj , the generative portions of the neural network 300
generates a new image by swapping the appearance or
structure codes of the two images . The generative portion
includes an appearance encoder Eq : X ; > a ; 312 , a structure
encoder Ex : * ; - > s ; 310 , a decoder G : (a ;, S ;) ?x ; ' , and a
discriminator D 330 to distinguish between generated
images and real ones . In the case of i = j , the generator 320

[0044] In an embodiment , this same - identity but cross
image reconstruction loss encourages the appearance
encoder to pull appearance codes of the same identity
together so that intra - class attribute variations are reduced .
To force the appearance codes of different images to stay
apart , embodiments may use identification loss to distin
guish different identities :

Lid = E [-log (p (y ; \ x ;))]

[0045] Here , p (y ; \ x ,) is the predicted probability that x ,
belongs to a ground truth class y , based on its appearance
code .

[0046] In an embodiment , self - identity generation works
with image reconstruction using the same identity , and
cross - identity generation focuses on image generation with
different identities . In cross - identity generation , there is no
pixel - level ground - truth supervision . Instead , embodiments
use latent code reconstruction based on appearance and
structure codes to control image generation . As shown in
FIG . 5 , given two images x , 502 and x ; 504 of different
identities y , y ;, the generated image x = (az , s ;) is used to
retain the information of appearance and structure codes
540 , specifically appearance code a ; from x ; and structure
code S ; from X ;, respectively . These two latent codes may
then be reconstructed after encoding the generated image :

codel = E [|| a , -E , (Gla ; s ;) || 1] Lrecon
Lreconcode2 = E [|| s ; -E , (G (a ;, S ;) | .]

[0047] In an embodiment , similar to self - identity genera
tion , identification loss is enforced on the generated image
based on its appearance code . , to keep identity consistency :

Lid = E [-log (p (y lx ; '))]

US 2020/0302176 A1 Sep. 24 , 2020
4

img + recon code + Lid +

img1 + L recon img2 recon

code

[0048] Here , p (y ; 1x) is the predicted probability of x , 506
belonging to the ground - truth class y , of x ,, the image that
provides appearance code in generating x ,.
[0049] In an embodiment , adversarial loss is employed to
match the distribution of generated images to the real data
distribution :

Lady = E [log D (x ;) + log (1 - D (G (a ; s ;)))]
[0050] In an embodiment , the generation mechanism is
used to enable the generative module to learn appearance
and ucture codes with explicit and complementary mean
ings and generate high - quality pedestran images based on
the latent codes . This largely eases the generation complex
ity . This may help to avoid having to learn image generation
either from random noise or managing the pose factor only ,
which may make it hard to manipulate the outputs and may
introduce artifacts . Moreover , due to using the latent codes ,
the variants in images generated by embodiments disclosed
herein may be explainable and constrained in the existing
contents of real images , which also promotes generation
realism . In cases and embodiments , given O (N) training
images , O (NxN) different images are generated by sampling
various image pairs , resulting in a much large online gen
erated training sample pool .
[0051] In an embodiment , a discriminative module is
embedded in the generative module by sharing the appear
ance encoder as a backbone for re - identification learning . In
accordance with the images generated by switching either
appearance or structure codes , primary attribute learning and
fine - grained attribute mining are employed to better take
advantage of the online generated images . Since the two
tasks focus on different aspects of generated images ,
embodiments may branchut two headers of the
appearance encoder for the two types of attribute learning .
[0052] FIG . 6 illustrates the two complementary attri
butes , frm 1620 and 622 , eared in the discriminative
portion of the network , in accordance with an embodiment .
053an embodiment , teacher - student typesupervi

sion with dynamic soft labeling is employed . Embodiments
may use a teacher model to dynamically assign a soft label
to x ; or x 604 , depending on their compound appearance
and structure from x ; and x ; 602. The teacher model is a
baseline convolutional neural network trained with identi
fication on the original training set train the dis
criminative module for primary attribute arning , embodi ,
ments may minimize the Kullback - Leibler divergence
between the probability distribution p (x ;) predicted by the
discriminative module and the probability distribution q (x ; ")
predicted by the teacher , as in the following , where K is the
number of identities :

codel e - Lrecon code2
recon

appearance encoder 610 as the same class as the real image
providing the structure code . To train the discriminative
module for fine - grained attribute mining , embodiments
enforce identification loss on this particular categorizing :

Line = E [-log (ly ; x ; '))]
[0055] In an embodiment , this loss function imposes addi
tional identity supervision to the discriminative module in a
multitasking manner . Moreover , rather than using manually
labeled pedestrian attributes , this approach performs fine
grained attribute mining by leveraging the synthetic images .
There may also be no need to explicitly search for the hard
training samples that usually share fine - grained details , since
the discriminative module learns to pay attention to subtle identity properties through this fine - grained attribute min
ing .
[0056] In an embodiment , the appearance and structure
encoders , decoder , and discriminator are jointly trained to
optimize the total objective . The objective may be expressed
as a weighted sum of the following losses :

Ltotal (Em E , G , D) = himg recon
Dichid + Lady + hxprimL prim + hfinet fine

Here , Lreconimg = L is the image recon
struction loss in self - identity generation , and
L recon + L , is the latent code recon
struction loss in cross - identity generation . The weights Wimg
Nido àprim , and Nefine are weights to control the importance of
the various loss - related terms .
[0057] In an embodiment , a large weight Aimg is used for
the image reconstruction loss . Since the quality of cross - id
generated images is not great at the beginning , the identi
fication loss Lid may make the training unstable , so a small
weight may be set for did . Embodiments may fix the two
weights during the training process . In embodiments , the
discriminative attribute learning losses Lprim are not
involved until the generation quality is stable . In an embodi
ment , in the cross - identity generation as shown in FIG . 3 , Eq ,
Es , and G as well as E? , Es , and D are trained alternatively .
[0058] In an embodiment , one training phase is used for
joint image generation and re - identification learning . This is
in contrast with other techniques , which require two training
phases to sequentially train a generative model and a re
identification model .
[0059] In an embodiment , a method for training a neural
network to detect correspondence between images com
prises configuring a first portion of a neural network to
generate image data , and a second portion of the neural
network to detect the correspondence between the images .
The second portion detects the correspondence based , at
least in part , on the generated image data . The first portion
may comprise a generative portion , and the second portion
may comprise a discriminative portion . The two portions are
jointly trained , using a weighted loss function that includes
components for both the generative and discriminative por
tions . The joint training may occur in the same pass , so that
both the generative and discriminative portions are trained ,
at the same time , to optimize for the re - identification task .
[0060] FIG . 7 illustrates a parallel processing unit (“ PPU ”)
700 , in accordance with one embodiment . In an embodi
ment , the PPU 700 is configured with machine - readable
code that , if executed by the PPU , causes the PPU to perform
some or all of processes and techniques described through
out this disclosure . For example , the PPU 700 may be
configured with machine - readable code that , if executed by

and L fine

K

Lprim ? p (k | x ' ;) qk | x) log q (k | x ' ;)
k = 1

[0054] In an embodiment , simulated changes of attributes
of clothing , for the same individual , are enabled by the
disclosed generative portion of the network . When training
on images organized in this way , the discriminative module
is forced to learn fine - grained identity attributes , such as
hair , body size , and so on , that are independent to clothing .
Embodiments may view the images generated by one struc
ture code combining with different appearance codes by the

US 2020/0302176 A1 Sep. 24 , 2020
5

the PPU , causes the PPU to train a neural network in
accordance with the disclosed embodiments , or to solve a
re - identification problem using a neural network trained in
accordance with the disclosed embodiments .
[0061] In an embodiment , the PPU 700 is a multi - threaded
processor that is implemented on one or more integrated
circuit devices and that utilizes multithreading as a latency
hiding technique designed to process computer - readable
instructions (also referred to as machine - readable instruc
tions or simply instructions) on multiple threads in parallel .
In an embodiment , a thread refers to a thread of execution
and is an instantiation of a set of instructions configured to
be executed by the PPU 700. In an embodiment , the PPU
700 is a graphics processing unit (“ GPU ”) configured to
implement a graphics rendering pipeline for processing
three - dimensional (“ 3D ") graphics data in order to generate
two - dimensional (“ 2D ”) image data for display on a display
device such as a liquid crystal display (LCD) device . In an
embodiment , the PPU 700 is utilized to perform computa
tions such as linear algebra operations and machine - learning
operations . FIG . 7 illustrates an example parallel processor
for illustrative purposes only and should be construed as a
non - limiting example of processor architectures contem
plated within the scope of this disclosure and that any
suitable processor may be employed to supplement and / or
substitute for the same .
[0062] In an embodiment , one or more PPUs are config
ured to accelerate High Performance Computing (“ HPC ”) ,
data center , and machine learning applications . In an
embodiment , the PPU 700 is configured to accelerate deep
learning systems and applications including the following
non - limiting examples : autonomous vehicle platforms , deep
learning , high - accuracy speech , image , text recognition sys
tems , intelligent video analytics , molecular simulations ,
drug discovery , disease diagnosis , weather forecasting , big
data analytics , astronomy , molecular dynamics simulation ,
financial modeling , robotics , factory automation , real - time
language translation , online search optimizations , and per
sonalized user recommendations , and more .
[0063] In an embodiment , the PPU 700 includes an Input /
Output (“ I / O ”) unit 706 , a front - end unit 710 , a scheduler
unit 712 , a work distribution unit 714 , a hub 716 , a crossbar
(“ Xbar ”) 720 , one or more general processing clusters
(“ GPCs ”) 718 , and one or more partition units 722. In an
embodiment , the PPU 700 is connected to a host processor
or other PPUs 700 via one or more high - speed GPU inter
connects 708. In an embodiment , the PPU 700 is connected
to a host processor or other peripheral devices via an
interconnect or system bus 702. In an embodiment , the PPU
700 is connected to a local memory comprising one or more
memory devices 704. In an embodiment , the local memory
comprises one or more dynamic random access memory
(“ DRAM ”) devices . In an embodiment , the one or more
DRAM devices are configured and / or configurable as high
bandwidth memory (“ HBM ”) subsystems , with multiple
DRAM dies stacked within each device .
[0064] The high - speed GPU interconnect 708 may refer to
a wire - based multi - lane communications link that is used by
systems to scale and include one or more PPUS 700 com
bined with one or more CPUs , supports cache coherence
between the PPUs 700 and CPUs , and CPU mastering . In an
embodiment , data and / or commands are transmitted by the
high - speed GPU interconnect 708 through the hub 716
to / from other units of the PPU 700 such as one or more copy

engines , video encoders , video decoders , power manage
ment units , and other components which may not be explic
itly illustrated in FIG . 7 .
[0065] In an embodiment , the I / O unit 706 is configured to
transmit and receive communications (e.g. , commands ,
data) from a host processor (not illustrated in FIG . 7) over
the system bus 702. In an embodiment , the I / O unit 706
communicates with the host processor directly via the sys
tem bus 702 or through one or more intermediate devices
such as a memory bridge . In an embodiment , the I / O unit
706 may communicate with one or more other processors ,
such as one or more of the PPUs 700 via the system bus 702 .
In an embodiment , the I / O unit 705 implements a Peripheral
Component Interconnect Express (“ PCIe ”) interface for
communications over a PCIe bus . In an embodiment , the I / O
unit 706 implements interfaces for communicating with
external devices .
[0066] In an embodiment , the I / O unit 706 decodes pack
ets received via the system bus 702. In an embodiment , at
least some packets represent commands configured to cause
the PPU 700 to perform various operations . In an embodi
ment , the I / O unit 706 transmits the decoded commands to
various other units of the PPU 700 as specified by the
commands . In an embodiment , commands are transmitted to
the front - end unit 710 and / or transmitted to the hub 716 or
other units of the PPU 700 such as one or more copy
engines , a video encoder , a video decoder , a power man
agement unit , etc. (not explicitly illustrated in FIG . 7) . In an
embodiment , the I / O unit 706 is configured to route com
munications between and among the various logical units of
the PPU 700 .
[0067] In an embodiment , a program executed by the host
processor encodes a command stream in a buffer that pro
des workloads thPfor processing an
embodiment workload comprises instructions and data to
be processed by those instructions . In an embodiment , the
buffer a region in memory that is accessible.g . ,
read / write) by both the host processor and the PPU 700 — the
host interface unit may be configured to access the buffer in
a system memory connected to the system bus 702 via
memory requests transmitted over the system bus 702 by the
I / O unit 706. In an embodiment , the host processor writes
the command stream to the buffer and then transmits a
pointer to the start of the command stream to the PPU 700
such that the front - end unit 710 receives pointers to one or
more command streams and manages the one or more
streams , reading commands from the streams and forward
ing commands to the various units of the PPU 700 .
[0068] In an embodiment , the front - end unit 710 is
coupled to a scheduler unit 712 that configures the various
GPCs 718 to process tasks defined by the one or more
streams . In an embodiment , the scheduler unit 712 is con
figured to track state information related to the various tasks
managed by the scheduler unit 712 where the state infor
mation may indicate which GPC 718 a task is assigned to ,
whether the task activer inactive , à priority level
associated with the task , and so forth . In an embodiment , the
scheduleruntmanages the execution of plurality of
tasks on the one or more GPCs 718 .
[0069] In an embodiment , the scheduler unit 712 is
coupled to a work distribution unit 714 that is configured to
dispatch tasks for execution on the GPCs 718. In an embodi
ment , the work distribution unit 714 tracks a number of
scheduledaksreceived from the schedulerun12andthe

US 2020/0302176 A1 Sep. 24 , 2020
6

work distribution unit 714 manages a pending task pool and
an active task pool for each of the GPCs 718. In an
embodiment , the pending task pool comprises a number of
slots (e.g. , 32 slots) that contain tasks assigned to be
processed by a particular GPC 718 ; the active task pool may
comprise a number of slots (e.g. , 4 slots) for tasks that are
actively being processed by the GPCs 718 such that as a
GPC 718 completes the execution of a task , that task is
evicted from the active task pool for the GPC 718 and one
of the other tasks from the pending task pool is selected and
scheduled for execution on the GPC 718. In an embodiment ,
if an active task is idle on the GPC 718 , such as while
waiting for a data dependency to be resolved , then the active
task is evicted from the GPC 718 and returned to the pending
task pool while another task in the pending task pool is
selected and scheduled for execution on the GPC 718 .
[0070] In an embodiment , the work distribution unit 714
communicates with the one or more GPCs 718 via XBar
720. In an embodiment , the XBar 720 is an interconnect
network that couples many of the units of the PPU 700 to
other units of the PPU 700 and can be configured to couple
the work distribution unit 714 to a particular GPC 718 .
Although not shown explicitly , one or more other units of
the PPU 700 may also be connected to the XBar 720 via the
hub 716 .
[0071] The tasks are managed by the scheduler unit 712
and dispatched to a GPC 718 by the work distribution unit
714. The GPC 718 is configured to process the task and
generate results . The results may be consumed by other tasks
within the GPC 718 , routed to a different GPC 718 via the
XBar 720 , or stored in the memory 704. The results can be
written to the memory 704 via the partition units 722 , which
implement a memory interface for reading and writing data
to / from the memory 704. The results can be transmitted to
another PPU 700 or CPU via the high - speed GPU intercon
nect 708. In an embodiment , the PPU 700 includes a number
U of partition units 722 that is equal to the number of
separate and distinct memory devices 704 coupled to the
PPU 700. A partition unit 722 will be described in more
detail below in conjunction with FIG . 9 .
[0072] In an embodiment , a host processor executes a
driver kernel that implements an application programming
interface (“ API ”) that enables one or more applications
executing on the host processor to schedule operations for
execution on the PPU 700. In an embodiment , multiple
compute applications are simultaneously executed by the
PPU 700 and the PPU 700 provides isolation , quality of
service (“ QoS ”) , and independent address spaces for the
multiple compute applications . In an embodiment , an appli
cation generates instructio (e.g. , in the form of API calls)
that cause the driver kernel to generate one or more tasks for
execution by the PPU 700 and the driver kernel outputs tasks
to one or more streams being processed by the PPU 700. In
an embodiment , each task comprises one or more groups
related threads , which may be referred to as a warp . In an
embodiment , a warp comprises a plurality of related threads
(e.g. , 32 threads) that can be executed in parallel . In an
embodiment , cooperating threads can refer to a plurality of
threads including instructions to perform the task and that
exchange data through shared memory .
[0073] FIG . 8 illustrates a GPC 800 such as the GPC
illustrated of the PPU 700 of FIG . 7 , in accordance with one
embodiment . In an embodiment , each GPC 800 includes a
number of hardware units for processing tasks and each

GPC 800 includes a pipeline manager 802 , a pre - raster
operations unit (“ PROP ”) 804 , a raster engine 808 , a work
distribution crossbar (“ WDX ”) 816 , a memory management
unit (“ MMU ”) 818 , one or more Data Processing Clusters
(“ DPCs ”) 806 , and any suitable combination of parts . It will
be appreciated that the GPC 800 of FIG . 8 may include other
hardware units in lieu of or in addition to the units shown in
FIG . 8 .
[0074] In an embodiment , the operation of the GPC 800 is
controlled by the pipeline manager 802. The pipeline man
ager 802 manages the configuration of the one or more DPCs
806 for processing tasks allocated to the GPC 800. In an
embodiment , the pipeline manager 802 configures at least
one of the one or more DPCs 806 to implement at least a
portion of a graphics rendering pipeline . In an embodiment ,
a DPC 806 is configured to execute a vertex shader program
on the programmable streaming multiprocessor (“ SM ”) 814 .
The pipeline manager 802 is configured to route packets
received from a work distribution to the appropriate logical
units within the GPC 800 , in an embodiment , and some
packets may be routed to fixed function hardware units in the
PROP 804 and / or raster engine 808 while other packets may
be routed to the DPCs 806 for processing by the primitive
engine 812 or the SM 814. In an embodiment , the pipeline
manager 802 configures at least one of the one or more
DPCs 806 to implement a neural network model and / or a
computing pipeline .
[0075] The PROP unit 804 is configured , in an embodi
ment , to route data generated by the raster engine 808 and
the DPCs 806 to a Raster Operations (“ ROP ”) unit in the
memory partition unit , described in more detail above . In an
embodiment , the PROP unit 804 is configured to perform
optimizations for color blending , organize pixel data , per
form address translations , and more . The raster engine 808
includes a number of fixed function hardware units config
ured to perform various raster operations , in an embodiment ,
and the raster engine 808 includes a setup engine , a coarse
raster engine , a culling engine , a clipping engine , a fine
raster engine , a tile coalescing engine , and any suitable
combination thereof . The setup engine , in an embodiment ,
receives transformed vertices and generates plane equations
associated with the geometric primitive defined by the
vertices ; the plane equations are transmitted to the coarse
raster engine to generate coverage information (e.g. , an x , y
coverage mask for a tile) for the primitive ; the output of the
coarse raster engine is transmitted to the culling engine
where fragments associated with the primitive that fail a
z - test are culled , and transmitted to a clipping engine where
fragments lying outside a viewing frustum are clipped . In an
embodiment , the fragments that survive clipping and culling
are passed to the fine raster engine to generate attributes for
the pixel fragments based on the plane equations generated
by the setup engine . In an embodiment , the output of the
raster engine 808 comprises fragments to be processed by
any suitable entity such as by a fragment shader imple
mented within a DPC 806 .
[0076] In an embodiment , each DPC 806 included in the
GPC 800 comprises an M - Pipe Controller (“ MPC ”) 810 ; a
primitive engine 812 ; one or more SMs 814 ; and any
suitable combination thereof . In an embodiment , the MPC
810 controls the operation of the DPC 806 , routing packets
received from the pipeline manager 802 to the appropriate
units in the DPC 806. In an embodiment , packets associated
with a vertex are routed to the primitive engine 812 , which

of

US 2020/0302176 A1 Sep. 24 , 2020
7

is configured to fetch vertex attributes associated with the
vertex from memory ; in contrast , packets associated with a
shader program may be transmitted to the SM 814 .
[0077] In an embodiment , the SM 814 comprises a pro
grammable streaming processor that is configured to process
tasks represented by a number of threads . In an embodiment ,
the SM 814 is multi - threaded and configured to execute a
plurality of threads (e.g. , 32 threads) from a particular group
of threads concurrently and implements a SIMD (Single
Instruction , Multiple - Data) architecture where each thread
in a group of threads (e.g. , a warp) is configured to process
a different set of data based on the same set of instructions .
In an embodiment , all threads in the group of threads
execute the same instructions . In an embodiment , the SM
814 implements a SIMT (Single - Instruction , Multiple
Thread) architecture wherein each thread in a group of
threads is configured to process a different set of data based
on the same set of instructions , but where individual threads
in the group of threads are allowed to diverge during
execution . In an embodiment , a program counter , call stack ,
and execution state is maintained for each warp , enabling
concurrency between warps and serial execution within
warps when threads within the warp diverge . In another
embodiment , a program counter , call stack , and execution
state is maintained for each individual thread , enabling equal
concurrency between all threads , within and between warps .
In an embodiment , execution state is maintained for each
individual thread and threads executing the same instruc
tions may be converged and executed in parallel for better
efficiency . In an embodiment , the SM 814 is described in
more detail below .
[0078] In an embodiment , the MMU 818 provides an
interface between the GPC 800 and the memory partition
unit and the MMU 818 provides translation of virtual
addresses into physical addresses , memory protection , and
arbitration of memory requests . In an embodiment , the
MMU 818 provides one or more translation lookaside
buffers (“ TLBs ”) for performing translation of virtual
addresses into physical addresses in memory .
[0079] FIG . 9 illustrates a memory partition unit of a PPU ,
in accordance with one embodiment . In an embodiment , the
memory partition unit 900 includes a Raster Operations
(“ ROP ”) unit 902 ; a level two (“ L2 ”) cache 904 ; a memory
interface 906 ; and any suitable combination thereof . The
memory interface 906 is coupled to the memory . Memory
interface 906 may implement 32 , 64 , 128 , 1024 - bit data
buses , or the like , for high - speed data transfer . In an embodi
ment , the PPU incorporates U memory interfaces 906 , one
memory interface 906 per pair of partition units 900 , where
each pair of partition units 900 is connected to a correspond
ing memory device . For example , PPU may be connected to
up to Y memory devices , such as high bandwidth memory
stacks or graphics double - data - rate , version 5 , synchronous
dynamic random access memory (" GDDR5 SDRAM ”) .
[0080] In an embodiment , the memory interface 906
implements an HBM2 memory interface and Y equals half
U. In an embodiment , the HBM2 memory stacks are located
on the same physical package as the PPU , providing sub
stantial power and area savings compared with conventional
GDDR5 SDRAM systems . In an embodiment , each HBM2
stack includes four memory dies and Y equals 4 , with HBM2
stack including two 128 - bit channels per die for a total of 8
channels and a data bus width of 1024 bits .

[0081] In an embodiment , the memory supports Single
Error Correcting Double - Error Detecting (" SECDED ")
Error Correction Code (“ ECC ”) to protect data . ECC pro
vides higher reliability for compute applications that are
sensitive to data corruption . Reliability is especially impor
tant in large - scale cluster computing environments where
PPUs process very large datasets and / or run applications for
extended periods .
[0082] In an embodiment , the PPU implements a multi
level memory hierarchy . In an embodiment , the memory
partition unit 900 supports a unified memory to provide a
single unified virtual address space for CPU and PPU
memory , enabling data sharing between virtual memory
systems . In an embodiment the frequency of accesses by a
PPU to memory located on other processors is trace to
ensure that memory pages are moved to the physical
memory of the PPU that is accessing the pages more
frequently . In an embodiment , the high - speed GPU inter
connect 708 supports address translation services allowing
the PPU to directly access a CPU's page tables and provid
ing full access to CPU memory by the PPU .
[0083] In an embodiment , copy engines transfer data
between multiple PPUs or between PPUs and CPUs . In an
embodiment , the copy engines can generate page faults for
addresses that are not mapped into the page tables and the
memory partition unit 900 then services the page faults ,
mapping the addresses into the page table , after which the
copy engine performs the transfer . In an embodiment ,
memory is pinned (i.e. , non - pageable) for multiple copy
engine operations between multiple processors , substan
tially reducing the available memory . In an embodiment ,
with hardware page faulting , addresses can be passed to the
copy engines without regard as to whether the memory
pages are resident , and the copy process is transparent .
[0084] Data from the memory of FIG . 7 or other system
memory is fetched by the memory partition unit 900 and
stored in the L2 cache 904 , which is located on - chip and is
shared between the various GPCs , in accordance with one
embodiment . Each memory partition unit 900 , in an embodi
ment , includes at least a portion of the L2 cache 860
associated with a corresponding memory device . In an
embodiment , lower level caches are implemented in various
units within the GPCs . In an embodiment , each of the SMS
940 may implement a level one (“ L1 ”) cache wherein the Li
cache is private memory that is dedicated to a particular SM
940 and data from the L2 cache 904 is fetched and stored in
each of the L1 caches for processing in the functional units
of the SMS 940. In an embodiment , the L2 cache 904 is
coupled to the memory interface 906 and the XBar 720 .
[0085] The ROP unit 902 performs graphics raster opera
tions related to pixel color , such as color compression , pixel
blending , and more , in an embodiment . The ROP unit 902 ,
in an embodiment , implements depth testing in conjunction
with the raster engine 925 , receiving a depth for a sample
location associated with a pixel fragment from the culling
engine of the raster engine 925. In an embodiment , the depth
is tested against a corresponding depth in a depth buffer for
a sample location associated with the fragment . In an
embodiment , if the fragment passes the depth test for the
sample location , then the ROP unit 902 updates the depth
buffer and transmits a result of the depth test to the raster
engine 925. It will be appreciated that the number of
partition units 900 may be different than the number of
GPCs and , therefore , each ROP unit 902 can , in an embodi

US 2020/0302176 A1 Sep. 24 , 2020
8

ment , be coupled to each of the GPCs . In an embodiment ,
the ROP unit 902 tracks packets received from the different
GPCs and determines which that a result generated by the
ROP unit 902 is routed to through the Xbar .
[0086] FIG . 10 illustrates a streaming multi - processor
such as the streaming multi - processor of FIG . 8 , in accor
dance with one embodiment . In an embodiment , the SM
1000 includes : an instruction cache 1002 ; one or more
scheduler units 1004 ; a register file 1008 ; one or more
processing cores 1010 ; one or more special function units
(“ SFUs ”) 1012 ; one or more load / store units (“ LSUs ”) 1014 ;
an interconnect network 1016 ; a shared memory / L1 cache
1018 ; and any suitable combination thereof . In an embodi
ment , the work distribution unit dispatches tasks for execu
tion on the GPCs of the PPU and each task is allocated to a
particular DPC within a GPC and , if the task is associated
with a shader program , the task is allocated to an SM 1000 .
In an embodiment , the scheduler unit 1004 receives the tasks
from the work distribution unit and manages instruction
scheduling for one or more thread blocks assigned to the SM
1000. In an embodiment , the scheduler unit 1004 schedules
thread blocks for execution as warps of parallel threads ,
wherein each thread block is allocated at least one warp . In
an embodiment , each warp executes threads . In an embodi
ment , the scheduler unit 1004 manages a plurality of dif
ferent thread blocks , allocating the warps to the different
thread blocks and then dispatching instructions from the
plurality of different cooperative groups to the various
functional units (e.g. , cores 1010 , SFUS 1012 , and LSUS
1014) during each clock cycle .
[0087] Cooperative Groups may refer to a programming
model for organizing groups of communicating threads that
allows developers to express the granularity at which threads
are communicating , enabling the expression of richer , more
efficient parallel decompositions . In an embodiment , coop
erative launch APIs support synchronization amongst thread
blocks for the execution of parallel algorithms . In an
embodiment , applications of conventional programming
models provide a single , simple construct for synchronizing
cooperating threads : a barrier across all threads of a thread
block (e.g. , the syncthreads ()) function) . However , pro
grammers would often like to define groups of threads at
smaller than thread block granularities and synchronize
within the defined groups to enable greater performance ,
design flexibility , and software reuse in the form of collec
tive group - wide function interfaces . Cooperative Groups
enables programmers to define groups of threads explicitly
at sub - block (i.e. , as small as a single thread) and multi
block granularities , and to perform collective operations
such as synchronization on the threads in a cooperative
group . The programming model supports clean composition
across software boundaries , so that libraries and utility
functions can synchronize safely within their local context
without having to make assumptions about convergence .
Cooperative Groups primitives enable new patterns of coop
erative parallelism , including producer - consumer parallel
ism , opportunistic parallelism , and global synchronization
across an entire grid of thread blocks .
[0088] In an embodiment , a dispatch unit 1006 is config
ured to transmit instructions to one or more of the functional
units and the scheduler unit 1004 includes two dispatch units
1006 that enable two different instructions from the same
warp to be dispatched during each clock cycle . In an

embodiment , each scheduler unit 1004 includes a single
dispatch unit 1006 or additional dispatch units 1006 .
[0089] Each SM 1000 , in an embodiment , includes a
register file 1008 that provides a set of registers for the
functional units of the SM 1000. In an embodiment , the
register file 1008 is divided between each of the functional
units such that each functional unit is allocated a dedicated
portion of the register file 1008. In an embodiment , the
register file 1008 is divided between the different warps
being executed by the SM 1000 and the register file 1008
provides temporary storage for operands connected to the
data paths of the functional units . In an embodiment , each
SM 1000 comprises a plurality of L processing cores 1010 .
In an embodiment , the SM 1000 includes a large number
(e.g. , 128 or more) of distinct processing cores 1010. Each
core 1010 , in an embodiment , includes a fully - pipelined ,
single - precision , double - precision , and / or mixed precision
processing unit that includes a floating point arithmetic logic
unit and an integer arithmetic logic unit . In an embodiment ,
the floating point arithmetic logic units implement the IEEE
754-2008 standard for floating point arithmetic . In an
embodiment , the cores 1010 include 64 single - precision
(32 - bit) floating point cores , 64 integer cores , 32 double
precision (64 - bit) floating point cores , and 8 tensor cores .
[0090] Tensor cores are configured to perform matrix
operations in accordance with an embodiment . In an
embodiment , one or more tensor cores are included in the
cores 1010. In an embodiment , the tensor cores are config
ured to perform deep learning matrix arithmetic , such as
convolution operations for neural network training and
inferencing . In an embodiment , each tensor core operates on
a 4x4 matrix and performs a matrix multiply and accumulate
operation D = AxB + C , where A , B , C , and D are 4x4 matri
ces .

[0091] In an embodiment , the matrix multiply inputs A
and B are 16 - bit floating point matrices and the accumula
tion matrices C and D are 16 - bit floating point or 32 - bit
floating point matrices . In an embodiment , the tensor cores
operate on 16 - bit floating point input data with 32 - bit
floating int accumulation . In an embodiment , the 16 - bit
floating point multiply requires 64 operations and results in
a full precision product that is then accumulated using 32 - bit
floating point addition with the other intermediate products
for a 4x4x4 matrix multiply . Tensor cores are used to
perform much larger two - dimensional or higher dimensional
matrix operations , built up from these smaller elements , in
an embodiment . In an embodiment , an API , such as CUDA
9 C ++ API , exposes specialized matrix load , matrix multiply
and accumulate , and matrix store operations to efficiently
use tensor cores from a CUDA - C ++ program . In an embodi
ment , at the CUDA level , the warp - level interface assumes
16x16 size matrices spanning all 32 threads of the warp .
[0092] In an embodiment , each SM 1000 comprises M
SFUS 1012 that perform special functions (e.g. , attribute
evaluation , reciprocal square root , and the like) . In an
embodiment , the SFUs 1012 include a tree traversal unit
configured to traverse a hierarchical tree data structure . In an
embodiment , the SFUs 1012 include texture unit configured
to perform texture map filtering operations . In an embodi
ment , the texture units are configured to load texture maps
(e.g. , a 2D array of texels) from the memory and sample the
texture maps to produce sampled texture values for use in
shader programs executed by the SM 1000. In an embodi
ment , the texture maps are stored in the shared memory / L1

US 2020/0302176 A1 Sep. 24 , 2020
9

of

cache . The texture units implement texture operations such
as filtering operations using mip - maps (e.g. , texture maps of
varying levels of detail) , in accordance with one embodi
ment . In an embodiment , each SM 1000 includes two texture
units .
[0093] Each SM 1000 comprises N LSUs 854 that imple
ment load and store operations between the shared memory /
L1 cache 1018 and the register file 1008 , in an embodiment .
Each SM 1000 includes an interconnect network 1016 that
connects each of the functional units to the register file 1008
and the LSU 1014 to the register file 1008 , shared memory !
L1 cache 1018 in an embodiment . In an embodiment , the
interconnect network 1016 is a crossbar that can be config
ured to connect any of the functional units to any of the
registers in the register file 1008 and connect the LSUs 1014
to the register file and memory locations in shared memory /
L1 cache 1018 .
[0094] The shared memory / L1 cache 1018 is an array
on - chip memory that allows for data storage and commu
nication between the SM 1000 and the primitive engine and
between threads in the SM 1000 in an embodiment . In an
embodiment , the shared memory / L1 cache 1018 comprises
128 KB of storage capacity and is in the path from the SM
1000 to the partition unit . The shared memory / L1 cache
1018 , in an embodiment , is used to cache reads and writes .
One or more of the shared memory / L1 cache 1018 , L2
cache , and memory are backing stores .
[0095] Combining data cache and shared memory func
tionality into a single memory block provides improved
performance for both types of memory accesses , in an
embodiment . The capacity , in an embodiment , is used or is
usable as a cache by programs that do not use shared
memory , such as if shared memory is configured to use half
of the capacity , texture and load / store operations can use the
remaining capacity . Integration within the shared memory /
L1 cache 1018 enables the shared memory / L1 cache 1018 to
function as a high - throughput conduit for streaming data
while simultaneously providing high - bandwidth and low
latency access to frequently reused data , in accordance with
an embodiment . When configured for general purpose par
allel computation , a simpler configuration can be used
compared with graphics processing . In an embodiment ,
fixed function graphics processing units are bypassed , cre
ating a much simpler programming model . In the general
purpose parallel computation configuration , the work distri
bution unit assigns and distributes blocks of threads directly
to the DPCs , in an embodiment . The threads in a block
execute the same program , using a unique thread ID in the
calculation to ensure each thread generates unique results ,
using the SM 1000 to execute the program and perform
calculations , shared memory / L1 cache 1018 to communicate
between threads , and the LSU 1014 to read and write global
memory through the shared memory / L1 cache 1018 and the
memory partition unit , in accordance with one embodiment .
In an embodiment , when configured for general purpose
parallel computation , the SM 1000 writes commands that
the scheduler unit can use to launch new work on the DPCs .
[0096] In an embodiment , the PPU is included in or
coupled to a desktop computer , a laptop computer , a tablet
computer , servers , supercomputers , a smart - phone (e.g. , a
wireless , hand - held device) , personal digital assistant
(“ PDA ”) , a digital camera , a vehicle , a head mounted
display , a hand - held electronic device , and more . In an
embodiment , the PPU is embodied on a single semiconduc

tor substrate.ambodiment , the PUs included in a
system - on - a - chip (“ SOC ”) along with one or more other
devices such as additional PPUs , the memory , a reduced
instruction set computer (“ RISC ”) CPU , a memory manage
ment unit (“ MMU ”) , a digital - to - analog converter (“ DAC ”) ,
and the like .
[0097] In an embodiment , the PPU may be included on a
graphics card that includes one or more memory devices .
The graphics card may be configured to interface with a
Plesna motherboard of desktop computer yet
another embodiment , the Umaybe an integrate graphics
processing unit (“ IGPU ”) included in the chipset of the
motherboard .
[0098] FIG . 11 illustrates a computer system 1100 in
which the various architecture and / or functionality can be
implemented , in accordance with one embodiment . The
computer system 1100 , in an embodiment , is configured to
implement various processes and methods described
throughout this disclosure .
[0099] In an embodiment , the computer system 1100
comprises at least one central processing unit 1102 that is
connected to a communication bus 1110 implemented using
any suitable protocol , such as PCI (Peripheral Component
Interconnect) , PCI - Express , AGP (Accelerated Graphics
Port) , HyperTransport , or any other bus or point - to - point
communication protocol (s) . In an embodiment , the com
puter system 1100 includes a main memory 1104 and control
logic (e.g. , implemented as hardware , software , or a com
bination thereof) and data are stored in the main memory
1104 which may take the form of random access memory
(“ RAM ”) . In an embodiment , a network interface subsystem
1122 provides an interface to other computing devices and
networks for receiving data from and transmitting data to
other systems from the computer system 1100 .
[0100] The computer system 1100 , in an embodiment ,
includes input devices 108 , the parallel processing system
1112 , and display devices 1106 which can be implemented
using a conventional CRT (cathode ray tube) , LCD (liquid
crystal display) , LED (light emitting diode) , plasma display ,
or other suitable display technologies . In an embodiment ,
user input is received from input devices 1108 such as
keyboard , mouse , touchpad , microphone , and more . In an
embodiment , each of the foregoing modules can be situated
on a single semiconductor platform to form a processing
system .
[0101] In the present description , a single semiconductor
platform may refer to a sole unitary semiconductor - based
integrated circuit or chip . It should be noted that the term
single semiconductor platform may also refer to multi - chip
modules with increased connectivity which simulate on - chip
operation , and make substantial improvements over utilizing
conventional central processing uit (CPandbu
implementation . Of course , the various modules may also be
situated separately or in various combinations of semicon
ductor platforms per the desires of the user .
[0102] In an embodiment , computer programs in the form
of machine - readable executable code or computer control
logic algorithms are stored in the main memory 1104 and / or
secondary storage . Computer programs , if executed by one
or more processors , enable the system 1100 to perform
various functions in accordance with one embodiment . The
memory 1104 , the storage , and / or any other storage are
possible examples of computer - readable media . Secondary
storage may refer to any suitable storage device or system

US 2020/0302176 A1 Sep. 24 , 2020
10

such as a hard disk drive and / or a removable storage drive ,
representing a floppy disk drive , a magnetic tape drive , a
compact disk drive , digital versatile disk (“ DVD ”) drive ,
recording device , universal serial bus (“ USB ”) flash
memory .
[0103] In an embodiment , the architecture and / or func
tionality of the various previous figures are implemented in
the context of the central processor 1102 ; parallel processing
system 1112 ; an integrated circuit capable of at least a
portion of the capabilities of both the central processor 1102 ;
the parallel processing system 1112 ; a chipset (e.g. , a group
of integrated circuits designed to work and sold as a unit for
performing related functions , etc.) ; and any suitable combi
nation of integrated circuit .
[0104] In an embodiment , the architecture and / or func
tionality of the various previous figures is be implemented in
the context of a general computer system , a circuit board
system , a game console system dedicated for entertainment
purposes , an application - specific system , and more .
[0105] In an embodiment , the computer system 1100 may
take the form of a desktop computer , a laptop computer , a
tablet computer , servers , supercomputers , a smart - phone
(e.g. , a wireless , hand - held device) , personal digital assistant
(“ PDA ”) , a digital camera , a vehicle , a head mounted
display , a hand - held electronic device , a mobile phone
device , a television , workstation , game consoles , embedded
system , and / or any other type of logic .
[0106] In an embodiment , a parallel processing system
1112 includes a plurality of PPUs 1114 and associated
memories 1116. In an embodiment , the PPUs are connected
to a host processor or other peripheral devices via an
interconnect 1118 and a switch 1120 or multiplexer . In an
embodiment , the parallel processing system 1112 distributes
computational tasks across the PPUs 1114 which can be
parallelizable — for example , as part of the distribution of
computational tasks across multiple GPU thread blocks . In
an embodiment , memory is shared and accessible (e.g. , for
read and / or write access) across some or all of the PPUS
1114 , although such shared memory may incur performance
penalties relative to the use of local memory and registers
resident to a PPU . In an embodiment , the operation of the
PPUs 1114 is synchronized through the use of a command
such as syncthreads (which requires all threads in a block
(e.g. , executed across multiple PPUs 1114) to reach a certain
point of execution of code before proceeding .
[0107] The specification and drawings are , accordingly , to
be regarded in an illustrative rather than a restrictive sense .
It will , however , be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims .
[0108] Other variations are within the spirit of the present
disclosure . Thus , while the disclosed techniques are suscep
tible to various modifications and alternative constructions ,
certain illustrated embodiments thereof are shown in the
drawings and have been described above in detail . It should
be understood , however , that there is no intention to limit the
invention to the specific form or forms disclosed , but on the
contrary , the intention is to cover all modifications , alterna
tive constructions , and equivalents falling within the spirit
and scope of the invention , as defined in the appended
claims .
[0109] The use of the terms “ a ” and “ an ” and “ the ” and
similar referents in the context of describing the disclosed

embodiments (especially in the context of the following
claims) are to be construed to cover both the singular and the
plural , unless otherwise indicated herein or clearly contra
dicted by context . The terms “ comprising , ” “ having , "
“ including , ” and “ containing ” are to be construed as open
ended terms (i.e. , meaning " including , but not limited to , ")
unless otherwise noted . The term “ connected , ” when
unmodified and referring to physical connections , is to be
construed as partly or wholly contained within , attached to ,
or joined together , even if there is something intervening .
Recitation of ranges of values herein are merely intended to
serve as a shorthand method of referring individually to each
separate value falling within the range , unless otherwise
indicated herein and each separate value is incorporated into
the specification as if it were individually recited herein . The
use of the term “ set ” (e.g. , " a set of items ”) or " subset ”
unless otherwise noted or contradicted by context , is to be
construed as a nonempty collection comprising one or more
members . Further , unless otherwise noted or contradicted by
context , the term “ subset ” of a corresponding set does not
necessarily denote a proper subset of the corresponding set ,
but the subset and the corresponding set may be equal .
[0110] Conjunctive language , such as phrases of the form
“ at least one of A , B , and C , ” or “ at least one of A , B and
C , " unless specifically stated otherwise or otherwise clearly
contradicted by context , is otherwise understood with the
context as used in general to present that an item , term , etc. ,
may be either A or B or C , or any nonempty subset of the set
of A and B and C. For instance , in the illustrative example
of a set having three members , the conjunctive phrases “ at
least one of A , B , and C ” and “ at least one of A , B and Cº
refer to any of the following sets : { A } , { B } , { C } , { A , B } ,
{ A , C } , { B , C } , { A , B , C } . Thus , such conjunctive language
is not generally intended to imply that certain embodiments
require at least one of A , at least one of B and at least one
of C each to be present . In addition , unless otherwise noted
or contradicted by context , the term “ plurality ” indicates a
state of being plural (e.g. , “ a plurality of items ” indicates
multiple items) . The number of items in a plurality is at least
two , but can be more when so indicated either explicitly or
by context . Further , unless stated otherwise or otherwise
clear from context , the phrase “ based on ” means “ based at
least in part on ” and not “ based solely on . ”
[0111] Operations of processes described herein can be
performed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context . In an
embodiment , a process such as those processes described
herein (or variations and / or combinations thereof) is per
formed under the control of one or more computer systems
configured with executable instructions and is implemented
as code (e.g. , executable instructions , one or more computer
programs or one or more applications) executing collec
tively on one or more processors , by hardware or combina
tions thereof . In an embodiment , the code is stored on a
computer - readable storage medium , for example , in the
form of a computer program comprising a plurality of
instructions executable by one or more processors . In an
embodiment , a computer - readable storage medium is a
non - transitory computer - readable storage medium that
excludes transitory signals (e.g. , a propagating transient
electric or electromagnetic transmission) but includes non
transitory data storage circuitry (e.g. , buffers , cache , and
queues) within transceivers of transitory signals . In an
embodiment , code (e.g. , executable code or source code) is

US 2020/0302176 A1 Sep. 24 , 2020
11

stored on a set of one or more non - transitory computer
readable storage media having stored thereon executable
instructions (or other memory to store executable instruc
tions) that , when executed (i.e. , as a result of being executed)
by one or more processors of a computer system , cause the
computer system to perform operations described herein .
The set of non - transitory computer - readable storage media ,
in an embodiment , comprises multiple non - transitory com
puter - readable storage media and one or more of individual
non - transitory storage media of the multiple non - transitory
computer - readable storage media lack all of the code while
the multiple non - transitory computer - readable storage
media collectively store all of the code . In an embodiment ,
the executable instructions are executed such that different
instructions are executed by different processors — for
example , a non - transitory computer - readable storage
medium store instructions and a main CPU execute some of
the instructions while a graphics processor unit executes
other instructions . In an embodiment , different components
of a computer system have separate processors and different
processors execute different subsets of the instructions .
[0112] Accordingly , in an embodiment , computer systems
are configured to implement one or more services that singly
or collectively perform operations of processes described
herein and such computer systems are configured with
applicable hardware and / or software that enable the perfor
mance of the operations . Further , a computer system that
implement an embodiment of the present disclosure is a
single device and , in another embodiment , is a distributed
computer system comprising multiple devices that operate
differently such that the distributed computer system per
forms the operations described herein and such that a single
device does not perform all operations .
[0113] The use of any and all examples , or exemplary
language (e.g. , " such as ”) provided herein , is intended
merely to better illuminate embodiments of the invention
and does not pose a limitation on the scope of the invention
unless otherwise claimed . No language in the specification
should be construed as indicating any non - claimed element
as essential to the practice of the invention .
[0114] Embodiments of this disclosure are described
herein , including the best mode known to the inventors for
carrying out the invention . Variations of those embodiments
may become apparent to those of ordinary skill in the art
upon reading the foregoing description . The inventors
expect skilled artisans to employ such variations as appro
priate and the inventors intend for embodiments of the
present disclosure to be practiced otherwise than as specifi
cally described herein . Accordingly , the scope of the present
disclosure includes all modifications and equivalents of the
subject matter recited in the claims appended hereto as
permitted by applicable law . Moreover , any combination of
the above - described elements in all possible variations
thereof is encompassed by the scope of the present disclo
sure unless otherwise indicated herein or otherwise clearly
contradicted by context .
[0115] All references , including publications , patent appli
cations , and patents , cited herein are hereby incorporated by
reference to the same extent as if each reference were
individually and specifically indicated to be incorporated by
reference and were set forth in its entirety herein .
[0116] In the description and claims , the terms " coupled ”
and “ connected , ” along with their derivatives , may be used .
It should be understood that these terms may be not intended

as synonyms for each other . Rather , in particular examples ,
“ connected ” or “ coupled ” may be used to indicate that two
or more elements are in direct or indirect physical or
electrical contact with each other . “ Coupled ” may also mean
that two or more elements are not in direct contact with each
other , but yet still co - operate or interact with each other .
[0117] Unless specifically stated otherwise , it may be
appreciated that throughout the specification terms such as
" processing , " " computing , " " calculating , " " determining , " or
the like , refer to the action and / or processes of a computer
or computing system , or similar electronic computing
device , that manipulate and / or transform data represented as
physical , such as electronic , quantities within the computing
system's registers and / or memories into other data similarly
represented as physical quantities within the computing
system's memories , registers or other such information
storage , transmission or display devices .
[0118] In a similar manner , the term “ processor ” may refer
to any device or portion of a device that processes electronic
data from registers and / or memory and transform that elec
tronic data into other electronic data that may be stored in
registers and / or memory . As non - limiting examples , " pro
cessor ” may be a Central Processing Unit (CPU) or a Graphics Processing Unit (GPU) . A " computing platform "
may comprise one or more processors . As used herein ,
“ software ” processes may include , for example , software
and / or hardware entities that perform work over time , such
as tasks , threads , and intelligent agents . Also , each process
may refer to multiple processes , for carrying out instructions
in sequence or in parallel , continuously or intermittently .
The terms “ system ” and “ method ” are used herein inter
changeably insofar as the system may embody one or more
methods and the methods may be considered a system .
[0119] In the present document , references may be made
to obtaining , acquiring , receiving , or inputting analog or
digital data into a subsystem , computer system , or computer
implemented machine . The process of obtaining , acquiring ,
receiving , or inputting analog and digital data can be accom
plished in a variety of ways such as by receiving the data as
a parameter of a function call or a call to an application
programming interface . In some implementations , the pro
cess of obtaining , acquiring , receiving , or inputting analog
or digital data can be accomplished by transferring the data
via a serial or parallel interface . In another implementation ,
the process of obtaining , acquiring , receiving , or inputting
analog or digital data can be accomplished by transferring
the data via a computer network from the providing entity to
the acquiring entity . References may also be made to pro
viding , outputting , transmitting , sending , or presenting ana
log or digital data . In various examples , the process of
providing , outputting , transmitting , sending , or presenting
analog or digital data can be accomplished by transferring
the data as an input or output parameter of a function call ,
a parameter of an application programming interface or
interprocess communication mechanism .
[0120] Although the discussion above sets forth example
implementations of the described techniques , other archi
tectures may be used to implement the described function
ality , and are intended to be within the scope of this
disclosure . Furthermore , although specific distributions of
responsibilities are defined above for purposes of discussion ,
the various functions and responsibilities might be distrib
uted and divided in different ways , depending on circum
stances .

US 2020/0302176 A1 Sep. 24 , 2020
12

[0121] Furthermore , although the subject matter has been
described in language specific to structural features and / or
methodological acts , it is to be understood that the subject
matter defined in the appended claims is not necessarily
limited to the specific features or acts described . Rather , the
specific features and acts are disclosed as exemplary forms
of implementing the claims .

What is claimed is :
1. A processor comprising :
one or more arithmetic logic units (ALUS) to determine

whether one or more features appear in at least a first
and second image based , at least in part , on one or more
neural networks including a discriminative portion and
at least one encoder portion to encode information to be
used by the discriminative portion .

2. The processor of claim 1 , wherein the encoder portion
encodes information indicative of appearance of the one or
more features .

3. The processor of claim 1 , wherein the one or more
neural networks are jointly trained with a generative portion .

4. The processor of claim 3 , wherein the generative
portion comprises a second encoder portion to encode
positional or geometric information .

5. The processor of claim 3 , wherein the generative
portion generates image data comprises a plurality of rep
resentations of the one or more features , each of the plurality
of representations comprising a variation in appearance of
the one or more features .

6. The processor of claim 1 , wherein the one or more
features comprise a person depicted in at least the first
image .

7. A system comprising :
one or more computers including one or more processors

to train one or more neural networks to determine
whether one or more features appear in at least a first
and second image based , at least in part , on a generative
portion and a discriminative portion and at least one
encoder portion to encode information to be used by the
generative and discriminative portions .

8. The system of claim 7 , wherein the generative and
discriminative portions are jointly trained .

9. The system of claim 8 , wherein jointly training the
generative and discriminative portions comprises minimiz
ing generative and discriminative loss .

10. The system of claim 7 , wherein the encoder portion is
an appearance encoder to encode features associated with
one or more of clothing , color , and texture .

11. The system of claim 7 , wherein the generative portion
comprises a structure encoder portion to encode features
associated with one or more of size , pose , background ,
viewpoint , and lighting .

12. The system of claim 7 , wherein the generative portion
generates a plurality of images , wherein of the plurality of
images comprise variations in appearance of the one or more
features .

13. The system of claim 7 , wherein the generative portion
is trained to perform self - identity generation and cross
identity generation .

14. A machine - readable medium having stored thereon a
set of instructions , which if performed by one or more
processors , cause the one or more processors to at least :

cause one or more neural networks including a generative
portion and a discriminative portion to be trained to
determine whether one or more features appear in at
least a first and second image using encoded informa
tion about appearance and shape of the one or more
features .

15. The machine - readable medium of claim 14 , wherein
the encoded information is generated by an encoder portion
shared by the generative and discriminative portions .

16. The machine - readable medium of claim 14 , having
stored thereon a further set of instructions , which if per
formed by one or more processors , cause the one or more
processors to at least train the generative and discriminative
portions together .

17. The machine - readable medium of claim 14 , wherein
the generative portion comprises an appearance encoder to
encode features associated with one or more of clothing ,
color , and texture .

18. The machine - readable medium of claim 14 , wherein
the generative portion comprises a structure encoder to
encode features associated with one or more of size , pose ,
background , viewpoint , and lighting .

19. The machine - readable medium of claim 14 , wherein
the generative portion generates a plurality of images per
mitting the discriminative portion to be trained to recognize
fine - grained identity features .

20. The machine - readable medium of claim 14 , wherein
the generative portion is trained to perform self - identity
generation and cross - identity generation .

