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Detection of activity in video content , and more particularly 
detecting in video start and end frames inclusive of an 
activity and a classification for the activity , is fundamental 
for video analytics including categorizing , searching , index 
ing , segmentation , and retrieval of videos . Existing activity 
detection processes rely on a large set of features and 
classifiers that exhaustively run over every time step of a 
video at multiple temporal scales , or as a small improvement 
computationally propose segments of the video on which to 
perform classification . These existing activity detection pro 
cesses , however , are computationally expensive , particularly 
when trying to achieve activity detection accuracy , and 
moreover are not configurable for any particular time or 
computation budget . The present disclosure provides a time 
and / or computation budget - aware method for detecting 
activity in video that relies on a recurrent neural network 
implementing a learned policy . 
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BUDGET - AWARE METHOD FOR 
DETECTING ACTIVITY IN VIDEO 

including a temporal location of the segment in the video , 
one or more of the plurality of predefined activity classifi 
cations associated with the segment , and a next subset of 
frames to select for a next step of the plurality of steps . CLAIM OF PRIORITY 

[ 0001 ] This application claims the benefit of U . S . Provi 
sional Application No . 62 / 592 , 990 ( Attorney Docket No . 
NVIDP1202 + / 17 - SC - 0278US01 ) titled " BUDGET 
AWARE ACTIVITY DETECTION WITHA RECURRENT 
POLICY NETWORK , ” filed Nov . 30 , 2017 , the entire 
contents of which is incorporated herein by reference . 

TECHNICAL FIELD 
[ 0002 ] The present disclosure relates to detecting activity 
in video . 

BACKGROUND 
[ 0003 ] Detection of activity in video content , and more 
particularly detecting in video content start and end frames 
inclusive of an activity and a classification for the activity , 
is fundamental for video analytics including categorizing , 
searching , indexing , segmentation , and retrieval of videos . 
For example , video - based content platforms , such as You 
Tube which hosts a wide variety of video content created by 
a very large user base , rely on activity detection processes to 
allow for searching , categorizing , etc . of the videos 
uploaded by its users . Recent improvements to activity 
detection processes have specifically focused on advancing 
activity detection accuracy . However , improved accuracy 
has been provided at the expense of processing time and 
computer resources ( e . g . memory , processor , etc . consump 
tion ) . 
[ 0004 ] For example , some existing activity detection pro 
cesses rely on a large set of features and classifiers that 
exhaustively run over every time step at multiple temporal 
scales . This sliding window approach is computationally 
expensive since it requires classification at every time step 
of a video . Some improvements have been made to these 
existing activity detection processes in order to avoid such 
exhaustive evaluations , where temporal segments of a video 
that are likely to contain a certain action are proposed , and 
then a separate classifier is applied to each of the proposed 
temporal segments for classification purposes . However , 
these improved activity detection processes are suboptimal 
for numerous reasons , including that they divide activity 
detection into two disjointed steps : proposal and classifica 
tion , and also that they generally propose a large number of 
temporal segments which is still computationally expensive . 
[ 0005 ] . There is a need for addressing these issues and / or 
other issues associated with the prior art . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0007 ] FIG . 1 illustrates a flowchart of a budget - aware 
method for detecting activity in video , in accordance with an 
embodiment . 
[ 0008 ] FIG . 2A illustrates a block diagram of the inputs 
and outputs for a policy usable by a recurrent neural network 
to detect activity in a video according to a given time and / or 
computational budget , in accordance with an embodiment . 
100091 . FIG . 2B illustrates a block diagram of a sequence 
of steps taken by a recurrent neural network to detect activity 
in a video according to a given time budget , in accordance 
with an embodiment . 
[ 0010 ] . FIG . 2C illustrates an exemplary flow of activity 
detection for a video using a budget - aware method , in 
accordance with an embodiment . 
[ 0011 ] FIG . 3 illustrates a parallel processing unit , in 
accordance with an embodiment . 
[ 0012 ] FIG . 4A illustrates a general processing cluster 
within the parallel processing unit of FIG . 3 , in accordance 
with an embodiment . 
[ 0013 ] FIG . 4B illustrates a memory partition unit of the 
parallel processing unit of FIG . 3 , in accordance with an 
embodiment . 
[ 0014 ] FIG . 5A illustrates the streaming multi - processor 
of FIG . 4A , in accordance with an embodiment . 
[ 0015 ] FIG . 5B is a conceptual diagram of a processing 
system implemented using the PPU of FIG . 3 , in accordance 
with an embodiment . 
[ 0016 ] FIG . 5C illustrates an exemplary system in which 
the various architecture and / or functionality of the various 
previous embodiments may be implemented . 
[ 0017 ] FIG . 6 is a conceptual diagram of a graphics 
processing pipeline implemented by the PPU of FIG . 3 , in 
accordance with an embodiment . 

SUMMARY 
[ 0006 ] A budget - aware method , computer readable 
medium , and system are disclosed for detecting activity in 
video . In use , a reinforcement learning algorithm is used to 
learn a policy to sequentially select a subset of frames of a 
video and classify activity within the subset of frames 
according to a plurality of predefined activity classifications . 
Additionally , a recurrent neural network uses the policy to 
detect and classify activity in the video over a sequence of 
steps determined according to a given time or computation 
budget . For each step of the plurality of steps , the detection 
includes selecting a subset of frames of the video , and 
predicting a segment from the selected subset of frames 

DETAILED DESCRIPTION 
[ 0018 ] Detection of activity in video content , and more 
particularly detecting in video start and end frames inclusive 
of an activity and a classification for the activity , is funda 
mental for video analytics including categorizing , searching , 
indexing , segmentation , and retrieval of videos . Existing 
activity detection processes rely on a large set of features 
and classifiers that exhaustively run over every time step of 
a video at multiple temporal scales , or as a small improve 
ment computationally propose segments of the video on 
which to perform classification . These existing activity 
detection processes , however , are computationally expen 
sive , particularly when trying to achieve activity detection 
accuracy , and moreover are not configurable for any par 
ticular time or computation budget . 
[ 0019 ] The present disclosure provides a budget - aware 
method for detecting activity in video . In particular , the 
activity detection method learns to optimally select a subset 
of video frames to process based on a given time or 
computation budget . Accordingly , the activity detection pro 
cess can be optimized for the given time or computation 
budget . 
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[ 0020 ] FIG . 1 illustrates a flowchart of a budget - aware 
method for detecting activity in video , in accordance with an 
embodiment . In the context of the present description , the 
video includes any type or format of video content that is 
comprised of a sequence of displayable frames . The video 
may be short or long , depending on the number of frames 
included therein , and in any case is stored in computer 
memory . The activity detection method 100 is budget - aware 
in that it is dynamically adjusted according to a given ( i . e . 
specified ) time or computational budget . In other words , the 
activity detection method 100 is self - adjusting to detect 
activity within ( i . e . without exceeding ) a particular time 
given and / or a particular computational budget ( i . e . band 
width ) given . 
[ 0021 ] The method 100 may be performed by a processing 
unit , a program , custom circuitry , or by a combination 
thereof . For example , the method 100 may be executed by 
a GPU ( graphics processing unit ) , CPU ( central processing 
unit ) , or any processor such as those described below . 
Furthermore , persons of ordinary skill in the art will under 
stand that any system that performs method 100 is within the 
scope and spirit of embodiments of the present disclosure . 
[ 0022 ] In operation 102 , a reinforcement learning algo 
rithm is used to learn a policy to sequentially select a subset 
of frames of a video and classify activity within the subset 
of frames according to a plurality of predefined activity 
classifications . Thus , the policy , when used , implements a 
sequential decision making process where each step is a 
decision that determines the subset of frames in the video to 
select for activity detection purposes . In particular , at each 
sequential step , the policy receives as input a location of a 
frame to observe and a history of any prior observed frames , 
and then produces three outputs , including : ( 1 ) a temporal 
location ( start and end ) of a segment in the video having a 
detected activity , ( 2 ) one or more of the plurality of pre 
defined activity classifications associated with the segment , 
and ( 3 ) a next frame for a next step of the sequential decision 
making process . 
[ 0023 ] The policy is parameterized by 0 , and the goal of 
the policy learning is to optimize the parameters of the 
policy by minimizing the loss incurred over the sequential 
steps , where loss refers to classification loss , localization 
loss , and / or retrieval loss . Since any estimated temporal 
segments ( i . e . consecutive frames with a same activity 
classification ) for a video will be computed through the 
sequence of steps , the objective function of the policy 
becomes non - decomposable and non - differentiable . Thus , in 
one embodiment , the policy is learned using a partially 
observable Markov decision process ( POMDP ) , and as a 
further option the approximation of gradients for the objec 
tive function using a recurrent policy gradient approach . 
This allows the policy , and in particular its parameters , to be 
learned with stochastic gradient descent , in one embodi 
ment . 
0024 ] Moreover , the reinforcement learning algorithm , 
which as noted above is used to learn the policy , may reward 
the policy as a function of a change in error . For example , 
the policy may earn a reward for ( e . g . equal to ) any decrease 
in the temporal segmentation error achieved by selecting a 
particular frame , and may pay a penalty when the temporal 
segmentation error increases . 
[ 0025 ] Additionally , in operation 104 , a recurrent neural 
network uses the policy to detect and classify activity in the 
video over a sequence of steps determined according to a 

given time and / or computation budget . Thus , the time ( e . g . 
in seconds , etc . ) and / or computation ( e . g . in number of 
computations , etc . ) budget may limit the number of sequen 
tial steps performed to detect and classify the activity in the 
video . For each step of the plurality of steps , the detection 
includes selecting a subset of frames of the video , and 
predicting a segment from the selected subset of frames 
including a temporal location of the segment in the video , 
one or more of the plurality of predefined activity classifi 
cations associated with the segment , and a next subset of 
frames to select for a next step of the plurality of steps . 
[ 0026 ] As noted above , the policy may receive as input a 
location of a frame to observe and a history of any prior 
observed frames , and from that input the policy may then 
predict the aforementioned segment in the video . Specifi 
cally , the policy produces three outputs , including : ( 1 ) the 
temporal location ( start and end ) of the segment in the video 
having a detected activity , ( 2 ) one or more of the plurality of 
predefined activity classifications associated with the seg 
ment , and ( 3 ) a next frame for a next step of the sequential 
decision making process . The policy produces the output 
based on local information of a neighborhood of frames 
centered on the frame to observe and the history of the prior 
observed frames . 
[ 0027 ] To this end , the recurrent neural network may use 
the learned policy to detect and classify activity in the video 
over a sequence of steps that is determined according to a 
given time and / or computation budget . Moreover , use of the 
policy allows the activity detection accuracy to be maxi 
mized for the given time and / or computation budget . 
[ 0028 ] More illustrative information will now be set forth 
regarding various optional architectures and features with 
which the foregoing framework may be implemented , per 
the desires of the user . It should be strongly noted that the 
following information is set forth for illustrative purposes 
and should not be construed as limiting in any manner . Any 
of the following features may be optionally incorporated 
with or without the exclusion of other features described . 
[ 0029 ] Given a video v and a set of activity labels L , the 
goal is to predict for each frame a single label from L . Each 
temporal extent consisting of consecutive frames with the 
same label is called a semantic temporal segment . Given a 
limited time budget , it is infeasible to process every single 
frame in a video . So we aim to detect and classify the 
foreground segments by only observing a small subset of 
video frames x CV . 
[ 0030 ] Assuming limited access to the frames of v , finding 
the optimal frame subset x is inherently a sequential decision 
making task . Accordingly , we draw on ideas from reinforce 
ment learning an area that focuses on learning for sequen 
tial decision making problems . Our aim is to learn a policy 
nt , parameterized by 0 , to sequentially select the frames from 
v and form the subset x . Alongside the selection process , it 
outputs the current belief about the foreground segment and 
the associated class label . This sequential decision making 
process intuitively resembles how humans search activities 
in a video , i . e . , iteratively refine our estimated temporal 
boundaries by sequentially choosing a few frames to 
observe . 

[ 0031 ] Let G denote the ground truth segments in V , and 
M be the set of estimated semantic temporal segments 
from observing x . We define the deterministic indicator Img 
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to identify whether an estimated segment mEm is 
assigned to a ground truth segment gEG : 

( Equation 1 ) ( 1 g = argiled a ( m , g ' ) subject to a > 0 
otherwise , mg 10 

[ 0032 ] where a is the intersection over union ( IU ) . Let om 
and c , indicate the probability distribution and the one - hot 
representation of class label for segments m and g . For a 
subset of selected frames x and a set of predicted segments 
ms , our loss is defined as : 

Lo = ( Equation 2 ) 
m [ 1cAcis ( Cm , Cg ) + Abcalm , lg ) ] + A - Aret ( M G ) 

[ 0033 ] where Acis is the multi - class classification error , 
Aloe is the localization error with Im and 1 , identifying the 
locations of segments m and g , and yet is the segment 
retrieval error . The most important property of Arer is that 
while it encourages the model to detect all foreground 
segments , it also discourages the model from producing 
many false positives . 
[ 0034 ] We now explain how to formulate each individual 
error defined in Equation 2 . In contrast to using a binary 
classification loss , we employ a multi - class cross - entropy 
loss Acts = - c , log cm . Unlike penalizing the localization 
based on the absolute error , this loss should also depend on 
the duration of a segment , i . e . , the same amount of absolute 
error should be treated differently for short and long inter 
vals . This means that if the policy makes a small error for a 
short segment this error should be considered relatively 
large , otherwise the algorithm would ignore the small seg 
ments . With this intention , we define 

Ajoellmig ) = E ( g ) x | | M , , m . ) , ( 898 ) | | 
[ 0035 ] where & ( g ) is a scaling factor which depends on the 
length of segment g , 11• is the distance between two seg 
ments , m , and me are the start and end of segment m , similar 
for segment g . To define the segment retrieval loss Arell M , 
G ) , we use the mAP criteria , where mean is over different 
class labels , and AP for each individual class is defined as 
AP ( M , G ) = 2 ; Prec ( MX ( i ) , ) xARecall , where MX ( i ) is the 
subset of my until the ith segment ranked by the overlap 
with ground truth , Prec ( ) is the precision of detection , and 
A Recall is the change of recall from previous subset . Given a 
training set of N videos { V1 , . . . , Vy } , our goal is to find o 
that minimizes : 

process in selecting video frames . In order to solve this 
difficulty , we reformulate our problem as a reinforcement 
learning problem , as described with reference to FIG . 2A 
below , which allows us to define an equivalent reward 
function to the original objective function . 
[ 0037 ] FIG . 2A illustrates a block diagram 200 of the 
inputs and outputs for a policy usable by a recurrent neural 
network to detect activity in a video according to a given 
time and / or computational budget , in accordance with an 
embodiment . For example , the policy described with respect 
to FIG . 2A may be one embodiment of the policy learned 
and used in the manner described above with reference to the 
method 100 of FIG . 1 . 
[ 0038 ] In the present embodiment , policy i with param 
eters is learned for use by a recurrent neural network to 
detect activity in a video according to a given time and / or 
computational budget . The recurrent neural network uses the 
policy u to make a sequence of decisions , or predictions , 
based on the local information from the most recent 
observed frame , as described in more detail below with 
respect to FIG . 2B . At each step , the policy produces three 
outputs including the estimate of the start frame and end 
frame the current potentialtemprasegment , the predic 
tion of the classification ( s ) associated with the segment , and 
the next frame to observe . Unlike binary classification 
models , this approach uses a multi - class classifier , which 
means only the single policy a needs to be trained rather 
than training multiple different policies for each different 
classification . This approach avoids a binary prediction 
indicator signal , since it can directly discard those segments 
predicted with the background classification . 
[ 0039 ] Due to the local observation at each step , the policy 
has no access to the global state ( i . e . , the entire video ) . This 
resembles the partially observable Markov decision process 
( POMDP ) , which assumes that despite the existence of a 
global state , for practical reasons an agent does not have a 
full observation of the global state . A recurrent policy 
gradient approach is used to maintain an approximate belief 
of the current state s , by Long Short - Term Memory ( LSTM ) . 
10040 ) Particularly , suppose at step t the current frame is 
i , the policy it makes a decision based on ( 1 ) the local 
information of a neighborhood N , centered around i and ( 2 ) 
the history of previous observations . The local information 
is captured through an observation feature 0 = [ 4 ( N ; ) , ( Ni ) , 
Et ] , where y ( N ; ) is an indicator vector that identifies whether 
each frame in Ni has been previously selected , Q ( N , ) is the 
average of per - class confidence predicted in N ; , and ÉtE [ 0 , 1 ] 
is the normalized location of the current frame at step t . The 
inclusion of Et is helpful in encouraging the policy to cover 
broader video content . Excluding £t may result in a consid 
erable number of over - selection of frames . Note that for Q , 
the averaged confidence of estimated segments is computed , 
which share the frames in N . As for the history of the 
decision makings , the hidden state h - 1 of LSTM is used to 
maintain the context of previous observations up to step t . 
[ 0041 ] To summarize , the global state at step t is approxi 
mated by the internal state h , of LSTM , which depends on 
the current observation o , and the previous state h . Given 
h , the outputs of the policy n are v2 [ 1 , Ct , $ t + 1 ] : ( 1 ) the 
location l , of an estimated temporal segment , ( 2 ) the prob 
ability distribution over activity class labels Cz , and ( 3 ) the 
location of the next observation Et + 1 . This formulation 
allows the policy to perform both forward and backward 
frame selections . In order to further improve the exploration 

( Equation 3 ) 0 = argija 2 ( L . ) < * L , G ) = 

[ 0036 ] Unfortunately , the standard back - propagation is 
not applicable to learn the parameters in Equation 3 , as the 
objective function in Equation 2 contains the non - differen 
tiable components . This is mainly due to the non - decom 
posable AP , as well as the sequential decision making 
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[ 0049 ] where the first term is a sum over the log of 
p ( h , ] ht - 1 ) , a constant with respect to 0 . This therefore results 
in the following gradient : 

Velog p ( H10 ) = 2 – 1 " Velog a ( V , \ he _ 100 ) , 
[ 0050 ] It is common to use the Monte - Carlo integration to 
approximate the integration over the probability of observ 
ing a sequence of hidden states . Specifically , the approxi 
mate gradient is computed by running the current policy on 
N training videos to generate N trajectories . Combining 
aforementioned derivations and Equation 5 , the approximate 
gradient is obtained as : 

NT ( Equation 6 ) 

Polañ ?lvo logrev " \ 14 , 0 % RACE ) n = 1 t = 1 

at training phase , instead of directly using $ 1 + 1 , the next 
selected location may be sampled from a Gausssian distri 
bution with a mean equal to $ t + 1 and a fixed variance . 
[ 0042 ] The goal of policy learning is to jointly optimize 
the parameters of a by minimizing the loss of a sequence of 
policy actions as defined in Equation 2 . These actions are 
taken from the initial state So , when no frames are selected , 
until the final state st , where T is the number of steps 
specified according to a time and / or computation budget . 
[ 0043 ] The main difficulty in policy learning is that the 
estimated temporal segments M for a video are computed 
through a sequence of policy decisions , resulting in a 
non - decomposable and non - differentiable objective func 
tion . Moreover , a decision that the policy makes at any step 
depends on the history of decisions that the policy has made 
in previous steps , and also impacts the decisions available to 
the policy in the future . A recurrent policy gradient approach 
is used for addressing this POMDP problem , which provides 
better theoretical bounds on the learning objective to 
approximate the gradients of the non - decomposable and 
non - differentiable objective function , so that the policy can 
be efficiently learned with stochastic gradient descent . 
[ 0044 ] To follow the general reinforcement learning for 
mulation , let r be the immediate reward associated with a 
state Sz . Since s?h , in the policy , r is defined as r ( h . ) = L ( 
MX - 1 , G ) - Lo ( M , G ) , where L , is the loss associated 
with a set of estimated temporal segments as defined in 
Equation 2 . Intuitively , r ( h . ) states that the policy earns an 
immediate reward equal to the decrease in the temporal 
segmentation error achieved by selecting an observed frame , 
or pays a penalty if the temporal segmentation error 
increases . Let R ( H ) be the discounted accumulated reward 
starting from the state s , and continuing the policy up to the 
final state : 

$ 7iR ( H ) = 2 , 477 ? " * r ( hu ) 
[ 0045 ] where H = { h , , . . . , hz ] represents the history of 
hidden states in LSTM , and TE ( 0 , 1 ) is the discount factor . 
H , can be interpreted as the trajectory of observations for a 
sample run of the policy from the initial state . For notational 
simplicity , we use H for H , in the description below . The 
goal of policy learning is transformed to find the parameters 
0 * to maximize J ( 0 ) which is defined as : 

J ( O ) = E [ R ( H ) ] = { p ( H10 ) R $ ( H ) dH ( Equation 4 ) 

[ 0046 ] where p ( HO ) is the probability of observing a 
sequence of hidden states H , given a policy i defined by the 
parameters 8 . It can be shown that maximizing J ( 0 ) implic 
itly minimizes L , along the trajectory of policy executions . 
The gradient needs to be computed with respect to the policy 
parameters VoJ , which is given by : 

VOJ [ V & P ( H10 ) R ( H ) + p ( H10 ) VR $ ( H ) ] dH ( Equation 5 ) 

[ 0047 ] Note that given the sequence of hidden states H , 
which determines the history of selected frames , the reward 
function does not depend on the policy parameters , yielding 
VaRo ( H ) = 0 . To further simplify Equation 5 , VoP ( HO ) is 
defined . First , p ( HO ) is factorized as : 

P ( H10 ) = P ( h . ) I – , p ( h , 1 , _ 1 ] [ v , \ h _ _ 130 ) 
[ 0048 ] where the same notation õ is used to denote the 
output of the policy . Based on this we have : 

p ( H10 ) = const + 2 log a { v } \ hy 1 , 0 ) 

[ 0051 ] Since the policy gradient methods usually suffer 
from the high variance of gradient estimates , a bias is 
subtracted from the expected reward R . However , rather 
than taking a constant bias , the bias value is set to be the 
reward obtained from a random selection policy . 
[ 0052 ] FIG . 2B illustrates a block diagram 210 of a 
sequence of steps taken by a recurrent neural network to 
detect activity in a video according to a given time budget , 
in accordance with an embodiment . For example , the recur 
rent neural network described with respect to FIG . 2B may 
ben embodiment therecurrentneural network 
described above with reference to the method 100 of FIG . 1 . 
[ 0053 ] As shown , a plurality of time step T are determined 
based on a given time or computation budget . During each 
time step , the global state is approximated by the internal 
state of LSTM , which depends on the current observation 
( i . e . for a selected frame and its neighboring frames ) and the 
previous state . For example , the global state at step t is 
approximated by the internal state h , of LSTM , which 
depends on the current observation o , ( i . e . of a neighborhood 
centered around the current selected frame and the previous 
state ht - 1 
[ 0054 ] For each step , the policy predicts a segment m , and 
produces three outputs : the temporal location lt ( i . e . , start 
and end ) of the segment , the estimated class ct associated 
with the segment , and the next frame to observe at Et + 1 . 
According to a specified time budget , the policy runs for T 
steps then completes the detection process . 
[ 0055 ] For each step , given the internal state of LSTM , the 
policy predicts a segment m , and produces three outputs : ( 1 ) 
the temporal location 1 ( i . e . start and end frame ) of the 
segment , ( 2 ) the estimated class c associated with the 
segment ( e . g . the probability distribution over activity class 
labels c ) , and ( 3 ) the next frame to observe & ( e . g . the 
location of the next observation ) . In the example shown at 
step t , the outputs of the policy are v = [ 1 , C , Ext ] : ( 1 ) the 
location l , of an estimated temporal segment , ( 2 ) the prob 
ability distribution over activity class labels C , and ( 3 ) the 
location of the next observation Ext . This formulation 
allows the policy to perform both forward and backward 
frame selections . This formulation allows the policy to 
perform both forward and backward frame selections . As an 
option , instead of directly using $ x + 1 , the next selected 
location may be sampled from a Gausssian distribution with 
a mean equal to Et + 1 and a fixed variance . 
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[ 0056 ] Activity detection for the video , including deter 
mining the start and end frames for an activity as well as a 
classification for the activity , can be determined from the 
contents of the LSTM after the final time step . 
[ 0057 ] The budget - aware method described above 
achieves competitive detection accuracy under various Inter 
section over Union ( IU ) thresholds for activity detection , 
and further performs activity detection in only 0 . 35 seconds 
for each untrimmed long video . This is orders of magnitude 
faster than most other competing algorithms relying on 
sliding windows or segment proposals . 
[ 0058 ] FIG . 2C illustrates an exemplary flow 220 of 
activity detection for a video using a budget - aware method , 
in accordance with an embodiment . It should be noted that 
the activity detection shown in FIG . 2C is set forth for 
illustrative purposes only and a use - case of the budget - aware 
activity detection described above with reference to FIG . 
2B . 
[ 0059 ] As shown , given a time or computation budget that 
allows for 6 time steps , the recurrent neural network uses a 
policy ( e . g . learned as described with respect to FIG . 2A ) to 
detect activity in a video . At Step 1 , the policy predicts 
activity for a given frame and its neighboring frames and 
outputs ( 1 ) the temporal location of the predicted segment 
for the activity as starting at frame 2454 and ending at frame 
3052 , ( 2 ) the estimated class ( category ) associated with the 
segment as being Background as well as the probability 
distribution for Background as 0 . 76 ) , and ( 3 ) the next frame 
to observe ( not shown ) . At Step 2 , the policy predicts 
activity for ( 3 ) output by the prior time step and its neigh 
boring frames and outputs ( 1 ) the temporal location of the 
predicted segment for the activity as starting at frame 3329 
and ending at frame 4418 , ( 2 ) the estimated class ( category ) 
associated with the segment as being Activity 1 as well as 
the probability distribution for Activity 1 as 0 . 51 ) , and ( 3 ) 
the next frame to observe ( not shown ) . 
[ 0060 ] For each subsequent time step the recurrent neural 
network continues to use the policy to predict activity in the 
manner shown . In one embodiment , the recurrent neural 
network may directly discard the segments that are predicted 
as Background . Based on the history of the policy outputs 
over the 6 time steps , the recurrent neural network deter 
mines activities , their associated classifications , as well as 
their temporal locations for the video . 

set forth for illustrative purposes only , and that any proces 
sor may be employed to supplement and / or substitute for the 
same . 
10062 ] One or more PPUs 300 may be configured to 
accelerate thousands of High Performance Computing 
( HPC ) , data center , and machine learning applications . The 
PPU 300 may be configured to accelerate numerous deep 
learning systems and applications including autonomous 
vehicle platforms , deep learning , high - accuracy speech , 
image , and text recognition systems , intelligent video ana 
lytics , molecular simulations , drug discovery , disease diag 
nosis , weather forecasting , big data analytics , astronomy , 
molecular dynamics simulation , financial modeling , robot 
ics , factory automation , real - time language translation , 
online search optimizations , and personalized user recom 
mendations , and the like . 
[ 0063 ] As shown in FIG . 3 , the PPU 300 includes an 
Input / Output ( I / O ) unit 305 , a front end unit 315 , a scheduler 
unit 320 , a work distribution unit 325 , a hub 330 , a crossbar 
( Xbar ) 370 , one or more general processing clusters ( GPCs ) 
350 , and one or more memory partition units 380 . The PPU 
300 may be connected to a host processor or other PPUS 300 
via one or more high - speed NVLink 310 interconnect . The 
PPU 300 may be connected to a host processor or other 
peripheral devices via an interconnect 302 . The PPU 300 
may also be connected to a local memory comprising a 
number of memory devices 304 . In an embodiment , the local 
memory may comprise a number of dynamic random access 
memory ( DRAM ) devices . The DRAM devices may be 
configured as a high - bandwidth memory ( HBM ) subsystem , 
with multiple DRAM dies stacked within each device . 
10064 ) The NVLink 310 interconnect enables systems to 
scale and include one or more PPUS 300 combined with one 
or more CPUs , supports cache coherence between the PPUS 
300 and CPUs , and CPU mastering . Data and / or commands 
may be transmitted by the NVLink 310 through the hub 330 
to / from other units of the PPU 300 such as one or more copy 
engines , a video encoder , a video decoder , a power man 
agement unit , etc . ( not explicitly shown ) . The NVLink 310 
is described in more detail in conjunction with FIG . 5B . 
[ 0065 ) The I / O unit 305 is configured to transmit and 
receive communications ( e . g . , commands , data , etc . ) from a 
host processor ( not shown ) over the interconnect 302 . The 
I / O unit 305 may communicate with the host processor 
directly via the interconnect 302 or through one or more 
intermediate devices such as a memory bridge . In an 
embodiment , the I / O unit 305 may communicate with one or 
more other processors , such as one or more the PPUS 300 via 
the interconnect 302 . In an embodiment , the I / O unit 305 
implements a Peripheral Component Interconnect Express 
( PCIe ) interface for communications over a PCIe bus and 
the interconnect 302 is a PCIe bus . In alternative embodi 
ment , the unit 305may implement other types of 
well - known interfaces for communicating with external 
devices . 
10066 ] The I / O unit 305 decodes packets received via the 
interconnect 302 . In an embodiment , the packets represent 
commands configured to cause the PPU 300 to perform 
various operations . The I / O unit 305 transmits the decoded 
commands to various other units of the PPU 300 as the 
commands may specify . For example , some commands may 
be transmitted to the front end unit 315 . Other commands 
may be transmitted to the hub 330 or other units of the PPU 
300 such as one or more copy engines , a video encoder , a 

Parallel Processing Architecture 
[ 0061 ] FIG . 3 illustrates a parallel processing unit ( PPU ) 
300 , in accordance with an embodiment . In an embodiment , 
the PPU 300 is a multi - threaded processor that is imple 
mented on one or more integrated circuit devices . The PPU 
300 is a latency hiding architecture designed to process 
many threads in parallel . A thread ( e . g . , a thread of execu 
tion ) is an instantiation of a set of instructions configured to 
be executed by the PPU 300 . In an embodiment , the PPU 
300 is a graphics processing unit ( GPU ) configured to 
implement a graphics rendering pipeline for processing 
three - dimensional ( 3D ) graphics data in order to generate 
two - dimensional ( 2D ) image data for display on a display 
device such as a liquid crystal display ( LCD ) device . In 
other embodiments , the PPU 300 may be utilized for per 
forming general - purpose computations . While one exem 
plary parallel processor is provided herein for illustrative 
purposes , it should be strongly noted that such processor is 
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video decoder , a power management unit , etc . ( not explicitly 
shown ) . In other words , the I / O unit 305 is configured to 
route communications between and among the various logi 
cal units of the PPU 300 . 
[ 0067 ] In an embodiment , a program executed by the host 
processor encodes a command stream in a buffer that pro 
vides workloads to the PPU 300 for processing . A workload 
may comprise several instructions and data to be processed 
by those instructions . The buffer is a region in a memory that 
is accessible ( e . g . , read / write ) by both the host processor and 
the PPU 300 . For example , the I / O unit 305 may be 
configured to access the buffer in a system memory con 
nected to the interconnect 302 via memory requests trans 
mitted over the interconnect 302 . In an embodiment , the host 
processor writes the command stream to the buffer and then 
transmits a pointer to the start of the command stream to the 
PPU 300 . The front end unit 315 receives pointers to one or 
more command streams . The front end unit 315 manages the 
one or more streams , reading commands from the streams 
and forwarding commands to the various units of the PPU 
300 . 
[ 0068 ] The front end unit 315 is coupled to a scheduler 
unit 320 that configures the various GPCs 350 to process 
tasks defined by the one or more streams . The scheduler unit 
320 is configured to track state information related to the 
various tasks managed by the scheduler unit 320 . The state 
may indicate which GPC 350 a task is assigned to , whether 
the task is active or inactive , a priority level associated with 
the task , and so forth . The scheduler unit 320 manages the 
execution of a plurality of tasks on the one or more GPCs 
350 . 
10069 ] The scheduler unit 320 is coupled to a work 
distribution unit 325 that is configured to dispatch tasks for 
execution on the GPCs 350 . The work distribution unit 325 
may track a number of scheduled tasks received from the 
scheduler unit 320 . In an embodiment , the work distribution 
unit 325 manages a pending task pool and an active task pool 
for each of the GPCs 350 . The pending task pool may 
comprise a number of slots ( e . g . , 32 slots ) that contain tasks 
assigned to be processed by a particular GPC 350 . The active 
task pool may comprise a number of slots ( e . g . , 4 slots ) for 
tasks that are actively being processed by the GPCs 350 . As 
a GPC 350 finishes the execution of a task , that task is 
evicted from the active task pool for the GPC 350 and one 
of the other tasks from the pending task pool is selected and 
scheduled for execution on the GPC 350 . If an active task 
has been idle on the GPC 350 , such as while waiting for a 
data dependency to be resolved , then the active task may be 
evicted from the GPC 350 and returned to the pending task 
pool while another task in the pending task pool is selected 
and scheduled for execution on the GPC 350 . 
[ 0070 ] The work distribution unit 325 communicates with 
the one or more GPCs 350 via XBar 370 . The XBar 370 is 
an interconnect network that couples many of the units of the 
PPU 300 to other units of the PPU 300 . For example , the 
XBar 370 may be configured to couple the work distribution 
unit 325 to a particular GPC 350 . Although not shown 
explicitly , one or more other units of the PPU 300 may also 
be connected to the XBar 370 via the hub 330 . 
10071 ] The tasks are managed by the scheduler unit 320 
and dispatched to a GPC 350 by the work distribution unit 
325 . The GPC 350 is configured to process the task and 
generate results . The results may be consumed by other tasks 
within the GPC 350 , routed to a different GPC 350 via the 

XBar 370 , or stored in the memory 304 . The results can be 
written to the memory 304 via the memory partition units 
380 , which implement a memory interface for reading and 
writing data to / from the memory 304 . The results can be 
transmitted to another PPU 304 or CPU via the NVLink 310 . 
In an embodiment , the PPU 300 includes a number U of 
memory partition units 380 that is equal to the number of 
separate and distinct memory devices 304 coupled to the 
PPU 300 . A memory partition unit 380 will be described in 
more detail below in conjunction with FIG . 4B . 
[ 0072 ] In an embodiment , a host processor executes a 
driver kernel that implements an application programming 
interface ( API ) that enables one or more applications execut 
ing on the host processor to schedule operations for execu 
tion on the PPU 300 . In an embodiment , multiple compute 
applications are simultaneously executed by the PPU 300 
and the PPU 300 provides isolation , quality of service 
( QoS ) , and independent address spaces for the multiple 
compute applications . An application may generate instruc 
tions ( e . g . , API calls ) that cause the driver kernel to generate 
one or more tasks for execution by the PPU 300 . The driver 
kernel outputs tasks to one or more streams being processed 
by the PPU 300 . Each task may comprise one or more 
groups of related threads , referred to herein as a warp . In an 
embodiment , a warp comprises 32 related threads that may 
be executed in parallel . Cooperating threads may refer to a 
plurality of threads including instructions to perform the task 
and that may exchange data through shared memory . 
Threads and cooperating threads are described in more detail 
in conjunction with FIG . 5A . 
[ 0073 ] FIG . 4A illustrates a GPC 350 of the PPU 300 of 
FIG . 3 , in accordance with an embodiment . As shown in 
FIG . 4A , each GPC 350 includes a number of hardware units 
for processing tasks . In an embodiment , each GPC 350 
includes a pipeline manager 410 , a pre - raster operations unit 
( PROP ) 415 , a raster engine 425 , a work distribution cross 
bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 
and one or more Data Processing Clusters ( DPCs ) 420 . It 
will be appreciated that the GPC 350 of FIG . 4A may include 
other hardware units in lieu of or in addition to the units 
shown in FIG . 4A . 
[ 0074 ] In an embodiment , the operation of the GPC 350 is 
controlled by the pipeline manager 410 . The pipeline man 
ager 410 manages the configuration of the one or more DPCs 
420 for processing tasks allocated to the GPC 350 . In an 
embodiment , the pipeline manager 410 may configure at 
least one of the one or more DPCs 420 to implement at least 
a portion of a graphics rendering pipeline . For example , a 
DPC 420 may be configured to execute a vertex shader 
program on the programmable streaming multiprocessor 
( SM ) 440 . The pipeline manager 410 may also be configured 
to route packets received from the work distribution unit 325 
to the appropriate logical units within the GPC 350 . For 
example , some packets may be routed to fixed function 
hardware units in the PROP 415 and / or raster engine 425 
while other packets may be routed to the DPCs 420 for 
processing by the primitive engine 435 or the SM 440 . In an 
embodiment , the pipeline manager 410 may configure at 
least one of the one or more DPCs 420 to implement a neural 
network model and / or a computing pipeline . 
( 0075 ] The PROP unit 415 is configured to route data 
generated by the raster engine 425 and the DPCs 420 to a 
Raster Operations ( ROP ) unit , described in more detail in 
conjunction with FIG . 4B . The PROP unit 415 may also be 
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configured to perform optimizations for color blending , 
organize pixel data , perform address translations , and the 
like . 
[ 0076 ] The raster engine 425 includes a number of fixed 
function hardware units configured to perform various raster 
operations . In an embodiment , the raster engine 425 includes 
a setup engine , a coarse raster engine , a culling engine , a 
clipping engine , a fine raster engine , and a tile coalescing 
engine . The setup engine receives transformed vertices and 
generates plane equations associated with the geometric 
primitive defined by the vertices . The plane equations are 
transmitted to the coarse raster engine to generate coverage 
information ( e . g . , an x , y coverage mask for a tile ) for the 
primitive . The output of the coarse raster engine is trans 
mitted to the culling engine where fragments associated with 
the primitive that fail a z - test are culled , and transmitted to 
a clipping engine where fragments lying outside a viewing 
frustum are clipped . Those fragments that survive clipping 
and culling may be passed to the fine raster engine to 
generate attributes for the pixel fragments based on the plane 
equations generated by the setup engine . The output of the 
raster engine 425 comprises fragments to be processed , for 
example , by a fragment shader implemented within a DPC 
420 . 
[ 0077 ] Each DPC 420 included in the GPC 350 includes 
an M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , 
and one or more SMs 440 . The MPC 430 controls the 
operation of the DPC 420 , routing packets received from the 
pipeline manager 410 to the appropriate units in the DPC 
420 . For example , packets associated with a vertex may be 
routed to the primitive engine 435 , which is configured to 
fetch vertex attributes associated with the vertex from the 
memory 304 . In contrast , packets associated with a shader 
program may be transmitted to the SM 440 . 
[ 0078 ] The SM 440 comprises a programmable streaming 
processor that is configured to process tasks represented by 
a number of threads . Each SM 440 is multi - threaded and 
configured to execute a plurality of threads ( e . g . , 32 threads ) 
from a particular group of threads concurrently . In an 
embodiment , the SM 440 implements a SIMD ( Single 
Instruction , Multiple - Data ) architecture where each thread 
in a group of threads ( e . g . , a warp ) is configured to process 
a different set of data based on the same set of instructions . 
All threads in the group of threads execute the same instruc 
tions . In another embodiment , the SM 440 implements a 
SIMT ( Single - Instruction , Multiple Thread ) architecture 
where each thread in a group of threads is configured to 
process a different set of data based on the same set of 
instructions , but where individual threads in the group of 
threads are allowed to diverge during execution . In an 
embodiment , a program counter , call stack , and execution 
state is maintained for each warp , enabling concurrency 
between warps and serial execution within warps when 
threads within the warp diverge . In another embodiment , a 
program counter , call stack , and execution state is main 
tained for each individual thread , enabling equal concur 
rency between all threads , within and between warps . When 
execution state is maintained for each individual thread , 
threads executing the same instructions may be converged 
and executed in parallel for maximum efficiency . The SM 
440 will be described in more detail below in conjunction 
with FIG . 5A . 
[ 0079 ] The MMU 490 provides an interface between the 
GPC 350 and the memory partition unit 380 . The MMU 490 

may provide translation of virtual addresses into physical 
addresses , memory protection , and arbitration of memory 
requests . In an embodiment , the MMU 490 provides one or 
more translation lookaside buffers ( TLBs ) for performing 
translation of virtual addresses into physical addresses in the 
memory 304 
[ 0080 ] FIG . 4B illustrates a memory partition unit 380 of 
the PPU 300 of FIG . 3 , in accordance with an embodiment . 
As shown in FIG . 4B , the memory partition unit 380 
includes a Raster Operations ( ROP ) unit 450 , a level two 
( L2 ) cache 460 , and a memory interface 470 . The memory 
interface 470 is coupled to the memory 304 . Memory 
interface 470 may implement 32 , 64 , 128 , 1024 - bit data 
buses , or the like , for high - speed data transfer . In an embodi 
ment , the PPU 300 incorporates U memory interfaces 470 , 
one memory interface 470 per pair of memory partition units 
380 , where each pair of memory partition units 380 is 
connected to a corresponding memory device 304 . For 
example , PPU 300 may be connected to up to Y memory 
devices 304 , such as high bandwidth memory stacks or 
graphics double - data - rate , version 5 , synchronous dynamic 
random access memory , or other types of persistent storage . 
[ 0081 ] In an embodiment , the memory interface 470 
implements an HBM2 memory interface and Y equals half 
U . In an embodiment , the HBM2 memory stacks are located 
on the same physical package as the PPU 300 , providing 
substantial power and area savings compared with conven 
tional GDDR5 SDRAM systems . In an embodiment , each 
HBM2 stack includes four memory dies and Y equals 4 , with 
HBM2 stack including two 128 - bit channels per die for a 
total of 8 channels and a data bus width of 1024 bits . 
[ 0082 ] In an embodiment , the memory 304 supports 
Single - Error Correcting Double - Error Detecting ( SECDED ) 
Error Correction Code ( ECC ) to protect data . ECC provides 
higher reliability for compute applications that are sensitive 
to data corruption . Reliability is especially important in 
large - scale cluster computing environments where PPUS 
300 process very large datasets and / or run applications for 
extended periods . 
[ 0083 ] In an embodiment , the PPU 300 implements a 
multi - level memory hierarchy . In an embodiment , the 
memory partition unit 380 supports a unified memory to 
provide a single unified virtual address space for CPU and 
PPU 300 memory , enabling data sharing between virtual 
memory systems . In an embodiment the frequency of 
accesses by a PPU 300 to memory located on other proces 
sors is traced to ensure that memory pages are moved to the 
physical memory of the PPU 300 that is accessing the pages 
more frequently . In an embodiment , the NVLink 310 sup 
ports address translation services allowing the PPU 300 to 
directly access a CPU ' s page tables and providing full 
access to CPU memory by the PPU 300 . 
[ 0084 ] In an embodiment , copy engines transfer data 
between multiple PPUS 300 or between PPUS 300 and 
CPUs . The copy engines can generate page faults for 
addresses that are not mapped into the page tables . The 
memory partition unit 380 can then service the page faults , 
mapping the addresses into the page table , after which the 
copy engine can perform the transfer . In a conventional 
system , memory is pinned ( e . g . , non - pageable ) for multiple 
copy engine operations between multiple processors , sub 
stantially reducing the available memory . With hardware 
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page faulting , addresses can be passed to the copy engines 
without worrying if the memory pages are resident , and the 
copy process is transparent . 
[ 0085 ] Data from the memory 304 or other system 
memory may be fetched by the memory partition unit 380 
and stored in the L2 cache 460 , which is located on - chip and 
is shared between the various GPCs 350 . As shown , each 
memory partition unit 380 includes a portion of the L2 cache 
460 associated with a corresponding memory device 304 . 
Lower level caches may then be implemented in various 
units within the GPCs 350 . For example , each of the SMS 
440 may implement a level one ( L1 ) cache . The L1 cache is 
private memory that is dedicated to a particular SM 440 . 
Data from the L2 cache 460 may be fetched and stored in 
each of the L1 caches for processing in the functional units 
of the SMS 440 . The L2 cache 460 is coupled to the memory 
interface 470 and the XBar 370 . 
[ 0086 ] The ROP unit 450 performs graphics raster opera 
tions related to pixel color , such as color compression , pixel 
blending , and the like . The ROP unit 450 also implements 
depth testing in conjunction with the raster engine 425 , 
receiving a depth for a sample location associated with a 
pixel fragment from the culling engine of the raster engine 
425 . The depth is tested against a corresponding depth in a 
depth buffer for a sample location associated with the 
fragment . If the fragment passes the depth test for the sample 
location , then the ROP unit 450 updates the depth buffer and 
transmits a result of the depth test to the raster engine 425 . 
It will be appreciated that the number of memory partition 
units 380 may be different than the number of GPCs 350 
and , therefore , each ROP unit 450 may be coupled to each 
of the GPCs 350 . The ROP unit 450 tracks packets received 
from the different GPCs 350 and determines which GPC 350 
that a result generated by the ROP unit 450 is routed to 
through the Xbar 370 . Although the ROP unit 450 is 
included within the memory partition unit 380 in FIG . 4B , 
in other embodiment , the ROP unit 450 may be outside of 
the memory partition unit 380 . For example , the ROP unit 
450 may reside in the GPC 350 or another unit . 
[ 0087 ] FIG . 5A illustrates the streaming multi - processor 
440 of FIG . 4A , in accordance with an embodiment . As 
shown in FIG . 5A , the SM 440 includes an instruction cache 
505 , one or more scheduler units 510 , a register file 520 , one 
or more processing cores 550 , one or more special function 
units ( SFUS ) 552 , one or more load / store units ( LSUS ) 554 , 
an interconnect network 580 , a shared memory / L1 cache 
570 . 
[ 0088 ] As described above , the work distribution unit 325 
dispatches tasks for execution on the GPCs 350 of the PPU 
300 . The tasks are allocated to a particular DPC 420 within 
a GPC 350 and , if the task is associated with a shader 
program , the task may be allocated to an SM 440 . The 
scheduler unit 510 receives the tasks from the work distri 
bution unit 325 and manages instruction scheduling for one 
or more thread blocks assigned to the SM 440 . The scheduler 
unit 510 schedules thread blocks for execution as warps of 
parallel threads , where each thread block is allocated at least 
one warp . In an embodiment , each warp executes 32 threads . 
The scheduler unit 510 may manage a plurality of different 
thread blocks , allocating the warps to the different thread 
blocks and then dispatching instruction from the plurality 
of different cooperative groups to the various functional 
units ( e . g . , cores 550 , SFUs 552 , and LSUs 554 ) during each 
clock cycle . 

[ 0089 ] Cooperative Groups is a programming model for 
organizing groups of communicating threads that allows 
developers to express the granularity at which threads are 
communicating , enabling the expression of richer , more 
efficient parallel decompositions . Cooperative launch APIs 
support synchronization amongst thread blocks for the 
execution of parallel algorithms . Conventional program 
ming models provide a single , simple construct for synchro 
nizing cooperating threads : a barrier across all threads of a 
thread block ( e . g . , the syncthreads ( ) function ) . However , 
programmers would often like to define groups of threads at 
smaller than thread block granularities and synchronize 
within the defined groups to enable greater performance , 
design flexibility , and software reuse in the form of collec 
tive group - wide function interfaces . 
[ 0090 ] Cooperative Groups enables programmers to 
define groups of threads explicitly at sub - block ( e . g . , as 
small as a single thread ) and multi - block granularities , and 
to perform collective operations such as synchronization on 
the threads in a cooperative group . The programming model 
supports clean composition across software boundaries , so 
that libraries and utility functions can synchronize safely 
within their local context without having to make assump 
tions about convergence . Cooperative Groups primitives 
enable new patterns of cooperative parallelism , including 
producer - consumer parallelism , opportunistic parallelism , 
and global synchronization across an entire grid of thread 
blocks . 
[ 0091 ] A dispatch unit 515 is configured to transmit 
instructions to one or more of the functional units . In the 
embodiment , the scheduler unit 510 includes two dispatch 
units 515 that enable two different instructions from the 
same warp to be dispatched during each clock cycle . In 
alternative embodiments , each scheduler unit 510 may 
include a single dispatch unit 515 or additional dispatch 
units 515 . 
[ 0092 ] Each SM 440 includes a register file 520 that 
provides a set of registers for the functional units of the SM 
440 . In an embodiment , the register file 520 is divided 
between each of the functional units such that each func 
tional unit is allocated a dedicated portion of the register file 
520 . In another embodiment , the register file 520 is divided 
between the different warps being executed by the SM 440 . 
The register file 520 provides temporary storage for oper 
ands connected to the data paths of the functional units . 
[ 0093 ] Each SM 440 comprises L processing cores 550 . In 
an embodiment , the SM 440 includes a large number ( e . g . , 
128 , etc . ) of distinct processing cores 550 . Each core 550 
may include a fully - pipelined , single - precision , double - pre 
cision , and / or mixed precision processing unit that includes 
a floating point arithmetic logic unit and an integer arith 
metic logic unit . In an embodiment , the floating point 
arithmetic logic units implement the IEEE 754 - 2008 stan 
dard for floating point arithmetic . In an embodiment , the 
cores 550 include 64 single - precision ( 32 - bit ) floating point 
cores , 64 integer cores , 32 double - precision ( 64 - bit ) floating 
point cores , and 8 tensor cores . 
[ 0094 ] Tensor cores configured to perform matrix opera 
tions , and , in an embodiment , one or more tensor cores are 
included in the cores 550 . In particular , the tensor cores are 
configured to perform deep learning matrix arithmetic , such 
as convolution operations for neural network training and 
inferencing . In an embodiment , each tensor core operates on 
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a 4x4 matrix and performs a matrix multiply and accumulate 
operation D = AXB + C , where A , B , C , and D are 4x4 matri - 
ces . 
[ 0095 ] In an embodiment , the matrix multiply inputs A 
and B are 16 - bit floating point matrices , while the accumu 
lation matrices C and D may be 16 - bit floating point or 
32 - bit floating point matrices . Tensor Cores operate on 
16 - bit floating point input data with 32 - bit floating point 
accumulation . The 16 - bit floating point multiply requires 64 
operations and results in a full precision product that is then 
accumulated using 32 - bit floating point addition with the 
other intermediate products for a 4x4x4 matrix multiply . In 
practice , Tensor Cores are used to perform much larger 
two - dimensional or higher dimensional matrix operations , 
built up from these smaller elements . An API , such as 
CUDA 9 C + + API , exposes specialized matrix load , matrix 
multiply and accumulate , and matrix store operations to 
efficiently use Tensor Cores from a CUDA - C + + program . At 
the CUDA level , the warp - level interface assumes 16x16 
size matrices spanning all 32 threads of the warp . 
[ 0096 ] Each SM 440 also comprises M SFUS 552 that 
perform special functions ( e . g . , attribute evaluation , recip 
rocal square root , and the like ) . In an embodiment , the SFUS 
552 may include a tree traversal unit configured to traverse 
a hierarchical tree data structure . In an embodiment , the 
SFUS 552 may include texture unit configured to perform 
texture map filtering operations . In an embodiment , the 
texture units are configured to load texture maps ( e . g . , a 2D 
array of texels ) from the memory 304 and sample the texture 
maps to produce sampled texture values for use in shader 
programs executed by the SM 440 . In an embodiment , the 
texture maps are stored in the shared memory / L1 cache 470 . 
The texture units implement texture operations such as 
filtering operations using mip - maps ( e . g . , texture maps of 
varying levels of detail ) . In an embodiment , each SM 340 
includes two texture units . 
00971 . Each SM 440 also comprises N LSUS 554 that 
implement load and store operations between the shared 
mr _ cache and the register file 52 . BachSM 

440 includes an interconnect network 580 that connects each 
of the functional units to the register file 520 and the LSU 
554 to the register file 520 , shared memory / L1 cache 570 . In 
an embodiment , the interconnect network 580 is a crossbar 
that can be configured to connect any of the functional units 
to any of the registers in the register file 520 and connect the 
LSUs 554 to the register file and memory locations in shared 
memory / L1 cache 570 . 
[ 0098 ] The shared memory / L1 cache 570 is an array of 
on - chip memory that allows for data storage and commu 
nication between the SM 440 and the primitive engine 435 
and between threads in the SM 440 . In an embodiment , the 
shared memory / L1 cache 570 comprises 128 KB of storage 
capacity and is in the path from the SM 440 to the memory 
partition unit 380 . The shared memory / L1 cache 570 can be 
used to cache reads and writes . One or more of the shared 
memory / L1 cache 570 , L2 cache 460 , and memory 304 are 
backing stores . 
[ 0099 ] Combining data cache and shared memory func 
tionality into a single memory block provides the best 
overall performance for both types of memory accesses . The 
capacity is usable as a cache by programs that do not use 
shared memory . For example , if shared memory is config 
ured to use half of the capacity , texture and load / store 
operations can use the remaining capacity . Integration 

within the shared memory / L1 cache 570 enables the shared 
memory / L1 cache 570 to function as a high - throughput 
conduit for streaming data while simultaneously providing 
high - bandwidth and low - latency access to frequently reused 
data . 
[ 0100 ] When configured for general purpose parallel com 
putation , a simpler configuration can be used compared with 
graphics processing . Specifically , the fixed function graphics 
processing units shown in FIG . 3 , are bypassed , creating a 
much simpler programming model . In the general purpose 
parallel computation configuration , the work distribution 
unit 325 assigns and distributes blocks of threads directly to 
the DPCs 420 . The threads in a block execute the same 
program , using a unique thread ID in the calculation to 
ensure each thread generates unique results , using the SM 
440 to execute the program and perform calculations , shared 
memory / L1 cache 570 to communicate between threads , and 
the LSU 554 to read and write global memory through the 
shared memory / L1 cache 570 and the memory partition unit 
380 . When configured for general purpose parallel compu 
tation , the SM 440 can also write commands that the 
scheduler unit 320 can use to launch new work on the DPCs 
420 . 
[ 0101 ] The PPU 300 may be included in a desktop com 
puter , a laptop computer , a tablet computer , servers , super 
computers , a smart - phone ( e . g . , a wireless , hand - held 
device ) , personal digital assistant ( PDA ) , a digital camera , a 
vehicle , a head mounted display , a hand - held electronic 
device , and the like . In an embodiment , the PPU 300 is 
embodied on a single semiconductor substrate . In another 
embodiment , the PPU 300 is included in a system - on - a - chip 
( SoC ) along with one or more other devices such as addi 
tional PPUS 300 , the memory 204 , a reduced instruction set 
computer ( RISC ) CPU , a memory management unit 
( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
[ 0102 ] In an embodiment , the PPU 300 may be included 
on a graphics card that includes one or more memory 
devices 304 . The graphics card may be configured to inter 
face with a PCIe slot on a motherboard of a desktop 
computer . In yet another embodiment , the PPU 300 may be 
an integrated graphics processing unit ( iGPU ) or parallel 
processor included in the chipset of the motherboard . 

Exemplary Computing System 
[ 0103 ] Systems with multiple GPUs and CPUs are used in 
a variety of industries as developers expose and leverage 
more parallelism in applications such as artificial intelli 
gence computing . High - performance GPU - accelerated sys 
tems with tens to many thousands of compute nodes are 
deployed in data centers , research facilities , and supercom 
puters to solve ever larger problems . As the number of 
processing devices within the high - performance systems 
increases , the communication and data transfer mechanisms 
need to scale to support the increased bandwidth . 
[ 0104 ] FIG . 5B is a conceptual diagram of a processing 
system 500 implemented using the PPU 300 of FIG . 3 , in 
accordance with an embodiment . The exemplary system 565 
may be configured to implement the method 100 shown in 
FIG . 1 . The processing system 500 includes a CPU 530 , 
switch 510 , and multiple PPUS 300 each and respective 
memories 304 . The NVLink 310 provides high - speed com 
munication links between each of the PPUS 300 . Although 
a particular number of NVLink 310 and interconnect 302 
connections are illustrated in FIG . 5B , the number of con 
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nections to each PPU 300 and the CPU 530 may vary . The 
switch 510 interfaces between the interconnect 302 and the 
CPU 530 . The PPUs 300 , memories 304 , and NVLinks 310 
may be situated on a single semiconductor platform to form 
a parallel processing module 525 . In an embodiment , the 
switch 510 supports two or more protocols to interface 
between various different connections and / or links . 
[ 0105 ] In another embodiment ( not shown ) , the NVLink 
310 provides one or more high - speed communication links 
between each of the PPUS 300 and the CPU 530 and the 
switch 510 interfaces between the interconnect 302 and each 
of the PPUs 300 . The PPUS 300 , memories 304 , and 
interconnect 302 may be situated on a single semiconductor 
platform to form a parallel processing module 525 . In yet 
another embodiment ( not shown ) , the interconnect 302 
provides one or more communication links between each of 
the PPUS 300 and the CPU 530 and the switch 510 interfaces 
between each of the PPUS 300 using the NVLink 310 to 
provide one or more high - speed communication links 
between the PPUS 300 . In another embodiment ( not shown ) , 
the NVLink 310 provides one or more high - speed commu 
nication links between the PPUs 300 and the CPU 530 
through the switch 510 . In yet another embodiment ( not 
shown ) , the interconnect 302 provides one or more commu 
nication links between each of the PPUS 300 directly . One 
or more of the NVLink 310 high - speed communication links 
may be implemented as a physical NVLink interconnect or 
either an on - chip or on - die interconnect using the same 
protocol as the NVLink 310 . 
[ 0106 ] In the context of the present description , a single 
semiconductor platform may refer to a sole unitary semi 
conductor - based integrated circuit fabricated on a die or 
chip . It should be noted that the term single semiconductor 
platform may also refer to multi - chip modules with 
increased connectivity which simulate on - chip operation 
and make substantial improvements over utilizing a conven 
tional bus implementation . Of course , the various circuits or 
devices may also be situated separately or in various com 
binations of semiconductor platforms per the desires of the 
user . Alternately , the parallel processing module 525 may be 
implemented as a circuit board substrate and each of the 
PPUS 300 and / or memories 304 may be packaged devices . 
In an embodiment , the CPU 530 , switch 510 , and the parallel 
processing module 525 are situated on a single semiconduc 
tor platform . 
[ 0107 ] In an embodiment , the signaling rate of each 
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300 
includes six NVLink 310 interfaces ( as shown in FIG . 5B , 
five NVLink 310 interfaces are included for each PPU 300 ) . 
Each NVLink 310 provides a data transfer rate of 25 
Gigabytes / second in each direction , with six links providing 
300 Gigabytes / second . The NVLinks 310 can be used exclu 
sively for PPU - to - PPU communication as shown in FIG . 5B , 
or some combination of PPU - to - PPU and PPU - to - CPU , 
when the CPU 530 also includes one or more NVLink 310 
interfaces . 
108a mbodiment , the Nink31aw direct 

load / store / atomic access from the CPU 530 to each PPU ' s 
300 memory 304 . In an embodiment , the NVLink 310 
supports coherency operations , allowing data read from the 
memories 304 to be stored in the cache hierarchy of the CPU 
530 , reducing cache access latency for the CPU 530 . In an 
embodiment , the NVLink 310 includes support for Address 
Translation Services ( ATS ) , allowing the PPU 300 to 

directly access page tables within the CPU 530 . One or more 
of the NVLinks 310 may also be configured to operate in a 
low - power mode . 
[ 0109 ] FIG . 5C illustrates an exemplary system 565 in 
which the various architecture and / or functionality of the 
various previous embodiments may be implemented . The 
exemplary system 565 may be configured to implement the 
method 100 shown in FIG . 1 . 
[ 0110 ] As shown , a system 565 is provided including at 
least one central processing unit 530 that is connected to a 
communication bus 575 . The communication bus 575 may 
be implemented using any suitable protocol , such as PCI 
( Peripheral Component Interconnect ) , PCI - Express , AGP 
( Accelerated Graphics Port ) , HyperTransport , or any other 
bus or point - to - point communication protocol ( s ) . The sys 
tem 565 also includes a main memory 540 . Control logic 
( software ) and data are stored in the main memory 540 
which may take the form of random access memory ( RAM ) . 
[ 0111 ] The system 565 also includes input devices 560 , the 
parallel processing system 525 , and display devices 545 , e . g . 
a conventional CRT ( cathode ray tube ) , LCD ( liquid crystal 
display ) , LED ( light emitting diode ) , plasma display or the 
like . User input may be received from the input devices 560 , 
e . g . , keyboard , mouse , touchpad , microphone , and the like . 
Each of the foregoing modules and / or devices may even be 
situated on a single semiconductor platform to form the 
system 565 . Alternately , the various modules may also be 
situated separately or in various combinations of semicon 
ductor platforms per the desires of the user . 
[ 0112 ] Further , the system 565 may be coupled to a 
network ( e . g . , a telecommunications network , local area 
network ( LAN ) , wireless network , wide area network 
( WAN ) such as the Internet , peer - to - peer network , cable 
network , or the like ) through a network interface 535 for 
communication purposes . 
[ 0113 ] The system 565 may also include a secondary 
storage ( not shown ) . The secondary storage 610 includes , 
for example , a hard disk drive and / or a removable storage 
drive , representing a floppy disk drive , a magnetic tape 
drive , a compact disk drive , digital versatile disk ( DVD ) 
drive , recording device , universal serial bus ( USB ) flash 
memory . The removable storage drive reads from and / or 
writes to a removable storage unit in a well - known manner . 
[ 0114 ) Computer programs , or computer control logic 
algorithms , may be stored in the main memory 540 and / or 
the secondary storage . Such computer programs , when 
executed , enable the system 565 to perform various func 
tions . The memory 540 , the storage , and / or any other storage 
are possible examples of computer - readable media . 
[ 0115 ] The architecture and / or functionality of the various 
previous figures may be implemented in the context of a 
general computer system , a circuit board system , a game 
console system dedicated for entertainment purposes , an 
application - specific system , and / or any other desired sys 
tem . For example , the system 565 may take the form of a 
desktop computer , a laptop computer , a tablet computer , 
servers , supercomputers , a smart - phone ( e . g . , a wireless , 
hand - held device ) , personal digital assistant ( PDA ) , a digital 
camera , a vehicle , a head mounted display , a hand - held 
electronic device , a mobile phone device , a television , 
workstation , game consoles , embedded system , and / or any 
other type of logic . 
[ 0116 ] While various embodiments have been described 
above , it should be understood that they have been presented 
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by way of example only , and not limitation . Thus , the 
breadth and scope of a preferred embodiment should not be 
limited by any of the above - described exemplary embodi 
ments , but should be defined only in accordance with the 
following claims and their equivalents . 

Graphics Processing Pipeline 
[ 0117 ] In an embodiment , the PPU 300 comprises a graph 
ics processing unit ( GPU ) . The PPU 300 is configured to 
receive commands that specify shader programs for process 
ing graphics data . Graphics data may be defined as a set of 
primitives such as points , lines , triangles , quads , triangle 
strips , and the like . Typically , a primitive includes data that 
specifies a number of vertices for the primitive ( e . g . , in a 
model - space coordinate system ) as well as attributes asso 
ciated with each vertex of the primitive . The PPU 300 can 
be configured to process the graphics primitives to generate 
a frame buffer ( e . g . , pixel data for each of the pixels of the 
display ) . 
[ 0118 ] An application writes model data for a scene ( e . g . , 
a collection of vertices and attributes ) to a memory such as 
a system memory or memory 304 . The model data defines 
each of the objects that may be visible on a display . The 
application then makes an API call to the driver kernel that 
requests the model data to be rendered and displayed . The 
driver kernel reads the model data and writes commands to 
the one or more streams to perform operations to process the 
model data . The commands may reference different shader 
programs to be implemented on the SMs 440 of the PPU 300 
including one or more of a vertex shader , hull shader , 
domain shader , geometry shader , and a pixel shader . For 
example , one or more of the SMs 440 may be configured to 
execute a vertex shader program that processes a number of 
vertices defined by the model data . In an embodiment , the 
different SMS 440 may be configured to execute different 
shader programs concurrently . For example , a first subset of 
SMS 440 may be configured to execute a vertex shader 
program while a second subset of SMS 440 may be config 
ured to execute a pixel shader program . The first subset of 
SMS 440 processes vertex data to produce processed vertex 
data and writes the processed vertex data to the L2 cache 460 
and / or the memory 304 . After the processed vertex data is 
rasterized ( e . g . , transformed from three - dimensional data 
into two - dimensional data in screen space ) to produce 
fragment data , the second subset of SMS 440 executes a 
pixel shader to produce processed fragment data , which is 
then blended with other processed fragment data and written 
to the frame buffer in memory 304 . The vertex shader 
program and pixel shader program may execute concur 
rently , processing different data from the same scene in a 
pipelined fashion until all of the model data for the scene has 
been rendered to the frame buffer . Then , the contents of the 
frame buffer are transmitted to a display controller for 
display on a display device . 
[ 0119 ] FIG . 6 is a conceptual diagram of a graphics 
processing pipeline 600 implemented by the PPU 300 of 
FIG . 3 , in accordance with an embodiment . The graphics 
processing pipeline 600 is an abstract flow diagram of the 
processing steps implemented to generate 2D computer 
generated images from 3D geometry data . As is well - known , 
pipeline architectures may perform long latency operations 
more efficiently by splitting up the operation into a plurality 
of stages , where the output of each stage is coupled to the 
input of the next successive stage . Thus , the graphics pro 

cessing pipeline 600 receives input data 601 that is trans 
mitted from one stage to the next stage of the graphics 
processing pipeline 600 to generate output data 602 . In an 
embodiment , the graphics processing pipeline 600 may 
represent a graphics processing pipeline defined by the 
OpenGL® API . As an option , the graphics processing pipe 
line 600 may be implemented in the context of the func 
tionality and architecture of the previous Figures and / or any 
subsequent Figure ( s ) . 
[ 0120 ] As shown in FIG . 6 , the graphics processing pipe 
line 600 comprises a pipeline architecture that includes a 
number of stages . The stages include , but are not limited to , 
a data assembly stage 610 , a vertex shading stage 620 , a 
primitive assembly stage 630 , a geometry shading stage 640 , 
a viewport scale , cull , and clip ( VSCC ) stage 650 , a raster 
ization stage 660 , a fragment shading stage 670 , and a raster 
operations stage 680 . In an embodiment , the input data 601 
comprises commands that configure the processing units to 
implement the stages of the graphics processing pipeline 600 
and geometric primitives ( e . g . , points , lines , triangles , 
quads , triangle strips or fans , etc . ) to be processed by the 
stages . The output data 602 may comprise pixel data ( e . g . , 
color data ) that is copied into a frame buffer or other type of 
surface data structure in a memory . 
[ 0121 ] The data assembly stage 610 receives the input data 
601 that specifies vertex data for high - order surfaces , primi 
tives , or the like . The data assembly stage 610 collects the 
vertex data in a temporary storage or queue , such as by 
receiving a command from the host processor that includes 
a pointer to a buffer in memory and reading the vertex data 
from the buffer . The vertex data is then transmitted to the 
vertex shading stage 620 for processing . 
[ 0122 ] The vertex shading stage 620 processes vertex data 
by performing a set of operations ( e . g . , a vertex shader or a 
program ) once for each of the vertices . Vertices may be , e . g . , 
specified as a 4 - coordinate vector ( e . g . , < x , y , z , w > ) 
associated with one or more vertex attributes ( e . g . , color , 
texture coordinates , surface normal , etc . ) . The vertex shad 
ing stage 620 may manipulate individual vertex attributes 
such as position , color , texture coordinates , and the like . In 
other words , the vertex shading stage 620 performs opera 
tions on the vertex coordinates or other vertex attributes 
associated with a vertex . Such operations commonly includ 
ing lighting operations ( e . g . , modifying color attributes for 
a vertex ) and transformation operations ( e . g . , modifying the 
coordinate space for a vertex ) . For example , vertices may be 
specified using coordinates in an object - coordinate space , 
which are transformed by multiplying the coordinates by a 
matrix that translates the coordinates from the object - coor 
dinate space into a world space or a normalized - device 
coordinate ( NCD ) space . The vertex shading stage 620 
generates transformed vertex data that is transmitted to the 
primitive assembly stage 630 . 
[ 0123 ] The primitive assembly stage 630 collects vertices 
output by the vertex shading stage 620 and groups the 
vertices into geometric primitives for processing by the 
geometry shading stage 640 . For example , the primitive 
assembly stage 630 may be configured to group every three 
consecutive vertices as a geometric primitive ( e . g . , a tri 
angle ) for transmission to the geometry shading stage 640 . 
In some embodiments , specific vertices may be reused for 
consecutive geometric primitives ( e . g . , two consecutive 
triangles in a triangle strip may share two vertices ) . The 
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primitive assembly stage 630 transmits geometric primitives 
( e . g . , a collection of associated vertices ) to the geometry 
shading stage 640 . 
[ 0124 ] The geometry shading stage 640 processes geo 
metric primitives by performing a set of operations ( e . g . , a 
geometry shader or program ) on the geometric primitives . 
Tessellation operations may generate one or more geometric 
primitives from each geometric primitive . In other words , 
the geometry shading stage 640 may subdivide each geo 
metric primitive into a finer mesh of two or more geometric 
primitives for processing by the rest of the graphics pro 
cessing pipeline 600 . The geometry shading stage 640 
transmits geometric primitives to the viewport SCC stage 
650 . 
[ 0125 ] In an embodiment , the graphics processing pipeline 
600 may operate within a streaming multiprocessor and the 
vertex shading stage 620 , the primitive assembly stage 630 , 
the geometry shading stage 640 , the fragment shading stage 
670 , and / or hardware / software associated therewith , may 
sequentially perform processing operations . Once the 
sequential processing operations are complete , in an 
embodiment , the viewport SCC stage 650 may utilize the 
data . In an embodiment , primitive data processed by one or 
more of the stages in the graphics processing pipeline 600 
may be written to a cache ( e . g . L1 cache , a vertex cache , 
etc . ) . In this case , in an embodiment , the viewport SCC stage 
650 may access the data in the cache . In an embodiment , the 
viewport SCC stage 650 and the rasterization stage 660 are 
implemented as fixed function circuitry . 
[ 0126 ] The viewport SCC stage 650 performs viewport 
scaling , culling , and clipping of the geometric primitives . 
Each surface being rendered to is associated with an abstract 
camera position . The camera position represents a location 
of a viewer looking at the scene and defines a viewing 
frustum that encloses the objects of the scene . The viewing 
frustum may include a viewing plane , a rear plane , and four 
clipping planes . Any geometric primitive entirely outside of 
the viewing frustum may be culled ( e . g . , discarded ) because 
the geometric primitive will not contribute to the final 
rendredsen . Anggemetric primitive that partially 
inside the viewing frustum and partially outside the viewing 
frustum may be clipped ( e . g . , transformed into a new 
geometric primitive that is enclosed within the viewing 
frustum . Furthermore , geometric primitives may each be 
scaled based on a depth of the viewing frustum . All poten 
tially visible geometric primitives are then transmitted to the 
rasterization stage 660 . 
[ 0127 ] The rasterization stage 660 converts the 3D geo 
metric primitives into 2D fragments ( e . g . capable of being 
utilized for display , etc . ) . The rasterization stage 660 may be 
configured to utilize the vertices of the geometric primitives 
to setup a set of plane equations from which various attri 
butes can be interpolated . The rasterization stage 660 may 
also compute a coverage mask for a plurality of pixels that 
indicates whether one or more sample locations for the pixel 
intercept the geometric primitive . In an embodiment , z - test 
ing may also be performed to determine if the geometric 
primitive is occluded by other geometric primitives that 
have already been rasterized . The rasterization stage 660 
generates fragment data ( e . g . , interpolated vertex attributes 
associated with a particular sample location for each covered 
pixel ) that are transmitted to the fragment shading stage 670 . 
[ 0128 ] The fragment shading stage 670 processes frag 
ment data by performing a set of operations ( e . g . , a fragment 

shader or a program ) on each of the fragments . The fragment 
shading stage 670 may generate pixel data ( e . g . , color 
values ) for the fragment such as by performing lighting 
operations or sampling texture maps using interpolated 
texture coordinates for the fragment . The fragment shading 
stage 670 generates pixel data that is transmitted to the raster 
operations stage 680 . 
[ 0129 ] The raster operations stage 680 may perform vari 
ous operations on the pixel data such as performing alpha 
tests , stencil tests , and blending the pixel data with other 
pixel data corresponding to other fragments associated with 
the pixel . When the raster operations stage 680 has finished 
processing the pixel data ( e . g . , the output data 602 ) , the pixel 
data may be written to a render target such as a frame buffer , 
a color buffer , or the like . 
[ 0130 ] It will be appreciated that one or more additional 
stages may be included in the graphics processing pipeline 
600 in addition to or in lieu of one or more of the stages 
described above . Various implementations of the abstract 
graphics processing pipeline may implement different 
stages . Furthermore , one or more of the stages described 
above may be excluded from the graphics processing pipe 
line in some embodiments ( such as the geometry shading 
stage 640 ) . Other types of graphics processing pipelines are 
contemplated as being within the scope of the present 
disclosure . Furthermore , any of the stages of the graphics 
processing pipeline 600 may be implemented by one or 
more dedicated hardware units within a graphics processor 
such as PPU 300 . Other stages of the graphics processing 
pipeline 600 may be implemented by programmable hard 
ware units such as the SM 440 of the PPU 300 . 
[ 0131 ] The graphics processing pipeline 600 may be 
implemented via an application executed by a host proces 
sor , such as a CPU . In an embodiment , a device driver may 
implement an application programming interface ( API ) that 
defines various functions that can be utilized by an appli 
cation in order to generate graphical data for display . The 
device driver is a software program that includes a plurality 
of instructions that control the operation of the PPU 300 . The 
API provides an abstraction for a programmer that lets a 
programmer utilize specialized graphics hardware , such as 
the PPU 300 , to generate the graphical data without requir 
ing the programmer to utilize the specific instruction set for 
the PPU 300 . The application may include an API call that 
is routed to the device driver for the PPU 300 . The device 
driver interprets the API call and performs various opera 
tions to respond to the API call . In some instances , the 
device driver may perform operations by executing instruc 
tions on the CPU . In other instances , the device driver may 
perform operations , at least in part , by launching operations 
on the PPU 300 utilizing an input / output interface between 
the CPU and the PPU 300 . In an embodiment , the device 
driver is configured to implement the graphics processing 
pipeline 600 utilizing the hardware of the PPU 300 . 
[ 0132 ] Various programs may be executed within the PPU 
300 in order to implement the various stages of the graphics 
processing pipeline 600 . For example , the device driver may 
launch a kernel on the PPU 300 to perform the vertex 
shading stage 620 on one SM 440 ( or multiple SMS 440 ) . 
The device driver ( or the initial kernel executed by the PPU 
400 ) may also launch other kernels on the PPU 400 to 
perform other stages of the graphics processing pipeline 
600 , such as the geometry shading stage 640 and the 
fragment shading stage 670 . In addition , some of the stages 
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of the graphics processing pipeline 600 may be implemented 
on fixed unit hardware such as a rasterizer or a data 
assembler implemented within the PPU 400 . It will be 
appreciated that results from one kernel may be processed 
by one or more intervening fixed function hardware units 
before being processed by a subsequent kernel on an SM 
440 . 

Machine Learning 
[ 0133 ] Deep neural networks ( DNNs ) developed on pro 
cessors , such as the PPU 300 have been used for diverse use 
cases , from self - driving cars to faster drug development , 
from automatic image captioning in online image databases 
to smart real - time language translation in video chat appli 
cations . Deep learning is a technique that models the neural 
learning process of the human brain , continually learning , 
continually getting smarter , and delivering more accurate 
results more quickly over time . A child is initially taught by 
an adult to correctly identify and classify various shapes , 
eventually being able to identify shapes without any coach 
ing . Similarly , a deep learning or neural learning system 
needs to be trained in object recognition and classification 
for it get smarter and more efficient at identifying basic 
objects , occluded objects , etc . , while also assigning context 
to objects . 
[ 0134 ] At the simplest level , neurons in the human brain 
look at various inputs that are received , importance levels 
are assigned to each of these inputs , and output is passed on 
to other neurons to act upon . An artificial neuron or percep 
tron is the most basic model of a neural network . In one 
example , a perceptron may receive one or more inputs that 
represent various features of an object that the perceptron is 
being trained to recognize and classify , and each of these 
features is assigned a certain weight based on the importance 
of that feature in defining the shape of an object . 
10135 ] . A deep neural network ( DNN ) model includes 
multiple layers of many connected nodes ( e . g . , perceptrons , 
Boltzmann machines , radial basis functions , convolutional 
layers , etc . ) that can be trained with enormous amounts of 
input data to quickly solve complex problems with high 
accuracy . In one example , a first layer of the DNN model 
breaks down an input image of an automobile into various 
sections and looks for basic patterns such as lines and 
angles . The second layer assembles the lines to look for 
higher level patterns such as wheels , windshields , and 
mirrors . The next layer identifies the type of vehicle , and the 
final few layers generate a label for the input image , iden 
tifying the model of a specific automobile brand . 
[ 0136 ] Once the DNN is trained , the DNN can be 
deployed and used to identify and classify objects or patterns 
in a process known as inference . Examples of inference ( the 
process through which a DNN extracts useful information 
from a given input ) include identifying handwritten numbers 
on checks deposited into ATM machines , identifying images 
of friends in photos , delivering movie recommendations to 
over fifty million users , identifying and classifying different 
types of automobiles , pedestrians , and road hazards in 
driverless cars , or translating human speech in real - time . 
[ 0137 ] During training , data flows through the DNN in a 
forward propagation phase until a prediction is produced 
that indicates a label corresponding to the input . If the neural 
network does not correctly label the input , then errors 
between the correct label and the predicted label are ana 
lyzed , and the weights are adjusted for each feature during 

a backward propagation phase until the DNN correctly 
labels the input and other inputs in a training dataset . 
Training complex neural networks requires massive 
amounts of parallel computing performance , including float 
ing - point multiplications and additions that are supported by 
the PPU 300 . Inferencing is less compute - intensive than 
training , being a latency - sensitive process where a trained 
neural network is applied to new inputs it has not seen before 
to classify images , translate speech , and generally infer new 
information . 
[ 0138 ] Neural networks rely heavily on matrix math 
operations , and complex multi - layered networks require 
tremendous amounts of floating - point performance and 
bandwidth for both efficiency and speed . With thousands of 
processing cores , optimized for matrix math operations , and 
delivering tens to hundreds of TFLOPS of performance , the 
PPU 300 is a computing platform capable of delivering 
performance required for deep neural network - based artifi 
cial intelligence and machine learning applications . 
What is claimed is : 
1 . A method for detecting activity in video , comprising : 
learning , through a reinforcement learning algorithm , a 

policy to sequentially select a subset of frames of a 
video and classify activity within the subset of frames 
according to a plurality of predefined activity classifi 
cations ; 

using , by a recurrent neural network , the policy to detect 
and classify activity in the video over a sequence of 
steps determined according to a given time and / or 
computation budget , including for each step of the 
plurality of steps : 
selecting a subset of frames of the video , 
predicting a segment from the selected subset of frames 

including a temporal location of the segment in the 
video , one or more of the plurality of predefined 
activity classifications associated with the segment , 
and a next subset of frames to select for a next step 
of the plurality of steps . 

2 . The method of claim 1 , wherein the policy is param 
eterized by 8 , and the goal of the policy learning is to 
optimize parameters of the policy by minimizing loss of the 
plurality of steps . 

3 . The method of claim 1 , wherein the loss refers to 
classification loss , localization loss , and retrieval loss . 

4 . The method of claim 1 , wherein the policy is learned 
using a partially observable Markov decision process 
( POMDP ) . 

5 . The method of claim 4 , wherein the policy is learned 
using approximation of gradients for an objective function 
using a recurrent policy gradient approach . 

6 . The method of claim 5 , wherein parameters of the 
policy are learned with stochastic gradient descent . 

7 . The method of claim 1 , wherein the reinforcement 
learning algorithm rewards the policy as a function of a 
change in error . 

8 . The method of claim 7 , wherein the policy earns a 
reward equal to any decrease in a temporal segmentation 
error achieved by selecting a particular frame , and pays a 
penalty when the temporal segmentation error increases . 

9 . The method of claim 1 , wherein or each step of the 
plurality of steps the policy receives as input a location of a 
frame to observe and a history of any prior observed frames . 

10 . The method of claim 1 , wherein the plurality of 
predefined activity classifications includes : 
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a first set of activity classifications for different fore 
ground activities , and 

a second activity classification for background activity . 
11 . A system for detecting activity in video , comprising : 
a computer processor executing a reinforcement learning 

algorithm to learn a policy to sequentially select a 
subset of frames of a video and classify activity within 
the subset of frames according to a plurality of pre 
defined activity classifications ; and 

a recurrent neural network that uses the policy to detect 
and classify activity in the video over a sequence of 
steps determined according to a given time and / or 
computation budget , including for each step of the 
plurality of steps : 
selecting a subset of frames of the video , 
predicting a segment from the selected subset of frames 

including a temporal location of the segment in the 
video , one or more of the plurality of predefined 
activity classifications associated with the segment , 
and a next subset of frames to select for a next step 
of the plurality of steps . 

12 . The system of claim 11 , wherein the policy is param 
eterized by ® , and the goal of the policy learning is to 
optimize parameters of the policy by minimizing loss of the 
plurality of steps . 

13 . The system of claim 11 , wherein the loss refers to 
classification loss , localization loss , and retrieval loss . 

14 . The system of claim 11 , wherein the policy is learned 
using a partially observable Markov decision process 
( POMDP ) . 

15 . The system of claim 14 , wherein the policy is learned 
using approximation of gradients for an objective function 
using a recurrent policy gradient approach . 

16 . The system of claim 15 , wherein parameters of the 
policy are learned with stochastic gradient descent . 

17 . The system of claim 11 , wherein the reinforcement 
learning algorithm rewards the policy as a function of a 
change in error . 

18 . The system of claim 17 , wherein the policy earns a 
reward equal to any decrease in a temporal segmentation 
error achieved by selecting a particular frame , and pays a 
penalty when the temporal segmentation error increases . 

19 . The system of claim 11 , wherein or each step of the 
plurality of steps the policy receives as input a location of a 
frame to observe and a history of any prior observed frames . 

20 . The system of claim 11 , wherein the plurality of 
predefined activity classifications includes : 

a first set of activity classifications for different fore 
ground activities , and 

a second activity classification for background activity . 
21 . A non - transitory computer - readable media storing 

computer instructions for detecting activity in video that , 
when executed by one or more processors , cause the one or 
more processors to perform the method comprising : 

learning , through a reinforcement learning algorithm , a 
policy to sequentially select a subset of frames of a 
video and classify activity within the subset of frames 
according to a plurality of predefined activity classifi 
cations ; 

using , by a recurrent neural network , the policy to detect 
and classify activity in the video over a sequence of 
steps determined according to a given time and / or 
computation budget , including for each step of the 
plurality of steps : 
selecting a subset of frames of the video , 
predicting a segment from the selected subset of frames 

including a temporal location of the segment in the 
video , one or more of the plurality of predefined 
activity classifications associated with the segment , 
and a next subset of frames to select for a next step 
of the plurality of steps . 


