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ITERATIVE SPATIO - TEMPORAL ACTION 
DETECTION IN VIDEO 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application claims the benefit of priority from 
U . S . Provisional Patent Application No . 62 / 568 , 285 filed on 
Oct . 4 , 2017 , the entire content of which is incorporated 
herein by reference . 

FIELD 
[ 0002 ] The technology herein relates to computer vision 
and video processing , and more particularly to an iterative 
network for spatio - temporal action detection in videos . 

BACKGROUND 

[ 0012 ] FIG . 2A shows an arrangement of an initial set of 
anchor tubes on a video frame , according to some example 
embodiments . 
[ 0013 ] FIG . 2B shows expansion of the input video frame 
sequence over multiple iterations , according to some 
example embodiments . 
[ 0014 ] FIG . 2C shows an example regression of an action 
tube , according to some example embodiments . 
[ 0015 ) FIG . 2D shows another example regression of 
action tubes as the input video frame sequence is expanded 
over multiple iterations , according to some example 
embodiments . 
[ 0016 ] FIG . 2E shows an example non - limiting hardware 
architecture for implementing the processes of FIGS . 1A and 
1B , and the system of FIGS . 1C , 1D . 
[ 0017 ] FIG . 3 illustrates a parallel processing unit , in 
accordance with an embodiment . 
[ 0018 ] FIG . 4A illustrates a general processing cluster 
within the parallel processing unit of FIG . 3 , in accordance 
with an embodiment . 
f0019 FIG . 4B illustrates a memory partition unit of the 
parallel processing unit of FIG . 3 , in accordance with an 
embodiment . 
[ 0020 ] FIG . 5A illustrates the streaming multiprocessor of 
FIG . 4A , in accordance with an embodiment . 
[ 0021 ] FIG . 5B is a conceptual diagram of a processing 
system implemented using the parallel processing unit 
( PPU ) of FIG . 3 , in accordance with an embodiment . 
[ 0022 ] FIG . 5C illustrates an exemplary system in which 
the various architecture and / or functionality of the various 
previous embodiments may be implemented . 
[ 0023 ] FIG . 6 is a conceptual diagram of a graphics 
processing pipeline implemented by the PPU of FIG . 3 , in 
accordance with an embodiment . 

[ 0003 ] Spatio - temporal action detection is a key element 
in high - level video understanding . Action detection is a very 
challenging problem in computer vision , since it requires not 
only identifying what action is happening in the video , but 
also where it is happening both spatially and temporally . 
Also , action detection is different from general video object 
detection tasks in that motion may play a much more 
important role in detecting action than it does for general 
objects , since many actions ( e . g . , running vs . walking ) are , 
by definition , only identifiable from motions . 
[ 0004 ] Most existing action detection methods build upon 
static image detection methods like R - CNN / Faster - R - CNN 
and SSD , which means the detection decisions are made on 
the frame level . See e . g . , Gkioxari and Malik , “ Finding 
action tubes ” ( CVPR 2015 ) ; and Peng and Schmid , “ Multi 
region two - stream R - CNN for action detection ” ( ECCV 
2016 ) . 
[ 0005 ] Many of the conventional techniques for action 
detection incur high costs in terms of computation and 
memory resources . These conventional techniques may 
require several hundreds , or sometimes even more than a 
thousand , anchors to initialize detection . Detection over 
several frames makes this explosion of anchors much worse 
in conventional techniques . Moreover , due to the use of very 
short clips ( e . g . , 0 . 25 seconds or shorter ) , the conventional 
techniques may frequently return incorrect classifications . 
[ 0006 ] Therefore , improved techniques for action detec 
tion in video are needed . 

DETAILED DESCRIPTION OF EXAMPLE 
NON - LIMITING EMBODIMENTS 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0007 ] The following detailed description of exemplary 
non - limiting illustrative embodiments is to be read in con 
junction with the drawings of which : 
[ 0008 ] FIG . 1A shows a flowchart of a process for iterative 
action detection in video , in accordance with some example 
embodiments . 
[ 0009 ] FIG . 1B shows a flowchart of a process for regres 
sion of action tubes and classification of actions in a par 
ticular iteration of the process of FIG . 1A , according to some 
embodiments . 
[ 0010 ] FIG . 1C schematically illustrates the overall archi 
tecture of an iterative action detection network , according to 
some example embodiments . 
[ 0011 ] FIG . 1D shows another schematic illustration of the 
overall architecture shown in FIG . 1C . 

[ 0024 ] Example embodiments provide action detection in 
video streams while avoiding the above mentioned deficien 
cies of convention action detection techniques . One aspect 
of the example non - limiting technology herein is that it is 
more natural to predict the action of a sequence of frames as 
a whole . An important technical contribution of this example 
non - limiting technology is the idea of iterative predictions 
for action detection in videos . 
[ 0025 ] Most existing approaches for action detection in 
video are based on the paradigm referred to as " sliding 
window detection ” , in which a set of anchors with various 
sizes and aspect ratios are placed densely over an image ( or 
a clip ) , and the detection window slides over the anchors in 
a sliding - window manner . Additionally , most existing action 
detection approaches adopt a proposal - based paradigm in 
which a large number of proposals ( using either off - the - shelf 
proposal algorithms or the sliding - window technique ) are 
generated , with varying sizes and aspect - ratios , throughout 
frames , and then to predict the class label for each of them . 
[ 0026 ] These approaches are not optimal since ( 1 ) they 
require large amounts of computation to brute - forcedly 
examine many proposals ; ( 2 ) these proposal based 
approaches ignore the relationship between human parts and 
the entire human form since they only performs foreground / 
background classification for any one given proposal ; and 
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( 3 ) the human brain does not detect actions by first gener 
ating thousands of proposals , but instead solves the task in 
a coarse - to - fine manner . 
10027 ] Example embodiments described in this applica 
tion provide a different / enhanced approach which is an 
iterative prediction approach for the task of action detection . 
The inventors discovered that relative to conventional tech 
niques , the number of anchors can be drastically reduced 
while at the same time using longer clips to improve 
classification accuracy . Some example embodiments pro 
vide an action detection approach to start from only very few 
initial “ anchor tubes ” and to refine the predicted anchor 
tubes over multiple iterations of processing . Experiments 
have shown that with as few as 11 anchors , some example 
embodiments can exceed the performance / accuracy of con 
ventional techniques . The example embodiments use tech 
niques which are more similar to how humans process visual 
information . Since the mapping from video to localized 
action tube is highly complicated , this iterative prediction 
approach simplifies the prediction problem with each itera 
tion . 
[ 0028 ] Example embodiments perform action detection in 
an iterative and coarse - to - fine manner . Specifically , accord 
ing to some embodiments , the action detection task begins 
with only very few initial spatio - temporal action tubes ( in 
contrast to the thousands of anchors used in the conventional 
proposal - based approaches ) and iteratively refines the 
anchor tubes . A corresponding training strategy is proposed 
and several design choices are developed . In contrast to the 
above mentioned conventional techniques , example 
embodiments can exploit the relationship between detected 
parts of a human and the entire human form and learns how 
to move from a human part ( e . g . , head , torso ) to the entire 
human . 
[ 0029 ] Example non - limiting systems and methods herein 
take a sequence of video frames as input , and output both the 
action tubes , i . e . , a sequence of bounding boxes on each 
frame , and their respective action labels . Unlike in conven 
tional approaches , example embodiments do not need to use 
a proposal or slide - window based approach , which generates 
thousands of initial tubes spanning all over the frame 
spatially , since the iterative predictor of example embodi 
ments is able to accommodate much larger offsets between 
the initial box and the ground - truth . 
[ 0030 ] The example non - limiting technology herein dem 
onstrates the ability of deep convolutional neural networks 
trained in GPUs ( see e . g . , FIG . 2E ) or other parallel pro 
cessing unit ( PPU ) to solve challenging computer vision 
problems including action detection for real - world systems . 

between 2 and 20 video frames . In some example embodi 
ments , the short video clips each consists of six frames . 
[ 0033 ] At operation 104 , process 100 accesses configura 
tion parameters including the configuration of the set of 
initial anchors . The configuration parameters may be 
accessed from a memory such as a hard disk memory or 
random access memory to where the parameters were pre 
viously stored . Without loss of generality , this application 
uses the terms " anchor ” and “ anchor box ” interchangeably . 
But an anchor may , in some embodiments , be in shapes other 
than box or rectangular shapes . The set of initial anchors 
specify the locations in a frame for placing ( e . g . , overlaying ) 
each of the initial anchor boxes . The number of anchors 
defined in the set of initial anchors in embodiments is in the 
range of 9 - 99 anchors . The small number of initial anchors 
enable the embodiments to more efficiently perform action 
detection than conventional action detection systems that 
use hundreds , or sometimes more than a thousand , initial 
anchors . In certain example embodiments , the set of initial 
anchors consist of 11 anchors . An arrangement of 11 initial 
anchors is shown in FIG . 2A . 
[ 0034 ] At operation 106 , one of the short video clips from 
the accessed plurality of video clips and the initial set of 
anchors are taken as input , and processing is performed to 
generate a set of anchor tubes ( or , equivalently , also referred 
to as " action tubes ” ) and a set of action classifications . 
100351 An “ anchor tube ” ( alternatively , an " action tube ” ) 
refers to a particular anchor as it is arranged in a plurality of 
consecutive video frames . For example , the anchor tube 
corresponding to a particular anchor would include the 
bounding box corresponding to that anchor as it appears in 
each of the consecutive frames . Put another way , whereas 
" anchor ” is a 2D concept ( i . e . , a 2D box on a frame ) , " anchor 
tube ” is a 3D concept ( i . e . , a sequence of 2D boxes on 
several consecutive frames ) . 
10036 ] An " action classification ” is the assignment of a 
particular anchor ( or anchor tube ) to a particular class of 
action . In example embodiments , each anchor or anchor tube 
is subjected to regression and classification processing to 
eventually output one or more corresponding action classi 
fications ( e . g . , represented by a classification label ) , and 
optionally , the respective associated confidence levels . More 
specifically , “ regression ” is used to update the spatial loca 
tion and size of each anchor in a tube , and “ classification ” 
is used to output corresponding action label . 
[ 0037 ] . At operation 106 , according to some embodiments , 
an anchor tube is formed corresponding to each anchor in the 
set of initial anchors . In some other embodiments , only some 
of the anchors in the set of initial anchors will have a 
corresponding generated anchor tube . A respectively com 
puted action classification is associated with each of the 
generated anchor tubes or each of the generated anchor tubes 
which corresponds to a foreground action . In many 
instances , only some of the anchor tubes correspond to 
foreground actions . 
[ 0038 ] Operation 106 may be considered the first iteration 
in the iterative process 100 . The initial anchor tubes tem 
porally span over the sequence of frames with a fixed spatial 
extent . After that , the iterative approach of example embodi 
ments is performed , which involves both spatial and tem 
poral scales ( illustrated in FIGS . 1C - 1D ) . At a specific 
iteration i ( i > 1 ) , the regression output from the previous 

i teration i - 1 is taken as the proposal tubes for the current 
iteration . By doing so , the location of the action tubes are 

Example Process for Action Detection 
[ 0031 ] A method of action detection in video according to 
some example embodiments is illustrated in FIGS . 1A and 
1B . FIG . 1A illustrates a flowchart of an overall iterative 
process 100 for action detection in video . FIG . 1B illustrates 
a flowchart describing the processing 120 associated with an 
iteration . 
[ 0032 ] After entering process 100 , at operation 102 , a 
video frame stream is accessed . The accessed video frame 
stream may be from previously captured ad stored video or 
video that is currently ( in real - time ) being generated by ( or 
based on input from ) one or more cameras . The video frame 
stream includes a plurality of short video clips . A " short 
video clip ” , as the term is used in this application , includes 
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continually refined over iterations . In the meantime , the 
proposal tubes are extended temporally to the adjacent clips 
and include the frames of these adjacent clips into the input 
sequence ( as shown in FIG . 2B ) . By progressively consum 
ing longer clips , the model in example embodiments can 
utilize more temporal information and improve the classi - 
fication accuracy . The processing associated with operation 
106 is described in more detail in relation to FIG . 1B . As 
noted above , the example embodiments iteratively refine the 
set of initial anchors or anchor tubes and action classifica 
tions while expanding the input video frame sequence at the 
beginning of each iteration by adding adjacent video clips to 
the previously processed sequence of video frames . As 
further described below , operations 108 - 112 are repeated for 
one or more iterations . 
[ 0039 ] At operation 108 , the input video sequence is 
expanded by adding more video frames . According to some 
embodiments , at least one short video clip is added . Accord 
ing to an example embodiment , two short video clips ( e . g . , 
clips of 6 video frames each ) are added to the video frame 
sequence processed in the immediately preceding iteration . 
One of the two added short video clips is immediately 
adjacent to the previously processed video frame sequence 
and precedes the previously processed video frame sequence 
in time ; the other of the two added short video clips is also 
immediately adjacent to the previously processed video 
frame sequence but follows the previously processed video 
frame sequence in time . An example of the input video 
frame sequence expansion over successive iterations is 
shown in FIG . 2B . 
10040 ] At operation 110 , a set of new input anchors ( or set 
of new input anchor tubes ) is determined based on the 
anchor tubes generated and regressed in the previous itera 
tion . For each anchor in the set of new input anchors , the 
corresponding position may be predictively determined 
from the corresponding anchor tube used in the preceding 
iteration and / or trends that are derivable from the corre 
sponding anchor tube . The corresponding positions are 
determined by the local branch ( also referred to as the 
regression branch ) shown in FIG . 1C . 
[ 0041 ] At operation 112 , taking the expanded video frame 
sequence and the new set of anchors or anchor tubes as 
input , processing is performed to generate a regressed set of 
anchor tubes and a further refined set of action classifica 
tions . The processing associated with generating the 
regressed set of anchor tubes and refined set of action 
classifications is described below in relation to FIG . 1B . 
[ 0042 ] At operation 114 , it is determined whether a pre 
determined threshold and / or other termination criteria has 
been satisfied . For example , some embodiments may be 
configured to terminate after any one or more of the fol 
lowing conditions are satisfied : a specified number of itera 
tions ( e . g . , 3 iterations ) has been completed , or the length of 
the input video frame sequence has reached a maximum 
number ( e . g . , 30 frames ) or a maximum time ( e . g . , 0 . 5 
seconds ) . Other termination criteria may include more 
anchor tube accuracy and / or action classification accuracy . 
For example , an example termination criteria may be one or 
more of the action classifications associated with an anchor 
tube exceeding a threshold probability ( e . g . , 0 . 95 confi 
dence ) . 
[ 0043 ] When the termination conditions are not satisfied at 
operation 114 , process 100 proceeds to operation 108 to 
begin the next iteration of processing for action detection . 

[ 0044 ] If the termination conditions are satisfied at opera 
tion 114 , then at operation 116 detected objects / persons 
and / or corresponding anchor tubes ( or anchors ) , and the 
action classification or classifications corresponding to each 
of the anchor tubes ( or anchors ) are output . The output may 
be stored for subsequent use or may be provided to an 
online / currently active application for further processing . 
For example , the output set of regressed anchor tubes and 
the associated classifications can be provided to a surveil 
lance system for identifying persons and / or actions that 
appear in surveillance video . In some embodiments , process 
100 may be part of an application associated with an 
autonomous vehicle , and the output of process 100 may be 
used by the application to reliably determine the actions 
( e . g . , walking , running , standing by the side of the road , 
attempting to step on to the road , etc . ) in which persons 
appearing in the vehicle ' s camera view are engaged in , so 
that the vehicle ' s control systems can be automatically 
controlled to react appropriately to the presence of such 
persons in the camera view . The use of the output of process 
100 by numerous other applications is also contemplated in 
embodiments . Automated video annotation is another 
example application that can utilize the output of process 
100 . 
[ 0045 ] FIG . 1B illustrates a flowchart for process 120 , 
according to some example embodiments . Process 120 may 
be performed in the processing associated with each itera 
tion . For example , process 120 may be performed during the 
processing of each of the operations 106 and 112 described 
above in relation to FIG . 1A . FIGS . 1C and 1D show 
example systems on which process 120 can be performed . 
[ 0046 ] After entering process 120 , at operation 122 , pro 
cess 120 receives an input sequence of video frames and an 
input set of anchors ( or anchor tubes ) . For example , when 
process 120 is being performed during operation 106 , the 
input to process 120 may include the initial set of video 
frames ( e . g . , initial clip of six frames ) and a set of initial 
anchors ( or set of initial anchor tubes ) . 
[ 0047 ] At operation 124 , a backbone neural network is 
applied to each frame in the input sequence of frames to 
generate a respective spatial feature volume for each anchor 
tube . The backbone network can be any CNN such as , but 
not limited to , VGG16 , ResNet , etc . 
[ 0048 ] At operation 126 , the spatial feature volumes and 
proposal action tubes are passed through an ROI ( region of 
interest ) pooling layer to produce regional features corre 
sponding to each proposal anchor tube . The ROI pooling 
layer network operates to extract , from the respective frame 
level feature volumes , the regional features corresponding to 
each of the respective ROI corresponding to each proposal 
anchor tube . The ROI pooling layer may be a CNN such as , 
but not limited to , VGG16 , ResNet , etc . 
[ 0049 ] At operation 128 a head neural network is selected 
for processing the regional features associated with each 
anchor tube . According to some embodiments , the head 
network selected for each iteration , or at least for some 
iterations , may be different from the head network selected 
for other iterations . In some embodiments , the same head 
network may be used for all iterations . 
[ 0050 ] The selected head network may be a two branch 
head network that is configured to perform global modeling 
for action classification and local modeling for detecting 
localized actions . 
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[ 0051 ] During the head neural network processing , at 
operation 130 , the regional features generated at operation 
126 are combined for temporal modeling and for producing 
global features . 
[ 0052 ] The produced global features are , at operation 132 , 
used to generate an action classification vector . The action 
classification vector may be of Cx1 dimension , where C is 
the number of configured or predetermined action classes . 
[ 0053 ] Operations 130 and 132 belong to what is referred 
to in this application as the “ global branch ” . 
[ 0054 ] The produced global features are also provided to 
the “ local branch ” of the same head neural network . The 
local branch in the illustrated embodiment includes opera 
tions 134 and 136 . 
[ 0055 ] At operation 134 , the global features determined at 
operation 130 are combined and / or concatenated with the 
regional features generated at operation 126 . 
10056 ] . At operation 136 , a 4xCxT dimensional regression 
coefficient vector is produced for each anchor tube , where 4 
represents the spatial adjustment for each anchor , C is the 
number of action classes and T is the length of the input 
frame sequence . 

Example Networks for Action Detection 
[ 0057 ] Example video processing network architectures 
according to some embodiments , are illustrated in FIGS . 1C 
and 1D . 
[ 0058 ] A network architecture 140 according to some 
example embodiments is illustrated in FIG . 1C . The network 
comprises a backbone network 146 , a ROI pooling layer 
network 150 and a head network 164 . Specifically , given a 
sequence of frames 142 , a backbone network 146 is applied 
to each frame individually and provides a spatial feature 
volume 148 for each of them ( shown in different fill patterns 
in FIG . 1C ) . After that , the feature volumes 146 , together 
with the proposal tubes ( not shown ) , are passed through a 
ROI pooling layer 150 to produce regional features 152 
corresponding to each proposal tube . The regional features 
152 are then fed to the head network ( e . g . , global branch 
including 148 and the local branch ) for both classification 
and regression . A two - branch design is used for the head 
network , one performs global modeling for accurate classi 
fication and the other performs local modeling for precise 
localization . The motivation is that the two tasks have 
substantially different objectives , which requires different 
types of information and architecture design . In particular , 
the so - called " global branch ” combines the regional features 
for temporal modeling and produces the global feature 156 
( illustrated as a dotted fill patterned cube in FIG . 1C ) . The 
global feature 156 encodes the information of the entire tube 
( and , in some embodiments , the context information as well ) 
and is used for action classification . The classifications are 
used to produce a Cxl classification vector 158 . The tem 
poral modeling 148 for the global branch can utilize any 
network such as RNN , 2D convolution , 3D convolution , 
etc . , although experiments with at least some embodiments 
have yielded best results with 3D convolution . For the " local 
branch ” , first , the global feature is concatenated with each of 
the regional features to produce the extended local features 
( e . g . , the combination of the respective regional feature 
blocks 160 with global feature block 156 ' ) . The extended 
local features not only encode the global information , but 
also remain the detailed local information at each frame . The 
features are then used to produce a 4xCxT dimensional 

regression coefficient vector 162 for each tube , where C is 
the number of classes and T is the length of the input frame 
sequence 
[ 0059 ] . FIG . 1D illustrates another example video process 
ing network according to some embodiments . As illustrated 
in FIG . 1D , the iterative prediction approach for the task of 
action detection according to an embodiment , takes a 
sequence of video frames 172 as input , and outputs both the 
action tubes 192 , i . e . , a sequence of bounding boxes on each 
frame , and their respective action labels 188 . In contrast to 
conventional techniques for action detection which generate 
thousands of initial tubes spanning all over the frame 
spatially , the illustrated example embodiment does not 
require use of a proposal or sliding - window based approach 
since its iterative predictor is capable of accommodating a 
much larger offset between the initial detection box and the 
ground - truth . 
10060 ] Specifically , first a convolutional stack 176 ( which 
can be any classical convolutional neural network ( CNN ) 
such as AlexNet , VGG16 , ResNets , etc . ; VGG16 is used in 
the illustrated embodiment for its good performance and 
moderate computation cost ) is applied onto each frame 
individually and produces a spatial feature volume 178 for 
each of them ( shown in different patterns in FIG . 1D ) . Then , 
the feature volumes 178 , together with the initial anchor 
tubes ( not shown in FIG . 1D ) , are passed through the ROI 
pooling layer 180 to produce features 182 corresponding to 
the initial tubes . More detail concerning an ROI pooling 
layer may be found for example in Girshick et al , “ Fast 
R - CNN ” , Computer Vision ( ICCV ) 2015 . The generation of 
initial action tubes is described in a later section of this 
application , and for now it is without loss of generality to 
assume the initial tube to be consisting of one bounding box 
that covers the entire frame on each frame . 
10061 ] The ROI pooled features 180 are now what may be 
referred to as “ local features ” which describe only contents 
inside the detection box . In contrast , the other branch 
concatenates the ROI pooled features 180 from different 
frames and passes the concatenation on through a convolu 
tional layer 184 to produce " global features ” describing 
contents in the entire tube ( illustrated as cube 186 in FIG . 
1D ) . Both local and global features are concatenated 190 and 
processed with fully - connected layers 194 to produce a 
4 - dimensional regression coefficient vector for each box ( the 
parameterization of which is described later in this applica 
tion ) . For classification , the action decision should be based 
on the action tube , i . e . , a sequence of bounding boxes , 
instead of individual single detection boxes on each frame . 
Therefore , the global features is directly acquired and passed 
on to fully - connected layers 194 for classification . 
10062 ] The architecture iterates the operation of ROI pool 
ing 180 and subsequent operations 184 and 194 as needed . 
According to at least some embodiments , the video process 
ing networks shown in FIGS . 1C and 1D comprise neural 
networks . 

Example Anchor / Anchor Tube Arrangement 
[ 0063 ] FIG . 2A illustrates an example set of initial 
anchors , according to some embodiments . The illustrated 
initial set of anchors consists of 11 anchors ( shown as 
anchors 202 , 203 , 204 , 205 , 206 , 207 , 208 , 209 , 210 , 211 and 
212 arranged on frame 200 ) with predefined respective 
positions on a frame as shown in FIG . 2A . In this particular 
non - limiting embodiment , for each scale 1 / 2 and 3 / 4 ( e . g . , " 1 / 2 " 
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means half of each dimension ( row or column ) not the entire 
image size ) , respective anchor boxes are arranged at 5 
different positions like shown in FIG . 2A yielding 5x2 = 10 
action tubes . With the addition of an action tube that covers 
the entire frame , the embodiment yields a total of 11 action 
tubes . 

Example Iterative Expansion of Input Video 
Sequence 

[ 0064 ] FIG . 2B illustrates an example expansion of the 
input video frame sequence over multiple iterations . In the 
example shown , in the first iteration the selected input frame 
sequence 220 includes one short clip ( e . g . clip of 6 frames ) ; 
in the second iteration , the newly selected input frame 
sequence 222 includes , in addition to the frame sequence 
220 , the short clips that are immediately adjacent to the 
frame sequence 220 before and after ; and , in the third 
iteration , the newly selected input frame sequence 224 is 
formed by expanding the input frame sequence 222 by 
adding the short clips that are immediately adjacent to the 
frame sequence 222 before and after . 

Example Spatio - Temporal Refining 
[ 0065 ] FIG . 2C shows an example video clip or frame 230 
over three iterations regressing an anchor tube to detect the 
action of person 232 appearing in the frame . As shown , the 
same anchor tube is regressed to respective shapes 234 , 235 
and 236 to capture the person 232 to a sufficient complete 
ness so that a classification of the action ( e . g . , skateboard 
ing ) can be made with a high level of confidence . 
[ 0066 ] FIG . 2C illustrates an example of the spatial updat 
ing that is one part of the iterative refinement according to 
some example embodiments . As shown in the figure , spatial 
update may ensure that the subject of the detection is 
occupying most of the detection area ( e . g . , area within one 
anchor , as shown ) . Spatial updating can also be used to 
obtain context information to assist in the action classifica 
tion task . 
[ 0067 ] FIG . 2D shows an example expansion of the input 
video frame sequence over several iterations , and the asso 
ciated anchor tube regressing to detect actions , according to 
some example embodiments . The illustrated example con 
cerns five short video clips ranging from the earlier clip at 
time t - 2 to the latest clip at time t + 2 . 
[ 0068 ] At iteration 0 , the clip at time t is selected as the 
input video frame sequence . Selection of the clip corre 
sponding to time t enables the subsequent expansion of the 
input frame sequence as required in embodiments by ensur 
ing that a sufficient number of clips are available on either 
side of the initially selected clip . 
[ 0069 ] At iteration 0 , two initial anchors or anchor tubes 
242 and 244 are shown as arranged on the frame or clip . At 
iteration 0 , the anchors or anchor tubes 242 and 244 are in 
the predefined positions and have not been subjected to 
regression processing . For each iteration , the input anchor 
tubes may be specified with respect to the clip corresponding 
to time t . 
[ 0070 ] At iteration 1 , the clips corresponding to times t - 1 
and t + 1 are added to the t clip to expand the input frame 
sequence . The input anchor tubes for iteration 1 are deter 
mined based on the regression of the anchor tube in iteration 
0 , and may be specified with respect to the clip correspond - 
ing to time t . Based on the input anchor tubes specified for 

the t clip , the anchor tube is expanded to t - 1 and t + 1 clips . 
Thus , the anchor tubes shown for t - 1 and t + 1 clips in FIG . 
2D are extrapolated from the anchor tube of the t clip . 
[ 0071 ] At iteration 2 , the clips corresponding to times t - 2 
and t + 2 are added to the sequence of frames having clips t - 1 
to t + 1 , to again expand the input frame sequence . Each of the 
anchor tubes 242 and 244 are regressed over the expanded 
input frame sequence such that now the anchor tube 244 has 
sufficient information to detect the player detected within 
244 going through the motions that can be reliably classified 
as associated with the playing of basketball . 
[ 0072 ] At iteration 3 , the t clip may be returned with the 
regressed anchor tubes . Sufficient information based on 
regressed anchor tube 244 was obtained ibn iteration 2 based 
on clips ranging from time t - 2 to time t + 2 to arrive at an 
action classification of “ shooting a basketball ” . As shown , at 
iteration 4 , the clip at time t may be output with the regressed 
anchor tube corresponding to the player performing the 
action and the determined classification label . 
[ 0073 ] FIG . 2D illustrates the spatial updating as well as 
the temporal updating that are parts of the iterative refine 
ment process according to some example embodiments . The 
spatial updating is illustrated by the refining of a respective 
anchor arranged in a particular clip , as shown over several 
iterations . This example also illustrates , in addition to focus 
ing the detection area on the subject , that spatial updating 
can be used to obtain context information . For example , the 
clips t - 1 and t + 1 , provide the necessary information for 
associating the catching and shooting of a ball with the 
subject . The temporal updating is illustrated by the regres 
sion of the respective anchor tubes over consecutive short 
clips . The temporal updating by adding adjacent clips 
enables the determination and classification of actions , such 
as , for example , that the subject associated with anchor tube 
244 is performing the action of shooting a basketball . 
[ 0074 ] FIG . 2D also illustrates the usefulness of iteratively 
expanding the input video frame sequence . The iterative 
approach of embodiments enable reduced computational 
cost and memory considering a few short video clips at a 
time . The approach enables achieving good performance 
using only very few anchors , and / or by decomposing a 
highly non - linear task into easier sub - tasks . It also enables 
progressively improving the detection performance . By con 
sidering a few short clips at a time , embodiments also enable 
the problem of anchor tube drifting over time . For example , 
if a long clip with 30 frames is considered , due to tubes 
drifting spatially ( e . g . , with actions that cause movements 
spatially ) , it may be difficult to accurately capture a ground 
truth bounding box . However , gradual expanded anchor 
tubes as used herein can more accurately capture the ground 
truth ( e . g . , in FIG . 2D , the player movements in anchor tube 
244 . 

Example Non - Limiting Training 
[ 0075 ] Example embodiments may use either a joint train 
ing scheme or a stage - wise training scheme . Some experi 
ments have shown that using a joint training scheme to train 
a model yields better action detection and classification 
accuracy that the stage - wise training . 
[ 0076 ] The joint training scheme is more simple and 
efficient than the stage - wise training counterpart , and also 
provides good performance . At each iteration , two loss 
functions — the cross - entropy loss for classification and the 
smooth - L1 - loss ( e . g . Girshick , Ross . " Fast R - CNN . ” Com 
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( 1 ) 

( 2 ) 

puter Vision ( ICCV ) , 2015 ) for regression are jointly opti 
mized . The regression is class specific , i . e . different regres 
sion outputs correspond to different actions . The 
parameterization of the regression coefficient may be the 
same as in Girshick et al . The complete loss function can be 
written as shown in equation ( 1 ) : 

L = 2 , 1 cs + hIpeg 
where à is used to balance the contribution of the two losses . 
[ 0077 ] One key element for the model training is the 
selection of positive and negative proposal tubes . A standard 
practice for this is to select the positive samples according 
to the Intersection over Union ( IOU ) between the proposal 
tubes and the ground truth tubes . Specifically , a proposal 
tube is viewed as a positive sample if its IoU is above a given 
threshold d , and vice versa ( if no proposal tube satisfies the 
criteria , the one with the largest IoU is selected as positive 
sample ) . The threshold d is an important hyper - parameter 
that affects the number of , as well as the quality of , the 
positive samples . In experiments with some embodiments , 
an incremental d , may be for each iteration ( e . g . set d ; = 0 . 2 , 
0 . 5 , 0 . 5 for i = 1 , 2 , 3 in experiments ) . By doing so , a sufficient 
number of positive samples may be made available at the 
early iterations , and also guarantee good quality of positive 
samples at the late iterations . Note that the number of 
positive samples will not decrease much at the late iterations 
as the proposal anchor tubes are refined over iterations and 
have continually improved quality . To enrich the diversity of 
the negative samples and include more hard negatives , all 
regression outputs from the previous iteration may be uti 
lized . Specifically , example embodiments may sample from 
the regression outputs that have IoU lower than di , with 
sampling probability in proportional to the classification 
scores of that tubes . Intuitively , a proposal tube with low loU 
but high classification score is more likely to be a hard 
negative , e . g . a human not performing the action . The 
maximum number of positive samples for a sequence may 
be constrained to be 5 , in order to balance the ratio between 
the positive and negative samples . 
[ 0078 ] Another problem during training is the drift of both 
input and output distributions . The input distribution , i . e . 
IOU distribution , changes over iterations because the pro 
posal tubes keep being refined and the loU increases gradu 
ally . The output distribution , i . e . the distribution of the 
regression coefficients , changes accordingly , as the regres 
sion coefficients tend to decrease over iterations . As a result , 
some embodiments may use separate head networks for 
different iterations to adapt to the distribution drift . 
[ 0079 ] Spatial context information may also be an impor 
tant clue for correct action classification , as mentioned in the 
introduction . In order to introduce the context information , 
some embodiments may expand the spatial extent of the 
proposal tubes to get the expanded regional features , and 
then append them along with the original regional features 
in global branch . As a result , the global feature encodes both 
the temporal and spatial context information of the entire 
tube . In some embodiments the early fusion of the RGB 
image and the flow stack may yield better performance . In 
particular , the 3 - channel RGB image and the 15 - channel 
flow stack may be concatenated along the channel dimen 
sion and fed in as input to the model of certain embodiments . 
Experiments with certain example embodiments have 
shown that the early fusion strategy is often more effective 
than the late fusion approach . Examples of late fusion can be 

found in Peng , Xiaojiang , and Cordelia Schmid , “ Multi 
region two - stream R - CNN for action detection ” ( ECCV , 
2016 ) , and Singh , Gurkirt , et al “ Online real - time multiple 
spatiotemporal action localisation and prediction ” ( CVPR , 
2017 ) . During inference , a process may start from the initial 
anchor tubes and execute T iterations for each of the tubes . 
To update the proposal anchor tubes , the regression output of 
the class with the highest classification score may be picked . 
The output from the last iteration may be taken as the final 
output of the process . 
[ 0080 ] In some embodiments , a stage - wise training 
approach may be used . Some example embodiments use a 
combination of two loss functions — the cross - entropy loss 
for classification and a smooth - L1 - loss ( see Girshick et al , 
cited above ) for regressing the coefficients . The regression is 
class specific , i . e . different regression outputs correspond to 
different actions . And à constant , which can be set , for 
example , to 0 . 01 , is used to balance these two loss terms as 
shown in equation ( 2 ) : 

L = Lregtalels 
[ 0081 ] The input to the network are a batch of images , plus 
the initial anchor tubes . A technique for choosing the initial 
tubes may be as follows . First , in contrast to conventional 
techniques ( e . g . , Kalogeiton et al . , “ Action q Detector for 
Spatio - Temporal Action Localization ” ( ICCV 2017 ) ) , 
example embodiments do not need to use a slide - window 
based approach , which generates thousands of initial tubes 
spanning all over the frame spatially , since the iterative 
predictor of example embodiments is able to tackle much 
larger offsets between the initial detection box and the 
ground - truth . On the other hand , even though there is 
nothing that technically prevents example embodiments 
from using only one initial detection box which covers the 
entire frame , this is not optimal since a single detection box 
cannot capture multiple persons performing actions in the 
video . Thus example embodiments initialize with a few 
anchor tubes ( e . g . , in one specific case 11 ) which enable the 
embodiments to capture multiple actions . An example of the 
( e . g . , 11 ) initial tubes are shown in FIG . 2A . 
[ 0082 ] To train the iterative prediction network according 
to some example embodiments , a stage - wise training 
scheme which adapts both the localizer and classifier to 
different input distribution over iterations can be used . For 
example , to train for t - th iteration , a localizer for t - 1 
iterations can be first executed to get a predicted location 
bit - 1 } , from which the localizer can be trained to predict the 
offset between bit - 1 } and the ground truth , as well as the 
classifier to predict the action class corresponding to bit - 1 } . 
More specifically , if the overlap between bla - 1 } and the 
ground - truth ( with ground - truth class y ) is larger than o { pos 
( which is set to 0 . 5 , for example , in some example embodi 
ments ) , the class label of b ? t - 1 } is assigned as y , otherwise 
it is considered as belonging to the background class . 
[ 0083 ] An interesting question that arises during training 
is how to sample initial anchor tubes . The most straightfor 
ward way would be to directly compute the average overlap 
( across frames ) between all 11 candidate action tubes and 
the ground - truth tube , and then picking the anchor tube with 
the highest average overlap . However , this approach has the 
problem of biasing towards positive samples — since 
sampled tubes are always starting with high overlap , it is 
mostly likely that it would overlap even more after iterative 
regression process , which means there would barely be any 
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bounding boxes with background class . To solve this , certain 
example embodiments sample from 11 initial anchor tubes , 
with sampling probability pi , i = 1 , 2 , . . . , 11 , in proportion to 
the exponent overlap to the ground truth . More precisely , the 
following equation ( 3 ) may characterize pi : 

uses 11 anchor tubes , while the other contemporary methods 
usually require over thousands anchors as input ( e . g . , more 
than 12000 anchors in the techniques described in Peng , 
Xiaojiang , and Cordelia Schmid “ Multi - region two - stream 
R - CNN for action detection . ” ( ECCV , 2016 ) ; more than 
8000 in the approaches described in Singh , Gurkirt , et al . 
" Online real - time multiple spatiotemporal action localisa 
tion and prediction . ” ( CVPR . 2017 ) and Kalogeiton , Vicky , 
et al . " Action tubelet detector for spatio - temporal action 
localization . ” ( ICCV . 2017 ) ) . 

eyo ; 

P : = 5 exoi 

Example GPU - Based System for Action Detection 
[ 0084 ] where O , is the average overlap between the i - th 
initial tube and the ground - truth . y here is a constant param 
eter which determines how " spread ” the probability distri 
bution should be the larger y is , the higher the probability 
that a “ good ” initial tube is sampled with high overlap . 
Across certain example embodiments , y may be set to 10 to 
balance samples with foreground and background classes . 
[ 0085 ] An important non - limiting characteristic of a 
model according to certain example embodiments is that 
parameters are shared across iterations , which implies that 
the model is able to refine arbitrary initializations / predic 
tions . To ensure this , one important training strategy is to 
mix up outputs from varying number of executions . For 
example , to train a model in the third iteration , outputs from 
executing the trained model for 0 , 1 , 2 times may be mixed 
up , and fed as the input to training , so that the does not forget 
how to do regression in early iterations . In certain example 
embodiments , the current iteration the loss for training 
current iteration is upweighted . Specifically , in certain 
example embodiments , the weight for current iteration is set 
equal to the sum of weights for all previous iterations . 
[ 0086 ] During testing according to certain example 
embodiments , the proposed network or action tube detector 
was slid along the time axis . For a particular action tube , for 
each of its 11 initial tubes , the model is executed for T 
iterations the number of iterations the model has been 
trained for ) and the output is taken from the last iteration as 
the output . 

10089 ] FIG . 2E illustrates an example system 260 showing 
a CPU ( s ) , GPU ( s ) and associated memory . The CPU ( s ) 262 
and GPU ( s ) 264 execute instructions stored in the memory 
( ies ) 268 and 270 to perform the functions described above . 
For example , system 260 may be configured to perform 
processes 100 and 120 described above in relation to FIGS . 
1A and 1B . The CPU ( s ) and / or another specialized processor 
262 , or one or more GPU ( s ) may be configured to operate as 
a deep learning accelerator to perform the training and 
inferencing described above in relation to processes 100 or 
120 , and / or neural networks architectures shown in FIGS . 
1C and 1D . In an example embodiment , system 260 may 
accept an initial set of anchors or proposed anchor tubes and 
a plurality of short video clips each of 6 frames as input 272 
and perform processing to eventually generate and output 
274 a set of regressed / refined action tubes corresponding to 
detected actions and a set of action classification labels . 
[ 0090 ] The outputs 274 of system 260 may be provided to 
an application such as , but not limited to , surveillance , 
computer vision , machine learning / deep learning , intelligent 
video analytics , vehicle driver assistance systems , autono 
mous driving systems , and the like . Such applications may 
themselves be executing on the system 260 or another 
processor / system to which system 260 is connected . 
[ 0091 ] According to some embodiments , the GPU 264 
and / or a specialized processor used in system 260 may be in 
accordance with the parallel processing unit described below 
in relation to FIG . 3 . 

Example Parallel Processing Unit 
Experimental Results 

[ 0087 ] Certain example embodiments were evaluated on 
the UCF - 101 - 24 dataset , which is a subset of UCF - 101 
dataset that has 2284 videos for training and 910 for testing . 
All videos were already annotated with the action class label 
as well as the location of the person performing the action . 
There are in total 24 action classes ( e . g . , like “ Basketball 
Dunk ” , “ HorseRiding ” and “ Surfing ” , etc . ) , and their cor 
responding bounding box annotations . The metric used to 
evaluate the certain example embodiments is frame level 
mean average precision ( frame - mAP ) , which is a commonly 
used metric in object detection and video action detection . 
[ 0088 ] Without much hyper - parameter tuning , the model 
( e . g . , in three iterations ) according to the example embodi 
ment achieved 66 . 7 % mAP with only RGB input on the test 
set of UCF101 - 24 dataset . The result outperforms the state 
of - the - art method of Peng , Xiaojiang , and Cordelia Schmid 
“ Multi - region two - stream R - CNN for action detection . " 
( ECCV , 2016 ) by over 3 % . Using both RGB and flow input , 
the model according to embodiments achieves 73 . 2 % mAP , 
which is 3 . 6 % higher than that in Peng et al . The experiment 
results verify the effectiveness of the approach in embodi - 
ments . Notably , the model according to embodiments only 

[ 0092 ] FIG . 3 illustrates a parallel processing unit ( PPU ) 
300 , in accordance with an embodiment . In an embodiment , 
the PPU 300 is a multi - threaded processor that is imple 
mented on one or more integrated circuit devices . The PPU 
300 is a latency hiding architecture designed to process 
many threads in parallel . A thread ( i . e . , a thread of execu 
tion ) is an instantiation of a set of instructions configured to 
be executed by the PPU 300 . In an embodiment , the PPU 
300 is a graphics processing unit ( GPU ) configured to 
implement a graphics rendering pipeline for processing 
three - dimensional ( 3D ) graphics data in order to generate 
two - dimensional ( 2D ) image data for display on a display 
device such as a liquid crystal display ( LCD ) device . In 
other embodiments , the PPU 300 may be utilized for per 
forming general - purpose computations . While one exem 
plary parallel processor is provided herein for illustrative 
purposes , it should be strongly noted that such processor is 
set forth for illustrative purposes only , and that any proces 
sor may be employed to supplement and / or substitute for the 
same . 
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[ 0093 ] One or more PPUs 300 may be configured to 
accelerate thousands of High Performance Computing 
( HPC ) , data center , and machine learning applications . The 
PPU 300 may be configured to accelerate numerous deep 
learning systems and applications including autonomous 
vehicle platforms , deep learning , high - accuracy speech , 
image , and text recognition systems , intelligent video ana 
lytics , molecular simulations , drug discovery , disease diag 
nosis , weather forecasting , big data analytics , astronomy , 
molecular dynamics simulation , financial modeling , robot 
ics , factory automation , real - time language translation , 
online search optimizations , and personalized user recom 
mendations , and the like . 
[ 0094 ] As shown in FIG . 3 , the PPU 300 includes an 
Input / Output ( 1 / 0 ) unit 305 , a front end unit 315 , a scheduler 
unit 320 , a work distribution unit 325 , a hub 330 , a crossbar 
( Xbar ) 370 , one or more general processing clusters ( GPCs ) 
350 , and one or more partition units 380 . The PPU 300 may 
be connected to a host processor or other PPUs 300 via one 
or more high - speed NVLink 310 interconnect . The PPU 300 
may be connected to a host processor or other peripheral 
devices via an interconnect 302 . The PPU 300 may also be 
connected to a local memory comprising a number of 
memory devices 304 . In an embodiment , the local memory 
may comprise a number of dynamic random access memory 
( DRAM ) devices . The DRAM devices may be configured as 
a high - bandwidth memory ( HBM ) subsystem , with multiple 
DRAM dies stacked within each device . 
[ 0095 ] The NVLink 310 interconnect enables systems to 
scale and include one or more PPUS 300 combined with one 
or more CPUs , supports cache coherence between the PPUS 
300 and CPUs , and CPU mastering . Data and / or commands 
may be transmitted by the NVLink 310 through the hub 330 
to / from other units of the PPU 300 such as one or more copy 
engines , a video encoder , a video decoder , a power man 
agement unit , etc . ( not explicitly shown ) . The NVLink 310 
is described in more detail in conjunction with FIG . 5B . 
0096 ) . The 1 / 0 unit 305 is configured to transmit and 

receive communications ( i . e . , commands , data , etc . ) from a 
host processor ( not shown ) over the interconnect 302 . The 
I / O unit 305 may communicate with the host processor 
directly via the interconnect 302 or through one or more 
intermediate devices such as a memory bridge . In an 
embodiment , the I / O unit 305 may communicate with one or 
more other processors , such as one or more of the PPUS 300 
via the interconnect 302 . In an embodiment , the I / O unit 305 
implements a Peripheral Component Interconnect Express 
( PCIe ) interface for communications over a PCIe bus and 
the interconnect 302 is a PCIe bus . In alternative embodi 
ments , the I / O unit 305 may implement other types of 
well - known interfaces for communicating with external 
devices . 

[ 0097 ] The I / O unit 305 decodes packets received via the 
interconnect 302 . In an embodiment , the packets represent 
commands configured to cause the PPU 300 to perform 
various operations . The I / O unit 305 transmits the decoded 
commands to various other units of the PPU 300 as the 
commands may specify . For example , some commands may 
be transmitted to the front end unit 315 . Other commands 
may be transmitted to the hub 330 or other units of the PPU 
300 such as one or more copy engines , a video encoder , a 
video decoder , a power management unit , etc . ( not explicitly 

shown ) . In other words , the 1 / 0 unit 305 is configured to 
route communications between and among the various logi 
cal units of the PPU 300 . 
[ 0098 ] In an embodiment , a program executed by the host 
processor encodes a command stream in a buffer that pro 
vides workloads to the PPU 300 for processing . A workload 
may comprise several instructions and data to be processed 
by those instructions . The buffer is a region in a memory that 
is accessible ( i . e . , read / write ) by both the host processor and 
the PPU 300 . For example , the 1 / 0 unit 305 may be 
configured to access the buffer in a system memory con 
nected to the interconnect 302 via memory requests trans 
mitted over the interconnect 302 . In an embodiment , the host 
processor writes the command stream to the buffer and then 
transmits a pointer to the start of the command stream to the 
PPU 300 . The front end unit 315 receives pointers to one or 
more command streams . The front end unit 315 manages the 
one or more streams , reading commands from the streams 
and forwarding commands to the various units of the PPU 
300 . 
100991 . The front end unit 315 is coupled to a scheduler 
unit 320 that configures the various GPCs 350 to process 
tasks defined by the one or more streams . The scheduler unit 
320 is configured to track state information related to the 
various tasks managed by the scheduler unit 320 . The state 
may indicate which GPC 350 a task is assigned to , whether 
the task is active or inactive , a priority level associated with 
the task , and so forth . The scheduler unit 320 manages the 
execution of a plurality of tasks on the one or more GPCs 
350 . 
[ 0100 ] The scheduler unit 320 is coupled to a work 
distribution unit 325 that is configured to dispatch tasks for 
execution on the GPCs 350 . The work distribution unit 325 
may track a number of scheduled tasks received from the 
scheduler unit 320 . In an embodiment , the work distribution 
unit 325 manages a pending task pool and an active task pool 
for each of the GPCs 350 . The pending task pool may 
comprise a number of slots ( e . g . , 32 slots ) that contain tasks 
assigned to be processed by a particular GPC 350 . The active 
task pool may comprise a number of slots ( e . g . , 4 slots ) for 
tasks that are actively being processed by the GPCs 350 . As 
a GPC 350 finishes the execution of a task , that task is 
evicted from the active task pool for the GPC 350 and one 
of the other tasks from the pending task pool is selected and 
scheduled for execution on the GPC 350 . If an active task 
has been idle on the GPC 350 , such as while waiting for a 
data dependency to be resolved , then the active task may be 
evicted from the GPC 350 and returned to the pending task 
pool while another task in the pending task pool is selected 
and scheduled for execution on the GPC 350 . 
( 0101 ] The work distribution unit 325 communicates with 
the one or more GPCs 350 via XBar 370 . The XBar 370 is 
an interconnect network that couples many of the units of the 
PPU 300 to other units of the PPU 300 . For example , the 
XBar 370 may be configured to couple the work distribution 
unit 325 to a particular GPC 350 . Although not shown 
explicitly , one or more other units of the PPU 300 may also 
be connected to the XBar 370 via the hub 330 . 
10102 ] The tasks are managed by the scheduler unit 320 
and dispatched to a GPC 350 by the work distribution unit 
325 . The GPC 350 is configured to process the task and 
generate results . The results may be consumed by other tasks 
within the GPC 350 , routed to a different GPC 350 via the 
XBar 370 , or stored in the memory 304 . The results can be 
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written to the memory 304 via the partition units 380 , which 
implement a memory interface for reading and writing data 
to / from the memory 304 . The results can be transmitted to 
another PPU 304 or CPU via the NVLink 310 . In an 
embodiment , the PPU 300 includes a number U of partition 
units 380 that is equal to the number of separate and distinct 
memory devices 304 coupled to the PPU 300 . A partition 
unit 380 will be described in more detail below in conjunc 
tion with FIG . 4B . 
[ 0103 ] In an embodiment , a host processor executes a 
driver kernel that implements an application programming 
interface ( API ) that enables one or more applications execut 
ing on the host processor to schedule operations for execu 
tion on the PPU 300 . In an embodiment , multiple compute 
applications are simultaneously executed by the PPU 300 
and the PPU 300 provides isolation , quality of service 
( QoS ) , and independent address spaces for the multiple 
compute applications . An application may generate instruc 
tions ( i . e . , API calls ) that cause the driver kernel to generate 
one or more tasks for execution by the PPU 300 . The driver 
kernel outputs tasks to one or more streams being processed 
by the PPU 300 . Each task may comprise one or more 
groups of related threads , referred to herein as a warp . In an 
embodiment , a warp comprises 32 related threads that may 
be executed in parallel . Cooperating threads may refer to a 
plurality of threads including instructions to perform the task 
and that may exchange data through shared memory . 
Threads and cooperating threads are described in more detail 
in conjunction with FIG . 5A . 
[ 0104 ] FIG . 4A illustrates a GPC 350 of the PPU 300 of 
FIG . 3 , in accordance with an embodiment . As shown in 
FIG . 4A , each GPC 350 includes a number of hardware units 
for processing tasks . In an embodiment , each GPC 350 
includes a pipeline manager 410 , a pre - raster operations unit 
( PROP ) 415 , a raster engine 425 , a work distribution cross 
bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 
and one or more Data Processing Clusters ( DPCs ) 420 . It 
will be appreciated that the GPC 350 of FIG . 4A may include 
other hardware units in lieu of or in addition to the units 
shown in FIG . 4A . 
[ 0105 ] In an embodiment , the operation of the GPC 350 is 
controlled by the pipeline manager 410 . The pipeline man 
ager 410 manages the configuration of the one or more DPCs 
420 for processing tasks allocated to the GPC 350 . In an 
embodiment , the pipeline manager 410 may configure at 
least one of the one or more DPCs 420 to implement at least 
a portion of a graphics rendering pipeline . For example , a 
DPC 420 may be configured to execute a vertex shader 
program on the programmable streaming multiprocessor 
( SM ) 440 . The pipeline manager 410 may also be configured 
to route packets received from the work distribution unit 325 
to the appropriate logical units within the GPC 350 . For 
example , some packets may be routed to fixed function 
hardware units in the PROP 415 and / or raster engine 425 
while other packets may be routed to the DPCs 420 for 
processing by the primitive engine 435 or the SM 440 . In an 
embodiment , the pipeline manager 410 may configure at 
least one of the one or more DPCs 420 to implement a neural 
network model and / or a computing pipeline . 
[ 0106 ] The PROP unit 415 is configured to route data 
generated by the raster engine 425 and the DPCs 420 to a 
Raster Operations ( ROP ) unit , described in more detail in 
conjunction with FIG . 4B . The PROP unit 415 may also be 

configured to perform optimizations for color blending , 
organize pixel data , perform address translations , and the 
like . 
[ 0107 ] The raster engine 425 includes a number of fixed 
function hardware units configured to perform various raster 
operations . In an embodiment , the raster engine 425 includes 
a setup engine , a coarse raster engine , a culling engine , a 
clipping engine , a fine raster engine , and a tile coalescing 
engine . The setup engine receives transformed vertices and 
generates plane equations associated with the geometric 
primitive defined by the vertices . The plane equations are 
transmitted to the coarse raster engine to generate coverage 
information ( e . g . , an x , y coverage mask for a tile ) for the 
primitive . The output of the coarse raster engine is trans 
mitted to the culling engine where fragments associated with 
the primitive that fail a z - test are culled , and non - culled 
fragments are transmitted to a clipping engine where frag 
ments lying outside a viewing frustum are clipped . Those 
fragments that survive clipping and culling may be passed to 
the fine raster engine to generate attributes for the pixel 
fragments based on the plane equations generated by the 
setup engine . The output of the raster engine 425 comprises 
fragments to be processed , for example , by a fragment 
shader implemented within a DPC 420 . 
[ 0108 ] Each DPC 420 included in the GPC 350 includes 
an M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , 
and one or more SMs 440 . The MPC 430 controls the 
operation of the DPC 420 , routing packets received from the 
pipeline manager 410 to the appropriate units in the DPC 
420 . For example , packets associated with a vertex may be 
routed to the primitive engine 435 , which is configured to 
fetch vertex attributes associated with the vertex from the 
memory 304 . In contrast , packets associated with a shader 
program may be transmitted to the SM 440 . 
[ 0109 ] The SM 440 comprises a programmable streaming 
processor that is configured to process tasks represented by 
a number of threads . Each SM 440 is multi - threaded and 
configured to execute a plurality of threads ( e . g . , 32 threads ) 
from a particular group of threads concurrently . In an 
embodiment , the SM 440 implements a SIMD ( Single 
Instruction , Multiple - Data ) architecture where each thread 
in a group of threads ( i . e . , a warp ) is configured to process 
a different set of data based on the same set of instructions . 
All threads in the group of threads execute the same instruc 
tions . In another embodiment , the SM 440 implements a 
SIMT ( Single - Instruction , Multiple Thread ) architecture 
where each thread in a group of threads is configured to 
process a different set of data based on the same set of 
instructions , but where individual threads in the group of 
threads are allowed to diverge during execution . In an 
embodiment , a program counter , call stack , and execution 
state is maintained for each warp , enabling concurrency 
between warps and serial execution within warps when 
threads within the warp diverge . In another embodiment , a 
program counter , call stack , and execution state is main 
tained for each individual thread , enabling equal concur 
rency between all threads , within and between warps . When 
execution state is maintained for each individual thread , 
threads executing the same instructions may be converged 
and executed in parallel for maximum efficiency . The SM 
440 will be described in more detail below in conjunction 
with FIG . 5A . 
[ 0110 ] The MMU 490 provides an interface between the 
GPC 350 and the partition unit 380 . The MMU 490 may 
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provide translation of virtual addresses into physical 
addresses , memory protection , and arbitration of memory 
requests . In an embodiment , the MMU 490 provides one or 
more translation lookaside buffers ( TLBs ) for performing 
translation of virtual addresses into physical addresses in the 
memory 304 . 
[ 0111 ] FIG . 4B illustrates a memory partition unit 380 of 
the PPU 300 of FIG . 3 , in accordance with an embodiment . 
As shown in FIG . 4B , the memory partition unit 380 
includes a Raster Operations ( ROP ) unit 450 , a level two 
( L2 ) cache 460 , and a memory interface 470 . The memory 
interface 470 is coupled to the memory 304 . Memory 
interface 470 may implement 32 , 64 , 128 , 1024 - bit data 
buses , or the like , for high - speed data transfer . In an embodi 
ment , the PPU 300 incorporates U memory interfaces 470 , 
one memory interface 470 per pair of partition units 380 , 
where each pair of partition units 380 is connected to a 
corresponding memory device 304 . For example , PPU 300 
may be connected to up to Y memory devices 304 , such as 
high bandwidth memory stacks or graphics double - data - rate , 
version 5 , synchronous dynamic random access memory , or 
other types of persistent storage . 
[ 0112 ] In an embodiment , the memory interface 470 
implements an HBM2 memory interface and Y equals half 
U . In an embodiment , the HBM2 memory stacks are located 
on the same physical package as the PPU 300 , providing 
substantial power and area savings compared with conven 
tional GDDR5 SDRAM systems . In an embodiment , each 
HBM2 stack includes four memory dies and Y equals 4 , with 
HBM2 stack including two 128 - bit channels per die for a 
total of 8 channels and a data bus width of 1024 bits . 
[ 0113 ] In an embodiment , the memory 304 supports 
Single - Error Correcting Double - Error Detecting ( SECDED ) 
Error Correction Code ( ECC ) to protect data . ECC provides 
higher reliability for compute applications that are sensitive 
to data corruption . Reliability is especially important in 
large - scale cluster computing environments where PPUS 
300 process very large datasets and / or run applications for 
extended periods . 
[ 0114 ] In an embodiment , the PPU 300 implements a 
multi - level memory hierarchy . In an embodiment , the 
memory partition unit 380 supports a unified memory to 
provide a single unified virtual address space for CPU and 
PPU 300 memory , enabling data sharing between virtual 
memory systems . In an embodiment the frequency of 
accesses by a PPU 300 to memory located on other proces 
sors is traced to ensure that memory pages are moved to the 
physical memory of the PPU 300 that is accessing the pages 
more frequently . In an embodiment , the NVLink 310 sup 
ports address translation services allowing the PPU 300 to 
directly access a CPU ' s page tables and providing full 
access to CPU memory by the PPU 300 . 
[ 0115 ] In an embodiment , copy engines transfer data 
between multiple PPUS 300 or between PPUS 300 and 
CPUs . The copy engines can generate page faults for 
addresses that are not mapped into the page tables . The 
memory partition unit 380 can then service the page faults , 
mapping the addresses into the page table , after which the 
copy engine can perform the transfer . In a conventional 
system , memory is pinned ( i . e . , non - pageable ) for multiple 
copy engine operations between multiple processors , sub - 
stantially reducing the available memory . With hardware 

page faulting , addresses can be passed to the copy engines 
without worrying if the memory pages are resident , and the 
copy process is transparent . 
[ 0116 ] Data from the memory 304 or other system 
memory may be fetched by the memory partition unit 380 
and stored in the L2 cache 460 , which is located on - chip and 
is shared between the various GPCs 350 . As shown , each 
memory partition unit 380 includes a portion of the L2 cache 
460 associated with a corresponding memory device 304 . 
Lower level caches may then be implemented in various 
units within the GPCs 350 . For example , each of the SMS 
440 may implement a level one ( L1 ) cache . The L1 cache is 
private memory that is dedicated to a particular SM 440 . 
Data from the L2 cache 460 may be fetched and stored in 
each of the L1 caches for processing in the functional units 
of the SMs 440 . The L2 cache 460 is coupled to the memory 
interface 470 and the XBar 370 . 
[ 0117 ] The ROP unit 450 performs graphics raster opera 
tions related to pixel color , such as color compression , pixel 
blending , and the like . The ROP unit 450 also implements 
depth testing in conjunction with the raster engine 425 , 
receiving a depth for a sample location associated with a 
pixel fragment from the culling engine of the raster engine 
425 . The depth is tested against a corresponding depth in a 
depth buffer for a sample location associated with the 
fragment . If the fragment passes the depth test for the sample 
location , then the ROP unit 450 updates the depth buffer and 
transmits a result of the depth test to the raster engine 425 . 
It will be appreciated that the number of partition units 380 
may be different than the number of GPCs 350 and , there 
fore , each ROP unit 450 may be coupled to each of the GPCs 
350 . The ROP unit 450 tracks packets received from the 
different GPCs 350 and determines which GPC 350 that a 
result generated by the ROP unit 450 is routed to through the 
Xbar 370 . Although the ROP unit 450 is included within the 
memory partition unit 380 in FIG . 4B , in other embodiment , 
the ROP unit 450 may be outside of the memory partition 
unit 380 . For example , the ROP unit 450 may reside in the 
GPC 350 or another unit . 
[ 0118 ] FIG . 5A illustrates the streaming multiprocessor 
440 of FIG . 4A , in accordance with an embodiment . As 
shown in FIG . 5A , the SM 440 includes an instruction cache 
505 , one or more scheduler units 510 , a register file 520 , one 
or more processing cores 550 , one or more special function 
units ( SFUS ) 552 , one or more load / store units ( LSUS ) 554 , 
an interconnect network 580 , a shared memory / L1 cache 
570 . 
[ 0119 ] As described above , the work distribution unit 325 
dispatches tasks for execution on the GPCs 350 of the PPU 
300 . The tasks are allocated to a particular DPC 420 within 
a GPC 350 and , if the task is associated with a shader 
program , the task may be allocated to an SM 440 . The 
scheduler unit 510 receives the tasks from the work distri 
bution unit 325 and manages instruction scheduling for one 
or more thread blocks assigned to the SM 440 . The scheduler 
unit 510 schedules thread blocks for execution as warps of 
parallel threads , where each thread block is allocated at least 
one warp . In an embodiment , each warp executes 32 threads . 
The scheduler unit 510 may manage a plurality of different 
thread blocks , allocating the warps to the different thread 
blocks and then dispatching instructions from the plurality 
of different cooperative groups to the various functional 
units ( i . e . , cores 550 , SFUS 552 , and LSUS 554 ) during each 
clock cycle . 
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[ 0120 ] Cooperative Groups is a programming model for 
organizing groups of communicating threads that allows 
developers to express the granularity at which threads are 
communicating , enabling the expression of richer , more 
efficient parallel decompositions . Cooperative launch APIs 
support synchronization amongst thread blocks for the 
execution of parallel algorithms . Conventional program 
ming models provide a single , simple construct for synchro 
nizing cooperating threads : a barrier across all threads of a 
thread block ( i . e . , the syncthreads function ) . However , 
programmers would often like to define groups of threads at 
smaller than thread block granularities and synchronize 
within the defined groups to enable greater performance , 
design flexibility , and software reuse in the form of collec 
tive group - wide function interfaces . 
[ 0121 ] Cooperative Groups enables programmers to 
define groups of threads explicitly at sub - block ( i . e . , as small 
as a single thread ) and multi - block granularities , and to 
perform collective operations such as synchronization on the 
threads in a cooperative group . The programming model 
supports clean composition across software boundaries , so 
that libraries and utility functions can synchronize safely 
within their local context without having to make assump 
tions about convergence . Cooperative Groups primitives 
enable new patterns of cooperative parallelism , including 
producer - consumer parallelism , opportunistic parallelism , 
and global synchronization across an entire grid of thread 
blocks . 
[ 0122 ] A dispatch unit 515 is configured to transmit 
instructions to one or more of the functional units . In the 
embodiment , the scheduler unit 510 includes two dispatch 
units 515 that enable two different instructions from the 
same warp to be dispatched during each clock cycle . In 
alternative embodiments , each scheduler unit 510 may 
include a single dispatch unit 515 or additional dispatch 
units 515 . 
[ 0123 ] Each SM 440 includes a register file 520 that 
provides a set of registers for the functional units of the SM 
440 . In an embodiment , the register file 520 is divided 
between each of the functional units such that each func 
tional unit is allocated a dedicated portion of the register file 
520 . In another embodiment , the register file 520 is divided 
between the different warps being executed by the SM 440 . 
The register file 520 provides temporary storage for oper 
ands connected to the data paths of the functional units . 
[ 0124 ] Each SM 440 comprises L processing cores 550 . In 
an embodiment , the SM 440 includes a large number ( e . g . , 
128 , etc . ) of distinct processing cores 550 . Each core 550 
may include a fully - pipelined , single - precision , double - pre 
cision , and / or mixed precision processing unit that includes 
a floating point arithmetic logic unit and an integer arith 
metic logic unit . In an embodiment , the floating point 
arithmetic logic units implement the IEEE 754 - 2008 stan 
dard for floating point arithmetic . In an embodiment , the 
cores 550 include 64 single - precision ( 32 - bit ) floating point 
cores , 64 integer cores , 32 double - precision ( 64 - bit ) floating 
point cores , and 8 tensor cores . 
10125 ) Tensor cores are configured to perform matrix 
operations , and , in an embodiment , one or more tensor cores 
are included in the cores 550 . In particular , the tensor cores 
are configured to perform deep learning matrix arithmetic , 
such as convolution operations for neural network training 
and inferencing . In an embodiment , each tensor core oper 

ates on a 4x4 matrix and performs a matrix multiply and 
accumulate operation D = AXB + C , where A , B , C , and D are 
4x4 matrices . 
[ 0126 ] In an embodiment , the matrix multiply inputs A 
and B are 16 - bit floating point matrices , while the accumu 
lation matrices C and D may be 16 - bit floating point or 
32 - bit floating point matrices . Tensor Cores operate on 
16 - bit floating point input data with 32 - bit floating point 
accumulation . The 16 - bit floating point multiply requires 64 
operations and results in a full precision product that is then 
accumulated using 32 - bit floating point addition with the 
other intermediate products for a 4x4x4 matrix multiply . In 
practice , Tensor Cores are used to perform much larger 
two - dimensional or higher dimensional matrix operations , 
built up from these smaller elements . An API , such as 
CUDA 9 C + + API , exposes specialized matrix load , matrix 
multiply and accumulate , and matrix store operations to 
efficiently use Tensor Cores from a CUDA - C + + program . At 
the CUDA level , the warp - level interface assumes 16x16 
size matrices spanning all 32 threads of the warp . 
[ 0127 ] Each SM 440 also comprises M SFUS 552 that 
perform special functions ( e . g . , attribute evaluation , recip 
rocal square root , and the like ) . In an embodiment , the SFUS 
552 may include a tree traversal unit configured to traverse 
a hierarchical tree data structure . In an embodiment , the 
SFUs 552 may include texture unit configured to perform 
texture map filtering operations . In an embodiment , the 
texture units are configured to load texture maps ( e . g . , a 2D 
array of texels ) from the memory 304 and sample the texture 
maps to produce sampled texture values for use in shader 
programs executed by the SM 440 . In an embodiment , the 
texture maps are stored in the shared memory / L1 cache 470 . 
The texture units implement texture operations such as 
filtering operations using mip - maps ( i . e . , texture maps of 
varying levels of detail ) . In an embodiment , each SM 340 
includes two texture units . 
( 0128 ] Each SM 440 also comprises N LSUS 554 that 
implement load and store operations between the shared 
memory / L1 cache 570 and the register file 520 . Each SM 
440 includes an interconnect network 580 that connects each 
of the functional units to the register file 520 and the LSU 
554 to the register file 520 , shared memory / L1 cache 570 . In 
an embodiment , the interconnect network 580 is a crossbar 
that can be configured to connect any of the functional units 
to any of the registers in the register file 520 and connect the 
LSUs 554 to the register file and memory locations in shared 
memory / L1 cache 570 . 
10129 ] . The shared memory / L1 cache 570 is an array of 
on - chip memory that allows for data storage and commu 
nication between the SM 440 and the primitive engine 435 
and between threads in the SM 440 . In an embodiment , the 
shared memory / L1 cache 570 comprises 128 KB of storage 
capacity and is in the path from the SM 440 to the partition 
unit 380 . The shared memory / L1 cache 570 can be used to 
cache reads and writes . One or more of the shared memory / 
L1 cache 570 , L2 cache 460 , and memory 304 are backing 
stores . 
[ 0130 ] Combining data cache and shared memory func 
tionality into a single memory block provides the best 
overall performance for both types of memory accesses . The 
capacity is usable as a cache by programs that do not use 
shared memory . For example , if shared memory is config 
ured to use half of the capacity , texture and load / store 
operations can use the remaining capacity . Integration 
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within the shared memory / L1 cache 570 enables the shared 
memory / L1 cache 570 to function as a high - throughput 
conduit for streaming data while simultaneously providing 
high - bandwidth and low - latency access to frequently reused 
data . 
[ 0131 ] When configured for general purpose parallel com 
putation , a simpler configuration can be used compared with 
graphics processing . Specifically , the fixed function graphics 
processing units shown in FIG . 3 , are bypassed , creating a 
much simpler programming model . In the general purpose 
parallel computation configuration , the work distribution 
unit 325 assigns and distributes blocks of threads directly to 
the DPCs 420 . The threads in a block execute the same 
program , using a unique thread ID in the calculation to 
ensure each thread generates unique results , using the SM 
440 to execute the program and perform calculations , shared 
memory / L1 cache 570 to communicate between threads , and 
the LSU 554 to read and write global memory through the 
shared memory / L1 cache 570 and the memory partition unit 
380 . When configured for general purpose parallel compu 
tation , the SM 440 can also write commands that the 
scheduler unit 320 can use to launch new work on the DPCs 
420 . 
[ 0132 ] The PPU 300 may be included in a desktop com 
puter , a laptop computer , a tablet computer , servers , super 
computers , a smart - phone ( e . g . , a wireless , hand - held 
device ) , personal digital assistant ( PDA ) , a digital camera , a 
vehicle , a head mounted display , a hand - held electronic 
device , and the like . In an embodiment , the PPU 300 is 
embodied on a single semiconductor substrate . In another 
embodiment , the PPU 300 is included in a system - on - a - chip 
( SOC ) along with one or more other devices such as addi 
tional PPUS 300 , the memory 304 , a reduced instruction set 
computer ( RISC ) CPU , a memory management unit 
( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
[ 0133 ] In an embodiment , the PPU 300 may be included 
on a graphics card that includes one or more memory 
devices 304 . The graphics card may be configured to inter 
face with a PCIe slot on a motherboard of a desktop 
computer . In yet another embodiment , the PPU 300 may be 
an integrated graphics processing unit ( GPU ) or parallel 
processor included in the chipset of the motherboard . 

connections are illustrated in FIG . 5B , the number of con 
nections to each PPU 300 and the CPU 530 may vary . The 
switch 555 interfaces between the interconnect 302 and the 
CPU 530 . The PPUS 300 , memories 304 , and NVLinks 310 
may be situated on a single semiconductor platform to form 
a parallel processing module 525 . In an embodiment , the 
switch 555 supports two or more protocols to interface 
between various different connections and / or links . 
[ 0136 ] In another embodiment ( not shown ) , the NVLink 
310 provides one or more high - speed communication links 
between each of the PPUs 300 and the CPU 530 and the 
switch 555 interfaces between the interconnect 302 and each 
of the PPUs 300 . The PPUS 300 , memories 304 , and 
interconnect 302 may be situated on a single semiconductor 
platform to form a parallel processing module 525 . In yet 
another embodiment ( not shown ) , the interconnect 302 
provides one or more communication links between each of 
the PPUS 300 and the CPU 530 and the switch 555 interfaces 
between each of the PPUS 300 using the NVLink 310 to 
provide one or more high - speed communication links 
between the PPUS 300 . In another embodiment ( not shown ) , 
the NVLink 310 provides one or more high - speed commu 
nication links between the PPUS 300 and the CPU 530 
through the switch 555 . In yet another embodiment ( not 
shown ) , the interconnect 302 provides one or more commu 
nication links between each of the PPUS 300 directly . One 
or more of the NVLink 310 high - speed communication links 
may be implemented as a physical NVLink interconnect or 
either an on - chip or on - die interconnect using the same 
protocol as the NVLink 310 . 
[ 0137 ] In the context of the present description , a single 
semiconductor platform may refer to a sole unitary semi 
conductor - based integrated circuit fabricated on a die or 
chip . It should be noted that the term single semiconductor 
platform may also refer to multi - chip modules with 
increased connectivity which simulate on - chip operation 
and make substantial improvements over utilizing a conven 
tional bus implementation . Of course , the various circuits or 
devices may also be situated separately or in various com 
binations of semiconductor platforms per the desires of the 
user . Alternately , the parallel processing module 525 may be 
implemented as a circuit board substrate and each of the 
PPUS 300 and / or memories 304 may be packaged devices . 
In an embodiment , the CPU 530 , switch 555 , and the parallel 
processing module 525 are situated on a single semiconduc 
tor platform . 
[ 0138 ] In an embodiment , the signaling rate of each 
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300 
includes six NVLink 310 interfaces ( as shown in FIG . 5B , 
five NVLink 310 interfaces are included for each PPU 300 ) . 
Each NVLink 310 provides a data transfer rate of 25 
Gigabytes / second in each direction , with six links providing 
300 Gigabytes / second . The NVLinks 310 can be used exclu 
sively for PPU - to - PPU communication as shown in FIG . 5B , 
or some combination of PPU - to - PPU and PPU - to - CPU , 
when the CPU 530 also includes one or more NVLink 310 
interfaces . 
[ 0139 ] In an embodiment , the NVLink 310 allows direct 
load / store / atomic access from the CPU 530 to each PPU ' s 
300 memory 304 . In an embodiment , the NVLink 310 
supports coherency operations , allowing data read from the 
memories 304 to be stored in the cache hierarchy of the CPU 
530 , reducing cache access latency for the CPU 530 . In an 
embodiment , the NVLink 310 includes support for Address 

Exemplary Computing System 
[ 0134 ] Systems with multiple GPUs and CPUs are used in 
a variety of industries as developers expose and leverage 
more parallelism in applications such as artificial intelli 
gence computing . High - performance GPU - accelerated sys 
tems with tens to many thousands of compute nodes are 
deployed in data centers , research facilities , and supercom 
puters to solve ever larger problems . As the number of 
processing devices within the high - performance systems 
increases , the communication and data transfer mechanisms 
need to scale to support the increased 
[ 0135 ] FIG . 5B is a conceptual diagram of a processing 
system 500 implemented using the PPU 300 of FIG . 3 , in 
accordance with an embodiment . The exemplary system 500 
may be configured to implement the methods 100 and 120 
shown in FIGS . 1A - 1B and / or the architectures shown in 
FIGS . 1C - 1D . The processing system 500 includes a CPU 
530 , switch 555 , and multiple PPUS 300 each and respective 
memories 304 . The NVLink 310 provides high - speed com 
munication links between each of the PPUs 300 . Although 
a particular number of NVLink 310 and interconnect 302 
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[ 0147 ] While various embodiments have been described 
above , it should be understood that they have been presented 
by way of example only , and not limitation . Thus , the 
breadth and scope of a preferred embodiment should not be 
limited by any of the above - described exemplary embodi 
ments , but should be defined only in accordance with the 
following claims and their equivalents . 

Translation Services ( ATS ) , allowing the PPU 300 to 
directly access page tables within the CPU 530 . One or more 
of the NVLinks 310 may also be configured to operate in a 
low - power mode . 
[ 0140 ] FIG . 5C illustrates an exemplary system 565 in 
which the various architecture and / or functionality of the 
various previous embodiments may be implemented . The 
exemplary system 565 may be configured to implement the 
methods 100 and 120 shown in FIGS . 1A - 1B and / or the 
architectures shown in FIGS . 1C - 1D . 
[ 0141 ] As shown , a system 565 is provided including at 
least one central processing unit 530 that is connected to a 
communication bus 575 . The communication bus 575 may 
be implemented using any suitable protocol , such as PCI 
( Peripheral Component Interconnect ) , PCI - Express , AGP 
( Accelerated Graphics Port ) , HyperTransport , or any other 
bus or point - to - point communication protocol ( s ) . The sys 
tem 565 also includes a main memory 540 . Control logic 
( software ) and data are stored in the main memory 540 
which may take the form of random access memory ( RAM ) . 
[ 0142 ] The system 565 also includes input devices 560 , 
the parallel processing system 525 , and display devices 545 , 
i . e . a conventional CRT ( cathode ray tube ) , LCD ( liquid 
crystal display ) , LED ( light emitting diode ) , plasma display 
or the like . User input may be received from the input 
devices 560 , e . g . , keyboard , mouse , touchpad , microphone , 
and the like . Each of the foregoing modules and / or devices 
may even be situated on a single semiconductor platform to 
form the system 565 . Alternately , the various modules may 
also be situated separately or in various combinations of 
semiconductor platforms per the desires of the user . 
[ 0143 ] Further , the system 565 may be coupled to a 
network ( e . g . , a telecommunications network , local area 
network ( LAN ) , wireless network , wide area network 
( WAN ) such as the Internet , peer - to - peer network , cable 
network , or the like ) through a network interface 535 for 
communication purposes . 
[ 0144 ] The system 565 may also include a secondary 
storage ( not shown ) . The secondary storage includes , for 
example , a hard disk drive and / or a removable storage drive , 
representing a floppy disk drive , a magnetic tape drive , a 
compact disk drive , digital versatile disk ( DVD ) drive , 
recording device , universal serial bus ( USB ) flash memory . 
The removable storage drive reads from and / or writes to a 
removable storage unit in a well - known manner . 
[ 0145 ] Computer programs , or computer control logic 
algorithms , may be stored in the main memory 540 and / or 
the secondary storage . Such computer programs , when 
executed , enable the system 565 to perform various func 
tions . The memory 540 , the storage , and / or any other storage 
are possible examples of computer - readable media . 
10146 ] The architecture and / or functionality of the various 
previous figures may be implemented in the context of a 
general computer system , a circuit board system , a game 
console system dedicated for entertainment purposes , an 
application - specific system , and / or any other desired sys 
tem . For example , the system 565 may take the form of a 
desktop computer , a laptop computer , a tablet computer , 
servers , supercomputers , a smart - phone ( e . g . , a wireless , 
hand - held device ) , personal digital assistant ( PDA ) , a digital 
camera , a vehicle , a head mounted display , a hand - held 
electronic device , a mobile phone device , a television , 
workstation , game consoles , embedded system , and / or any 
other type of logic . 

Graphics Processing Pipeline 
[ 0148 ] In an embodiment , the PPU 300 comprises a graph 
ics processing unit ( GPU ) . The PPU 300 is configured to 
receive commands that specify shader programs for process 
ing graphics data . Graphics data may be defined as a set of 
primitives such as points , lines , triangles , quads , triangle 
strips , and the like . Typically , a primitive includes data that 
specifies a number of vertices for the primitive ( e . g . , in a 
model - space coordinate system ) as well as attributes asso 
ciated with each vertex of the primitive . The PPU 300 can 
be configured to process the graphics primitives to generate 
a frame buffer ( i . e . , pixel data for each of the pixels of the 
display ) . 
10149 ) An application writes model data for a scene ( i . e . , 
a collection of vertices and attributes ) to a memory such as 
a system memory or memory 304 . The model data defines 
each of the objects that may be visible on a display . The 
application then makes an API call to the driver kernel that 
requests the model data to be rendered and displayed . The 
driver kernel reads the model data and writes commands to 
the one or more streams to perform operations to process the 
model data . The commands may reference different shader 
programs to be implemented on the SMS 440 of the PPU 300 
including one or more of a vertex shader , hull shader , 
domain shader , geometry shader , and a pixel shader . For 
example , one or more of the SMS 440 may be configured to 
execute a vertex shader program that processes a number of 
vertices defined by the model data . In an embodiment , the 
different SMS 440 may be configured to execute different 
shader programs concurrently . For example , a first subset of 
SMs 440 may be configured to execute a vertex shader 
program while a second subset of SMS 440 may be config 
ured to execute a pixel shader program . The first subset of 
SMS 440 processes vertex data to produce processed vertex 
data and writes the processed vertex data to the L2 cache 460 
and / or the memory 304 . After the processed vertex data is 
rasterized ( i . e . , transformed from three - dimensional data 
into two - dimensional data in screen space ) to produce 
fragment data , the second subset of SMS 440 executes a 
pixel shader to produce processed fragment data , which is 
then blended with other processed fragment data and written 
to the frame buffer in memory 304 . The vertex shader 
program and pixel shader program may execute concur 
rently , processing different data from the same scene in a 
pipelined fashion until all of the model data for the scene has 
been rendered to the frame buffer . Then , the contents of the 
frame buffer are transmitted to a display controller for 
display on a display device . 
[ 0150 ] FIG . 6 is a conceptual diagram of a graphics 
processing pipeline 600 implemented by the PPU 300 of 
FIG . 3 , in accordance with an embodiment . The graphics 
processing pipeline 600 is an abstract flow diagram of the 
processing steps implemented to generate 2D computer 
generated images from 3D geometry data . As is well - known , 
pipeline architectures may perform long latency operations 
more efficiently by splitting up the operation into a plurality 
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a triangle strip may share two vertices ) . The primitive 
assembly stage 630 transmits geometric primitives ( i . e . , a 
collection of associated vertices ) to the geometry shading 
stage 640 . 
[ 0155 ] The geometry shading stage 640 processes geo 
metric primitives by performing a set of operations ( i . e . , a 
geometry shader or program ) on the geometric primitives . 
Tessellation operations may generate one or more geometric 
primitives from each geometric primitive . In other words , 
the geometry shading stage 640 may subdivide each geo 
metric primitive into a finer mesh of two or more geometric 
primitives for processing by the rest of the graphics pro 
cessing pipeline 600 . The geometry shading stage 640 
transmits geometric primitives to the viewport SCC stage 
650 . 

of stages , where the output of each stage is coupled to the 
input of the next successive stage . Thus , the graphics pro 
cessing pipeline 600 receives input data 601 that is trans 
mitted from one stage to the next stage of the graphics 
processing pipeline 600 to generate output data 602 . In an 
embodiment , the graphics processing pipeline 600 may 
represent a graphics processing pipeline defined by the 
OpenGL® API . As an option , the graphics processing pipe 
line 600 may be implemented in the context of the func 
tionality and architecture of the previous Figures and / or any 
subsequent Figure ( s ) . 
[ 0151 ] As shown in FIG . 6 , the graphics processing pipe 
line 600 comprises a pipeline architecture that includes a 
number of stages . The stages include , but are not limited to , 
a data assembly stage 610 , a vertex shading stage 620 , a 
primitive assembly stage 630 , a geometry shading stage 640 , 
a viewport scale , cull , and clip ( VSCC ) stage 650 , a raster 
ization stage 660 , a fragment shading stage 670 , and a raster 
operations stage 680 . In an embodiment , the input data 601 
comprises commands that configure the processing units to 
implement the stages of the graphics processing pipeline 600 
and geometric primitives ( e . g . , points , lines , triangles , 
quads , triangle strips or fans , etc . ) to be processed by the 
stages . The output data 602 may comprise pixel data ( i . e . , 
color data ) that is copied into a frame buffer or other type of 
surface data structure in a memory . 
[ 0152 ] The data assembly stage 610 receives the input data 
601 that specifies vertex data for high - order surfaces , primi 
tives , or the like . The data assembly stage 610 collects the 
vertex data in a temporary storage or queue , such as by 
receiving a command from the host processor that includes 
a pointer to a buffer in memory and reading the vertex data 
from the buffer . The vertex data is then transmitted to the 
vertex shading stage 620 for processing . 
[ 0153 ] The vertex shading stage 620 processes vertex data 
by performing a set of operations ( i . e . , a vertex shader or a 
program ) once for each of the vertices . Vertices may be , e . g . , 
specified as a 4 - coordinate vector ( i . e . , < x , y , z , w > ) asso 
ciated with one or more vertex attributes ( e . g . , color , texture 
coordinates , surface normal , etc . ) . The vertex shading stage 
620 may manipulate individual vertex attributes such as 
position , color , texture coordinates , and the like . In other 
words , the vertex shading stage 620 performs operations on 
the vertex coordinates or other vertex attributes associated 
with a vertex . Such operations commonly including lighting 
operations ( i . e . , modifying color attributes for a vertex ) and 
transformation operations ( i . e . , modifying the coordinate 
space for a vertex ) . For example , vertices may be specified 
using coordinates in an object - coordinate space , which are 
transformed by multiplying the coordinates by a matrix that 
translates the coordinates from the object - coordinate space 
into a world space or a normalized - device - coordinate ( NCD ) 
space . The vertex shading stage 620 generates transformed 
vertex data that is transmitted to the primitive assembly 
stage 630 . 
[ 0154 ] The primitive assembly stage 630 collects vertices 
output by the vertex shading stage 620 and groups the 
vertices into geometric primitives for processing by the 
geometry shading stage 640 . For example , the primitive 
assembly stage 630 may be configured to group every three 
consecutive vertices as a geometric primitive ( i . e . , a triangle ) 
for transmission to the geometry shading stage 640 . In some 
embodiments , specific vertices may be reused for consecu - 
tive geometric primitives ( e . g . , two consecutive triangles in 

[ 0156 ] In an embodiment , the graphics processing pipeline 
600 may operate within a streaming multiprocessor and the 
vertex shading stage 620 , the primitive assembly stage 630 , 
the geometry shading stage 640 , the fragment shading stage 
670 , and / or hardware / software associated therewith , may 
sequentially perform processing operations . Once the 
sequential processing operations are complete , in an 
embodiment , the viewport SCC stage 650 may utilize the 
data . In an embodiment , primitive data processed by one or 
more of the stages in the graphics processing pipeline 600 
may be written to a cache ( e . g . Ll cache , a vertex cache , 
etc . ) . In this case , in an embodiment , the viewport SCC stage 
650 may access the data in the cache . In an embodiment , the 
viewport SCC stage 650 and the rasterization stage 660 are 
implemented as fixed function circuitry . 
[ 0157 ] The viewport SCC stage 650 performs viewport 
scaling , culling , and clipping of the geometric primitives . 
Each surface being rendered to is associated with an abstract 
camera position . The camera position represents a location 
of a viewer looking at the scene and defines a viewing 
frustum that encloses the objects of the scene . The viewing 
frustum may include a viewing plane , a rear plane , and four 
clipping planes . Any geometric primitive entirely outside of 
the viewing frustum may be culled ( i . e . , discarded ) because 
the geometric primitive will not contribute to the final 
rendered scene . Any geometric primitive that is partially 
inside the viewing frustum and partially outside the viewing 
frustum may be clipped ( i . e . , transformed into a new geo 
metric primitive that is enclosed within the viewing frustum . 
Furthermore , geometric primitives may each be scaled based 
on a depth of the viewing frustum . All potentially visible 
geometric primitives are then transmitted to the rasterization 
stage 660 . 
[ 0158 ] The rasterization stage 660 converts the 3D geo 
metric primitives into 2D fragments ( e . g . capable of being 
utilized for display , etc . ) . The rasterization stage 660 may be 
configured to utilize the vertices of the geometric primitives 
to setup a set of plane equations from which various attri 
butes can be interpolated . The rasterization stage 660 may 
also compute a coverage mask for a plurality of pixels that 
indicates whether one or more sample locations for the pixel 
intercept the geometric primitive . In an embodiment , z - test 
ing may also be performed to determine if the geometric 
primitive is occluded by other geometric primitives that 
have already been rasterized . The rasterization stage 660 
generates fragment data ( i . e . , interpolated vertex attributes 
associated with a particular sample location for each covered 
pixel ) that are transmitted to the fragment shading stage 670 . 



US 2019 / 0102908 A1 Apr . 4 , 2019 
15 

600 , such as the geometry shading stage 640 and the 
fragment shading stage 670 . In addition , some of the stages 
of the graphics processing pipeline 600 may be implemented 
on fixed unit hardware such as a rasterizer or a data 
assembler implemented within the PPU 400 . It will be 
appreciated that results from one kernel may be processed 
by one or more intervening fixed function hardware units 
before being processed by a subsequent kernel on an SM 
440 . 

[ 0159 ] The fragment shading stage 670 processes frag 
ment data by performing a set of operations ( i . e . , a fragment 
shader or a program ) on each of the fragments . The fragment 
shading stage 670 may generate pixel data ( i . e . , color values ) 
for the fragment such as by performing lighting operations 
or sampling texture maps using interpolated texture coordi 
nates for the fragment . The fragment shading stage 670 
generates pixel data that is transmitted to the raster opera 
tions stage 680 . 
[ 0160 ] The raster operations stage 680 may perform vari 
ous operations on the pixel data such as performing alpha 
tests , stencil tests , and blending the pixel data with other 
pixel data corresponding to other fragments associated with 
the pixel . When the raster operations stage 680 has finished 
processing the pixel data ( i . e . , the output data 602 ) , the pixel 
data may be written to a render target such as a frame buffer , 
a color buffer , or the like . 
[ 0161 ] It will be appreciated that one or more additional 
stages may be included in the graphics processing pipeline 
600 in addition to or in lieu of one or more of the stages 
described above . Various implementations of the abstract 
graphics processing pipeline may implement different 
stages . Furthermore , one or more of the stages described 
above may be excluded from the graphics processing pipe 
line in some embodiments ( such as the geometry shading 
stage 640 ) . Other types of graphics processing pipelines are 
contemplated as being within the scope of the present 
disclosure . Furthermore , any of the stages of the graphics 
processing pipeline 600 may be implemented by one or 
more dedicated hardware units within a graphics processor 
such as PPU 300 . Other stages of the graphics processing 
pipeline 600 may be implemented by programmable hard 
ware units such as the SM 440 of the PPU 300 . 
[ 0162 ] The graphics processing pipeline 600 may be 
implemented via an application executed by a host proces 
sor , such as a CPU . In an embodiment , a device driver may 
implement an application programming interface ( API ) that 
defines various functions that can be utilized by an appli 
cation in order to generate graphical data for display . The 
device driver is a software program that includes a plurality 
of instructions that control the operation of the PPU 300 . The 
API provides an abstraction for a programmer that lets a 
programmer utilize specialized graphics hardware , such as 
the PPU 300 , to generate the graphical data without requir 
ing the programmer to utilize the specific instruction set for 
the PPU 300 . The application may include an API call that 
is routed to the device driver for the PPU 300 . The device 
driver interprets the API call and performs various opera 
tions to respond to the API call . In some instances , the 
device driver may perform operations by executing instruc 
tions on the CPU . In other instances , the device driver may 
perform operations , at least in part , by launching operations 
on the PPU 300 utilizing an input / output interface between 
the CPU and the PPU 300 . In an embodiment , the device 
driver is configured to implement the graphics processing 
pipeline 600 utilizing the hardware of the PPU 300 . 
[ 0163 ] Various programs may be executed within the PPU 
300 in order to implement the various stages of the graphics 
processing pipeline 600 . For example , the device driver may 
launch a kernel on the PPU 300 to perform the vertex 
shading stage 620 on one SM 440 ( or multiple SMS 440 ) . 
The device driver ( or the initial kernel executed by the PPU 
400 ) may also launch other kernels on the PPU 400 to 
perform other stages of the graphics processing pipeline 

Machine Learning 
[ 0164 ] Deep neural networks ( DNNs ) developed on pro 
cessors , such as the PPU 300 have been used for diverse use 
cases , from self - driving cars to faster drug development , 
from automatic image captioning in online image databases 
to smart real - time language translation in video chat appli 
cations . Deep learning is a technique that models the neural 
learning process of the human brain , continually learning , 
continually getting smarter , and delivering more accurate 
results more quickly over time . A child is initially taught by 
an adult to correctly identify and classify various shapes , 
eventually being able to identify shapes without any coach 
ing Similarly , a deep learning or neural learning system 
needs to be trained in object recognition and classification 
for it get smarter and more efficient at identifying basic 
objects , occluded objects , etc . , while also assigning context 
to objects . 
[ 0165 ] At the simplest level , neurons in the human brain 
look at various inputs that are received , importance levels 
are assigned to each of these inputs , and output is passed on 
to other neurons to act upon . An artificial neuron or percep 
tron is the most basic model of a neural network . In one 
example , a perceptron may receive one or more inputs that 
represent various features of an object that the perceptron is 
being trained to recognize and classify , and each of these 
features is assigned a certain weight based on the importance 
of that feature in defining the shape of an object . 
[ 0166 ] A deep neural network ( DNN ) model includes 
multiple layers of many connected perceptrons ( e . g . , nodes ) 
that can be trained with enormous amounts of input data to 
quickly solve complex problems with high accuracy . In one 
example , a first layer of the DLL model breaks down an 
input image of an automobile into various sections and looks 
for basic patterns such as lines and angles . The second layer 
assembles the lines to look for higher level patterns such as 
wheels , windshields , and mirrors . The next layer identifies 
the type of vehicle , and the final few layers generate a label 
for the input image , identifying the model of a specific 
automobile brand . 
[ 0167 ] Once the DNN is trained , the DNN can be 
deployed and used to identify and classify objects or patterns 
in a process known as inference . Examples of inference ( the 
process through which a DNN extracts useful information 
from a given input ) include identifying handwritten numbers 
on checks deposited into ATM machines , identifying images 
of friends in photos , delivering movie recommendations to 
over fifty million users , identifying and classifying different 
types of automobiles , pedestrians , and road hazards in 
driverless cars , or translating human speech in real - time . 
[ 0168 ] During training , data flows through the DNN in a 
forward propagation phase until a prediction is produced 
that indicates a label corresponding to the input . If the neural 
network does not correctly label the input , then errors 
between the correct label and the predicted label are ana 
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lyzed , and the weights are adjusted for each feature during 
a backward propagation phase until the DNN correctly 
labels the input and other inputs in a training dataset . 
Training complex neural networks requires massive 
amounts of parallel computing performance , including float 
ing - point multiplications and additions that are supported by 
the PPU 300 . Inferencing is less compute - intensive than 
training , being a latency - sensitive process where a trained 
neural network is applied to new inputs it has not seen before 
to classify images , translate speech , and generally infer new 
information . 
[ 0169 ] Neural networks rely heavily on matrix math 
operations , and complex multi - layered networks require 
tremendous amounts of floating - point performance and 
bandwidth for both efficiency and speed . With thousands of 
processing cores , optimized for matrix math operations , and 
delivering tens to hundreds of TFLOPS of performance , the 
PPU 300 is a computing platform capable of delivering 
performance required for deep neural network - based artifi 
cial intelligence and machine learning applications . 

Example Technical Advantages of Some Dynamic 
Jitter Tolerant Embodiments 

[ 0170 ] The iterative network according to example 
embodiments is able to improve speed and accuracy of 
spatio - temporal action detection , which is an important 
component to surveillance , CV ( computer vision ) , and 
ML / DL ( machine learning deep learning ) applications . The 
example non - limiting technology herein can also add action 
detection capability as a feature to intelligent video analytics 
( IVA ) products offering for video and surveillance OEMs 
( original equipment manufacturers ) . The example non - lim 
iting technology has uses for example in intelligent video 
analytics ( IVA ) platforms and products for surveillance , 
advanced driver assistances systems ( ADAS ) products for 
co - pilot and automotive systems , optimized CV / ML / DL 
( computer vision , machine learning , deep learning ) libraries , 
and many other applications . 
[ 0171 ] Example non - limiting embodiments can also be 
used in : HPC / workstation / desktop GPUs as the processors 
of choice for rapidly training and prototyping CV / ML / DL 
algorithms ; and Jetson embedded platforms ( see https : / / 
developer . nvidia . com / embedded / meet - jetson - embedded 
platform ) with CUDA capable GPUs as the processors of 
choice for implementing and inferring of deep learning 
systems . 
[ 0172 ] Many of the examples described above involved 
human action detection . However , embodiments are not 
limited to human action detection , and may alternatively or 
additionally include actions of animals or certain objects . 
[ 0173 ] Each patent and prior printed publication cited 
herein is expressly incorporated by reference as if expressly 
set forth . 
10174 ] While the invention has been described in connec 
tion with what is presently considered to be the most 
practical and preferred embodiments , it is to be understood 
that the invention is not to be limited to the disclosed 
embodiments , but on the contrary , is intended to cover 
various modifications and equivalent arrangements included 
within the spirit and scope of the appended claims . 

1 . An iterative prediction method for a task of action 
detection in video , comprising : 

processing an inputted sequence of video frames to gen - 
erate an output of both action tubes and respective 

action classification labels , wherein each said action 
tube comprises a bounding box on respective video 
frames in a sequence of video frames , 

wherein the processing comprises iteratively processing , 
based on the inputted sequence of video frames that is 
incrementally expanded in successive iterations , large 
offsets between the bounding boxes and ground - truth . 

2 . The iterative prediction method according to claim 1 , 
wherein the processing further comprises processing the 
inputted sequence of video frames in association with action 
tubes generated in a previous iteration of said iterative 
processing 

3 . The iterative prediction method according to claim 2 , 
wherein said action tubes generated in a previous iteration 
are generated from a predefined anchor arrangement that is 
independent of features in any of said video frames . 

4 . The iterative prediction method according to claim 1 , 
wherein the processing further comprises , at each iteration , 
incrementally expanding the inputted sequence of video 
frames by adding a first short video clip preceding the 
inputted sequence of frames and a second short video clip 
succeeding the inputted sequence of frames , each short 
video clip having twenty of less video frames . 

5 . A method for detecting actions in a video stream , 
comprising : 

in an initial iteration , processing a selected video clip 
from a plurality of video clips in the video stream and 
a set of anchors to generate a set of action tubes and a 
set of action classification labels ; 

iteratively processing , in one or more subsequent itera 
tions , respective other groups of video clips from the 
plurality of video clips by using one of the other groups 
of video clips to extend a set of video clips processed 
in a previous iteration , and , processing the extended set 
of video clips and a set of anchors determined based on 
a set of action tubes generated in the previous iteration 
to generate another set of action tubes and another set 
of action classification labels ; and 

outputting said another set of action tubes and said 
another set of action labels . 

6 . The method according to claim 5 , wherein said using 
one of the other groups of video clips to extend a set of video 
clips processed in a previous iteration comprises using 
respective video clips to extend the set of video clips on 
either end of the set of video clips . The method according to 
claim 6 , wherein the extended set of video clips consists of 
a sequence of consecutive frames from the video stream . 

8 . The method according to claim 5 , wherein , in the first 
iteration and in each of the subsequent iterations , each 
anchor in the set of anchors inputted corresponds to a 
position of a respective anchor tube from the set of anchor 
tubes generated in the immediately preceding iteration . 

9 . The method according to claim 8 , wherein the position 
of the respective anchor tube is determined in a video frame 
latest in time in the set of video clips processed in the 
preceding iteration . 

10 . The method according to claim 5 , wherein the selected 
video clip is a short video clip comprising less than all video 
frames of the video stream . 

11 . The method according to claim 10 , wherein the 
selected video clip includes less than 10 video frames . 

12 . The method according to claim 5 , wherein the each 
video clip in the plurality of video clips consist of a same 
number of video frames . 
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13 . The method according to claim 5 , further comprising 
determining the set of anchors used in the first iteration from 
configuration information . 

14 . The method according to claim 13 , wherein the set of 
anchors used in the first iteration is independent of features 
of the selected video clip . 

15 . The method according to claim 14 , wherein the set of 
anchors used in the first iteration overlays an entire frame . 

16 . The method according to claim 15 , wherein one of the 
set of anchors used in the first iteration overlays an entire 
frame . 

17 . An iterative prediction system configured to perform 
a task of action detection in video , comprising : 

a video processor configured to process an inputted 
sequence of video frames to generate an output of both 
action tubes and respective action classification labels , 
wherein each said action tube comprises a bounding 
box on respective video frames in a sequence of video 
frames , 

wherein the video processor comprises an iterative pre 
dictor that processes , based on the inputted sequence of 
video frames that is incrementally expanded in succes 
sive iterations , large offsets between the bounding 
boxes and ground - truth . 

18 . A system of one or more interconnected processors 
comprising : 

a backbone convolutional processing network configured 
to produce a spatial feature volume for each video 
frame ; 

a region of interest pooling layer processing network that 
processes the spatial feature volumes for multiple video 

frames together with initial anchor tubes to produce 
local features corresponding to the initial anchor tubes ; 

a global branch processing network configured to concat 
enate the region of interest pooled features from dif 
ferent video frames and pass a result through a convo 
lutional layer ; 

the convolutional layer producing global features describ 
ing contents in an entire anchor tube ; and 

fully - connected processing layers that concatenate the 
local and global features and process them to produce 
a 4 - dimensional regression coefficient vector for each 
anchor tube for action classification . 

19 . The system according to claim 18 , wherein the one or 
more interconnected processors are configured to iteratively 
expand an input sequence of video frames to iteratively add 
spatial feature volumes to the spatial feature volumes pro 
cessed by the region of interest pooling layer to generate 
region of interest pooled features . 

20 . The system according to claim 19 , wherein , in relation 
to each said iterative expansion of the input sequence of 
video frames , processing output including anchor tubes 
subjected to regression in an iteration is provided as the 
initial anchor tubes for processing by the region of interest 
pooling layer in a next iteration . 

21 . The system according to claim 18 , further comprising 
at least one of an autonomous vehicle control processing 
network or a surveillance system that receives the coefficient 
vectors produced by the fully connected layers . 


