
US 20190163978A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0163978 A1

Yang et al . (43) Pub . Date : May 30 , 2019

(54) BUDGET - AWARE METHOD FOR
DETECTING ACTIVITY IN VIDEO

(52) U . S . CI .
CPC G06K 9 / 00718 (2013 . 01) ; G06K 9 / 6262

(2013 . 01) ; G06K 9 / 628 (2013 . 01) ; G06K
9 / 00765 (2013 . 01) ; GO6K 9 / 6227 (2013 . 01) (71) Applicant : NVIDIA Corporation , Santa Clara , CA

(US)
(57) ABSTRACT (72) Inventors : Xiaodong Yang , San Jose , CA (US) ;

Pavlo Molchanov , San Jose , CA (US) ;
Jan Kautz , Lexington , MA (US) ;
Behrooz Mahasseni , Los Altos , CA
(US)

(21) Appl . No . : 16 / 202 , 703
(22) Filed : Nov . 28 , 2018

Related U . S . Application Data
(60) Provisional application No . 62 / 592 , 990 , filed on Nov .

30 , 2017 .

Detection of activity in video content , and more particularly
detecting in video start and end frames inclusive of an
activity and a classification for the activity , is fundamental
for video analytics including categorizing , searching , index
ing , segmentation , and retrieval of videos . Existing activity
detection processes rely on a large set of features and
classifiers that exhaustively run over every time step of a
video at multiple temporal scales , or as a small improvement
computationally propose segments of the video on which to
perform classification . These existing activity detection pro
cesses , however , are computationally expensive , particularly
when trying to achieve activity detection accuracy , and
moreover are not configurable for any particular time or
computation budget . The present disclosure provides a time
and / or computation budget - aware method for detecting
activity in video that relies on a recurrent neural network
implementing a learned policy .

Publication Classification
(51) Int . Cl .

G06K 9 / 00
G06K 9 / 62

(2006 . 01)
(2006 . 01)

100

Start

NN
learning , through a reinforcement learning algorithm , a policy to
sequentially select a subset of frames of a video and classify
activity within the subset of frames according to a plurality of

predefined activity classifications
102

NNNNNNNNNNNNNNNN using , by a recurrent neural network , the policy to detect and
classify activity in the video over a sequence of steps determined

according to a given time and / or computation budget
104 A

V

End

Patent Application Publication May 30 , 2019 Sheet 1 of 11 US 2019 / 0163978 A1

100

Start

learning , through a reinforcement learning algorithm , a policy to
sequentially select a subset of frames of a video and classify
activity within the subset of frames according to a plurality of

predefined activity classifications
102

+

using , by a recurrent neural network , the policy to detect and
classify activity in the video over a sequence of steps determined

according to a given time and / or computation budget
104

L .

End

Fig . 1

Patent Application Publication May 30 , 2019 Sheet 2 of 11 US 2019 / 0163978 A1

200

frame to observe
history of prior
observed frames

POLICY

temporal
location of
segment

classification (s)
for the detected

activity
Next frame to

observe

Fig . 2A

Policy step t - 1 VIVA Frame he Background il
frames 11 CE Neighborhood LTSM

4444444444444444444444444

' . ' . ' . : . : ' ' ' ' ' : : : : :

Fig . 2B Activity Frame Foreground &

P LTSM Ct

- - - - -

Policy step

franes
I II

. - . . . ' ' . ' . ~ - ' . .

· · · · · , ' . · . · : · . . '

hohhhhhhhhhhhtt

iiiiii iiiiiii

E LEVENEMENTEN vii vinen

Policy step T
< 10

LTSM frames
Wwwwwwwwwwwwwwwwwwwwwwwwwwwwww

w

IV 8L6€910 / 6107 SW II Jo & jaa4S 6107 ‘ 0€ New topleggiqnd uogeyjddy jueved

220

Patent Application Publication

Step 5
Background : 0 . 42 Segment : 741 - 1017

Step 2 Activity 1 : 0 . 51 Segment : 3329 - 4418

RE

???????

ette

Step 6
Background : 0 . 66 Segment : 769 - 983

Step 1
Background : 0 . 76 Segment : 2454 - 3052

Step 3 Activity 1 : 0 . 58 Segment : 4027 - 4163

Step 4
Background : 0 . 35 Segment : 4263 - 4994 1 Video Sequence

batteri
er

. .

.

.

.

.

.

.

.

.

+

* +

+

*

*

.

.

i

i

i i

i i

nii

n

i

,

A

.

S

.

.

.

.

.

.

.

.

paraaraanaaa

May 30 , 2019 Sheet 4 of 11

Stran 5

Observing Sequence

US 2019 / 0163978 A1

Fig . 2C

Patent Application Publication May 30 , 2019 Sheet 5 of 11 US 2019 / 0163978 A1

302 PPU 300

1 / 0 Unit
305

Front End Unit
315

Scheduler Unit
320

NVLink 310 Hub
330

Work Distribution Unit
325

-

W

ww GPC
350 (X) W

W

NY

XBar 370

Memory
30414) .

Memory Partition Unit 380 (0) .

Fig . 3

Fig . 4A

To / From XBar 370 To / From XBar 370

.

MMU 490

480
WDX

??????????????????

?? . ?? . ?? ?? . ?? . ? . ?? . ? . ?? . ?? ? ?? ?? ? ?? . ? . ?? . ?? . ? . ?? . ? . ? .
M

.

DPC 420 (V) AV . AV . AYNANAYAN YYYYYYYYYYYYYYYYY 440
SM

425
Raster Engine where 4 435

Engine
Primitive

430
MPC

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

o te wow

415
PROP

410
Pipeline Manager

GPC 350

To / From XBar 370

US 2019 / 0163978 A1 May 30 , 2019 Sheet 6 of 11 Patent Application Publication

Patent Application Publication May 30 , 2019 Sheet 7 of 11 US 2019 / 0163978 A1

To / From
XBar 370

Memory Partition Unit
380

*

*

*

*

*

*

*

*

* ROP 450 *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

L2 Cache 460 To / From
XBar 370

Memory Interface
470

To / From
Memory 304

Fig . 4B

Patent Application Publication May 30 , 2019 Sheet 8 of 11 US 2019 / 0163978 A1

WALA WALA

SM 440

Instruction Cache 505

Scheduler Unit 510 (K)
R imini

Dispatch 515
tututututututututututututututututututunut tut

WEER PER ER R PER

S T S R P S

Register File 520

w

Core SFU
552 (M - 1)

LSU
554 (N - 1) 550 (L - 1) wwwwwwwwwww

Interconnect Network 580

Shared Memory / L 1 Cache 570

To / from MMU 490

Fig . 5A

Patent Application Publication May 30 , 2019 Sheet 9 of 11 US 2019 / 0163978 A1

500

CPU 530

- 302

Switch 510

* * * *

304 PPU 300 PPU 300 304
whuntemurunununununununumi hinumdumtumiwimwinuminumungu mudumu humuuminumuinuminni AAAAAAAA

NVLink
310

304 PPU 300 PPU 300 304

525

Fig . 5B

Patent Application Publication May 30 , 2019 Sheet 10 of 11 US 2019 / 0163978 A1

565 Main
Memory
540

Network
Interface
535 CPU 530

Display
Devices
545

Input
Devices
560

302
575

Switch 510

304 PPU 300 PPU 300
NVLink
- 310

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

304 PPU 300 PPU 300

525

Fig . 50

Patent Application Publication May 30 , 2019 Sheet 11 of 11 US 2019 / 0163978 A1

, 600
Input Data

601

Data Assembly
610

Vertex Shading
620

Primitive Assembly
630

Geometry Shading
640 TIL LLL Viewport SCO
650

Rasterization
660

Fragment Shading
670

Raster Operations
680

iiiiiiiii

Output Data
602

Fig . 6

US 2019 / 0163978 A1 May 30 , 2019

BUDGET - AWARE METHOD FOR
DETECTING ACTIVITY IN VIDEO

including a temporal location of the segment in the video ,
one or more of the plurality of predefined activity classifi
cations associated with the segment , and a next subset of
frames to select for a next step of the plurality of steps . CLAIM OF PRIORITY

[0001] This application claims the benefit of U . S . Provi
sional Application No . 62 / 592 , 990 (Attorney Docket No .
NVIDP1202 + / 17 - SC - 0278US01) titled " BUDGET
AWARE ACTIVITY DETECTION WITHA RECURRENT
POLICY NETWORK , ” filed Nov . 30 , 2017 , the entire
contents of which is incorporated herein by reference .

TECHNICAL FIELD
[0002] The present disclosure relates to detecting activity
in video .

BACKGROUND
[0003] Detection of activity in video content , and more
particularly detecting in video content start and end frames
inclusive of an activity and a classification for the activity ,
is fundamental for video analytics including categorizing ,
searching , indexing , segmentation , and retrieval of videos .
For example , video - based content platforms , such as You
Tube which hosts a wide variety of video content created by
a very large user base , rely on activity detection processes to
allow for searching , categorizing , etc . of the videos
uploaded by its users . Recent improvements to activity
detection processes have specifically focused on advancing
activity detection accuracy . However , improved accuracy
has been provided at the expense of processing time and
computer resources (e . g . memory , processor , etc . consump
tion) .
[0004] For example , some existing activity detection pro
cesses rely on a large set of features and classifiers that
exhaustively run over every time step at multiple temporal
scales . This sliding window approach is computationally
expensive since it requires classification at every time step
of a video . Some improvements have been made to these
existing activity detection processes in order to avoid such
exhaustive evaluations , where temporal segments of a video
that are likely to contain a certain action are proposed , and
then a separate classifier is applied to each of the proposed
temporal segments for classification purposes . However ,
these improved activity detection processes are suboptimal
for numerous reasons , including that they divide activity
detection into two disjointed steps : proposal and classifica
tion , and also that they generally propose a large number of
temporal segments which is still computationally expensive .
[0005] . There is a need for addressing these issues and / or
other issues associated with the prior art .

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG . 1 illustrates a flowchart of a budget - aware
method for detecting activity in video , in accordance with an
embodiment .
[0008] FIG . 2A illustrates a block diagram of the inputs
and outputs for a policy usable by a recurrent neural network
to detect activity in a video according to a given time and / or
computational budget , in accordance with an embodiment .
100091 . FIG . 2B illustrates a block diagram of a sequence
of steps taken by a recurrent neural network to detect activity
in a video according to a given time budget , in accordance
with an embodiment .
[0010] . FIG . 2C illustrates an exemplary flow of activity
detection for a video using a budget - aware method , in
accordance with an embodiment .
[0011] FIG . 3 illustrates a parallel processing unit , in
accordance with an embodiment .
[0012] FIG . 4A illustrates a general processing cluster
within the parallel processing unit of FIG . 3 , in accordance
with an embodiment .
[0013] FIG . 4B illustrates a memory partition unit of the
parallel processing unit of FIG . 3 , in accordance with an
embodiment .
[0014] FIG . 5A illustrates the streaming multi - processor
of FIG . 4A , in accordance with an embodiment .
[0015] FIG . 5B is a conceptual diagram of a processing
system implemented using the PPU of FIG . 3 , in accordance
with an embodiment .
[0016] FIG . 5C illustrates an exemplary system in which
the various architecture and / or functionality of the various
previous embodiments may be implemented .
[0017] FIG . 6 is a conceptual diagram of a graphics
processing pipeline implemented by the PPU of FIG . 3 , in
accordance with an embodiment .

SUMMARY
[0006] A budget - aware method , computer readable
medium , and system are disclosed for detecting activity in
video . In use , a reinforcement learning algorithm is used to
learn a policy to sequentially select a subset of frames of a
video and classify activity within the subset of frames
according to a plurality of predefined activity classifications .
Additionally , a recurrent neural network uses the policy to
detect and classify activity in the video over a sequence of
steps determined according to a given time or computation
budget . For each step of the plurality of steps , the detection
includes selecting a subset of frames of the video , and
predicting a segment from the selected subset of frames

DETAILED DESCRIPTION
[0018] Detection of activity in video content , and more
particularly detecting in video start and end frames inclusive
of an activity and a classification for the activity , is funda
mental for video analytics including categorizing , searching ,
indexing , segmentation , and retrieval of videos . Existing
activity detection processes rely on a large set of features
and classifiers that exhaustively run over every time step of
a video at multiple temporal scales , or as a small improve
ment computationally propose segments of the video on
which to perform classification . These existing activity
detection processes , however , are computationally expen
sive , particularly when trying to achieve activity detection
accuracy , and moreover are not configurable for any par
ticular time or computation budget .
[0019] The present disclosure provides a budget - aware
method for detecting activity in video . In particular , the
activity detection method learns to optimally select a subset
of video frames to process based on a given time or
computation budget . Accordingly , the activity detection pro
cess can be optimized for the given time or computation
budget .

US 2019 / 0163978 A1 May 30 , 2019

[0020] FIG . 1 illustrates a flowchart of a budget - aware
method for detecting activity in video , in accordance with an
embodiment . In the context of the present description , the
video includes any type or format of video content that is
comprised of a sequence of displayable frames . The video
may be short or long , depending on the number of frames
included therein , and in any case is stored in computer
memory . The activity detection method 100 is budget - aware
in that it is dynamically adjusted according to a given (i . e .
specified) time or computational budget . In other words , the
activity detection method 100 is self - adjusting to detect
activity within (i . e . without exceeding) a particular time
given and / or a particular computational budget (i . e . band
width) given .
[0021] The method 100 may be performed by a processing
unit , a program , custom circuitry , or by a combination
thereof . For example , the method 100 may be executed by
a GPU (graphics processing unit) , CPU (central processing
unit) , or any processor such as those described below .
Furthermore , persons of ordinary skill in the art will under
stand that any system that performs method 100 is within the
scope and spirit of embodiments of the present disclosure .
[0022] In operation 102 , a reinforcement learning algo
rithm is used to learn a policy to sequentially select a subset
of frames of a video and classify activity within the subset
of frames according to a plurality of predefined activity
classifications . Thus , the policy , when used , implements a
sequential decision making process where each step is a
decision that determines the subset of frames in the video to
select for activity detection purposes . In particular , at each
sequential step , the policy receives as input a location of a
frame to observe and a history of any prior observed frames ,
and then produces three outputs , including : (1) a temporal
location (start and end) of a segment in the video having a
detected activity , (2) one or more of the plurality of pre
defined activity classifications associated with the segment ,
and (3) a next frame for a next step of the sequential decision
making process .
[0023] The policy is parameterized by 0 , and the goal of
the policy learning is to optimize the parameters of the
policy by minimizing the loss incurred over the sequential
steps , where loss refers to classification loss , localization
loss , and / or retrieval loss . Since any estimated temporal
segments (i . e . consecutive frames with a same activity
classification) for a video will be computed through the
sequence of steps , the objective function of the policy
becomes non - decomposable and non - differentiable . Thus , in
one embodiment , the policy is learned using a partially
observable Markov decision process (POMDP) , and as a
further option the approximation of gradients for the objec
tive function using a recurrent policy gradient approach .
This allows the policy , and in particular its parameters , to be
learned with stochastic gradient descent , in one embodi
ment .
0024] Moreover , the reinforcement learning algorithm ,
which as noted above is used to learn the policy , may reward
the policy as a function of a change in error . For example ,
the policy may earn a reward for (e . g . equal to) any decrease
in the temporal segmentation error achieved by selecting a
particular frame , and may pay a penalty when the temporal
segmentation error increases .
[0025] Additionally , in operation 104 , a recurrent neural
network uses the policy to detect and classify activity in the
video over a sequence of steps determined according to a

given time and / or computation budget . Thus , the time (e . g .
in seconds , etc .) and / or computation (e . g . in number of
computations , etc .) budget may limit the number of sequen
tial steps performed to detect and classify the activity in the
video . For each step of the plurality of steps , the detection
includes selecting a subset of frames of the video , and
predicting a segment from the selected subset of frames
including a temporal location of the segment in the video ,
one or more of the plurality of predefined activity classifi
cations associated with the segment , and a next subset of
frames to select for a next step of the plurality of steps .
[0026] As noted above , the policy may receive as input a
location of a frame to observe and a history of any prior
observed frames , and from that input the policy may then
predict the aforementioned segment in the video . Specifi
cally , the policy produces three outputs , including : (1) the
temporal location (start and end) of the segment in the video
having a detected activity , (2) one or more of the plurality of
predefined activity classifications associated with the seg
ment , and (3) a next frame for a next step of the sequential
decision making process . The policy produces the output
based on local information of a neighborhood of frames
centered on the frame to observe and the history of the prior
observed frames .
[0027] To this end , the recurrent neural network may use
the learned policy to detect and classify activity in the video
over a sequence of steps that is determined according to a
given time and / or computation budget . Moreover , use of the
policy allows the activity detection accuracy to be maxi
mized for the given time and / or computation budget .
[0028] More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may be implemented , per
the desires of the user . It should be strongly noted that the
following information is set forth for illustrative purposes
and should not be construed as limiting in any manner . Any
of the following features may be optionally incorporated
with or without the exclusion of other features described .
[0029] Given a video v and a set of activity labels L , the
goal is to predict for each frame a single label from L . Each
temporal extent consisting of consecutive frames with the
same label is called a semantic temporal segment . Given a
limited time budget , it is infeasible to process every single
frame in a video . So we aim to detect and classify the
foreground segments by only observing a small subset of
video frames x CV .
[0030] Assuming limited access to the frames of v , finding
the optimal frame subset x is inherently a sequential decision
making task . Accordingly , we draw on ideas from reinforce
ment learning an area that focuses on learning for sequen
tial decision making problems . Our aim is to learn a policy
nt , parameterized by 0 , to sequentially select the frames from
v and form the subset x . Alongside the selection process , it
outputs the current belief about the foreground segment and
the associated class label . This sequential decision making
process intuitively resembles how humans search activities
in a video , i . e . , iteratively refine our estimated temporal
boundaries by sequentially choosing a few frames to
observe .

[0031] Let G denote the ground truth segments in V , and
M be the set of estimated semantic temporal segments
from observing x . We define the deterministic indicator Img

US 2019 / 0163978 A1 May 30 , 2019

to identify whether an estimated segment mEm is
assigned to a ground truth segment gEG :

(Equation 1) (1 g = argiled a (m , g ') subject to a > 0
otherwise , mg 10

[0032] where a is the intersection over union (IU) . Let om
and c , indicate the probability distribution and the one - hot
representation of class label for segments m and g . For a
subset of selected frames x and a set of predicted segments
ms , our loss is defined as :

Lo = (Equation 2)
m [1cAcis (Cm , Cg) + Abcalm , lg)] + A - Aret (M G)

[0033] where Acis is the multi - class classification error ,
Aloe is the localization error with Im and 1 , identifying the
locations of segments m and g , and yet is the segment
retrieval error . The most important property of Arer is that
while it encourages the model to detect all foreground
segments , it also discourages the model from producing
many false positives .
[0034] We now explain how to formulate each individual
error defined in Equation 2 . In contrast to using a binary
classification loss , we employ a multi - class cross - entropy
loss Acts = - c , log cm . Unlike penalizing the localization
based on the absolute error , this loss should also depend on
the duration of a segment , i . e . , the same amount of absolute
error should be treated differently for short and long inter
vals . This means that if the policy makes a small error for a
short segment this error should be considered relatively
large , otherwise the algorithm would ignore the small seg
ments . With this intention , we define

Ajoellmig) = E (g) x | | M , , m .) , (898) | |
[0035] where & (g) is a scaling factor which depends on the
length of segment g , 11• is the distance between two seg
ments , m , and me are the start and end of segment m , similar
for segment g . To define the segment retrieval loss Arell M ,
G) , we use the mAP criteria , where mean is over different
class labels , and AP for each individual class is defined as
AP (M , G) = 2 ; Prec (MX (i) ,) xARecall , where MX (i) is the
subset of my until the ith segment ranked by the overlap
with ground truth , Prec () is the precision of detection , and
A Recall is the change of recall from previous subset . Given a
training set of N videos { V1 , . . . , Vy } , our goal is to find o
that minimizes :

process in selecting video frames . In order to solve this
difficulty , we reformulate our problem as a reinforcement
learning problem , as described with reference to FIG . 2A
below , which allows us to define an equivalent reward
function to the original objective function .
[0037] FIG . 2A illustrates a block diagram 200 of the
inputs and outputs for a policy usable by a recurrent neural
network to detect activity in a video according to a given
time and / or computational budget , in accordance with an
embodiment . For example , the policy described with respect
to FIG . 2A may be one embodiment of the policy learned
and used in the manner described above with reference to the
method 100 of FIG . 1 .
[0038] In the present embodiment , policy i with param
eters is learned for use by a recurrent neural network to
detect activity in a video according to a given time and / or
computational budget . The recurrent neural network uses the
policy u to make a sequence of decisions , or predictions ,
based on the local information from the most recent
observed frame , as described in more detail below with
respect to FIG . 2B . At each step , the policy produces three
outputs including the estimate of the start frame and end
frame the current potentialtemprasegment , the predic
tion of the classification (s) associated with the segment , and
the next frame to observe . Unlike binary classification
models , this approach uses a multi - class classifier , which
means only the single policy a needs to be trained rather
than training multiple different policies for each different
classification . This approach avoids a binary prediction
indicator signal , since it can directly discard those segments
predicted with the background classification .
[0039] Due to the local observation at each step , the policy
has no access to the global state (i . e . , the entire video) . This
resembles the partially observable Markov decision process
(POMDP) , which assumes that despite the existence of a
global state , for practical reasons an agent does not have a
full observation of the global state . A recurrent policy
gradient approach is used to maintain an approximate belief
of the current state s , by Long Short - Term Memory (LSTM) .
10040) Particularly , suppose at step t the current frame is
i , the policy it makes a decision based on (1) the local
information of a neighborhood N , centered around i and (2)
the history of previous observations . The local information
is captured through an observation feature 0 = [4 (N ;) , (Ni) ,
Et] , where y (N ;) is an indicator vector that identifies whether
each frame in Ni has been previously selected , Q (N ,) is the
average of per - class confidence predicted in N ; , and ÉtE [0 , 1]
is the normalized location of the current frame at step t . The
inclusion of Et is helpful in encouraging the policy to cover
broader video content . Excluding £t may result in a consid
erable number of over - selection of frames . Note that for Q ,
the averaged confidence of estimated segments is computed ,
which share the frames in N . As for the history of the
decision makings , the hidden state h - 1 of LSTM is used to
maintain the context of previous observations up to step t .
[0041] To summarize , the global state at step t is approxi
mated by the internal state h , of LSTM , which depends on
the current observation o , and the previous state h . Given
h , the outputs of the policy n are v2 [1 , Ct , $ t + 1] : (1) the
location l , of an estimated temporal segment , (2) the prob
ability distribution over activity class labels Cz , and (3) the
location of the next observation Et + 1 . This formulation
allows the policy to perform both forward and backward
frame selections . In order to further improve the exploration

(Equation 3) 0 = argija 2 (L .) < * L , G) =

[0036] Unfortunately , the standard back - propagation is
not applicable to learn the parameters in Equation 3 , as the
objective function in Equation 2 contains the non - differen
tiable components . This is mainly due to the non - decom
posable AP , as well as the sequential decision making

US 2019 / 0163978 A1 May 30 , 2019

[0049] where the first term is a sum over the log of
p (h ,] ht - 1) , a constant with respect to 0 . This therefore results
in the following gradient :

Velog p (H10) = 2 – 1 " Velog a (V , \ he _ 100) ,
[0050] It is common to use the Monte - Carlo integration to
approximate the integration over the probability of observ
ing a sequence of hidden states . Specifically , the approxi
mate gradient is computed by running the current policy on
N training videos to generate N trajectories . Combining
aforementioned derivations and Equation 5 , the approximate
gradient is obtained as :

NT (Equation 6)

Polañ ?lvo logrev " \ 14 , 0 % RACE) n = 1 t = 1

at training phase , instead of directly using $ 1 + 1 , the next
selected location may be sampled from a Gausssian distri
bution with a mean equal to $ t + 1 and a fixed variance .
[0042] The goal of policy learning is to jointly optimize
the parameters of a by minimizing the loss of a sequence of
policy actions as defined in Equation 2 . These actions are
taken from the initial state So , when no frames are selected ,
until the final state st , where T is the number of steps
specified according to a time and / or computation budget .
[0043] The main difficulty in policy learning is that the
estimated temporal segments M for a video are computed
through a sequence of policy decisions , resulting in a
non - decomposable and non - differentiable objective func
tion . Moreover , a decision that the policy makes at any step
depends on the history of decisions that the policy has made
in previous steps , and also impacts the decisions available to
the policy in the future . A recurrent policy gradient approach
is used for addressing this POMDP problem , which provides
better theoretical bounds on the learning objective to
approximate the gradients of the non - decomposable and
non - differentiable objective function , so that the policy can
be efficiently learned with stochastic gradient descent .
[0044] To follow the general reinforcement learning for
mulation , let r be the immediate reward associated with a
state Sz . Since s?h , in the policy , r is defined as r (h .) = L (
MX - 1 , G) - Lo (M , G) , where L , is the loss associated
with a set of estimated temporal segments as defined in
Equation 2 . Intuitively , r (h .) states that the policy earns an
immediate reward equal to the decrease in the temporal
segmentation error achieved by selecting an observed frame ,
or pays a penalty if the temporal segmentation error
increases . Let R (H) be the discounted accumulated reward
starting from the state s , and continuing the policy up to the
final state :

$ 7iR (H) = 2 , 477 ? " * r (hu)
[0045] where H = { h , , . . . , hz] represents the history of
hidden states in LSTM , and TE (0 , 1) is the discount factor .
H , can be interpreted as the trajectory of observations for a
sample run of the policy from the initial state . For notational
simplicity , we use H for H , in the description below . The
goal of policy learning is transformed to find the parameters
0 * to maximize J (0) which is defined as :

J (O) = E [R (H)] = { p (H10) R $ (H) dH (Equation 4)

[0046] where p (HO) is the probability of observing a
sequence of hidden states H , given a policy i defined by the
parameters 8 . It can be shown that maximizing J (0) implic
itly minimizes L , along the trajectory of policy executions .
The gradient needs to be computed with respect to the policy
parameters VoJ , which is given by :

VOJ [V & P (H10) R (H) + p (H10) VR $ (H)] dH (Equation 5)

[0047] Note that given the sequence of hidden states H ,
which determines the history of selected frames , the reward
function does not depend on the policy parameters , yielding
VaRo (H) = 0 . To further simplify Equation 5 , VoP (HO) is
defined . First , p (HO) is factorized as :

P (H10) = P (h .) I – , p (h , 1 , _ 1] [v , \ h _ _ 130)
[0048] where the same notation õ is used to denote the
output of the policy . Based on this we have :

p (H10) = const + 2 log a { v } \ hy 1 , 0)

[0051] Since the policy gradient methods usually suffer
from the high variance of gradient estimates , a bias is
subtracted from the expected reward R . However , rather
than taking a constant bias , the bias value is set to be the
reward obtained from a random selection policy .
[0052] FIG . 2B illustrates a block diagram 210 of a
sequence of steps taken by a recurrent neural network to
detect activity in a video according to a given time budget ,
in accordance with an embodiment . For example , the recur
rent neural network described with respect to FIG . 2B may
ben embodiment therecurrentneural network
described above with reference to the method 100 of FIG . 1 .
[0053] As shown , a plurality of time step T are determined
based on a given time or computation budget . During each
time step , the global state is approximated by the internal
state of LSTM , which depends on the current observation
(i . e . for a selected frame and its neighboring frames) and the
previous state . For example , the global state at step t is
approximated by the internal state h , of LSTM , which
depends on the current observation o , (i . e . of a neighborhood
centered around the current selected frame and the previous
state ht - 1
[0054] For each step , the policy predicts a segment m , and
produces three outputs : the temporal location lt (i . e . , start
and end) of the segment , the estimated class ct associated
with the segment , and the next frame to observe at Et + 1 .
According to a specified time budget , the policy runs for T
steps then completes the detection process .
[0055] For each step , given the internal state of LSTM , the
policy predicts a segment m , and produces three outputs : (1)
the temporal location 1 (i . e . start and end frame) of the
segment , (2) the estimated class c associated with the
segment (e . g . the probability distribution over activity class
labels c) , and (3) the next frame to observe & (e . g . the
location of the next observation) . In the example shown at
step t , the outputs of the policy are v = [1 , C , Ext] : (1) the
location l , of an estimated temporal segment , (2) the prob
ability distribution over activity class labels C , and (3) the
location of the next observation Ext . This formulation
allows the policy to perform both forward and backward
frame selections . This formulation allows the policy to
perform both forward and backward frame selections . As an
option , instead of directly using $ x + 1 , the next selected
location may be sampled from a Gausssian distribution with
a mean equal to Et + 1 and a fixed variance .

US 2019 / 0163978 A1 May 30 , 2019

[0056] Activity detection for the video , including deter
mining the start and end frames for an activity as well as a
classification for the activity , can be determined from the
contents of the LSTM after the final time step .
[0057] The budget - aware method described above
achieves competitive detection accuracy under various Inter
section over Union (IU) thresholds for activity detection ,
and further performs activity detection in only 0 . 35 seconds
for each untrimmed long video . This is orders of magnitude
faster than most other competing algorithms relying on
sliding windows or segment proposals .
[0058] FIG . 2C illustrates an exemplary flow 220 of
activity detection for a video using a budget - aware method ,
in accordance with an embodiment . It should be noted that
the activity detection shown in FIG . 2C is set forth for
illustrative purposes only and a use - case of the budget - aware
activity detection described above with reference to FIG .
2B .
[0059] As shown , given a time or computation budget that
allows for 6 time steps , the recurrent neural network uses a
policy (e . g . learned as described with respect to FIG . 2A) to
detect activity in a video . At Step 1 , the policy predicts
activity for a given frame and its neighboring frames and
outputs (1) the temporal location of the predicted segment
for the activity as starting at frame 2454 and ending at frame
3052 , (2) the estimated class (category) associated with the
segment as being Background as well as the probability
distribution for Background as 0 . 76) , and (3) the next frame
to observe (not shown) . At Step 2 , the policy predicts
activity for (3) output by the prior time step and its neigh
boring frames and outputs (1) the temporal location of the
predicted segment for the activity as starting at frame 3329
and ending at frame 4418 , (2) the estimated class (category)
associated with the segment as being Activity 1 as well as
the probability distribution for Activity 1 as 0 . 51) , and (3)
the next frame to observe (not shown) .
[0060] For each subsequent time step the recurrent neural
network continues to use the policy to predict activity in the
manner shown . In one embodiment , the recurrent neural
network may directly discard the segments that are predicted
as Background . Based on the history of the policy outputs
over the 6 time steps , the recurrent neural network deter
mines activities , their associated classifications , as well as
their temporal locations for the video .

set forth for illustrative purposes only , and that any proces
sor may be employed to supplement and / or substitute for the
same .
10062] One or more PPUs 300 may be configured to
accelerate thousands of High Performance Computing
(HPC) , data center , and machine learning applications . The
PPU 300 may be configured to accelerate numerous deep
learning systems and applications including autonomous
vehicle platforms , deep learning , high - accuracy speech ,
image , and text recognition systems , intelligent video ana
lytics , molecular simulations , drug discovery , disease diag
nosis , weather forecasting , big data analytics , astronomy ,
molecular dynamics simulation , financial modeling , robot
ics , factory automation , real - time language translation ,
online search optimizations , and personalized user recom
mendations , and the like .
[0063] As shown in FIG . 3 , the PPU 300 includes an
Input / Output (I / O) unit 305 , a front end unit 315 , a scheduler
unit 320 , a work distribution unit 325 , a hub 330 , a crossbar
(Xbar) 370 , one or more general processing clusters (GPCs)
350 , and one or more memory partition units 380 . The PPU
300 may be connected to a host processor or other PPUS 300
via one or more high - speed NVLink 310 interconnect . The
PPU 300 may be connected to a host processor or other
peripheral devices via an interconnect 302 . The PPU 300
may also be connected to a local memory comprising a
number of memory devices 304 . In an embodiment , the local
memory may comprise a number of dynamic random access
memory (DRAM) devices . The DRAM devices may be
configured as a high - bandwidth memory (HBM) subsystem ,
with multiple DRAM dies stacked within each device .
10064) The NVLink 310 interconnect enables systems to
scale and include one or more PPUS 300 combined with one
or more CPUs , supports cache coherence between the PPUS
300 and CPUs , and CPU mastering . Data and / or commands
may be transmitted by the NVLink 310 through the hub 330
to / from other units of the PPU 300 such as one or more copy
engines , a video encoder , a video decoder , a power man
agement unit , etc . (not explicitly shown) . The NVLink 310
is described in more detail in conjunction with FIG . 5B .
[0065) The I / O unit 305 is configured to transmit and
receive communications (e . g . , commands , data , etc .) from a
host processor (not shown) over the interconnect 302 . The
I / O unit 305 may communicate with the host processor
directly via the interconnect 302 or through one or more
intermediate devices such as a memory bridge . In an
embodiment , the I / O unit 305 may communicate with one or
more other processors , such as one or more the PPUS 300 via
the interconnect 302 . In an embodiment , the I / O unit 305
implements a Peripheral Component Interconnect Express
(PCIe) interface for communications over a PCIe bus and
the interconnect 302 is a PCIe bus . In alternative embodi
ment , the unit 305may implement other types of
well - known interfaces for communicating with external
devices .
10066] The I / O unit 305 decodes packets received via the
interconnect 302 . In an embodiment , the packets represent
commands configured to cause the PPU 300 to perform
various operations . The I / O unit 305 transmits the decoded
commands to various other units of the PPU 300 as the
commands may specify . For example , some commands may
be transmitted to the front end unit 315 . Other commands
may be transmitted to the hub 330 or other units of the PPU
300 such as one or more copy engines , a video encoder , a

Parallel Processing Architecture
[0061] FIG . 3 illustrates a parallel processing unit (PPU)
300 , in accordance with an embodiment . In an embodiment ,
the PPU 300 is a multi - threaded processor that is imple
mented on one or more integrated circuit devices . The PPU
300 is a latency hiding architecture designed to process
many threads in parallel . A thread (e . g . , a thread of execu
tion) is an instantiation of a set of instructions configured to
be executed by the PPU 300 . In an embodiment , the PPU
300 is a graphics processing unit (GPU) configured to
implement a graphics rendering pipeline for processing
three - dimensional (3D) graphics data in order to generate
two - dimensional (2D) image data for display on a display
device such as a liquid crystal display (LCD) device . In
other embodiments , the PPU 300 may be utilized for per
forming general - purpose computations . While one exem
plary parallel processor is provided herein for illustrative
purposes , it should be strongly noted that such processor is

US 2019 / 0163978 A1 May 30 , 2019

video decoder , a power management unit , etc . (not explicitly
shown) . In other words , the I / O unit 305 is configured to
route communications between and among the various logi
cal units of the PPU 300 .
[0067] In an embodiment , a program executed by the host
processor encodes a command stream in a buffer that pro
vides workloads to the PPU 300 for processing . A workload
may comprise several instructions and data to be processed
by those instructions . The buffer is a region in a memory that
is accessible (e . g . , read / write) by both the host processor and
the PPU 300 . For example , the I / O unit 305 may be
configured to access the buffer in a system memory con
nected to the interconnect 302 via memory requests trans
mitted over the interconnect 302 . In an embodiment , the host
processor writes the command stream to the buffer and then
transmits a pointer to the start of the command stream to the
PPU 300 . The front end unit 315 receives pointers to one or
more command streams . The front end unit 315 manages the
one or more streams , reading commands from the streams
and forwarding commands to the various units of the PPU
300 .
[0068] The front end unit 315 is coupled to a scheduler
unit 320 that configures the various GPCs 350 to process
tasks defined by the one or more streams . The scheduler unit
320 is configured to track state information related to the
various tasks managed by the scheduler unit 320 . The state
may indicate which GPC 350 a task is assigned to , whether
the task is active or inactive , a priority level associated with
the task , and so forth . The scheduler unit 320 manages the
execution of a plurality of tasks on the one or more GPCs
350 .
10069] The scheduler unit 320 is coupled to a work
distribution unit 325 that is configured to dispatch tasks for
execution on the GPCs 350 . The work distribution unit 325
may track a number of scheduled tasks received from the
scheduler unit 320 . In an embodiment , the work distribution
unit 325 manages a pending task pool and an active task pool
for each of the GPCs 350 . The pending task pool may
comprise a number of slots (e . g . , 32 slots) that contain tasks
assigned to be processed by a particular GPC 350 . The active
task pool may comprise a number of slots (e . g . , 4 slots) for
tasks that are actively being processed by the GPCs 350 . As
a GPC 350 finishes the execution of a task , that task is
evicted from the active task pool for the GPC 350 and one
of the other tasks from the pending task pool is selected and
scheduled for execution on the GPC 350 . If an active task
has been idle on the GPC 350 , such as while waiting for a
data dependency to be resolved , then the active task may be
evicted from the GPC 350 and returned to the pending task
pool while another task in the pending task pool is selected
and scheduled for execution on the GPC 350 .
[0070] The work distribution unit 325 communicates with
the one or more GPCs 350 via XBar 370 . The XBar 370 is
an interconnect network that couples many of the units of the
PPU 300 to other units of the PPU 300 . For example , the
XBar 370 may be configured to couple the work distribution
unit 325 to a particular GPC 350 . Although not shown
explicitly , one or more other units of the PPU 300 may also
be connected to the XBar 370 via the hub 330 .
10071] The tasks are managed by the scheduler unit 320
and dispatched to a GPC 350 by the work distribution unit
325 . The GPC 350 is configured to process the task and
generate results . The results may be consumed by other tasks
within the GPC 350 , routed to a different GPC 350 via the

XBar 370 , or stored in the memory 304 . The results can be
written to the memory 304 via the memory partition units
380 , which implement a memory interface for reading and
writing data to / from the memory 304 . The results can be
transmitted to another PPU 304 or CPU via the NVLink 310 .
In an embodiment , the PPU 300 includes a number U of
memory partition units 380 that is equal to the number of
separate and distinct memory devices 304 coupled to the
PPU 300 . A memory partition unit 380 will be described in
more detail below in conjunction with FIG . 4B .
[0072] In an embodiment , a host processor executes a
driver kernel that implements an application programming
interface (API) that enables one or more applications execut
ing on the host processor to schedule operations for execu
tion on the PPU 300 . In an embodiment , multiple compute
applications are simultaneously executed by the PPU 300
and the PPU 300 provides isolation , quality of service
(QoS) , and independent address spaces for the multiple
compute applications . An application may generate instruc
tions (e . g . , API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 300 . The driver
kernel outputs tasks to one or more streams being processed
by the PPU 300 . Each task may comprise one or more
groups of related threads , referred to herein as a warp . In an
embodiment , a warp comprises 32 related threads that may
be executed in parallel . Cooperating threads may refer to a
plurality of threads including instructions to perform the task
and that may exchange data through shared memory .
Threads and cooperating threads are described in more detail
in conjunction with FIG . 5A .
[0073] FIG . 4A illustrates a GPC 350 of the PPU 300 of
FIG . 3 , in accordance with an embodiment . As shown in
FIG . 4A , each GPC 350 includes a number of hardware units
for processing tasks . In an embodiment , each GPC 350
includes a pipeline manager 410 , a pre - raster operations unit
(PROP) 415 , a raster engine 425 , a work distribution cross
bar (WDX) 480 , a memory management unit (MMU) 490 ,
and one or more Data Processing Clusters (DPCs) 420 . It
will be appreciated that the GPC 350 of FIG . 4A may include
other hardware units in lieu of or in addition to the units
shown in FIG . 4A .
[0074] In an embodiment , the operation of the GPC 350 is
controlled by the pipeline manager 410 . The pipeline man
ager 410 manages the configuration of the one or more DPCs
420 for processing tasks allocated to the GPC 350 . In an
embodiment , the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement at least
a portion of a graphics rendering pipeline . For example , a
DPC 420 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 440 . The pipeline manager 410 may also be configured
to route packets received from the work distribution unit 325
to the appropriate logical units within the GPC 350 . For
example , some packets may be routed to fixed function
hardware units in the PROP 415 and / or raster engine 425
while other packets may be routed to the DPCs 420 for
processing by the primitive engine 435 or the SM 440 . In an
embodiment , the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement a neural
network model and / or a computing pipeline .
(0075] The PROP unit 415 is configured to route data
generated by the raster engine 425 and the DPCs 420 to a
Raster Operations (ROP) unit , described in more detail in
conjunction with FIG . 4B . The PROP unit 415 may also be

21 / 16397841 May 30 , 2019

configured to perform optimizations for color blending ,
organize pixel data , perform address translations , and the
like .
[0076] The raster engine 425 includes a number of fixed
function hardware units configured to perform various raster
operations . In an embodiment , the raster engine 425 includes
a setup engine , a coarse raster engine , a culling engine , a
clipping engine , a fine raster engine , and a tile coalescing
engine . The setup engine receives transformed vertices and
generates plane equations associated with the geometric
primitive defined by the vertices . The plane equations are
transmitted to the coarse raster engine to generate coverage
information (e . g . , an x , y coverage mask for a tile) for the
primitive . The output of the coarse raster engine is trans
mitted to the culling engine where fragments associated with
the primitive that fail a z - test are culled , and transmitted to
a clipping engine where fragments lying outside a viewing
frustum are clipped . Those fragments that survive clipping
and culling may be passed to the fine raster engine to
generate attributes for the pixel fragments based on the plane
equations generated by the setup engine . The output of the
raster engine 425 comprises fragments to be processed , for
example , by a fragment shader implemented within a DPC
420 .
[0077] Each DPC 420 included in the GPC 350 includes
an M - Pipe Controller (MPC) 430 , a primitive engine 435 ,
and one or more SMs 440 . The MPC 430 controls the
operation of the DPC 420 , routing packets received from the
pipeline manager 410 to the appropriate units in the DPC
420 . For example , packets associated with a vertex may be
routed to the primitive engine 435 , which is configured to
fetch vertex attributes associated with the vertex from the
memory 304 . In contrast , packets associated with a shader
program may be transmitted to the SM 440 .
[0078] The SM 440 comprises a programmable streaming
processor that is configured to process tasks represented by
a number of threads . Each SM 440 is multi - threaded and
configured to execute a plurality of threads (e . g . , 32 threads)
from a particular group of threads concurrently . In an
embodiment , the SM 440 implements a SIMD (Single
Instruction , Multiple - Data) architecture where each thread
in a group of threads (e . g . , a warp) is configured to process
a different set of data based on the same set of instructions .
All threads in the group of threads execute the same instruc
tions . In another embodiment , the SM 440 implements a
SIMT (Single - Instruction , Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions , but where individual threads in the group of
threads are allowed to diverge during execution . In an
embodiment , a program counter , call stack , and execution
state is maintained for each warp , enabling concurrency
between warps and serial execution within warps when
threads within the warp diverge . In another embodiment , a
program counter , call stack , and execution state is main
tained for each individual thread , enabling equal concur
rency between all threads , within and between warps . When
execution state is maintained for each individual thread ,
threads executing the same instructions may be converged
and executed in parallel for maximum efficiency . The SM
440 will be described in more detail below in conjunction
with FIG . 5A .
[0079] The MMU 490 provides an interface between the
GPC 350 and the memory partition unit 380 . The MMU 490

may provide translation of virtual addresses into physical
addresses , memory protection , and arbitration of memory
requests . In an embodiment , the MMU 490 provides one or
more translation lookaside buffers (TLBs) for performing
translation of virtual addresses into physical addresses in the
memory 304
[0080] FIG . 4B illustrates a memory partition unit 380 of
the PPU 300 of FIG . 3 , in accordance with an embodiment .
As shown in FIG . 4B , the memory partition unit 380
includes a Raster Operations (ROP) unit 450 , a level two
(L2) cache 460 , and a memory interface 470 . The memory
interface 470 is coupled to the memory 304 . Memory
interface 470 may implement 32 , 64 , 128 , 1024 - bit data
buses , or the like , for high - speed data transfer . In an embodi
ment , the PPU 300 incorporates U memory interfaces 470 ,
one memory interface 470 per pair of memory partition units
380 , where each pair of memory partition units 380 is
connected to a corresponding memory device 304 . For
example , PPU 300 may be connected to up to Y memory
devices 304 , such as high bandwidth memory stacks or
graphics double - data - rate , version 5 , synchronous dynamic
random access memory , or other types of persistent storage .
[0081] In an embodiment , the memory interface 470
implements an HBM2 memory interface and Y equals half
U . In an embodiment , the HBM2 memory stacks are located
on the same physical package as the PPU 300 , providing
substantial power and area savings compared with conven
tional GDDR5 SDRAM systems . In an embodiment , each
HBM2 stack includes four memory dies and Y equals 4 , with
HBM2 stack including two 128 - bit channels per die for a
total of 8 channels and a data bus width of 1024 bits .
[0082] In an embodiment , the memory 304 supports
Single - Error Correcting Double - Error Detecting (SECDED)
Error Correction Code (ECC) to protect data . ECC provides
higher reliability for compute applications that are sensitive
to data corruption . Reliability is especially important in
large - scale cluster computing environments where PPUS
300 process very large datasets and / or run applications for
extended periods .
[0083] In an embodiment , the PPU 300 implements a
multi - level memory hierarchy . In an embodiment , the
memory partition unit 380 supports a unified memory to
provide a single unified virtual address space for CPU and
PPU 300 memory , enabling data sharing between virtual
memory systems . In an embodiment the frequency of
accesses by a PPU 300 to memory located on other proces
sors is traced to ensure that memory pages are moved to the
physical memory of the PPU 300 that is accessing the pages
more frequently . In an embodiment , the NVLink 310 sup
ports address translation services allowing the PPU 300 to
directly access a CPU ' s page tables and providing full
access to CPU memory by the PPU 300 .
[0084] In an embodiment , copy engines transfer data
between multiple PPUS 300 or between PPUS 300 and
CPUs . The copy engines can generate page faults for
addresses that are not mapped into the page tables . The
memory partition unit 380 can then service the page faults ,
mapping the addresses into the page table , after which the
copy engine can perform the transfer . In a conventional
system , memory is pinned (e . g . , non - pageable) for multiple
copy engine operations between multiple processors , sub
stantially reducing the available memory . With hardware

US 2019 / 0163978 A1 May 30 , 2019

page faulting , addresses can be passed to the copy engines
without worrying if the memory pages are resident , and the
copy process is transparent .
[0085] Data from the memory 304 or other system
memory may be fetched by the memory partition unit 380
and stored in the L2 cache 460 , which is located on - chip and
is shared between the various GPCs 350 . As shown , each
memory partition unit 380 includes a portion of the L2 cache
460 associated with a corresponding memory device 304 .
Lower level caches may then be implemented in various
units within the GPCs 350 . For example , each of the SMS
440 may implement a level one (L1) cache . The L1 cache is
private memory that is dedicated to a particular SM 440 .
Data from the L2 cache 460 may be fetched and stored in
each of the L1 caches for processing in the functional units
of the SMS 440 . The L2 cache 460 is coupled to the memory
interface 470 and the XBar 370 .
[0086] The ROP unit 450 performs graphics raster opera
tions related to pixel color , such as color compression , pixel
blending , and the like . The ROP unit 450 also implements
depth testing in conjunction with the raster engine 425 ,
receiving a depth for a sample location associated with a
pixel fragment from the culling engine of the raster engine
425 . The depth is tested against a corresponding depth in a
depth buffer for a sample location associated with the
fragment . If the fragment passes the depth test for the sample
location , then the ROP unit 450 updates the depth buffer and
transmits a result of the depth test to the raster engine 425 .
It will be appreciated that the number of memory partition
units 380 may be different than the number of GPCs 350
and , therefore , each ROP unit 450 may be coupled to each
of the GPCs 350 . The ROP unit 450 tracks packets received
from the different GPCs 350 and determines which GPC 350
that a result generated by the ROP unit 450 is routed to
through the Xbar 370 . Although the ROP unit 450 is
included within the memory partition unit 380 in FIG . 4B ,
in other embodiment , the ROP unit 450 may be outside of
the memory partition unit 380 . For example , the ROP unit
450 may reside in the GPC 350 or another unit .
[0087] FIG . 5A illustrates the streaming multi - processor
440 of FIG . 4A , in accordance with an embodiment . As
shown in FIG . 5A , the SM 440 includes an instruction cache
505 , one or more scheduler units 510 , a register file 520 , one
or more processing cores 550 , one or more special function
units (SFUS) 552 , one or more load / store units (LSUS) 554 ,
an interconnect network 580 , a shared memory / L1 cache
570 .
[0088] As described above , the work distribution unit 325
dispatches tasks for execution on the GPCs 350 of the PPU
300 . The tasks are allocated to a particular DPC 420 within
a GPC 350 and , if the task is associated with a shader
program , the task may be allocated to an SM 440 . The
scheduler unit 510 receives the tasks from the work distri
bution unit 325 and manages instruction scheduling for one
or more thread blocks assigned to the SM 440 . The scheduler
unit 510 schedules thread blocks for execution as warps of
parallel threads , where each thread block is allocated at least
one warp . In an embodiment , each warp executes 32 threads .
The scheduler unit 510 may manage a plurality of different
thread blocks , allocating the warps to the different thread
blocks and then dispatching instruction from the plurality
of different cooperative groups to the various functional
units (e . g . , cores 550 , SFUs 552 , and LSUs 554) during each
clock cycle .

[0089] Cooperative Groups is a programming model for
organizing groups of communicating threads that allows
developers to express the granularity at which threads are
communicating , enabling the expression of richer , more
efficient parallel decompositions . Cooperative launch APIs
support synchronization amongst thread blocks for the
execution of parallel algorithms . Conventional program
ming models provide a single , simple construct for synchro
nizing cooperating threads : a barrier across all threads of a
thread block (e . g . , the syncthreads () function) . However ,
programmers would often like to define groups of threads at
smaller than thread block granularities and synchronize
within the defined groups to enable greater performance ,
design flexibility , and software reuse in the form of collec
tive group - wide function interfaces .
[0090] Cooperative Groups enables programmers to
define groups of threads explicitly at sub - block (e . g . , as
small as a single thread) and multi - block granularities , and
to perform collective operations such as synchronization on
the threads in a cooperative group . The programming model
supports clean composition across software boundaries , so
that libraries and utility functions can synchronize safely
within their local context without having to make assump
tions about convergence . Cooperative Groups primitives
enable new patterns of cooperative parallelism , including
producer - consumer parallelism , opportunistic parallelism ,
and global synchronization across an entire grid of thread
blocks .
[0091] A dispatch unit 515 is configured to transmit
instructions to one or more of the functional units . In the
embodiment , the scheduler unit 510 includes two dispatch
units 515 that enable two different instructions from the
same warp to be dispatched during each clock cycle . In
alternative embodiments , each scheduler unit 510 may
include a single dispatch unit 515 or additional dispatch
units 515 .
[0092] Each SM 440 includes a register file 520 that
provides a set of registers for the functional units of the SM
440 . In an embodiment , the register file 520 is divided
between each of the functional units such that each func
tional unit is allocated a dedicated portion of the register file
520 . In another embodiment , the register file 520 is divided
between the different warps being executed by the SM 440 .
The register file 520 provides temporary storage for oper
ands connected to the data paths of the functional units .
[0093] Each SM 440 comprises L processing cores 550 . In
an embodiment , the SM 440 includes a large number (e . g . ,
128 , etc .) of distinct processing cores 550 . Each core 550
may include a fully - pipelined , single - precision , double - pre
cision , and / or mixed precision processing unit that includes
a floating point arithmetic logic unit and an integer arith
metic logic unit . In an embodiment , the floating point
arithmetic logic units implement the IEEE 754 - 2008 stan
dard for floating point arithmetic . In an embodiment , the
cores 550 include 64 single - precision (32 - bit) floating point
cores , 64 integer cores , 32 double - precision (64 - bit) floating
point cores , and 8 tensor cores .
[0094] Tensor cores configured to perform matrix opera
tions , and , in an embodiment , one or more tensor cores are
included in the cores 550 . In particular , the tensor cores are
configured to perform deep learning matrix arithmetic , such
as convolution operations for neural network training and
inferencing . In an embodiment , each tensor core operates on

US 2019 / 0163978 A1 May 30 , 2019

a 4x4 matrix and performs a matrix multiply and accumulate
operation D = AXB + C , where A , B , C , and D are 4x4 matri -
ces .
[0095] In an embodiment , the matrix multiply inputs A
and B are 16 - bit floating point matrices , while the accumu
lation matrices C and D may be 16 - bit floating point or
32 - bit floating point matrices . Tensor Cores operate on
16 - bit floating point input data with 32 - bit floating point
accumulation . The 16 - bit floating point multiply requires 64
operations and results in a full precision product that is then
accumulated using 32 - bit floating point addition with the
other intermediate products for a 4x4x4 matrix multiply . In
practice , Tensor Cores are used to perform much larger
two - dimensional or higher dimensional matrix operations ,
built up from these smaller elements . An API , such as
CUDA 9 C + + API , exposes specialized matrix load , matrix
multiply and accumulate , and matrix store operations to
efficiently use Tensor Cores from a CUDA - C + + program . At
the CUDA level , the warp - level interface assumes 16x16
size matrices spanning all 32 threads of the warp .
[0096] Each SM 440 also comprises M SFUS 552 that
perform special functions (e . g . , attribute evaluation , recip
rocal square root , and the like) . In an embodiment , the SFUS
552 may include a tree traversal unit configured to traverse
a hierarchical tree data structure . In an embodiment , the
SFUS 552 may include texture unit configured to perform
texture map filtering operations . In an embodiment , the
texture units are configured to load texture maps (e . g . , a 2D
array of texels) from the memory 304 and sample the texture
maps to produce sampled texture values for use in shader
programs executed by the SM 440 . In an embodiment , the
texture maps are stored in the shared memory / L1 cache 470 .
The texture units implement texture operations such as
filtering operations using mip - maps (e . g . , texture maps of
varying levels of detail) . In an embodiment , each SM 340
includes two texture units .
00971 . Each SM 440 also comprises N LSUS 554 that
implement load and store operations between the shared
mr _ cache and the register file 52 . BachSM

440 includes an interconnect network 580 that connects each
of the functional units to the register file 520 and the LSU
554 to the register file 520 , shared memory / L1 cache 570 . In
an embodiment , the interconnect network 580 is a crossbar
that can be configured to connect any of the functional units
to any of the registers in the register file 520 and connect the
LSUs 554 to the register file and memory locations in shared
memory / L1 cache 570 .
[0098] The shared memory / L1 cache 570 is an array of
on - chip memory that allows for data storage and commu
nication between the SM 440 and the primitive engine 435
and between threads in the SM 440 . In an embodiment , the
shared memory / L1 cache 570 comprises 128 KB of storage
capacity and is in the path from the SM 440 to the memory
partition unit 380 . The shared memory / L1 cache 570 can be
used to cache reads and writes . One or more of the shared
memory / L1 cache 570 , L2 cache 460 , and memory 304 are
backing stores .
[0099] Combining data cache and shared memory func
tionality into a single memory block provides the best
overall performance for both types of memory accesses . The
capacity is usable as a cache by programs that do not use
shared memory . For example , if shared memory is config
ured to use half of the capacity , texture and load / store
operations can use the remaining capacity . Integration

within the shared memory / L1 cache 570 enables the shared
memory / L1 cache 570 to function as a high - throughput
conduit for streaming data while simultaneously providing
high - bandwidth and low - latency access to frequently reused
data .
[0100] When configured for general purpose parallel com
putation , a simpler configuration can be used compared with
graphics processing . Specifically , the fixed function graphics
processing units shown in FIG . 3 , are bypassed , creating a
much simpler programming model . In the general purpose
parallel computation configuration , the work distribution
unit 325 assigns and distributes blocks of threads directly to
the DPCs 420 . The threads in a block execute the same
program , using a unique thread ID in the calculation to
ensure each thread generates unique results , using the SM
440 to execute the program and perform calculations , shared
memory / L1 cache 570 to communicate between threads , and
the LSU 554 to read and write global memory through the
shared memory / L1 cache 570 and the memory partition unit
380 . When configured for general purpose parallel compu
tation , the SM 440 can also write commands that the
scheduler unit 320 can use to launch new work on the DPCs
420 .
[0101] The PPU 300 may be included in a desktop com
puter , a laptop computer , a tablet computer , servers , super
computers , a smart - phone (e . g . , a wireless , hand - held
device) , personal digital assistant (PDA) , a digital camera , a
vehicle , a head mounted display , a hand - held electronic
device , and the like . In an embodiment , the PPU 300 is
embodied on a single semiconductor substrate . In another
embodiment , the PPU 300 is included in a system - on - a - chip
(SoC) along with one or more other devices such as addi
tional PPUS 300 , the memory 204 , a reduced instruction set
computer (RISC) CPU , a memory management unit
(MMU) , a digital - to - analog converter (DAC) , and the like .
[0102] In an embodiment , the PPU 300 may be included
on a graphics card that includes one or more memory
devices 304 . The graphics card may be configured to inter
face with a PCIe slot on a motherboard of a desktop
computer . In yet another embodiment , the PPU 300 may be
an integrated graphics processing unit (iGPU) or parallel
processor included in the chipset of the motherboard .

Exemplary Computing System
[0103] Systems with multiple GPUs and CPUs are used in
a variety of industries as developers expose and leverage
more parallelism in applications such as artificial intelli
gence computing . High - performance GPU - accelerated sys
tems with tens to many thousands of compute nodes are
deployed in data centers , research facilities , and supercom
puters to solve ever larger problems . As the number of
processing devices within the high - performance systems
increases , the communication and data transfer mechanisms
need to scale to support the increased bandwidth .
[0104] FIG . 5B is a conceptual diagram of a processing
system 500 implemented using the PPU 300 of FIG . 3 , in
accordance with an embodiment . The exemplary system 565
may be configured to implement the method 100 shown in
FIG . 1 . The processing system 500 includes a CPU 530 ,
switch 510 , and multiple PPUS 300 each and respective
memories 304 . The NVLink 310 provides high - speed com
munication links between each of the PPUS 300 . Although
a particular number of NVLink 310 and interconnect 302
connections are illustrated in FIG . 5B , the number of con

US 2019 / 0163978 A1 May 30 , 2019

nections to each PPU 300 and the CPU 530 may vary . The
switch 510 interfaces between the interconnect 302 and the
CPU 530 . The PPUs 300 , memories 304 , and NVLinks 310
may be situated on a single semiconductor platform to form
a parallel processing module 525 . In an embodiment , the
switch 510 supports two or more protocols to interface
between various different connections and / or links .
[0105] In another embodiment (not shown) , the NVLink
310 provides one or more high - speed communication links
between each of the PPUS 300 and the CPU 530 and the
switch 510 interfaces between the interconnect 302 and each
of the PPUs 300 . The PPUS 300 , memories 304 , and
interconnect 302 may be situated on a single semiconductor
platform to form a parallel processing module 525 . In yet
another embodiment (not shown) , the interconnect 302
provides one or more communication links between each of
the PPUS 300 and the CPU 530 and the switch 510 interfaces
between each of the PPUS 300 using the NVLink 310 to
provide one or more high - speed communication links
between the PPUS 300 . In another embodiment (not shown) ,
the NVLink 310 provides one or more high - speed commu
nication links between the PPUs 300 and the CPU 530
through the switch 510 . In yet another embodiment (not
shown) , the interconnect 302 provides one or more commu
nication links between each of the PPUS 300 directly . One
or more of the NVLink 310 high - speed communication links
may be implemented as a physical NVLink interconnect or
either an on - chip or on - die interconnect using the same
protocol as the NVLink 310 .
[0106] In the context of the present description , a single
semiconductor platform may refer to a sole unitary semi
conductor - based integrated circuit fabricated on a die or
chip . It should be noted that the term single semiconductor
platform may also refer to multi - chip modules with
increased connectivity which simulate on - chip operation
and make substantial improvements over utilizing a conven
tional bus implementation . Of course , the various circuits or
devices may also be situated separately or in various com
binations of semiconductor platforms per the desires of the
user . Alternately , the parallel processing module 525 may be
implemented as a circuit board substrate and each of the
PPUS 300 and / or memories 304 may be packaged devices .
In an embodiment , the CPU 530 , switch 510 , and the parallel
processing module 525 are situated on a single semiconduc
tor platform .
[0107] In an embodiment , the signaling rate of each
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300
includes six NVLink 310 interfaces (as shown in FIG . 5B ,
five NVLink 310 interfaces are included for each PPU 300) .
Each NVLink 310 provides a data transfer rate of 25
Gigabytes / second in each direction , with six links providing
300 Gigabytes / second . The NVLinks 310 can be used exclu
sively for PPU - to - PPU communication as shown in FIG . 5B ,
or some combination of PPU - to - PPU and PPU - to - CPU ,
when the CPU 530 also includes one or more NVLink 310
interfaces .
108a mbodiment , the Nink31aw direct

load / store / atomic access from the CPU 530 to each PPU ' s
300 memory 304 . In an embodiment , the NVLink 310
supports coherency operations , allowing data read from the
memories 304 to be stored in the cache hierarchy of the CPU
530 , reducing cache access latency for the CPU 530 . In an
embodiment , the NVLink 310 includes support for Address
Translation Services (ATS) , allowing the PPU 300 to

directly access page tables within the CPU 530 . One or more
of the NVLinks 310 may also be configured to operate in a
low - power mode .
[0109] FIG . 5C illustrates an exemplary system 565 in
which the various architecture and / or functionality of the
various previous embodiments may be implemented . The
exemplary system 565 may be configured to implement the
method 100 shown in FIG . 1 .
[0110] As shown , a system 565 is provided including at
least one central processing unit 530 that is connected to a
communication bus 575 . The communication bus 575 may
be implemented using any suitable protocol , such as PCI
(Peripheral Component Interconnect) , PCI - Express , AGP
(Accelerated Graphics Port) , HyperTransport , or any other
bus or point - to - point communication protocol (s) . The sys
tem 565 also includes a main memory 540 . Control logic
(software) and data are stored in the main memory 540
which may take the form of random access memory (RAM) .
[0111] The system 565 also includes input devices 560 , the
parallel processing system 525 , and display devices 545 , e . g .
a conventional CRT (cathode ray tube) , LCD (liquid crystal
display) , LED (light emitting diode) , plasma display or the
like . User input may be received from the input devices 560 ,
e . g . , keyboard , mouse , touchpad , microphone , and the like .
Each of the foregoing modules and / or devices may even be
situated on a single semiconductor platform to form the
system 565 . Alternately , the various modules may also be
situated separately or in various combinations of semicon
ductor platforms per the desires of the user .
[0112] Further , the system 565 may be coupled to a
network (e . g . , a telecommunications network , local area
network (LAN) , wireless network , wide area network
(WAN) such as the Internet , peer - to - peer network , cable
network , or the like) through a network interface 535 for
communication purposes .
[0113] The system 565 may also include a secondary
storage (not shown) . The secondary storage 610 includes ,
for example , a hard disk drive and / or a removable storage
drive , representing a floppy disk drive , a magnetic tape
drive , a compact disk drive , digital versatile disk (DVD)
drive , recording device , universal serial bus (USB) flash
memory . The removable storage drive reads from and / or
writes to a removable storage unit in a well - known manner .
[0114) Computer programs , or computer control logic
algorithms , may be stored in the main memory 540 and / or
the secondary storage . Such computer programs , when
executed , enable the system 565 to perform various func
tions . The memory 540 , the storage , and / or any other storage
are possible examples of computer - readable media .
[0115] The architecture and / or functionality of the various
previous figures may be implemented in the context of a
general computer system , a circuit board system , a game
console system dedicated for entertainment purposes , an
application - specific system , and / or any other desired sys
tem . For example , the system 565 may take the form of a
desktop computer , a laptop computer , a tablet computer ,
servers , supercomputers , a smart - phone (e . g . , a wireless ,
hand - held device) , personal digital assistant (PDA) , a digital
camera , a vehicle , a head mounted display , a hand - held
electronic device , a mobile phone device , a television ,
workstation , game consoles , embedded system , and / or any
other type of logic .
[0116] While various embodiments have been described
above , it should be understood that they have been presented

US 2019 / 0163978 A1 May 30 , 2019

by way of example only , and not limitation . Thus , the
breadth and scope of a preferred embodiment should not be
limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following claims and their equivalents .

Graphics Processing Pipeline
[0117] In an embodiment , the PPU 300 comprises a graph
ics processing unit (GPU) . The PPU 300 is configured to
receive commands that specify shader programs for process
ing graphics data . Graphics data may be defined as a set of
primitives such as points , lines , triangles , quads , triangle
strips , and the like . Typically , a primitive includes data that
specifies a number of vertices for the primitive (e . g . , in a
model - space coordinate system) as well as attributes asso
ciated with each vertex of the primitive . The PPU 300 can
be configured to process the graphics primitives to generate
a frame buffer (e . g . , pixel data for each of the pixels of the
display) .
[0118] An application writes model data for a scene (e . g . ,
a collection of vertices and attributes) to a memory such as
a system memory or memory 304 . The model data defines
each of the objects that may be visible on a display . The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed . The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data . The commands may reference different shader
programs to be implemented on the SMs 440 of the PPU 300
including one or more of a vertex shader , hull shader ,
domain shader , geometry shader , and a pixel shader . For
example , one or more of the SMs 440 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data . In an embodiment , the
different SMS 440 may be configured to execute different
shader programs concurrently . For example , a first subset of
SMS 440 may be configured to execute a vertex shader
program while a second subset of SMS 440 may be config
ured to execute a pixel shader program . The first subset of
SMS 440 processes vertex data to produce processed vertex
data and writes the processed vertex data to the L2 cache 460
and / or the memory 304 . After the processed vertex data is
rasterized (e . g . , transformed from three - dimensional data
into two - dimensional data in screen space) to produce
fragment data , the second subset of SMS 440 executes a
pixel shader to produce processed fragment data , which is
then blended with other processed fragment data and written
to the frame buffer in memory 304 . The vertex shader
program and pixel shader program may execute concur
rently , processing different data from the same scene in a
pipelined fashion until all of the model data for the scene has
been rendered to the frame buffer . Then , the contents of the
frame buffer are transmitted to a display controller for
display on a display device .
[0119] FIG . 6 is a conceptual diagram of a graphics
processing pipeline 600 implemented by the PPU 300 of
FIG . 3 , in accordance with an embodiment . The graphics
processing pipeline 600 is an abstract flow diagram of the
processing steps implemented to generate 2D computer
generated images from 3D geometry data . As is well - known ,
pipeline architectures may perform long latency operations
more efficiently by splitting up the operation into a plurality
of stages , where the output of each stage is coupled to the
input of the next successive stage . Thus , the graphics pro

cessing pipeline 600 receives input data 601 that is trans
mitted from one stage to the next stage of the graphics
processing pipeline 600 to generate output data 602 . In an
embodiment , the graphics processing pipeline 600 may
represent a graphics processing pipeline defined by the
OpenGL® API . As an option , the graphics processing pipe
line 600 may be implemented in the context of the func
tionality and architecture of the previous Figures and / or any
subsequent Figure (s) .
[0120] As shown in FIG . 6 , the graphics processing pipe
line 600 comprises a pipeline architecture that includes a
number of stages . The stages include , but are not limited to ,
a data assembly stage 610 , a vertex shading stage 620 , a
primitive assembly stage 630 , a geometry shading stage 640 ,
a viewport scale , cull , and clip (VSCC) stage 650 , a raster
ization stage 660 , a fragment shading stage 670 , and a raster
operations stage 680 . In an embodiment , the input data 601
comprises commands that configure the processing units to
implement the stages of the graphics processing pipeline 600
and geometric primitives (e . g . , points , lines , triangles ,
quads , triangle strips or fans , etc .) to be processed by the
stages . The output data 602 may comprise pixel data (e . g . ,
color data) that is copied into a frame buffer or other type of
surface data structure in a memory .
[0121] The data assembly stage 610 receives the input data
601 that specifies vertex data for high - order surfaces , primi
tives , or the like . The data assembly stage 610 collects the
vertex data in a temporary storage or queue , such as by
receiving a command from the host processor that includes
a pointer to a buffer in memory and reading the vertex data
from the buffer . The vertex data is then transmitted to the
vertex shading stage 620 for processing .
[0122] The vertex shading stage 620 processes vertex data
by performing a set of operations (e . g . , a vertex shader or a
program) once for each of the vertices . Vertices may be , e . g . ,
specified as a 4 - coordinate vector (e . g . , < x , y , z , w >)
associated with one or more vertex attributes (e . g . , color ,
texture coordinates , surface normal , etc .) . The vertex shad
ing stage 620 may manipulate individual vertex attributes
such as position , color , texture coordinates , and the like . In
other words , the vertex shading stage 620 performs opera
tions on the vertex coordinates or other vertex attributes
associated with a vertex . Such operations commonly includ
ing lighting operations (e . g . , modifying color attributes for
a vertex) and transformation operations (e . g . , modifying the
coordinate space for a vertex) . For example , vertices may be
specified using coordinates in an object - coordinate space ,
which are transformed by multiplying the coordinates by a
matrix that translates the coordinates from the object - coor
dinate space into a world space or a normalized - device
coordinate (NCD) space . The vertex shading stage 620
generates transformed vertex data that is transmitted to the
primitive assembly stage 630 .
[0123] The primitive assembly stage 630 collects vertices
output by the vertex shading stage 620 and groups the
vertices into geometric primitives for processing by the
geometry shading stage 640 . For example , the primitive
assembly stage 630 may be configured to group every three
consecutive vertices as a geometric primitive (e . g . , a tri
angle) for transmission to the geometry shading stage 640 .
In some embodiments , specific vertices may be reused for
consecutive geometric primitives (e . g . , two consecutive
triangles in a triangle strip may share two vertices) . The

US 2019 / 0163978 A1 May 30 , 2019

primitive assembly stage 630 transmits geometric primitives
(e . g . , a collection of associated vertices) to the geometry
shading stage 640 .
[0124] The geometry shading stage 640 processes geo
metric primitives by performing a set of operations (e . g . , a
geometry shader or program) on the geometric primitives .
Tessellation operations may generate one or more geometric
primitives from each geometric primitive . In other words ,
the geometry shading stage 640 may subdivide each geo
metric primitive into a finer mesh of two or more geometric
primitives for processing by the rest of the graphics pro
cessing pipeline 600 . The geometry shading stage 640
transmits geometric primitives to the viewport SCC stage
650 .
[0125] In an embodiment , the graphics processing pipeline
600 may operate within a streaming multiprocessor and the
vertex shading stage 620 , the primitive assembly stage 630 ,
the geometry shading stage 640 , the fragment shading stage
670 , and / or hardware / software associated therewith , may
sequentially perform processing operations . Once the
sequential processing operations are complete , in an
embodiment , the viewport SCC stage 650 may utilize the
data . In an embodiment , primitive data processed by one or
more of the stages in the graphics processing pipeline 600
may be written to a cache (e . g . L1 cache , a vertex cache ,
etc .) . In this case , in an embodiment , the viewport SCC stage
650 may access the data in the cache . In an embodiment , the
viewport SCC stage 650 and the rasterization stage 660 are
implemented as fixed function circuitry .
[0126] The viewport SCC stage 650 performs viewport
scaling , culling , and clipping of the geometric primitives .
Each surface being rendered to is associated with an abstract
camera position . The camera position represents a location
of a viewer looking at the scene and defines a viewing
frustum that encloses the objects of the scene . The viewing
frustum may include a viewing plane , a rear plane , and four
clipping planes . Any geometric primitive entirely outside of
the viewing frustum may be culled (e . g . , discarded) because
the geometric primitive will not contribute to the final
rendredsen . Anggemetric primitive that partially
inside the viewing frustum and partially outside the viewing
frustum may be clipped (e . g . , transformed into a new
geometric primitive that is enclosed within the viewing
frustum . Furthermore , geometric primitives may each be
scaled based on a depth of the viewing frustum . All poten
tially visible geometric primitives are then transmitted to the
rasterization stage 660 .
[0127] The rasterization stage 660 converts the 3D geo
metric primitives into 2D fragments (e . g . capable of being
utilized for display , etc .) . The rasterization stage 660 may be
configured to utilize the vertices of the geometric primitives
to setup a set of plane equations from which various attri
butes can be interpolated . The rasterization stage 660 may
also compute a coverage mask for a plurality of pixels that
indicates whether one or more sample locations for the pixel
intercept the geometric primitive . In an embodiment , z - test
ing may also be performed to determine if the geometric
primitive is occluded by other geometric primitives that
have already been rasterized . The rasterization stage 660
generates fragment data (e . g . , interpolated vertex attributes
associated with a particular sample location for each covered
pixel) that are transmitted to the fragment shading stage 670 .
[0128] The fragment shading stage 670 processes frag
ment data by performing a set of operations (e . g . , a fragment

shader or a program) on each of the fragments . The fragment
shading stage 670 may generate pixel data (e . g . , color
values) for the fragment such as by performing lighting
operations or sampling texture maps using interpolated
texture coordinates for the fragment . The fragment shading
stage 670 generates pixel data that is transmitted to the raster
operations stage 680 .
[0129] The raster operations stage 680 may perform vari
ous operations on the pixel data such as performing alpha
tests , stencil tests , and blending the pixel data with other
pixel data corresponding to other fragments associated with
the pixel . When the raster operations stage 680 has finished
processing the pixel data (e . g . , the output data 602) , the pixel
data may be written to a render target such as a frame buffer ,
a color buffer , or the like .
[0130] It will be appreciated that one or more additional
stages may be included in the graphics processing pipeline
600 in addition to or in lieu of one or more of the stages
described above . Various implementations of the abstract
graphics processing pipeline may implement different
stages . Furthermore , one or more of the stages described
above may be excluded from the graphics processing pipe
line in some embodiments (such as the geometry shading
stage 640) . Other types of graphics processing pipelines are
contemplated as being within the scope of the present
disclosure . Furthermore , any of the stages of the graphics
processing pipeline 600 may be implemented by one or
more dedicated hardware units within a graphics processor
such as PPU 300 . Other stages of the graphics processing
pipeline 600 may be implemented by programmable hard
ware units such as the SM 440 of the PPU 300 .
[0131] The graphics processing pipeline 600 may be
implemented via an application executed by a host proces
sor , such as a CPU . In an embodiment , a device driver may
implement an application programming interface (API) that
defines various functions that can be utilized by an appli
cation in order to generate graphical data for display . The
device driver is a software program that includes a plurality
of instructions that control the operation of the PPU 300 . The
API provides an abstraction for a programmer that lets a
programmer utilize specialized graphics hardware , such as
the PPU 300 , to generate the graphical data without requir
ing the programmer to utilize the specific instruction set for
the PPU 300 . The application may include an API call that
is routed to the device driver for the PPU 300 . The device
driver interprets the API call and performs various opera
tions to respond to the API call . In some instances , the
device driver may perform operations by executing instruc
tions on the CPU . In other instances , the device driver may
perform operations , at least in part , by launching operations
on the PPU 300 utilizing an input / output interface between
the CPU and the PPU 300 . In an embodiment , the device
driver is configured to implement the graphics processing
pipeline 600 utilizing the hardware of the PPU 300 .
[0132] Various programs may be executed within the PPU
300 in order to implement the various stages of the graphics
processing pipeline 600 . For example , the device driver may
launch a kernel on the PPU 300 to perform the vertex
shading stage 620 on one SM 440 (or multiple SMS 440) .
The device driver (or the initial kernel executed by the PPU
400) may also launch other kernels on the PPU 400 to
perform other stages of the graphics processing pipeline
600 , such as the geometry shading stage 640 and the
fragment shading stage 670 . In addition , some of the stages

US 2019 / 0163978 A1 May 30 , 2019
13

of the graphics processing pipeline 600 may be implemented
on fixed unit hardware such as a rasterizer or a data
assembler implemented within the PPU 400 . It will be
appreciated that results from one kernel may be processed
by one or more intervening fixed function hardware units
before being processed by a subsequent kernel on an SM
440 .

Machine Learning
[0133] Deep neural networks (DNNs) developed on pro
cessors , such as the PPU 300 have been used for diverse use
cases , from self - driving cars to faster drug development ,
from automatic image captioning in online image databases
to smart real - time language translation in video chat appli
cations . Deep learning is a technique that models the neural
learning process of the human brain , continually learning ,
continually getting smarter , and delivering more accurate
results more quickly over time . A child is initially taught by
an adult to correctly identify and classify various shapes ,
eventually being able to identify shapes without any coach
ing . Similarly , a deep learning or neural learning system
needs to be trained in object recognition and classification
for it get smarter and more efficient at identifying basic
objects , occluded objects , etc . , while also assigning context
to objects .
[0134] At the simplest level , neurons in the human brain
look at various inputs that are received , importance levels
are assigned to each of these inputs , and output is passed on
to other neurons to act upon . An artificial neuron or percep
tron is the most basic model of a neural network . In one
example , a perceptron may receive one or more inputs that
represent various features of an object that the perceptron is
being trained to recognize and classify , and each of these
features is assigned a certain weight based on the importance
of that feature in defining the shape of an object .
10135] . A deep neural network (DNN) model includes
multiple layers of many connected nodes (e . g . , perceptrons ,
Boltzmann machines , radial basis functions , convolutional
layers , etc .) that can be trained with enormous amounts of
input data to quickly solve complex problems with high
accuracy . In one example , a first layer of the DNN model
breaks down an input image of an automobile into various
sections and looks for basic patterns such as lines and
angles . The second layer assembles the lines to look for
higher level patterns such as wheels , windshields , and
mirrors . The next layer identifies the type of vehicle , and the
final few layers generate a label for the input image , iden
tifying the model of a specific automobile brand .
[0136] Once the DNN is trained , the DNN can be
deployed and used to identify and classify objects or patterns
in a process known as inference . Examples of inference (the
process through which a DNN extracts useful information
from a given input) include identifying handwritten numbers
on checks deposited into ATM machines , identifying images
of friends in photos , delivering movie recommendations to
over fifty million users , identifying and classifying different
types of automobiles , pedestrians , and road hazards in
driverless cars , or translating human speech in real - time .
[0137] During training , data flows through the DNN in a
forward propagation phase until a prediction is produced
that indicates a label corresponding to the input . If the neural
network does not correctly label the input , then errors
between the correct label and the predicted label are ana
lyzed , and the weights are adjusted for each feature during

a backward propagation phase until the DNN correctly
labels the input and other inputs in a training dataset .
Training complex neural networks requires massive
amounts of parallel computing performance , including float
ing - point multiplications and additions that are supported by
the PPU 300 . Inferencing is less compute - intensive than
training , being a latency - sensitive process where a trained
neural network is applied to new inputs it has not seen before
to classify images , translate speech , and generally infer new
information .
[0138] Neural networks rely heavily on matrix math
operations , and complex multi - layered networks require
tremendous amounts of floating - point performance and
bandwidth for both efficiency and speed . With thousands of
processing cores , optimized for matrix math operations , and
delivering tens to hundreds of TFLOPS of performance , the
PPU 300 is a computing platform capable of delivering
performance required for deep neural network - based artifi
cial intelligence and machine learning applications .
What is claimed is :
1 . A method for detecting activity in video , comprising :
learning , through a reinforcement learning algorithm , a

policy to sequentially select a subset of frames of a
video and classify activity within the subset of frames
according to a plurality of predefined activity classifi
cations ;

using , by a recurrent neural network , the policy to detect
and classify activity in the video over a sequence of
steps determined according to a given time and / or
computation budget , including for each step of the
plurality of steps :
selecting a subset of frames of the video ,
predicting a segment from the selected subset of frames

including a temporal location of the segment in the
video , one or more of the plurality of predefined
activity classifications associated with the segment ,
and a next subset of frames to select for a next step
of the plurality of steps .

2 . The method of claim 1 , wherein the policy is param
eterized by 8 , and the goal of the policy learning is to
optimize parameters of the policy by minimizing loss of the
plurality of steps .

3 . The method of claim 1 , wherein the loss refers to
classification loss , localization loss , and retrieval loss .

4 . The method of claim 1 , wherein the policy is learned
using a partially observable Markov decision process
(POMDP) .

5 . The method of claim 4 , wherein the policy is learned
using approximation of gradients for an objective function
using a recurrent policy gradient approach .

6 . The method of claim 5 , wherein parameters of the
policy are learned with stochastic gradient descent .

7 . The method of claim 1 , wherein the reinforcement
learning algorithm rewards the policy as a function of a
change in error .

8 . The method of claim 7 , wherein the policy earns a
reward equal to any decrease in a temporal segmentation
error achieved by selecting a particular frame , and pays a
penalty when the temporal segmentation error increases .

9 . The method of claim 1 , wherein or each step of the
plurality of steps the policy receives as input a location of a
frame to observe and a history of any prior observed frames .

10 . The method of claim 1 , wherein the plurality of
predefined activity classifications includes :

US 2019 / 0163978 A1 May 30 , 2019
14

a first set of activity classifications for different fore
ground activities , and

a second activity classification for background activity .
11 . A system for detecting activity in video , comprising :
a computer processor executing a reinforcement learning

algorithm to learn a policy to sequentially select a
subset of frames of a video and classify activity within
the subset of frames according to a plurality of pre
defined activity classifications ; and

a recurrent neural network that uses the policy to detect
and classify activity in the video over a sequence of
steps determined according to a given time and / or
computation budget , including for each step of the
plurality of steps :
selecting a subset of frames of the video ,
predicting a segment from the selected subset of frames

including a temporal location of the segment in the
video , one or more of the plurality of predefined
activity classifications associated with the segment ,
and a next subset of frames to select for a next step
of the plurality of steps .

12 . The system of claim 11 , wherein the policy is param
eterized by ® , and the goal of the policy learning is to
optimize parameters of the policy by minimizing loss of the
plurality of steps .

13 . The system of claim 11 , wherein the loss refers to
classification loss , localization loss , and retrieval loss .

14 . The system of claim 11 , wherein the policy is learned
using a partially observable Markov decision process
(POMDP) .

15 . The system of claim 14 , wherein the policy is learned
using approximation of gradients for an objective function
using a recurrent policy gradient approach .

16 . The system of claim 15 , wherein parameters of the
policy are learned with stochastic gradient descent .

17 . The system of claim 11 , wherein the reinforcement
learning algorithm rewards the policy as a function of a
change in error .

18 . The system of claim 17 , wherein the policy earns a
reward equal to any decrease in a temporal segmentation
error achieved by selecting a particular frame , and pays a
penalty when the temporal segmentation error increases .

19 . The system of claim 11 , wherein or each step of the
plurality of steps the policy receives as input a location of a
frame to observe and a history of any prior observed frames .

20 . The system of claim 11 , wherein the plurality of
predefined activity classifications includes :

a first set of activity classifications for different fore
ground activities , and

a second activity classification for background activity .
21 . A non - transitory computer - readable media storing

computer instructions for detecting activity in video that ,
when executed by one or more processors , cause the one or
more processors to perform the method comprising :

learning , through a reinforcement learning algorithm , a
policy to sequentially select a subset of frames of a
video and classify activity within the subset of frames
according to a plurality of predefined activity classifi
cations ;

using , by a recurrent neural network , the policy to detect
and classify activity in the video over a sequence of
steps determined according to a given time and / or
computation budget , including for each step of the
plurality of steps :
selecting a subset of frames of the video ,
predicting a segment from the selected subset of frames

including a temporal location of the segment in the
video , one or more of the plurality of predefined
activity classifications associated with the segment ,
and a next subset of frames to select for a next step
of the plurality of steps .

