
US 20190102908A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0102908 A1

YANG et al . (43) Pub . Date : Apr . 4 , 2019

(54) ITERATIVE SPATIO - TEMPORAL ACTION
DETECTION IN VIDEO

(71) Applicant : NVIDIA Corporation , Santa Clara , CA
(US)

Publication Classification
(51) Int . Ci .

G06T 7 / 73 (2006 . 01)
(52) U . S . CI .

CPC G06T 7 / 74 (2017 . 01) ; G06T 2207 / 20084
(2013 . 01) ; G06T 2207 / 10016 (2013 . 01)

(37) ABSTRACT

(72) Inventors : Xiaodong YANG , Fremont , CA (US) ;
Xitong YANG , Greenbelt , MD (US) ;
Fanyi XIAO , Davis , CA (US) ;
Ming - Yu LIU , San Jose , CA (US) ; Jan
KAUTZ , Lexington , MA (US)

(21) Appl . No . : 16 / 152 , 303
(22) Filed : Oct . 4 , 2018

Related U . S . Application Data
(60) Provisional application No . 62 / 568 , 285 , filed on Oct .

4 , 2017

Iterative prediction systems and methods for the task of
action detection process an inputted sequence of video
frames to generate an output of both action tubes and
respective action labels , wherein the action tubes comprise
a sequence of bounding boxes on each video frame . An
iterative predictor processes large offsets between the
bounding boxes and the ground - truth .

160
START

ACCESS VIDEO FRAME STAFAM
CF PLURALITY OF SHOST VIDES
CLIPS (eg O FRAME CLIP)

102

ACCESS NOTA SET OF
ANCHOR BOX INFORMATION

(. g . 1 : ANCHORS)
104

PROCESS AN INPUT FIRST STORT VIDEO CLIP AS
SELECTED VIDEO SEQUENCE AND THE INPUT INITIAL
STO : ANCHOR BOXES TO GENCRATCA SET OR

ANCHOS TUBES AND SET OF ACTION CLASSIFICATIONS
166

EXPAND THE SELECTED VDEO SEQUENCE
BY ADDING SHORT VIDEO CLIPS AT FRONT / BACK

OT SCLECTED VIDEO SEQUENCE
108

DETERMINE NEW ANCHCR SOXES BASED
ON ANCHOR TUBES FROM PREVIOUS PERATION

PROCESS THE EXPANDED SELECTED VIDEO
SEQUENCE AND THE SET OF NEW ANCHOR BOXES
IC GENERATE NEW SET OF ANCHOR IUBES AND A

NSW SET OF ACTION CLASSIFICATIONS
112

114
NO TERMINATION

THRESHOLD MET ?

YES
OUTPUT DETECTED OBJECTS

OR ANCHOR TUBES , AND
CORRESPONUING ACTION

CLASSIFICATIONS
116

120
RECEIVE INPUT SEQUENCE OF VIDEO

IFRAMES AND INPUT SET OF ANCHOR BOXES 122

APPLY BACKDONE CONVOUJTION NEURAL NETWORK TO
EACH FRAME IN THE INPUT SEQUENCE OF FRAMES TO
PRODUCE A RESPECTIVE SPATIAL FEATURE VOLUME

FOR EACH FRAME
Y124

PASS SPATIAL FEATURE VOLUMES AND PROPOSAL ACTION
TUBES THROUGH ROI POOLING LAYER TO PRODUCE REGIONAL

FEATURES CORRESPONDING TO EACH PROPOSAL ACTION TUBE
126

SELECT TWO - BRANCH HEAD NCIRAL NETWORK TO
PREFORM GLOBAL MODELING FOR CLASSIFICATION

AND LOCAL MODELING FOR LOCAL ACTION
128

130
GLOBAL BRANCH

COMBINE REGIONAL FEATURES FCR
TEMPORAL MODELING AND PRODUCE

GLOBAL FEATURE
- 134

LOCAL BSANCH :
CONCATENATE GLOBAL FEATURE TO
PRODUCE EXTENDED LOCAL FEATURE

132 CLASSIFICATION VECTOS
CX1 DIMENSIONAI ; C : = NUMBES

OF ACTION CLASSES
~ 136

PRODUCF 4xCxT
DIMENSIONAL REGRESSION COEFFICIENT VECTOR
FOR EACH ACTION TUBE (C - - NUMBER OF ACTION
CASSES ; T - - LENGTH OF INPUT FRAME SEQUENCE

Patent Application Publication Apr . 4 , 2019 Sheet 1 of 16 US 2019 / 0102908 A1

100
START

ACCESS VIDEO FRAME STREAM
OF PLURALITY OF SHORT VIDEO

CLIPS (e . g . 6 FRAME / CLIP)
mi 102

ACCESS INITIAL SET OF
ANCHOR BOX INFORMATION

(e . g . 11 ANCHORS)

PROCESS AN INPUT FIRST SHORT VIDEO CLIP AS
SELECTED VIDEO SEQUENCE AND THE INPUT INITIAL
SET OF ANCHOR BOXES TO GENERATE A SET OF

ANCHOR TUBES AND SET OF ACTION CLASSIFICATIONS
106

EXPAND THE SELECTED VIDEO SEQUENCE
BY ADDING SHORT VIDEO CLIPS AT FRONT / BACK

OF SELECTED VIDEO SEQUENCE
h 108

DETERMINE NEW ANCHOR BOXES BASED
ON ANCHOR TUBES FROM PREVIOUS ITERATION - 110

PROCESS THE EXPANDED SELECTED VIDEO
SEQUENCE AND THE SET OF NEW ANCHOR BOXES
TO GENERATE NEW SET OF ANCHOR TUBES AND A

NEW SET OF ACTION CLASSIFICATIONS
112 wwwwwwwwwwwwwwwww

M114

?? , TERMINATION
THRESHOLD MET ? ,

YES

OUTPUT DETECTED OBJECTS
(OR ANCHOR TUBES) AND
CORRESPONDING ACTION

CLASSIFICATIONS FIG . 1A

Patent Application Publication Apr . 4 , 2019 Sheet 2 of 16 US 2019 / 0102908 A1

120
RECEVE INPUT SEQUENCE OF VIDEO

FRAMES AND INPUT SET OF ANCHOR BOXES R 122
w

APPLY BACKBONE CONVOLUTION NEURAL NETWORK TO
EACH FRAME IN THE INPUT SEQUENCE OF FRAMES TO
PRODUCE A RESPECTIVE SPATIAL FEATURE VOLUME mine 124

Bil 2 . KAR
LUISAVIL

PASS SPATIAL FEATURE VOLUMES AND PROPOSAL ACTION
TUBES THROUGH ROI POOLING LAYER TO PRODUCE REGIONAL
FEATURES CORRESPONDING TO EACH PROPOSAL ACTION TUBE

ww126

SELECT TWO - BRANCH HEAD NEURAL NETWORK TO
PREFORM GLOBAL MODELING FOR CLASSIFICATION

AND LOCAL MODELING FOR LOCAL ACTION
a 128

130
GLOBAL BRANCH :

COMBINE REGIONAL FEATURES FOR
TEMPORAL MODELING AND PRODUCE

GLOBAL FEATURE
134

LOCAL BRANCH :
CONCATENATE GLOBAL FEATURE TO
PRODUCE EXTENDED LOCAL FEATURE

en annenin 132 ~ 136 CLASSIFICATION VECTOR
(Cx1 DIMENSIONAL ; C = NUMBER

OF ACTION CLASSES PRODUCE 4XCXT
DIMENSIONAL REGRESSION COEFFICIENT VECTOR
FOR EACH ACTION TUBE (C = NUMBER OF ACTION
CLASSES ; T = LENGTH OF INPUT FRAME SEQUENCE)

FIG . 1B

Patent Application Publication Apr . 4 , 2019 Sheet 3 of 16 US 2019 / 0102908 A1

0 regression (T X (4xC))

w 140 162 158

- 156 classification (C + 1)

ww Global feature 156
.

ooooooo
24444444444444444444444444 TTTTTTTTTTTTTTTTTTTTTTTTTT

Suljepow
160 mm 148

IDIO Temporal Local feature
2 Next iteration 291 oodoodooooo

PERS !

D

OOOOOOOOOOOO 150
.

. * * . * . w . r V A W . . . tw .

de

148 base
Tooba home doonooooooo 3

146 Convolutional Stack

FIG . 1C

142 time
.

1 .

Patent Application Publication Apr . 4 , 2019 Sheet 4 of 16 US 2019 / 0102908 A1

. ?? ??

192 som

188 3x4 good

- - - - Wu .

Wu FC (class) FC (box) weten wat
Wu

e VVV
' A

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

* XXXXXXXXXXXXXXXXXX * * * Wu > 161 144444444444444444444444
om

Wu Wu Wu meer
er

Wu

FCS SO en wat
Wu Wu NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN wwwwwwwwwwwwwwww wwwwwwwwwww nument

186 corde Iteration ddd UU Convolutions Convolutions wwwwwwwwwwww
Mossos 781 Concat . .

L

Stenocer 081 o Duration - Oudood 108

-
-

-

Convolutional stack
d

d XXXtor O XXX 3 ROOTORR

172 xonand

FIG . 1D

202

200 ?

?

26

203 ??

????????????

? ? ? ? ? ? ??

Patent Application Publication

-

3

2014

???

205

207 ??

{ } 2 ?

??? ? ???? ???

?

?

??? ???? . . .

????

"

"

Apr . 4 , 2019 Sheet 5 of 16

?????

???? - ?????

??

???

209

210

* * * * *

?? . 8

* *

:

. . . .

* * * * * *

:

???????

US 2019 / 0102908 A1

FIG . 2A

Short clip (6 frames)

Patent Application Publication

Iter 1 : _ C

UVCC
4220

Iter 2 : OAVAVAWO
Iter 3 : ALLWAVAVAVAD _ 224

Apr . 4 , 2019 Sheet 6 of 16

Time

AW

The clip used as input

FIG . 2B

US 2019 / 0102908 A1

Patent Application Publication Apr . 4 , 2019 Sheet 7 of 16 US 2019 / 0102908 A1

Iter - 2

236

W11111111111111111111111111 FIG . 2C

Iter - 1

235

230 LLLLLLLLLLLLLLLLLLLLLLLLLL
234

Iter -

vv :
242 mmg

.

Oddddd

Ayy7A

. .

AAAAA

Patent Application Publication

* inainte

lter 0

- - - - - - - - -

-

- -

??

ILLIAN

AVVIVIENNNN

signanopanga

este

n

rrrr

W

ter 1

??

www

- -

-

.

POVODOU .

Iter 2

pyydy

Apr . 4 , 2019 Sheet 8 of 16

.

YYYYYYYYYYYYYY

-

-

-

Es

HA

ydydydydydydydydydydydydydydd

Clip

1 - 2

1 + 1

+ 2

US 2019 / 0102908 A1

FIG . 2D

INPUT (VIDEO CLIPS + PROPOSED ACTION TUBES)

OUTPUT (REGRESSED ACTION TUBES AND ACTION LABELS)

Patent Application Publication

cim 272

mm 274

0000000000000000000000

p - 260

264

.

.

GPU

CPU / Deep Learning Accelerator

Apr . 4 , 2019 Sheet 9 of 16

00

wwwwwwwwwwwwwwww

wwwwwwwwww
www

208

Memory

Memory Memory
270

Wenn niini nini
kin

i

K?M?N?K?K?K?K? K?MKANKA

US 2019 / 0102908 A1

FIG . 2E

Patent Application Publication Apr . 4 , 2019 Sheet 10 of 16 US 2019 / 0102908 A1

302 PPU 300 ANNARRARA

I / O Unit
305

Front End Unit
315

Scheduler Unit
320

NVLink 310 Hub
330

Work Distribution Unit
325

GPC
350 (X)

W

w w w

XBar 370

Memory
304 (Y)

kiwiwiwiwaringiniwimwimminuiaminiwimmierungseiminimigianiwimisiminimiminiwimiwiwiwiwiwiwiwiwin pariwia !
Memory Partition Unit 380 (U)

+

iiiiiiiiiiii

FIG . 3

Patent Application Publication Apr . 4 , 2019 Sheet 11 of 16 US 2019 / 0102908 A1

To / From XBar 370

GPC 350
????????????????????????????????? ??

Pipeline Manager
410

PROP
415
VA

MPC
430

+

??????????????????????????????????? Primitive
Engine
435 Stt Raster Engine

425 ?????

SM
440

DPC 420 (V)
????????????????????????

WDX
480

MMU 490

To / From XBar 370 To / From XBar 370

FIG . 4A

Patent Application Publication Apr . 4 , 2019 Sheet 12 of 16 US 2019 / 0102908 A1

To / From
XBar 370

Memory Partition Unit
380

ROP 450

XIII

L2 Cache 460 To / From
XBar 370

Memory Interface
470

VIVIANA

To / From
Memory 304

FIG . 4B

Patent Application Publication Apr . 4 , 2019 Sheet 13 of 16 US 2019 / 0102908 A1

SM 440

ATA Instruction Cache 505

Scheduler Unit 510 (K)

ATA Dispatch 515
wennenener

= = = = = = = = * * . * * * * * * *

ATA
Register File 520

M

Core
550 (L - 1)

SFU
552 (M - 1)

LSU
554 (N - 1)

LLL . ASSAL .

Interconnect Network 580

Shared Memory / L1 Cache 570

C To / from MMU 490
FIG . 5A

Patent Application Publication Apr . 4 , 2019 Sheet 14 of 16 US 2019 / 0102908 A1

500 so
CPU 530

302
302

Switch 555

wiwiwiwiiiiiiiiiiiiiiiii 304 PPU 300 PPU 300 304 NVLink
310 TTT ??????????????????????

??? 304 PPU 300 PPU 300

525

FIG . 5B

Patent Application Publication Apr . 4 , 2019 Sheet 15 of 16 US 2019 / 0102908 A1

2565 Main
Memory

540

Network
Interface
535 ttttttttttttt CPU 530

Display
Devices
545

Input
Devices
560

302
5751

Switch 555

YA YM

304 PPU 300 PPU 300 304 NVLink
- 310

304 PPU 300 PPU 300 304

525

0 . 02 FIG . 5C

Patent Application Publication Apr . 4 , 2019 Sheet 16 of 16 US 2019 / 0102908 A1

600

Input Data
601

.

.

.

ii

Data Assembly
610

A AAAAARRRRRRRRRRRRRRRRRRRRRRRR
Vertex Shading

620

Primitive Assembly
630

* * * * *

AAAAAAAA Geometry Shading
640

A

Viewport SCC
650

Rasterization
099 NAAAA Fragment Shading
670

Raster Operations
680

Output Data
602

FIG . 6

US 2019 / 0102908 A1 Apr . 4 , 2019

ITERATIVE SPATIO - TEMPORAL ACTION
DETECTION IN VIDEO

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of priority from
U . S . Provisional Patent Application No . 62 / 568 , 285 filed on
Oct . 4 , 2017 , the entire content of which is incorporated
herein by reference .

FIELD
[0002] The technology herein relates to computer vision
and video processing , and more particularly to an iterative
network for spatio - temporal action detection in videos .

BACKGROUND

[0012] FIG . 2A shows an arrangement of an initial set of
anchor tubes on a video frame , according to some example
embodiments .
[0013] FIG . 2B shows expansion of the input video frame
sequence over multiple iterations , according to some
example embodiments .
[0014] FIG . 2C shows an example regression of an action
tube , according to some example embodiments .
[0015) FIG . 2D shows another example regression of
action tubes as the input video frame sequence is expanded
over multiple iterations , according to some example
embodiments .
[0016] FIG . 2E shows an example non - limiting hardware
architecture for implementing the processes of FIGS . 1A and
1B , and the system of FIGS . 1C , 1D .
[0017] FIG . 3 illustrates a parallel processing unit , in
accordance with an embodiment .
[0018] FIG . 4A illustrates a general processing cluster
within the parallel processing unit of FIG . 3 , in accordance
with an embodiment .
f0019 FIG . 4B illustrates a memory partition unit of the
parallel processing unit of FIG . 3 , in accordance with an
embodiment .
[0020] FIG . 5A illustrates the streaming multiprocessor of
FIG . 4A , in accordance with an embodiment .
[0021] FIG . 5B is a conceptual diagram of a processing
system implemented using the parallel processing unit
(PPU) of FIG . 3 , in accordance with an embodiment .
[0022] FIG . 5C illustrates an exemplary system in which
the various architecture and / or functionality of the various
previous embodiments may be implemented .
[0023] FIG . 6 is a conceptual diagram of a graphics
processing pipeline implemented by the PPU of FIG . 3 , in
accordance with an embodiment .

[0003] Spatio - temporal action detection is a key element
in high - level video understanding . Action detection is a very
challenging problem in computer vision , since it requires not
only identifying what action is happening in the video , but
also where it is happening both spatially and temporally .
Also , action detection is different from general video object
detection tasks in that motion may play a much more
important role in detecting action than it does for general
objects , since many actions (e . g . , running vs . walking) are ,
by definition , only identifiable from motions .
[0004] Most existing action detection methods build upon
static image detection methods like R - CNN / Faster - R - CNN
and SSD , which means the detection decisions are made on
the frame level . See e . g . , Gkioxari and Malik , “ Finding
action tubes ” (CVPR 2015) ; and Peng and Schmid , “ Multi
region two - stream R - CNN for action detection ” (ECCV
2016) .
[0005] Many of the conventional techniques for action
detection incur high costs in terms of computation and
memory resources . These conventional techniques may
require several hundreds , or sometimes even more than a
thousand , anchors to initialize detection . Detection over
several frames makes this explosion of anchors much worse
in conventional techniques . Moreover , due to the use of very
short clips (e . g . , 0 . 25 seconds or shorter) , the conventional
techniques may frequently return incorrect classifications .
[0006] Therefore , improved techniques for action detec
tion in video are needed .

DETAILED DESCRIPTION OF EXAMPLE
NON - LIMITING EMBODIMENTS

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The following detailed description of exemplary
non - limiting illustrative embodiments is to be read in con
junction with the drawings of which :
[0008] FIG . 1A shows a flowchart of a process for iterative
action detection in video , in accordance with some example
embodiments .
[0009] FIG . 1B shows a flowchart of a process for regres
sion of action tubes and classification of actions in a par
ticular iteration of the process of FIG . 1A , according to some
embodiments .
[0010] FIG . 1C schematically illustrates the overall archi
tecture of an iterative action detection network , according to
some example embodiments .
[0011] FIG . 1D shows another schematic illustration of the
overall architecture shown in FIG . 1C .

[0024] Example embodiments provide action detection in
video streams while avoiding the above mentioned deficien
cies of convention action detection techniques . One aspect
of the example non - limiting technology herein is that it is
more natural to predict the action of a sequence of frames as
a whole . An important technical contribution of this example
non - limiting technology is the idea of iterative predictions
for action detection in videos .
[0025] Most existing approaches for action detection in
video are based on the paradigm referred to as " sliding
window detection ” , in which a set of anchors with various
sizes and aspect ratios are placed densely over an image (or
a clip) , and the detection window slides over the anchors in
a sliding - window manner . Additionally , most existing action
detection approaches adopt a proposal - based paradigm in
which a large number of proposals (using either off - the - shelf
proposal algorithms or the sliding - window technique) are
generated , with varying sizes and aspect - ratios , throughout
frames , and then to predict the class label for each of them .
[0026] These approaches are not optimal since (1) they
require large amounts of computation to brute - forcedly
examine many proposals ; (2) these proposal based
approaches ignore the relationship between human parts and
the entire human form since they only performs foreground /
background classification for any one given proposal ; and

US 2019 / 0102908 A1 Apr . 4 , 2019

(3) the human brain does not detect actions by first gener
ating thousands of proposals , but instead solves the task in
a coarse - to - fine manner .
10027] Example embodiments described in this applica
tion provide a different / enhanced approach which is an
iterative prediction approach for the task of action detection .
The inventors discovered that relative to conventional tech
niques , the number of anchors can be drastically reduced
while at the same time using longer clips to improve
classification accuracy . Some example embodiments pro
vide an action detection approach to start from only very few
initial “ anchor tubes ” and to refine the predicted anchor
tubes over multiple iterations of processing . Experiments
have shown that with as few as 11 anchors , some example
embodiments can exceed the performance / accuracy of con
ventional techniques . The example embodiments use tech
niques which are more similar to how humans process visual
information . Since the mapping from video to localized
action tube is highly complicated , this iterative prediction
approach simplifies the prediction problem with each itera
tion .
[0028] Example embodiments perform action detection in
an iterative and coarse - to - fine manner . Specifically , accord
ing to some embodiments , the action detection task begins
with only very few initial spatio - temporal action tubes (in
contrast to the thousands of anchors used in the conventional
proposal - based approaches) and iteratively refines the
anchor tubes . A corresponding training strategy is proposed
and several design choices are developed . In contrast to the
above mentioned conventional techniques , example
embodiments can exploit the relationship between detected
parts of a human and the entire human form and learns how
to move from a human part (e . g . , head , torso) to the entire
human .
[0029] Example non - limiting systems and methods herein
take a sequence of video frames as input , and output both the
action tubes , i . e . , a sequence of bounding boxes on each
frame , and their respective action labels . Unlike in conven
tional approaches , example embodiments do not need to use
a proposal or slide - window based approach , which generates
thousands of initial tubes spanning all over the frame
spatially , since the iterative predictor of example embodi
ments is able to accommodate much larger offsets between
the initial box and the ground - truth .
[0030] The example non - limiting technology herein dem
onstrates the ability of deep convolutional neural networks
trained in GPUs (see e . g . , FIG . 2E) or other parallel pro
cessing unit (PPU) to solve challenging computer vision
problems including action detection for real - world systems .

between 2 and 20 video frames . In some example embodi
ments , the short video clips each consists of six frames .
[0033] At operation 104 , process 100 accesses configura
tion parameters including the configuration of the set of
initial anchors . The configuration parameters may be
accessed from a memory such as a hard disk memory or
random access memory to where the parameters were pre
viously stored . Without loss of generality , this application
uses the terms " anchor ” and “ anchor box ” interchangeably .
But an anchor may , in some embodiments , be in shapes other
than box or rectangular shapes . The set of initial anchors
specify the locations in a frame for placing (e . g . , overlaying)
each of the initial anchor boxes . The number of anchors
defined in the set of initial anchors in embodiments is in the
range of 9 - 99 anchors . The small number of initial anchors
enable the embodiments to more efficiently perform action
detection than conventional action detection systems that
use hundreds , or sometimes more than a thousand , initial
anchors . In certain example embodiments , the set of initial
anchors consist of 11 anchors . An arrangement of 11 initial
anchors is shown in FIG . 2A .
[0034] At operation 106 , one of the short video clips from
the accessed plurality of video clips and the initial set of
anchors are taken as input , and processing is performed to
generate a set of anchor tubes (or , equivalently , also referred
to as " action tubes ”) and a set of action classifications .
100351 An “ anchor tube ” (alternatively , an " action tube ”)
refers to a particular anchor as it is arranged in a plurality of
consecutive video frames . For example , the anchor tube
corresponding to a particular anchor would include the
bounding box corresponding to that anchor as it appears in
each of the consecutive frames . Put another way , whereas
" anchor ” is a 2D concept (i . e . , a 2D box on a frame) , " anchor
tube ” is a 3D concept (i . e . , a sequence of 2D boxes on
several consecutive frames) .
10036] An " action classification ” is the assignment of a
particular anchor (or anchor tube) to a particular class of
action . In example embodiments , each anchor or anchor tube
is subjected to regression and classification processing to
eventually output one or more corresponding action classi
fications (e . g . , represented by a classification label) , and
optionally , the respective associated confidence levels . More
specifically , “ regression ” is used to update the spatial loca
tion and size of each anchor in a tube , and “ classification ”
is used to output corresponding action label .
[0037] . At operation 106 , according to some embodiments ,
an anchor tube is formed corresponding to each anchor in the
set of initial anchors . In some other embodiments , only some
of the anchors in the set of initial anchors will have a
corresponding generated anchor tube . A respectively com
puted action classification is associated with each of the
generated anchor tubes or each of the generated anchor tubes
which corresponds to a foreground action . In many
instances , only some of the anchor tubes correspond to
foreground actions .
[0038] Operation 106 may be considered the first iteration
in the iterative process 100 . The initial anchor tubes tem
porally span over the sequence of frames with a fixed spatial
extent . After that , the iterative approach of example embodi
ments is performed , which involves both spatial and tem
poral scales (illustrated in FIGS . 1C - 1D) . At a specific
iteration i (i > 1) , the regression output from the previous

i teration i - 1 is taken as the proposal tubes for the current
iteration . By doing so , the location of the action tubes are

Example Process for Action Detection
[0031] A method of action detection in video according to
some example embodiments is illustrated in FIGS . 1A and
1B . FIG . 1A illustrates a flowchart of an overall iterative
process 100 for action detection in video . FIG . 1B illustrates
a flowchart describing the processing 120 associated with an
iteration .
[0032] After entering process 100 , at operation 102 , a
video frame stream is accessed . The accessed video frame
stream may be from previously captured ad stored video or
video that is currently (in real - time) being generated by (or
based on input from) one or more cameras . The video frame
stream includes a plurality of short video clips . A " short
video clip ” , as the term is used in this application , includes

US 2019 / 0102908 A1 Apr . 4 , 2019

continually refined over iterations . In the meantime , the
proposal tubes are extended temporally to the adjacent clips
and include the frames of these adjacent clips into the input
sequence (as shown in FIG . 2B) . By progressively consum
ing longer clips , the model in example embodiments can
utilize more temporal information and improve the classi -
fication accuracy . The processing associated with operation
106 is described in more detail in relation to FIG . 1B . As
noted above , the example embodiments iteratively refine the
set of initial anchors or anchor tubes and action classifica
tions while expanding the input video frame sequence at the
beginning of each iteration by adding adjacent video clips to
the previously processed sequence of video frames . As
further described below , operations 108 - 112 are repeated for
one or more iterations .
[0039] At operation 108 , the input video sequence is
expanded by adding more video frames . According to some
embodiments , at least one short video clip is added . Accord
ing to an example embodiment , two short video clips (e . g . ,
clips of 6 video frames each) are added to the video frame
sequence processed in the immediately preceding iteration .
One of the two added short video clips is immediately
adjacent to the previously processed video frame sequence
and precedes the previously processed video frame sequence
in time ; the other of the two added short video clips is also
immediately adjacent to the previously processed video
frame sequence but follows the previously processed video
frame sequence in time . An example of the input video
frame sequence expansion over successive iterations is
shown in FIG . 2B .
10040] At operation 110 , a set of new input anchors (or set
of new input anchor tubes) is determined based on the
anchor tubes generated and regressed in the previous itera
tion . For each anchor in the set of new input anchors , the
corresponding position may be predictively determined
from the corresponding anchor tube used in the preceding
iteration and / or trends that are derivable from the corre
sponding anchor tube . The corresponding positions are
determined by the local branch (also referred to as the
regression branch) shown in FIG . 1C .
[0041] At operation 112 , taking the expanded video frame
sequence and the new set of anchors or anchor tubes as
input , processing is performed to generate a regressed set of
anchor tubes and a further refined set of action classifica
tions . The processing associated with generating the
regressed set of anchor tubes and refined set of action
classifications is described below in relation to FIG . 1B .
[0042] At operation 114 , it is determined whether a pre
determined threshold and / or other termination criteria has
been satisfied . For example , some embodiments may be
configured to terminate after any one or more of the fol
lowing conditions are satisfied : a specified number of itera
tions (e . g . , 3 iterations) has been completed , or the length of
the input video frame sequence has reached a maximum
number (e . g . , 30 frames) or a maximum time (e . g . , 0 . 5
seconds) . Other termination criteria may include more
anchor tube accuracy and / or action classification accuracy .
For example , an example termination criteria may be one or
more of the action classifications associated with an anchor
tube exceeding a threshold probability (e . g . , 0 . 95 confi
dence) .
[0043] When the termination conditions are not satisfied at
operation 114 , process 100 proceeds to operation 108 to
begin the next iteration of processing for action detection .

[0044] If the termination conditions are satisfied at opera
tion 114 , then at operation 116 detected objects / persons
and / or corresponding anchor tubes (or anchors) , and the
action classification or classifications corresponding to each
of the anchor tubes (or anchors) are output . The output may
be stored for subsequent use or may be provided to an
online / currently active application for further processing .
For example , the output set of regressed anchor tubes and
the associated classifications can be provided to a surveil
lance system for identifying persons and / or actions that
appear in surveillance video . In some embodiments , process
100 may be part of an application associated with an
autonomous vehicle , and the output of process 100 may be
used by the application to reliably determine the actions
(e . g . , walking , running , standing by the side of the road ,
attempting to step on to the road , etc .) in which persons
appearing in the vehicle ' s camera view are engaged in , so
that the vehicle ' s control systems can be automatically
controlled to react appropriately to the presence of such
persons in the camera view . The use of the output of process
100 by numerous other applications is also contemplated in
embodiments . Automated video annotation is another
example application that can utilize the output of process
100 .
[0045] FIG . 1B illustrates a flowchart for process 120 ,
according to some example embodiments . Process 120 may
be performed in the processing associated with each itera
tion . For example , process 120 may be performed during the
processing of each of the operations 106 and 112 described
above in relation to FIG . 1A . FIGS . 1C and 1D show
example systems on which process 120 can be performed .
[0046] After entering process 120 , at operation 122 , pro
cess 120 receives an input sequence of video frames and an
input set of anchors (or anchor tubes) . For example , when
process 120 is being performed during operation 106 , the
input to process 120 may include the initial set of video
frames (e . g . , initial clip of six frames) and a set of initial
anchors (or set of initial anchor tubes) .
[0047] At operation 124 , a backbone neural network is
applied to each frame in the input sequence of frames to
generate a respective spatial feature volume for each anchor
tube . The backbone network can be any CNN such as , but
not limited to , VGG16 , ResNet , etc .
[0048] At operation 126 , the spatial feature volumes and
proposal action tubes are passed through an ROI (region of
interest) pooling layer to produce regional features corre
sponding to each proposal anchor tube . The ROI pooling
layer network operates to extract , from the respective frame
level feature volumes , the regional features corresponding to
each of the respective ROI corresponding to each proposal
anchor tube . The ROI pooling layer may be a CNN such as ,
but not limited to , VGG16 , ResNet , etc .
[0049] At operation 128 a head neural network is selected
for processing the regional features associated with each
anchor tube . According to some embodiments , the head
network selected for each iteration , or at least for some
iterations , may be different from the head network selected
for other iterations . In some embodiments , the same head
network may be used for all iterations .
[0050] The selected head network may be a two branch
head network that is configured to perform global modeling
for action classification and local modeling for detecting
localized actions .

US 2019 / 0102908 A1 Apr . 4 , 2019

[0051] During the head neural network processing , at
operation 130 , the regional features generated at operation
126 are combined for temporal modeling and for producing
global features .
[0052] The produced global features are , at operation 132 ,
used to generate an action classification vector . The action
classification vector may be of Cx1 dimension , where C is
the number of configured or predetermined action classes .
[0053] Operations 130 and 132 belong to what is referred
to in this application as the “ global branch ” .
[0054] The produced global features are also provided to
the “ local branch ” of the same head neural network . The
local branch in the illustrated embodiment includes opera
tions 134 and 136 .
[0055] At operation 134 , the global features determined at
operation 130 are combined and / or concatenated with the
regional features generated at operation 126 .
10056] . At operation 136 , a 4xCxT dimensional regression
coefficient vector is produced for each anchor tube , where 4
represents the spatial adjustment for each anchor , C is the
number of action classes and T is the length of the input
frame sequence .

Example Networks for Action Detection
[0057] Example video processing network architectures
according to some embodiments , are illustrated in FIGS . 1C
and 1D .
[0058] A network architecture 140 according to some
example embodiments is illustrated in FIG . 1C . The network
comprises a backbone network 146 , a ROI pooling layer
network 150 and a head network 164 . Specifically , given a
sequence of frames 142 , a backbone network 146 is applied
to each frame individually and provides a spatial feature
volume 148 for each of them (shown in different fill patterns
in FIG . 1C) . After that , the feature volumes 146 , together
with the proposal tubes (not shown) , are passed through a
ROI pooling layer 150 to produce regional features 152
corresponding to each proposal tube . The regional features
152 are then fed to the head network (e . g . , global branch
including 148 and the local branch) for both classification
and regression . A two - branch design is used for the head
network , one performs global modeling for accurate classi
fication and the other performs local modeling for precise
localization . The motivation is that the two tasks have
substantially different objectives , which requires different
types of information and architecture design . In particular ,
the so - called " global branch ” combines the regional features
for temporal modeling and produces the global feature 156
(illustrated as a dotted fill patterned cube in FIG . 1C) . The
global feature 156 encodes the information of the entire tube
(and , in some embodiments , the context information as well)
and is used for action classification . The classifications are
used to produce a Cxl classification vector 158 . The tem
poral modeling 148 for the global branch can utilize any
network such as RNN , 2D convolution , 3D convolution ,
etc . , although experiments with at least some embodiments
have yielded best results with 3D convolution . For the " local
branch ” , first , the global feature is concatenated with each of
the regional features to produce the extended local features
(e . g . , the combination of the respective regional feature
blocks 160 with global feature block 156 ') . The extended
local features not only encode the global information , but
also remain the detailed local information at each frame . The
features are then used to produce a 4xCxT dimensional

regression coefficient vector 162 for each tube , where C is
the number of classes and T is the length of the input frame
sequence
[0059] . FIG . 1D illustrates another example video process
ing network according to some embodiments . As illustrated
in FIG . 1D , the iterative prediction approach for the task of
action detection according to an embodiment , takes a
sequence of video frames 172 as input , and outputs both the
action tubes 192 , i . e . , a sequence of bounding boxes on each
frame , and their respective action labels 188 . In contrast to
conventional techniques for action detection which generate
thousands of initial tubes spanning all over the frame
spatially , the illustrated example embodiment does not
require use of a proposal or sliding - window based approach
since its iterative predictor is capable of accommodating a
much larger offset between the initial detection box and the
ground - truth .
10060] Specifically , first a convolutional stack 176 (which
can be any classical convolutional neural network (CNN)
such as AlexNet , VGG16 , ResNets , etc . ; VGG16 is used in
the illustrated embodiment for its good performance and
moderate computation cost) is applied onto each frame
individually and produces a spatial feature volume 178 for
each of them (shown in different patterns in FIG . 1D) . Then ,
the feature volumes 178 , together with the initial anchor
tubes (not shown in FIG . 1D) , are passed through the ROI
pooling layer 180 to produce features 182 corresponding to
the initial tubes . More detail concerning an ROI pooling
layer may be found for example in Girshick et al , “ Fast
R - CNN ” , Computer Vision (ICCV) 2015 . The generation of
initial action tubes is described in a later section of this
application , and for now it is without loss of generality to
assume the initial tube to be consisting of one bounding box
that covers the entire frame on each frame .
10061] The ROI pooled features 180 are now what may be
referred to as “ local features ” which describe only contents
inside the detection box . In contrast , the other branch
concatenates the ROI pooled features 180 from different
frames and passes the concatenation on through a convolu
tional layer 184 to produce " global features ” describing
contents in the entire tube (illustrated as cube 186 in FIG .
1D) . Both local and global features are concatenated 190 and
processed with fully - connected layers 194 to produce a
4 - dimensional regression coefficient vector for each box (the
parameterization of which is described later in this applica
tion) . For classification , the action decision should be based
on the action tube , i . e . , a sequence of bounding boxes ,
instead of individual single detection boxes on each frame .
Therefore , the global features is directly acquired and passed
on to fully - connected layers 194 for classification .
10062] The architecture iterates the operation of ROI pool
ing 180 and subsequent operations 184 and 194 as needed .
According to at least some embodiments , the video process
ing networks shown in FIGS . 1C and 1D comprise neural
networks .

Example Anchor / Anchor Tube Arrangement
[0063] FIG . 2A illustrates an example set of initial
anchors , according to some embodiments . The illustrated
initial set of anchors consists of 11 anchors (shown as
anchors 202 , 203 , 204 , 205 , 206 , 207 , 208 , 209 , 210 , 211 and
212 arranged on frame 200) with predefined respective
positions on a frame as shown in FIG . 2A . In this particular
non - limiting embodiment , for each scale 1 / 2 and 3 / 4 (e . g . , " 1 / 2 "

US 2019 / 0102908 A1 Apr . 4 , 2019

means half of each dimension (row or column) not the entire
image size) , respective anchor boxes are arranged at 5
different positions like shown in FIG . 2A yielding 5x2 = 10
action tubes . With the addition of an action tube that covers
the entire frame , the embodiment yields a total of 11 action
tubes .

Example Iterative Expansion of Input Video
Sequence

[0064] FIG . 2B illustrates an example expansion of the
input video frame sequence over multiple iterations . In the
example shown , in the first iteration the selected input frame
sequence 220 includes one short clip (e . g . clip of 6 frames) ;
in the second iteration , the newly selected input frame
sequence 222 includes , in addition to the frame sequence
220 , the short clips that are immediately adjacent to the
frame sequence 220 before and after ; and , in the third
iteration , the newly selected input frame sequence 224 is
formed by expanding the input frame sequence 222 by
adding the short clips that are immediately adjacent to the
frame sequence 222 before and after .

Example Spatio - Temporal Refining
[0065] FIG . 2C shows an example video clip or frame 230
over three iterations regressing an anchor tube to detect the
action of person 232 appearing in the frame . As shown , the
same anchor tube is regressed to respective shapes 234 , 235
and 236 to capture the person 232 to a sufficient complete
ness so that a classification of the action (e . g . , skateboard
ing) can be made with a high level of confidence .
[0066] FIG . 2C illustrates an example of the spatial updat
ing that is one part of the iterative refinement according to
some example embodiments . As shown in the figure , spatial
update may ensure that the subject of the detection is
occupying most of the detection area (e . g . , area within one
anchor , as shown) . Spatial updating can also be used to
obtain context information to assist in the action classifica
tion task .
[0067] FIG . 2D shows an example expansion of the input
video frame sequence over several iterations , and the asso
ciated anchor tube regressing to detect actions , according to
some example embodiments . The illustrated example con
cerns five short video clips ranging from the earlier clip at
time t - 2 to the latest clip at time t + 2 .
[0068] At iteration 0 , the clip at time t is selected as the
input video frame sequence . Selection of the clip corre
sponding to time t enables the subsequent expansion of the
input frame sequence as required in embodiments by ensur
ing that a sufficient number of clips are available on either
side of the initially selected clip .
[0069] At iteration 0 , two initial anchors or anchor tubes
242 and 244 are shown as arranged on the frame or clip . At
iteration 0 , the anchors or anchor tubes 242 and 244 are in
the predefined positions and have not been subjected to
regression processing . For each iteration , the input anchor
tubes may be specified with respect to the clip corresponding
to time t .
[0070] At iteration 1 , the clips corresponding to times t - 1
and t + 1 are added to the t clip to expand the input frame
sequence . The input anchor tubes for iteration 1 are deter
mined based on the regression of the anchor tube in iteration
0 , and may be specified with respect to the clip correspond -
ing to time t . Based on the input anchor tubes specified for

the t clip , the anchor tube is expanded to t - 1 and t + 1 clips .
Thus , the anchor tubes shown for t - 1 and t + 1 clips in FIG .
2D are extrapolated from the anchor tube of the t clip .
[0071] At iteration 2 , the clips corresponding to times t - 2
and t + 2 are added to the sequence of frames having clips t - 1
to t + 1 , to again expand the input frame sequence . Each of the
anchor tubes 242 and 244 are regressed over the expanded
input frame sequence such that now the anchor tube 244 has
sufficient information to detect the player detected within
244 going through the motions that can be reliably classified
as associated with the playing of basketball .
[0072] At iteration 3 , the t clip may be returned with the
regressed anchor tubes . Sufficient information based on
regressed anchor tube 244 was obtained ibn iteration 2 based
on clips ranging from time t - 2 to time t + 2 to arrive at an
action classification of “ shooting a basketball ” . As shown , at
iteration 4 , the clip at time t may be output with the regressed
anchor tube corresponding to the player performing the
action and the determined classification label .
[0073] FIG . 2D illustrates the spatial updating as well as
the temporal updating that are parts of the iterative refine
ment process according to some example embodiments . The
spatial updating is illustrated by the refining of a respective
anchor arranged in a particular clip , as shown over several
iterations . This example also illustrates , in addition to focus
ing the detection area on the subject , that spatial updating
can be used to obtain context information . For example , the
clips t - 1 and t + 1 , provide the necessary information for
associating the catching and shooting of a ball with the
subject . The temporal updating is illustrated by the regres
sion of the respective anchor tubes over consecutive short
clips . The temporal updating by adding adjacent clips
enables the determination and classification of actions , such
as , for example , that the subject associated with anchor tube
244 is performing the action of shooting a basketball .
[0074] FIG . 2D also illustrates the usefulness of iteratively
expanding the input video frame sequence . The iterative
approach of embodiments enable reduced computational
cost and memory considering a few short video clips at a
time . The approach enables achieving good performance
using only very few anchors , and / or by decomposing a
highly non - linear task into easier sub - tasks . It also enables
progressively improving the detection performance . By con
sidering a few short clips at a time , embodiments also enable
the problem of anchor tube drifting over time . For example ,
if a long clip with 30 frames is considered , due to tubes
drifting spatially (e . g . , with actions that cause movements
spatially) , it may be difficult to accurately capture a ground
truth bounding box . However , gradual expanded anchor
tubes as used herein can more accurately capture the ground
truth (e . g . , in FIG . 2D , the player movements in anchor tube
244 .

Example Non - Limiting Training
[0075] Example embodiments may use either a joint train
ing scheme or a stage - wise training scheme . Some experi
ments have shown that using a joint training scheme to train
a model yields better action detection and classification
accuracy that the stage - wise training .
[0076] The joint training scheme is more simple and
efficient than the stage - wise training counterpart , and also
provides good performance . At each iteration , two loss
functions — the cross - entropy loss for classification and the
smooth - L1 - loss (e . g . Girshick , Ross . " Fast R - CNN . ” Com

US 2019 / 0102908 A1 Apr . 4 , 2019

(1)

(2)

puter Vision (ICCV) , 2015) for regression are jointly opti
mized . The regression is class specific , i . e . different regres
sion outputs correspond to different actions . The
parameterization of the regression coefficient may be the
same as in Girshick et al . The complete loss function can be
written as shown in equation (1) :

L = 2 , 1 cs + hIpeg
where à is used to balance the contribution of the two losses .
[0077] One key element for the model training is the
selection of positive and negative proposal tubes . A standard
practice for this is to select the positive samples according
to the Intersection over Union (IOU) between the proposal
tubes and the ground truth tubes . Specifically , a proposal
tube is viewed as a positive sample if its IoU is above a given
threshold d , and vice versa (if no proposal tube satisfies the
criteria , the one with the largest IoU is selected as positive
sample) . The threshold d is an important hyper - parameter
that affects the number of , as well as the quality of , the
positive samples . In experiments with some embodiments ,
an incremental d , may be for each iteration (e . g . set d ; = 0 . 2 ,
0 . 5 , 0 . 5 for i = 1 , 2 , 3 in experiments) . By doing so , a sufficient
number of positive samples may be made available at the
early iterations , and also guarantee good quality of positive
samples at the late iterations . Note that the number of
positive samples will not decrease much at the late iterations
as the proposal anchor tubes are refined over iterations and
have continually improved quality . To enrich the diversity of
the negative samples and include more hard negatives , all
regression outputs from the previous iteration may be uti
lized . Specifically , example embodiments may sample from
the regression outputs that have IoU lower than di , with
sampling probability in proportional to the classification
scores of that tubes . Intuitively , a proposal tube with low loU
but high classification score is more likely to be a hard
negative , e . g . a human not performing the action . The
maximum number of positive samples for a sequence may
be constrained to be 5 , in order to balance the ratio between
the positive and negative samples .
[0078] Another problem during training is the drift of both
input and output distributions . The input distribution , i . e .
IOU distribution , changes over iterations because the pro
posal tubes keep being refined and the loU increases gradu
ally . The output distribution , i . e . the distribution of the
regression coefficients , changes accordingly , as the regres
sion coefficients tend to decrease over iterations . As a result ,
some embodiments may use separate head networks for
different iterations to adapt to the distribution drift .
[0079] Spatial context information may also be an impor
tant clue for correct action classification , as mentioned in the
introduction . In order to introduce the context information ,
some embodiments may expand the spatial extent of the
proposal tubes to get the expanded regional features , and
then append them along with the original regional features
in global branch . As a result , the global feature encodes both
the temporal and spatial context information of the entire
tube . In some embodiments the early fusion of the RGB
image and the flow stack may yield better performance . In
particular , the 3 - channel RGB image and the 15 - channel
flow stack may be concatenated along the channel dimen
sion and fed in as input to the model of certain embodiments .
Experiments with certain example embodiments have
shown that the early fusion strategy is often more effective
than the late fusion approach . Examples of late fusion can be

found in Peng , Xiaojiang , and Cordelia Schmid , “ Multi
region two - stream R - CNN for action detection ” (ECCV ,
2016) , and Singh , Gurkirt , et al “ Online real - time multiple
spatiotemporal action localisation and prediction ” (CVPR ,
2017) . During inference , a process may start from the initial
anchor tubes and execute T iterations for each of the tubes .
To update the proposal anchor tubes , the regression output of
the class with the highest classification score may be picked .
The output from the last iteration may be taken as the final
output of the process .
[0080] In some embodiments , a stage - wise training
approach may be used . Some example embodiments use a
combination of two loss functions — the cross - entropy loss
for classification and a smooth - L1 - loss (see Girshick et al ,
cited above) for regressing the coefficients . The regression is
class specific , i . e . different regression outputs correspond to
different actions . And à constant , which can be set , for
example , to 0 . 01 , is used to balance these two loss terms as
shown in equation (2) :

L = Lregtalels
[0081] The input to the network are a batch of images , plus
the initial anchor tubes . A technique for choosing the initial
tubes may be as follows . First , in contrast to conventional
techniques (e . g . , Kalogeiton et al . , “ Action q Detector for
Spatio - Temporal Action Localization ” (ICCV 2017)) ,
example embodiments do not need to use a slide - window
based approach , which generates thousands of initial tubes
spanning all over the frame spatially , since the iterative
predictor of example embodiments is able to tackle much
larger offsets between the initial detection box and the
ground - truth . On the other hand , even though there is
nothing that technically prevents example embodiments
from using only one initial detection box which covers the
entire frame , this is not optimal since a single detection box
cannot capture multiple persons performing actions in the
video . Thus example embodiments initialize with a few
anchor tubes (e . g . , in one specific case 11) which enable the
embodiments to capture multiple actions . An example of the
(e . g . , 11) initial tubes are shown in FIG . 2A .
[0082] To train the iterative prediction network according
to some example embodiments , a stage - wise training
scheme which adapts both the localizer and classifier to
different input distribution over iterations can be used . For
example , to train for t - th iteration , a localizer for t - 1
iterations can be first executed to get a predicted location
bit - 1 } , from which the localizer can be trained to predict the
offset between bit - 1 } and the ground truth , as well as the
classifier to predict the action class corresponding to bit - 1 } .
More specifically , if the overlap between bla - 1 } and the
ground - truth (with ground - truth class y) is larger than o { pos
(which is set to 0 . 5 , for example , in some example embodi
ments) , the class label of b ? t - 1 } is assigned as y , otherwise
it is considered as belonging to the background class .
[0083] An interesting question that arises during training
is how to sample initial anchor tubes . The most straightfor
ward way would be to directly compute the average overlap
(across frames) between all 11 candidate action tubes and
the ground - truth tube , and then picking the anchor tube with
the highest average overlap . However , this approach has the
problem of biasing towards positive samples — since
sampled tubes are always starting with high overlap , it is
mostly likely that it would overlap even more after iterative
regression process , which means there would barely be any

US 2019 / 0102908 A1 Apr . 4 , 2019

bounding boxes with background class . To solve this , certain
example embodiments sample from 11 initial anchor tubes ,
with sampling probability pi , i = 1 , 2 , . . . , 11 , in proportion to
the exponent overlap to the ground truth . More precisely , the
following equation (3) may characterize pi :

uses 11 anchor tubes , while the other contemporary methods
usually require over thousands anchors as input (e . g . , more
than 12000 anchors in the techniques described in Peng ,
Xiaojiang , and Cordelia Schmid “ Multi - region two - stream
R - CNN for action detection . ” (ECCV , 2016) ; more than
8000 in the approaches described in Singh , Gurkirt , et al .
" Online real - time multiple spatiotemporal action localisa
tion and prediction . ” (CVPR . 2017) and Kalogeiton , Vicky ,
et al . " Action tubelet detector for spatio - temporal action
localization . ” (ICCV . 2017)) .

eyo ;

P : = 5 exoi

Example GPU - Based System for Action Detection
[0084] where O , is the average overlap between the i - th
initial tube and the ground - truth . y here is a constant param
eter which determines how " spread ” the probability distri
bution should be the larger y is , the higher the probability
that a “ good ” initial tube is sampled with high overlap .
Across certain example embodiments , y may be set to 10 to
balance samples with foreground and background classes .
[0085] An important non - limiting characteristic of a
model according to certain example embodiments is that
parameters are shared across iterations , which implies that
the model is able to refine arbitrary initializations / predic
tions . To ensure this , one important training strategy is to
mix up outputs from varying number of executions . For
example , to train a model in the third iteration , outputs from
executing the trained model for 0 , 1 , 2 times may be mixed
up , and fed as the input to training , so that the does not forget
how to do regression in early iterations . In certain example
embodiments , the current iteration the loss for training
current iteration is upweighted . Specifically , in certain
example embodiments , the weight for current iteration is set
equal to the sum of weights for all previous iterations .
[0086] During testing according to certain example
embodiments , the proposed network or action tube detector
was slid along the time axis . For a particular action tube , for
each of its 11 initial tubes , the model is executed for T
iterations the number of iterations the model has been
trained for) and the output is taken from the last iteration as
the output .

10089] FIG . 2E illustrates an example system 260 showing
a CPU (s) , GPU (s) and associated memory . The CPU (s) 262
and GPU (s) 264 execute instructions stored in the memory
(ies) 268 and 270 to perform the functions described above .
For example , system 260 may be configured to perform
processes 100 and 120 described above in relation to FIGS .
1A and 1B . The CPU (s) and / or another specialized processor
262 , or one or more GPU (s) may be configured to operate as
a deep learning accelerator to perform the training and
inferencing described above in relation to processes 100 or
120 , and / or neural networks architectures shown in FIGS .
1C and 1D . In an example embodiment , system 260 may
accept an initial set of anchors or proposed anchor tubes and
a plurality of short video clips each of 6 frames as input 272
and perform processing to eventually generate and output
274 a set of regressed / refined action tubes corresponding to
detected actions and a set of action classification labels .
[0090] The outputs 274 of system 260 may be provided to
an application such as , but not limited to , surveillance ,
computer vision , machine learning / deep learning , intelligent
video analytics , vehicle driver assistance systems , autono
mous driving systems , and the like . Such applications may
themselves be executing on the system 260 or another
processor / system to which system 260 is connected .
[0091] According to some embodiments , the GPU 264
and / or a specialized processor used in system 260 may be in
accordance with the parallel processing unit described below
in relation to FIG . 3 .

Example Parallel Processing Unit
Experimental Results

[0087] Certain example embodiments were evaluated on
the UCF - 101 - 24 dataset , which is a subset of UCF - 101
dataset that has 2284 videos for training and 910 for testing .
All videos were already annotated with the action class label
as well as the location of the person performing the action .
There are in total 24 action classes (e . g . , like “ Basketball
Dunk ” , “ HorseRiding ” and “ Surfing ” , etc .) , and their cor
responding bounding box annotations . The metric used to
evaluate the certain example embodiments is frame level
mean average precision (frame - mAP) , which is a commonly
used metric in object detection and video action detection .
[0088] Without much hyper - parameter tuning , the model
(e . g . , in three iterations) according to the example embodi
ment achieved 66 . 7 % mAP with only RGB input on the test
set of UCF101 - 24 dataset . The result outperforms the state
of - the - art method of Peng , Xiaojiang , and Cordelia Schmid
“ Multi - region two - stream R - CNN for action detection . "
(ECCV , 2016) by over 3 % . Using both RGB and flow input ,
the model according to embodiments achieves 73 . 2 % mAP ,
which is 3 . 6 % higher than that in Peng et al . The experiment
results verify the effectiveness of the approach in embodi -
ments . Notably , the model according to embodiments only

[0092] FIG . 3 illustrates a parallel processing unit (PPU)
300 , in accordance with an embodiment . In an embodiment ,
the PPU 300 is a multi - threaded processor that is imple
mented on one or more integrated circuit devices . The PPU
300 is a latency hiding architecture designed to process
many threads in parallel . A thread (i . e . , a thread of execu
tion) is an instantiation of a set of instructions configured to
be executed by the PPU 300 . In an embodiment , the PPU
300 is a graphics processing unit (GPU) configured to
implement a graphics rendering pipeline for processing
three - dimensional (3D) graphics data in order to generate
two - dimensional (2D) image data for display on a display
device such as a liquid crystal display (LCD) device . In
other embodiments , the PPU 300 may be utilized for per
forming general - purpose computations . While one exem
plary parallel processor is provided herein for illustrative
purposes , it should be strongly noted that such processor is
set forth for illustrative purposes only , and that any proces
sor may be employed to supplement and / or substitute for the
same .

US 2019 / 0102908 A1 Apr . 4 , 2019

[0093] One or more PPUs 300 may be configured to
accelerate thousands of High Performance Computing
(HPC) , data center , and machine learning applications . The
PPU 300 may be configured to accelerate numerous deep
learning systems and applications including autonomous
vehicle platforms , deep learning , high - accuracy speech ,
image , and text recognition systems , intelligent video ana
lytics , molecular simulations , drug discovery , disease diag
nosis , weather forecasting , big data analytics , astronomy ,
molecular dynamics simulation , financial modeling , robot
ics , factory automation , real - time language translation ,
online search optimizations , and personalized user recom
mendations , and the like .
[0094] As shown in FIG . 3 , the PPU 300 includes an
Input / Output (1 / 0) unit 305 , a front end unit 315 , a scheduler
unit 320 , a work distribution unit 325 , a hub 330 , a crossbar
(Xbar) 370 , one or more general processing clusters (GPCs)
350 , and one or more partition units 380 . The PPU 300 may
be connected to a host processor or other PPUs 300 via one
or more high - speed NVLink 310 interconnect . The PPU 300
may be connected to a host processor or other peripheral
devices via an interconnect 302 . The PPU 300 may also be
connected to a local memory comprising a number of
memory devices 304 . In an embodiment , the local memory
may comprise a number of dynamic random access memory
(DRAM) devices . The DRAM devices may be configured as
a high - bandwidth memory (HBM) subsystem , with multiple
DRAM dies stacked within each device .
[0095] The NVLink 310 interconnect enables systems to
scale and include one or more PPUS 300 combined with one
or more CPUs , supports cache coherence between the PPUS
300 and CPUs , and CPU mastering . Data and / or commands
may be transmitted by the NVLink 310 through the hub 330
to / from other units of the PPU 300 such as one or more copy
engines , a video encoder , a video decoder , a power man
agement unit , etc . (not explicitly shown) . The NVLink 310
is described in more detail in conjunction with FIG . 5B .
0096) . The 1 / 0 unit 305 is configured to transmit and

receive communications (i . e . , commands , data , etc .) from a
host processor (not shown) over the interconnect 302 . The
I / O unit 305 may communicate with the host processor
directly via the interconnect 302 or through one or more
intermediate devices such as a memory bridge . In an
embodiment , the I / O unit 305 may communicate with one or
more other processors , such as one or more of the PPUS 300
via the interconnect 302 . In an embodiment , the I / O unit 305
implements a Peripheral Component Interconnect Express
(PCIe) interface for communications over a PCIe bus and
the interconnect 302 is a PCIe bus . In alternative embodi
ments , the I / O unit 305 may implement other types of
well - known interfaces for communicating with external
devices .

[0097] The I / O unit 305 decodes packets received via the
interconnect 302 . In an embodiment , the packets represent
commands configured to cause the PPU 300 to perform
various operations . The I / O unit 305 transmits the decoded
commands to various other units of the PPU 300 as the
commands may specify . For example , some commands may
be transmitted to the front end unit 315 . Other commands
may be transmitted to the hub 330 or other units of the PPU
300 such as one or more copy engines , a video encoder , a
video decoder , a power management unit , etc . (not explicitly

shown) . In other words , the 1 / 0 unit 305 is configured to
route communications between and among the various logi
cal units of the PPU 300 .
[0098] In an embodiment , a program executed by the host
processor encodes a command stream in a buffer that pro
vides workloads to the PPU 300 for processing . A workload
may comprise several instructions and data to be processed
by those instructions . The buffer is a region in a memory that
is accessible (i . e . , read / write) by both the host processor and
the PPU 300 . For example , the 1 / 0 unit 305 may be
configured to access the buffer in a system memory con
nected to the interconnect 302 via memory requests trans
mitted over the interconnect 302 . In an embodiment , the host
processor writes the command stream to the buffer and then
transmits a pointer to the start of the command stream to the
PPU 300 . The front end unit 315 receives pointers to one or
more command streams . The front end unit 315 manages the
one or more streams , reading commands from the streams
and forwarding commands to the various units of the PPU
300 .
100991 . The front end unit 315 is coupled to a scheduler
unit 320 that configures the various GPCs 350 to process
tasks defined by the one or more streams . The scheduler unit
320 is configured to track state information related to the
various tasks managed by the scheduler unit 320 . The state
may indicate which GPC 350 a task is assigned to , whether
the task is active or inactive , a priority level associated with
the task , and so forth . The scheduler unit 320 manages the
execution of a plurality of tasks on the one or more GPCs
350 .
[0100] The scheduler unit 320 is coupled to a work
distribution unit 325 that is configured to dispatch tasks for
execution on the GPCs 350 . The work distribution unit 325
may track a number of scheduled tasks received from the
scheduler unit 320 . In an embodiment , the work distribution
unit 325 manages a pending task pool and an active task pool
for each of the GPCs 350 . The pending task pool may
comprise a number of slots (e . g . , 32 slots) that contain tasks
assigned to be processed by a particular GPC 350 . The active
task pool may comprise a number of slots (e . g . , 4 slots) for
tasks that are actively being processed by the GPCs 350 . As
a GPC 350 finishes the execution of a task , that task is
evicted from the active task pool for the GPC 350 and one
of the other tasks from the pending task pool is selected and
scheduled for execution on the GPC 350 . If an active task
has been idle on the GPC 350 , such as while waiting for a
data dependency to be resolved , then the active task may be
evicted from the GPC 350 and returned to the pending task
pool while another task in the pending task pool is selected
and scheduled for execution on the GPC 350 .
(0101] The work distribution unit 325 communicates with
the one or more GPCs 350 via XBar 370 . The XBar 370 is
an interconnect network that couples many of the units of the
PPU 300 to other units of the PPU 300 . For example , the
XBar 370 may be configured to couple the work distribution
unit 325 to a particular GPC 350 . Although not shown
explicitly , one or more other units of the PPU 300 may also
be connected to the XBar 370 via the hub 330 .
10102] The tasks are managed by the scheduler unit 320
and dispatched to a GPC 350 by the work distribution unit
325 . The GPC 350 is configured to process the task and
generate results . The results may be consumed by other tasks
within the GPC 350 , routed to a different GPC 350 via the
XBar 370 , or stored in the memory 304 . The results can be

US 2019 / 0102908 A1 Apr . 4 , 2019

written to the memory 304 via the partition units 380 , which
implement a memory interface for reading and writing data
to / from the memory 304 . The results can be transmitted to
another PPU 304 or CPU via the NVLink 310 . In an
embodiment , the PPU 300 includes a number U of partition
units 380 that is equal to the number of separate and distinct
memory devices 304 coupled to the PPU 300 . A partition
unit 380 will be described in more detail below in conjunc
tion with FIG . 4B .
[0103] In an embodiment , a host processor executes a
driver kernel that implements an application programming
interface (API) that enables one or more applications execut
ing on the host processor to schedule operations for execu
tion on the PPU 300 . In an embodiment , multiple compute
applications are simultaneously executed by the PPU 300
and the PPU 300 provides isolation , quality of service
(QoS) , and independent address spaces for the multiple
compute applications . An application may generate instruc
tions (i . e . , API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 300 . The driver
kernel outputs tasks to one or more streams being processed
by the PPU 300 . Each task may comprise one or more
groups of related threads , referred to herein as a warp . In an
embodiment , a warp comprises 32 related threads that may
be executed in parallel . Cooperating threads may refer to a
plurality of threads including instructions to perform the task
and that may exchange data through shared memory .
Threads and cooperating threads are described in more detail
in conjunction with FIG . 5A .
[0104] FIG . 4A illustrates a GPC 350 of the PPU 300 of
FIG . 3 , in accordance with an embodiment . As shown in
FIG . 4A , each GPC 350 includes a number of hardware units
for processing tasks . In an embodiment , each GPC 350
includes a pipeline manager 410 , a pre - raster operations unit
(PROP) 415 , a raster engine 425 , a work distribution cross
bar (WDX) 480 , a memory management unit (MMU) 490 ,
and one or more Data Processing Clusters (DPCs) 420 . It
will be appreciated that the GPC 350 of FIG . 4A may include
other hardware units in lieu of or in addition to the units
shown in FIG . 4A .
[0105] In an embodiment , the operation of the GPC 350 is
controlled by the pipeline manager 410 . The pipeline man
ager 410 manages the configuration of the one or more DPCs
420 for processing tasks allocated to the GPC 350 . In an
embodiment , the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement at least
a portion of a graphics rendering pipeline . For example , a
DPC 420 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 440 . The pipeline manager 410 may also be configured
to route packets received from the work distribution unit 325
to the appropriate logical units within the GPC 350 . For
example , some packets may be routed to fixed function
hardware units in the PROP 415 and / or raster engine 425
while other packets may be routed to the DPCs 420 for
processing by the primitive engine 435 or the SM 440 . In an
embodiment , the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement a neural
network model and / or a computing pipeline .
[0106] The PROP unit 415 is configured to route data
generated by the raster engine 425 and the DPCs 420 to a
Raster Operations (ROP) unit , described in more detail in
conjunction with FIG . 4B . The PROP unit 415 may also be

configured to perform optimizations for color blending ,
organize pixel data , perform address translations , and the
like .
[0107] The raster engine 425 includes a number of fixed
function hardware units configured to perform various raster
operations . In an embodiment , the raster engine 425 includes
a setup engine , a coarse raster engine , a culling engine , a
clipping engine , a fine raster engine , and a tile coalescing
engine . The setup engine receives transformed vertices and
generates plane equations associated with the geometric
primitive defined by the vertices . The plane equations are
transmitted to the coarse raster engine to generate coverage
information (e . g . , an x , y coverage mask for a tile) for the
primitive . The output of the coarse raster engine is trans
mitted to the culling engine where fragments associated with
the primitive that fail a z - test are culled , and non - culled
fragments are transmitted to a clipping engine where frag
ments lying outside a viewing frustum are clipped . Those
fragments that survive clipping and culling may be passed to
the fine raster engine to generate attributes for the pixel
fragments based on the plane equations generated by the
setup engine . The output of the raster engine 425 comprises
fragments to be processed , for example , by a fragment
shader implemented within a DPC 420 .
[0108] Each DPC 420 included in the GPC 350 includes
an M - Pipe Controller (MPC) 430 , a primitive engine 435 ,
and one or more SMs 440 . The MPC 430 controls the
operation of the DPC 420 , routing packets received from the
pipeline manager 410 to the appropriate units in the DPC
420 . For example , packets associated with a vertex may be
routed to the primitive engine 435 , which is configured to
fetch vertex attributes associated with the vertex from the
memory 304 . In contrast , packets associated with a shader
program may be transmitted to the SM 440 .
[0109] The SM 440 comprises a programmable streaming
processor that is configured to process tasks represented by
a number of threads . Each SM 440 is multi - threaded and
configured to execute a plurality of threads (e . g . , 32 threads)
from a particular group of threads concurrently . In an
embodiment , the SM 440 implements a SIMD (Single
Instruction , Multiple - Data) architecture where each thread
in a group of threads (i . e . , a warp) is configured to process
a different set of data based on the same set of instructions .
All threads in the group of threads execute the same instruc
tions . In another embodiment , the SM 440 implements a
SIMT (Single - Instruction , Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions , but where individual threads in the group of
threads are allowed to diverge during execution . In an
embodiment , a program counter , call stack , and execution
state is maintained for each warp , enabling concurrency
between warps and serial execution within warps when
threads within the warp diverge . In another embodiment , a
program counter , call stack , and execution state is main
tained for each individual thread , enabling equal concur
rency between all threads , within and between warps . When
execution state is maintained for each individual thread ,
threads executing the same instructions may be converged
and executed in parallel for maximum efficiency . The SM
440 will be described in more detail below in conjunction
with FIG . 5A .
[0110] The MMU 490 provides an interface between the
GPC 350 and the partition unit 380 . The MMU 490 may

US 2019 / 0102908 A1 Apr . 4 , 2019

provide translation of virtual addresses into physical
addresses , memory protection , and arbitration of memory
requests . In an embodiment , the MMU 490 provides one or
more translation lookaside buffers (TLBs) for performing
translation of virtual addresses into physical addresses in the
memory 304 .
[0111] FIG . 4B illustrates a memory partition unit 380 of
the PPU 300 of FIG . 3 , in accordance with an embodiment .
As shown in FIG . 4B , the memory partition unit 380
includes a Raster Operations (ROP) unit 450 , a level two
(L2) cache 460 , and a memory interface 470 . The memory
interface 470 is coupled to the memory 304 . Memory
interface 470 may implement 32 , 64 , 128 , 1024 - bit data
buses , or the like , for high - speed data transfer . In an embodi
ment , the PPU 300 incorporates U memory interfaces 470 ,
one memory interface 470 per pair of partition units 380 ,
where each pair of partition units 380 is connected to a
corresponding memory device 304 . For example , PPU 300
may be connected to up to Y memory devices 304 , such as
high bandwidth memory stacks or graphics double - data - rate ,
version 5 , synchronous dynamic random access memory , or
other types of persistent storage .
[0112] In an embodiment , the memory interface 470
implements an HBM2 memory interface and Y equals half
U . In an embodiment , the HBM2 memory stacks are located
on the same physical package as the PPU 300 , providing
substantial power and area savings compared with conven
tional GDDR5 SDRAM systems . In an embodiment , each
HBM2 stack includes four memory dies and Y equals 4 , with
HBM2 stack including two 128 - bit channels per die for a
total of 8 channels and a data bus width of 1024 bits .
[0113] In an embodiment , the memory 304 supports
Single - Error Correcting Double - Error Detecting (SECDED)
Error Correction Code (ECC) to protect data . ECC provides
higher reliability for compute applications that are sensitive
to data corruption . Reliability is especially important in
large - scale cluster computing environments where PPUS
300 process very large datasets and / or run applications for
extended periods .
[0114] In an embodiment , the PPU 300 implements a
multi - level memory hierarchy . In an embodiment , the
memory partition unit 380 supports a unified memory to
provide a single unified virtual address space for CPU and
PPU 300 memory , enabling data sharing between virtual
memory systems . In an embodiment the frequency of
accesses by a PPU 300 to memory located on other proces
sors is traced to ensure that memory pages are moved to the
physical memory of the PPU 300 that is accessing the pages
more frequently . In an embodiment , the NVLink 310 sup
ports address translation services allowing the PPU 300 to
directly access a CPU ' s page tables and providing full
access to CPU memory by the PPU 300 .
[0115] In an embodiment , copy engines transfer data
between multiple PPUS 300 or between PPUS 300 and
CPUs . The copy engines can generate page faults for
addresses that are not mapped into the page tables . The
memory partition unit 380 can then service the page faults ,
mapping the addresses into the page table , after which the
copy engine can perform the transfer . In a conventional
system , memory is pinned (i . e . , non - pageable) for multiple
copy engine operations between multiple processors , sub -
stantially reducing the available memory . With hardware

page faulting , addresses can be passed to the copy engines
without worrying if the memory pages are resident , and the
copy process is transparent .
[0116] Data from the memory 304 or other system
memory may be fetched by the memory partition unit 380
and stored in the L2 cache 460 , which is located on - chip and
is shared between the various GPCs 350 . As shown , each
memory partition unit 380 includes a portion of the L2 cache
460 associated with a corresponding memory device 304 .
Lower level caches may then be implemented in various
units within the GPCs 350 . For example , each of the SMS
440 may implement a level one (L1) cache . The L1 cache is
private memory that is dedicated to a particular SM 440 .
Data from the L2 cache 460 may be fetched and stored in
each of the L1 caches for processing in the functional units
of the SMs 440 . The L2 cache 460 is coupled to the memory
interface 470 and the XBar 370 .
[0117] The ROP unit 450 performs graphics raster opera
tions related to pixel color , such as color compression , pixel
blending , and the like . The ROP unit 450 also implements
depth testing in conjunction with the raster engine 425 ,
receiving a depth for a sample location associated with a
pixel fragment from the culling engine of the raster engine
425 . The depth is tested against a corresponding depth in a
depth buffer for a sample location associated with the
fragment . If the fragment passes the depth test for the sample
location , then the ROP unit 450 updates the depth buffer and
transmits a result of the depth test to the raster engine 425 .
It will be appreciated that the number of partition units 380
may be different than the number of GPCs 350 and , there
fore , each ROP unit 450 may be coupled to each of the GPCs
350 . The ROP unit 450 tracks packets received from the
different GPCs 350 and determines which GPC 350 that a
result generated by the ROP unit 450 is routed to through the
Xbar 370 . Although the ROP unit 450 is included within the
memory partition unit 380 in FIG . 4B , in other embodiment ,
the ROP unit 450 may be outside of the memory partition
unit 380 . For example , the ROP unit 450 may reside in the
GPC 350 or another unit .
[0118] FIG . 5A illustrates the streaming multiprocessor
440 of FIG . 4A , in accordance with an embodiment . As
shown in FIG . 5A , the SM 440 includes an instruction cache
505 , one or more scheduler units 510 , a register file 520 , one
or more processing cores 550 , one or more special function
units (SFUS) 552 , one or more load / store units (LSUS) 554 ,
an interconnect network 580 , a shared memory / L1 cache
570 .
[0119] As described above , the work distribution unit 325
dispatches tasks for execution on the GPCs 350 of the PPU
300 . The tasks are allocated to a particular DPC 420 within
a GPC 350 and , if the task is associated with a shader
program , the task may be allocated to an SM 440 . The
scheduler unit 510 receives the tasks from the work distri
bution unit 325 and manages instruction scheduling for one
or more thread blocks assigned to the SM 440 . The scheduler
unit 510 schedules thread blocks for execution as warps of
parallel threads , where each thread block is allocated at least
one warp . In an embodiment , each warp executes 32 threads .
The scheduler unit 510 may manage a plurality of different
thread blocks , allocating the warps to the different thread
blocks and then dispatching instructions from the plurality
of different cooperative groups to the various functional
units (i . e . , cores 550 , SFUS 552 , and LSUS 554) during each
clock cycle .

US 2019 / 0102908 A1 Apr . 4 , 2019

[0120] Cooperative Groups is a programming model for
organizing groups of communicating threads that allows
developers to express the granularity at which threads are
communicating , enabling the expression of richer , more
efficient parallel decompositions . Cooperative launch APIs
support synchronization amongst thread blocks for the
execution of parallel algorithms . Conventional program
ming models provide a single , simple construct for synchro
nizing cooperating threads : a barrier across all threads of a
thread block (i . e . , the syncthreads function) . However ,
programmers would often like to define groups of threads at
smaller than thread block granularities and synchronize
within the defined groups to enable greater performance ,
design flexibility , and software reuse in the form of collec
tive group - wide function interfaces .
[0121] Cooperative Groups enables programmers to
define groups of threads explicitly at sub - block (i . e . , as small
as a single thread) and multi - block granularities , and to
perform collective operations such as synchronization on the
threads in a cooperative group . The programming model
supports clean composition across software boundaries , so
that libraries and utility functions can synchronize safely
within their local context without having to make assump
tions about convergence . Cooperative Groups primitives
enable new patterns of cooperative parallelism , including
producer - consumer parallelism , opportunistic parallelism ,
and global synchronization across an entire grid of thread
blocks .
[0122] A dispatch unit 515 is configured to transmit
instructions to one or more of the functional units . In the
embodiment , the scheduler unit 510 includes two dispatch
units 515 that enable two different instructions from the
same warp to be dispatched during each clock cycle . In
alternative embodiments , each scheduler unit 510 may
include a single dispatch unit 515 or additional dispatch
units 515 .
[0123] Each SM 440 includes a register file 520 that
provides a set of registers for the functional units of the SM
440 . In an embodiment , the register file 520 is divided
between each of the functional units such that each func
tional unit is allocated a dedicated portion of the register file
520 . In another embodiment , the register file 520 is divided
between the different warps being executed by the SM 440 .
The register file 520 provides temporary storage for oper
ands connected to the data paths of the functional units .
[0124] Each SM 440 comprises L processing cores 550 . In
an embodiment , the SM 440 includes a large number (e . g . ,
128 , etc .) of distinct processing cores 550 . Each core 550
may include a fully - pipelined , single - precision , double - pre
cision , and / or mixed precision processing unit that includes
a floating point arithmetic logic unit and an integer arith
metic logic unit . In an embodiment , the floating point
arithmetic logic units implement the IEEE 754 - 2008 stan
dard for floating point arithmetic . In an embodiment , the
cores 550 include 64 single - precision (32 - bit) floating point
cores , 64 integer cores , 32 double - precision (64 - bit) floating
point cores , and 8 tensor cores .
10125) Tensor cores are configured to perform matrix
operations , and , in an embodiment , one or more tensor cores
are included in the cores 550 . In particular , the tensor cores
are configured to perform deep learning matrix arithmetic ,
such as convolution operations for neural network training
and inferencing . In an embodiment , each tensor core oper

ates on a 4x4 matrix and performs a matrix multiply and
accumulate operation D = AXB + C , where A , B , C , and D are
4x4 matrices .
[0126] In an embodiment , the matrix multiply inputs A
and B are 16 - bit floating point matrices , while the accumu
lation matrices C and D may be 16 - bit floating point or
32 - bit floating point matrices . Tensor Cores operate on
16 - bit floating point input data with 32 - bit floating point
accumulation . The 16 - bit floating point multiply requires 64
operations and results in a full precision product that is then
accumulated using 32 - bit floating point addition with the
other intermediate products for a 4x4x4 matrix multiply . In
practice , Tensor Cores are used to perform much larger
two - dimensional or higher dimensional matrix operations ,
built up from these smaller elements . An API , such as
CUDA 9 C + + API , exposes specialized matrix load , matrix
multiply and accumulate , and matrix store operations to
efficiently use Tensor Cores from a CUDA - C + + program . At
the CUDA level , the warp - level interface assumes 16x16
size matrices spanning all 32 threads of the warp .
[0127] Each SM 440 also comprises M SFUS 552 that
perform special functions (e . g . , attribute evaluation , recip
rocal square root , and the like) . In an embodiment , the SFUS
552 may include a tree traversal unit configured to traverse
a hierarchical tree data structure . In an embodiment , the
SFUs 552 may include texture unit configured to perform
texture map filtering operations . In an embodiment , the
texture units are configured to load texture maps (e . g . , a 2D
array of texels) from the memory 304 and sample the texture
maps to produce sampled texture values for use in shader
programs executed by the SM 440 . In an embodiment , the
texture maps are stored in the shared memory / L1 cache 470 .
The texture units implement texture operations such as
filtering operations using mip - maps (i . e . , texture maps of
varying levels of detail) . In an embodiment , each SM 340
includes two texture units .
(0128] Each SM 440 also comprises N LSUS 554 that
implement load and store operations between the shared
memory / L1 cache 570 and the register file 520 . Each SM
440 includes an interconnect network 580 that connects each
of the functional units to the register file 520 and the LSU
554 to the register file 520 , shared memory / L1 cache 570 . In
an embodiment , the interconnect network 580 is a crossbar
that can be configured to connect any of the functional units
to any of the registers in the register file 520 and connect the
LSUs 554 to the register file and memory locations in shared
memory / L1 cache 570 .
10129] . The shared memory / L1 cache 570 is an array of
on - chip memory that allows for data storage and commu
nication between the SM 440 and the primitive engine 435
and between threads in the SM 440 . In an embodiment , the
shared memory / L1 cache 570 comprises 128 KB of storage
capacity and is in the path from the SM 440 to the partition
unit 380 . The shared memory / L1 cache 570 can be used to
cache reads and writes . One or more of the shared memory /
L1 cache 570 , L2 cache 460 , and memory 304 are backing
stores .
[0130] Combining data cache and shared memory func
tionality into a single memory block provides the best
overall performance for both types of memory accesses . The
capacity is usable as a cache by programs that do not use
shared memory . For example , if shared memory is config
ured to use half of the capacity , texture and load / store
operations can use the remaining capacity . Integration

US 2019 / 0102908 A1 Apr . 4 , 2019

within the shared memory / L1 cache 570 enables the shared
memory / L1 cache 570 to function as a high - throughput
conduit for streaming data while simultaneously providing
high - bandwidth and low - latency access to frequently reused
data .
[0131] When configured for general purpose parallel com
putation , a simpler configuration can be used compared with
graphics processing . Specifically , the fixed function graphics
processing units shown in FIG . 3 , are bypassed , creating a
much simpler programming model . In the general purpose
parallel computation configuration , the work distribution
unit 325 assigns and distributes blocks of threads directly to
the DPCs 420 . The threads in a block execute the same
program , using a unique thread ID in the calculation to
ensure each thread generates unique results , using the SM
440 to execute the program and perform calculations , shared
memory / L1 cache 570 to communicate between threads , and
the LSU 554 to read and write global memory through the
shared memory / L1 cache 570 and the memory partition unit
380 . When configured for general purpose parallel compu
tation , the SM 440 can also write commands that the
scheduler unit 320 can use to launch new work on the DPCs
420 .
[0132] The PPU 300 may be included in a desktop com
puter , a laptop computer , a tablet computer , servers , super
computers , a smart - phone (e . g . , a wireless , hand - held
device) , personal digital assistant (PDA) , a digital camera , a
vehicle , a head mounted display , a hand - held electronic
device , and the like . In an embodiment , the PPU 300 is
embodied on a single semiconductor substrate . In another
embodiment , the PPU 300 is included in a system - on - a - chip
(SOC) along with one or more other devices such as addi
tional PPUS 300 , the memory 304 , a reduced instruction set
computer (RISC) CPU , a memory management unit
(MMU) , a digital - to - analog converter (DAC) , and the like .
[0133] In an embodiment , the PPU 300 may be included
on a graphics card that includes one or more memory
devices 304 . The graphics card may be configured to inter
face with a PCIe slot on a motherboard of a desktop
computer . In yet another embodiment , the PPU 300 may be
an integrated graphics processing unit (GPU) or parallel
processor included in the chipset of the motherboard .

connections are illustrated in FIG . 5B , the number of con
nections to each PPU 300 and the CPU 530 may vary . The
switch 555 interfaces between the interconnect 302 and the
CPU 530 . The PPUS 300 , memories 304 , and NVLinks 310
may be situated on a single semiconductor platform to form
a parallel processing module 525 . In an embodiment , the
switch 555 supports two or more protocols to interface
between various different connections and / or links .
[0136] In another embodiment (not shown) , the NVLink
310 provides one or more high - speed communication links
between each of the PPUs 300 and the CPU 530 and the
switch 555 interfaces between the interconnect 302 and each
of the PPUs 300 . The PPUS 300 , memories 304 , and
interconnect 302 may be situated on a single semiconductor
platform to form a parallel processing module 525 . In yet
another embodiment (not shown) , the interconnect 302
provides one or more communication links between each of
the PPUS 300 and the CPU 530 and the switch 555 interfaces
between each of the PPUS 300 using the NVLink 310 to
provide one or more high - speed communication links
between the PPUS 300 . In another embodiment (not shown) ,
the NVLink 310 provides one or more high - speed commu
nication links between the PPUS 300 and the CPU 530
through the switch 555 . In yet another embodiment (not
shown) , the interconnect 302 provides one or more commu
nication links between each of the PPUS 300 directly . One
or more of the NVLink 310 high - speed communication links
may be implemented as a physical NVLink interconnect or
either an on - chip or on - die interconnect using the same
protocol as the NVLink 310 .
[0137] In the context of the present description , a single
semiconductor platform may refer to a sole unitary semi
conductor - based integrated circuit fabricated on a die or
chip . It should be noted that the term single semiconductor
platform may also refer to multi - chip modules with
increased connectivity which simulate on - chip operation
and make substantial improvements over utilizing a conven
tional bus implementation . Of course , the various circuits or
devices may also be situated separately or in various com
binations of semiconductor platforms per the desires of the
user . Alternately , the parallel processing module 525 may be
implemented as a circuit board substrate and each of the
PPUS 300 and / or memories 304 may be packaged devices .
In an embodiment , the CPU 530 , switch 555 , and the parallel
processing module 525 are situated on a single semiconduc
tor platform .
[0138] In an embodiment , the signaling rate of each
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300
includes six NVLink 310 interfaces (as shown in FIG . 5B ,
five NVLink 310 interfaces are included for each PPU 300) .
Each NVLink 310 provides a data transfer rate of 25
Gigabytes / second in each direction , with six links providing
300 Gigabytes / second . The NVLinks 310 can be used exclu
sively for PPU - to - PPU communication as shown in FIG . 5B ,
or some combination of PPU - to - PPU and PPU - to - CPU ,
when the CPU 530 also includes one or more NVLink 310
interfaces .
[0139] In an embodiment , the NVLink 310 allows direct
load / store / atomic access from the CPU 530 to each PPU ' s
300 memory 304 . In an embodiment , the NVLink 310
supports coherency operations , allowing data read from the
memories 304 to be stored in the cache hierarchy of the CPU
530 , reducing cache access latency for the CPU 530 . In an
embodiment , the NVLink 310 includes support for Address

Exemplary Computing System
[0134] Systems with multiple GPUs and CPUs are used in
a variety of industries as developers expose and leverage
more parallelism in applications such as artificial intelli
gence computing . High - performance GPU - accelerated sys
tems with tens to many thousands of compute nodes are
deployed in data centers , research facilities , and supercom
puters to solve ever larger problems . As the number of
processing devices within the high - performance systems
increases , the communication and data transfer mechanisms
need to scale to support the increased
[0135] FIG . 5B is a conceptual diagram of a processing
system 500 implemented using the PPU 300 of FIG . 3 , in
accordance with an embodiment . The exemplary system 500
may be configured to implement the methods 100 and 120
shown in FIGS . 1A - 1B and / or the architectures shown in
FIGS . 1C - 1D . The processing system 500 includes a CPU
530 , switch 555 , and multiple PPUS 300 each and respective
memories 304 . The NVLink 310 provides high - speed com
munication links between each of the PPUs 300 . Although
a particular number of NVLink 310 and interconnect 302

US 2019 / 0102908 A1 Apr . 4 , 2019
13

[0147] While various embodiments have been described
above , it should be understood that they have been presented
by way of example only , and not limitation . Thus , the
breadth and scope of a preferred embodiment should not be
limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following claims and their equivalents .

Translation Services (ATS) , allowing the PPU 300 to
directly access page tables within the CPU 530 . One or more
of the NVLinks 310 may also be configured to operate in a
low - power mode .
[0140] FIG . 5C illustrates an exemplary system 565 in
which the various architecture and / or functionality of the
various previous embodiments may be implemented . The
exemplary system 565 may be configured to implement the
methods 100 and 120 shown in FIGS . 1A - 1B and / or the
architectures shown in FIGS . 1C - 1D .
[0141] As shown , a system 565 is provided including at
least one central processing unit 530 that is connected to a
communication bus 575 . The communication bus 575 may
be implemented using any suitable protocol , such as PCI
(Peripheral Component Interconnect) , PCI - Express , AGP
(Accelerated Graphics Port) , HyperTransport , or any other
bus or point - to - point communication protocol (s) . The sys
tem 565 also includes a main memory 540 . Control logic
(software) and data are stored in the main memory 540
which may take the form of random access memory (RAM) .
[0142] The system 565 also includes input devices 560 ,
the parallel processing system 525 , and display devices 545 ,
i . e . a conventional CRT (cathode ray tube) , LCD (liquid
crystal display) , LED (light emitting diode) , plasma display
or the like . User input may be received from the input
devices 560 , e . g . , keyboard , mouse , touchpad , microphone ,
and the like . Each of the foregoing modules and / or devices
may even be situated on a single semiconductor platform to
form the system 565 . Alternately , the various modules may
also be situated separately or in various combinations of
semiconductor platforms per the desires of the user .
[0143] Further , the system 565 may be coupled to a
network (e . g . , a telecommunications network , local area
network (LAN) , wireless network , wide area network
(WAN) such as the Internet , peer - to - peer network , cable
network , or the like) through a network interface 535 for
communication purposes .
[0144] The system 565 may also include a secondary
storage (not shown) . The secondary storage includes , for
example , a hard disk drive and / or a removable storage drive ,
representing a floppy disk drive , a magnetic tape drive , a
compact disk drive , digital versatile disk (DVD) drive ,
recording device , universal serial bus (USB) flash memory .
The removable storage drive reads from and / or writes to a
removable storage unit in a well - known manner .
[0145] Computer programs , or computer control logic
algorithms , may be stored in the main memory 540 and / or
the secondary storage . Such computer programs , when
executed , enable the system 565 to perform various func
tions . The memory 540 , the storage , and / or any other storage
are possible examples of computer - readable media .
10146] The architecture and / or functionality of the various
previous figures may be implemented in the context of a
general computer system , a circuit board system , a game
console system dedicated for entertainment purposes , an
application - specific system , and / or any other desired sys
tem . For example , the system 565 may take the form of a
desktop computer , a laptop computer , a tablet computer ,
servers , supercomputers , a smart - phone (e . g . , a wireless ,
hand - held device) , personal digital assistant (PDA) , a digital
camera , a vehicle , a head mounted display , a hand - held
electronic device , a mobile phone device , a television ,
workstation , game consoles , embedded system , and / or any
other type of logic .

Graphics Processing Pipeline
[0148] In an embodiment , the PPU 300 comprises a graph
ics processing unit (GPU) . The PPU 300 is configured to
receive commands that specify shader programs for process
ing graphics data . Graphics data may be defined as a set of
primitives such as points , lines , triangles , quads , triangle
strips , and the like . Typically , a primitive includes data that
specifies a number of vertices for the primitive (e . g . , in a
model - space coordinate system) as well as attributes asso
ciated with each vertex of the primitive . The PPU 300 can
be configured to process the graphics primitives to generate
a frame buffer (i . e . , pixel data for each of the pixels of the
display) .
10149) An application writes model data for a scene (i . e . ,
a collection of vertices and attributes) to a memory such as
a system memory or memory 304 . The model data defines
each of the objects that may be visible on a display . The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed . The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data . The commands may reference different shader
programs to be implemented on the SMS 440 of the PPU 300
including one or more of a vertex shader , hull shader ,
domain shader , geometry shader , and a pixel shader . For
example , one or more of the SMS 440 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data . In an embodiment , the
different SMS 440 may be configured to execute different
shader programs concurrently . For example , a first subset of
SMs 440 may be configured to execute a vertex shader
program while a second subset of SMS 440 may be config
ured to execute a pixel shader program . The first subset of
SMS 440 processes vertex data to produce processed vertex
data and writes the processed vertex data to the L2 cache 460
and / or the memory 304 . After the processed vertex data is
rasterized (i . e . , transformed from three - dimensional data
into two - dimensional data in screen space) to produce
fragment data , the second subset of SMS 440 executes a
pixel shader to produce processed fragment data , which is
then blended with other processed fragment data and written
to the frame buffer in memory 304 . The vertex shader
program and pixel shader program may execute concur
rently , processing different data from the same scene in a
pipelined fashion until all of the model data for the scene has
been rendered to the frame buffer . Then , the contents of the
frame buffer are transmitted to a display controller for
display on a display device .
[0150] FIG . 6 is a conceptual diagram of a graphics
processing pipeline 600 implemented by the PPU 300 of
FIG . 3 , in accordance with an embodiment . The graphics
processing pipeline 600 is an abstract flow diagram of the
processing steps implemented to generate 2D computer
generated images from 3D geometry data . As is well - known ,
pipeline architectures may perform long latency operations
more efficiently by splitting up the operation into a plurality

US 2019 / 0102908 A1 Apr . 4 , 2019
14 .

a triangle strip may share two vertices) . The primitive
assembly stage 630 transmits geometric primitives (i . e . , a
collection of associated vertices) to the geometry shading
stage 640 .
[0155] The geometry shading stage 640 processes geo
metric primitives by performing a set of operations (i . e . , a
geometry shader or program) on the geometric primitives .
Tessellation operations may generate one or more geometric
primitives from each geometric primitive . In other words ,
the geometry shading stage 640 may subdivide each geo
metric primitive into a finer mesh of two or more geometric
primitives for processing by the rest of the graphics pro
cessing pipeline 600 . The geometry shading stage 640
transmits geometric primitives to the viewport SCC stage
650 .

of stages , where the output of each stage is coupled to the
input of the next successive stage . Thus , the graphics pro
cessing pipeline 600 receives input data 601 that is trans
mitted from one stage to the next stage of the graphics
processing pipeline 600 to generate output data 602 . In an
embodiment , the graphics processing pipeline 600 may
represent a graphics processing pipeline defined by the
OpenGL® API . As an option , the graphics processing pipe
line 600 may be implemented in the context of the func
tionality and architecture of the previous Figures and / or any
subsequent Figure (s) .
[0151] As shown in FIG . 6 , the graphics processing pipe
line 600 comprises a pipeline architecture that includes a
number of stages . The stages include , but are not limited to ,
a data assembly stage 610 , a vertex shading stage 620 , a
primitive assembly stage 630 , a geometry shading stage 640 ,
a viewport scale , cull , and clip (VSCC) stage 650 , a raster
ization stage 660 , a fragment shading stage 670 , and a raster
operations stage 680 . In an embodiment , the input data 601
comprises commands that configure the processing units to
implement the stages of the graphics processing pipeline 600
and geometric primitives (e . g . , points , lines , triangles ,
quads , triangle strips or fans , etc .) to be processed by the
stages . The output data 602 may comprise pixel data (i . e . ,
color data) that is copied into a frame buffer or other type of
surface data structure in a memory .
[0152] The data assembly stage 610 receives the input data
601 that specifies vertex data for high - order surfaces , primi
tives , or the like . The data assembly stage 610 collects the
vertex data in a temporary storage or queue , such as by
receiving a command from the host processor that includes
a pointer to a buffer in memory and reading the vertex data
from the buffer . The vertex data is then transmitted to the
vertex shading stage 620 for processing .
[0153] The vertex shading stage 620 processes vertex data
by performing a set of operations (i . e . , a vertex shader or a
program) once for each of the vertices . Vertices may be , e . g . ,
specified as a 4 - coordinate vector (i . e . , < x , y , z , w >) asso
ciated with one or more vertex attributes (e . g . , color , texture
coordinates , surface normal , etc .) . The vertex shading stage
620 may manipulate individual vertex attributes such as
position , color , texture coordinates , and the like . In other
words , the vertex shading stage 620 performs operations on
the vertex coordinates or other vertex attributes associated
with a vertex . Such operations commonly including lighting
operations (i . e . , modifying color attributes for a vertex) and
transformation operations (i . e . , modifying the coordinate
space for a vertex) . For example , vertices may be specified
using coordinates in an object - coordinate space , which are
transformed by multiplying the coordinates by a matrix that
translates the coordinates from the object - coordinate space
into a world space or a normalized - device - coordinate (NCD)
space . The vertex shading stage 620 generates transformed
vertex data that is transmitted to the primitive assembly
stage 630 .
[0154] The primitive assembly stage 630 collects vertices
output by the vertex shading stage 620 and groups the
vertices into geometric primitives for processing by the
geometry shading stage 640 . For example , the primitive
assembly stage 630 may be configured to group every three
consecutive vertices as a geometric primitive (i . e . , a triangle)
for transmission to the geometry shading stage 640 . In some
embodiments , specific vertices may be reused for consecu -
tive geometric primitives (e . g . , two consecutive triangles in

[0156] In an embodiment , the graphics processing pipeline
600 may operate within a streaming multiprocessor and the
vertex shading stage 620 , the primitive assembly stage 630 ,
the geometry shading stage 640 , the fragment shading stage
670 , and / or hardware / software associated therewith , may
sequentially perform processing operations . Once the
sequential processing operations are complete , in an
embodiment , the viewport SCC stage 650 may utilize the
data . In an embodiment , primitive data processed by one or
more of the stages in the graphics processing pipeline 600
may be written to a cache (e . g . Ll cache , a vertex cache ,
etc .) . In this case , in an embodiment , the viewport SCC stage
650 may access the data in the cache . In an embodiment , the
viewport SCC stage 650 and the rasterization stage 660 are
implemented as fixed function circuitry .
[0157] The viewport SCC stage 650 performs viewport
scaling , culling , and clipping of the geometric primitives .
Each surface being rendered to is associated with an abstract
camera position . The camera position represents a location
of a viewer looking at the scene and defines a viewing
frustum that encloses the objects of the scene . The viewing
frustum may include a viewing plane , a rear plane , and four
clipping planes . Any geometric primitive entirely outside of
the viewing frustum may be culled (i . e . , discarded) because
the geometric primitive will not contribute to the final
rendered scene . Any geometric primitive that is partially
inside the viewing frustum and partially outside the viewing
frustum may be clipped (i . e . , transformed into a new geo
metric primitive that is enclosed within the viewing frustum .
Furthermore , geometric primitives may each be scaled based
on a depth of the viewing frustum . All potentially visible
geometric primitives are then transmitted to the rasterization
stage 660 .
[0158] The rasterization stage 660 converts the 3D geo
metric primitives into 2D fragments (e . g . capable of being
utilized for display , etc .) . The rasterization stage 660 may be
configured to utilize the vertices of the geometric primitives
to setup a set of plane equations from which various attri
butes can be interpolated . The rasterization stage 660 may
also compute a coverage mask for a plurality of pixels that
indicates whether one or more sample locations for the pixel
intercept the geometric primitive . In an embodiment , z - test
ing may also be performed to determine if the geometric
primitive is occluded by other geometric primitives that
have already been rasterized . The rasterization stage 660
generates fragment data (i . e . , interpolated vertex attributes
associated with a particular sample location for each covered
pixel) that are transmitted to the fragment shading stage 670 .

US 2019 / 0102908 A1 Apr . 4 , 2019
15

600 , such as the geometry shading stage 640 and the
fragment shading stage 670 . In addition , some of the stages
of the graphics processing pipeline 600 may be implemented
on fixed unit hardware such as a rasterizer or a data
assembler implemented within the PPU 400 . It will be
appreciated that results from one kernel may be processed
by one or more intervening fixed function hardware units
before being processed by a subsequent kernel on an SM
440 .

[0159] The fragment shading stage 670 processes frag
ment data by performing a set of operations (i . e . , a fragment
shader or a program) on each of the fragments . The fragment
shading stage 670 may generate pixel data (i . e . , color values)
for the fragment such as by performing lighting operations
or sampling texture maps using interpolated texture coordi
nates for the fragment . The fragment shading stage 670
generates pixel data that is transmitted to the raster opera
tions stage 680 .
[0160] The raster operations stage 680 may perform vari
ous operations on the pixel data such as performing alpha
tests , stencil tests , and blending the pixel data with other
pixel data corresponding to other fragments associated with
the pixel . When the raster operations stage 680 has finished
processing the pixel data (i . e . , the output data 602) , the pixel
data may be written to a render target such as a frame buffer ,
a color buffer , or the like .
[0161] It will be appreciated that one or more additional
stages may be included in the graphics processing pipeline
600 in addition to or in lieu of one or more of the stages
described above . Various implementations of the abstract
graphics processing pipeline may implement different
stages . Furthermore , one or more of the stages described
above may be excluded from the graphics processing pipe
line in some embodiments (such as the geometry shading
stage 640) . Other types of graphics processing pipelines are
contemplated as being within the scope of the present
disclosure . Furthermore , any of the stages of the graphics
processing pipeline 600 may be implemented by one or
more dedicated hardware units within a graphics processor
such as PPU 300 . Other stages of the graphics processing
pipeline 600 may be implemented by programmable hard
ware units such as the SM 440 of the PPU 300 .
[0162] The graphics processing pipeline 600 may be
implemented via an application executed by a host proces
sor , such as a CPU . In an embodiment , a device driver may
implement an application programming interface (API) that
defines various functions that can be utilized by an appli
cation in order to generate graphical data for display . The
device driver is a software program that includes a plurality
of instructions that control the operation of the PPU 300 . The
API provides an abstraction for a programmer that lets a
programmer utilize specialized graphics hardware , such as
the PPU 300 , to generate the graphical data without requir
ing the programmer to utilize the specific instruction set for
the PPU 300 . The application may include an API call that
is routed to the device driver for the PPU 300 . The device
driver interprets the API call and performs various opera
tions to respond to the API call . In some instances , the
device driver may perform operations by executing instruc
tions on the CPU . In other instances , the device driver may
perform operations , at least in part , by launching operations
on the PPU 300 utilizing an input / output interface between
the CPU and the PPU 300 . In an embodiment , the device
driver is configured to implement the graphics processing
pipeline 600 utilizing the hardware of the PPU 300 .
[0163] Various programs may be executed within the PPU
300 in order to implement the various stages of the graphics
processing pipeline 600 . For example , the device driver may
launch a kernel on the PPU 300 to perform the vertex
shading stage 620 on one SM 440 (or multiple SMS 440) .
The device driver (or the initial kernel executed by the PPU
400) may also launch other kernels on the PPU 400 to
perform other stages of the graphics processing pipeline

Machine Learning
[0164] Deep neural networks (DNNs) developed on pro
cessors , such as the PPU 300 have been used for diverse use
cases , from self - driving cars to faster drug development ,
from automatic image captioning in online image databases
to smart real - time language translation in video chat appli
cations . Deep learning is a technique that models the neural
learning process of the human brain , continually learning ,
continually getting smarter , and delivering more accurate
results more quickly over time . A child is initially taught by
an adult to correctly identify and classify various shapes ,
eventually being able to identify shapes without any coach
ing Similarly , a deep learning or neural learning system
needs to be trained in object recognition and classification
for it get smarter and more efficient at identifying basic
objects , occluded objects , etc . , while also assigning context
to objects .
[0165] At the simplest level , neurons in the human brain
look at various inputs that are received , importance levels
are assigned to each of these inputs , and output is passed on
to other neurons to act upon . An artificial neuron or percep
tron is the most basic model of a neural network . In one
example , a perceptron may receive one or more inputs that
represent various features of an object that the perceptron is
being trained to recognize and classify , and each of these
features is assigned a certain weight based on the importance
of that feature in defining the shape of an object .
[0166] A deep neural network (DNN) model includes
multiple layers of many connected perceptrons (e . g . , nodes)
that can be trained with enormous amounts of input data to
quickly solve complex problems with high accuracy . In one
example , a first layer of the DLL model breaks down an
input image of an automobile into various sections and looks
for basic patterns such as lines and angles . The second layer
assembles the lines to look for higher level patterns such as
wheels , windshields , and mirrors . The next layer identifies
the type of vehicle , and the final few layers generate a label
for the input image , identifying the model of a specific
automobile brand .
[0167] Once the DNN is trained , the DNN can be
deployed and used to identify and classify objects or patterns
in a process known as inference . Examples of inference (the
process through which a DNN extracts useful information
from a given input) include identifying handwritten numbers
on checks deposited into ATM machines , identifying images
of friends in photos , delivering movie recommendations to
over fifty million users , identifying and classifying different
types of automobiles , pedestrians , and road hazards in
driverless cars , or translating human speech in real - time .
[0168] During training , data flows through the DNN in a
forward propagation phase until a prediction is produced
that indicates a label corresponding to the input . If the neural
network does not correctly label the input , then errors
between the correct label and the predicted label are ana

US 2019 / 0102908 A1 Apr . 4 , 2019

lyzed , and the weights are adjusted for each feature during
a backward propagation phase until the DNN correctly
labels the input and other inputs in a training dataset .
Training complex neural networks requires massive
amounts of parallel computing performance , including float
ing - point multiplications and additions that are supported by
the PPU 300 . Inferencing is less compute - intensive than
training , being a latency - sensitive process where a trained
neural network is applied to new inputs it has not seen before
to classify images , translate speech , and generally infer new
information .
[0169] Neural networks rely heavily on matrix math
operations , and complex multi - layered networks require
tremendous amounts of floating - point performance and
bandwidth for both efficiency and speed . With thousands of
processing cores , optimized for matrix math operations , and
delivering tens to hundreds of TFLOPS of performance , the
PPU 300 is a computing platform capable of delivering
performance required for deep neural network - based artifi
cial intelligence and machine learning applications .

Example Technical Advantages of Some Dynamic
Jitter Tolerant Embodiments

[0170] The iterative network according to example
embodiments is able to improve speed and accuracy of
spatio - temporal action detection , which is an important
component to surveillance , CV (computer vision) , and
ML / DL (machine learning deep learning) applications . The
example non - limiting technology herein can also add action
detection capability as a feature to intelligent video analytics
(IVA) products offering for video and surveillance OEMs
(original equipment manufacturers) . The example non - lim
iting technology has uses for example in intelligent video
analytics (IVA) platforms and products for surveillance ,
advanced driver assistances systems (ADAS) products for
co - pilot and automotive systems , optimized CV / ML / DL
(computer vision , machine learning , deep learning) libraries ,
and many other applications .
[0171] Example non - limiting embodiments can also be
used in : HPC / workstation / desktop GPUs as the processors
of choice for rapidly training and prototyping CV / ML / DL
algorithms ; and Jetson embedded platforms (see https : / /
developer . nvidia . com / embedded / meet - jetson - embedded
platform) with CUDA capable GPUs as the processors of
choice for implementing and inferring of deep learning
systems .
[0172] Many of the examples described above involved
human action detection . However , embodiments are not
limited to human action detection , and may alternatively or
additionally include actions of animals or certain objects .
[0173] Each patent and prior printed publication cited
herein is expressly incorporated by reference as if expressly
set forth .
10174] While the invention has been described in connec
tion with what is presently considered to be the most
practical and preferred embodiments , it is to be understood
that the invention is not to be limited to the disclosed
embodiments , but on the contrary , is intended to cover
various modifications and equivalent arrangements included
within the spirit and scope of the appended claims .

1 . An iterative prediction method for a task of action
detection in video , comprising :

processing an inputted sequence of video frames to gen -
erate an output of both action tubes and respective

action classification labels , wherein each said action
tube comprises a bounding box on respective video
frames in a sequence of video frames ,

wherein the processing comprises iteratively processing ,
based on the inputted sequence of video frames that is
incrementally expanded in successive iterations , large
offsets between the bounding boxes and ground - truth .

2 . The iterative prediction method according to claim 1 ,
wherein the processing further comprises processing the
inputted sequence of video frames in association with action
tubes generated in a previous iteration of said iterative
processing

3 . The iterative prediction method according to claim 2 ,
wherein said action tubes generated in a previous iteration
are generated from a predefined anchor arrangement that is
independent of features in any of said video frames .

4 . The iterative prediction method according to claim 1 ,
wherein the processing further comprises , at each iteration ,
incrementally expanding the inputted sequence of video
frames by adding a first short video clip preceding the
inputted sequence of frames and a second short video clip
succeeding the inputted sequence of frames , each short
video clip having twenty of less video frames .

5 . A method for detecting actions in a video stream ,
comprising :

in an initial iteration , processing a selected video clip
from a plurality of video clips in the video stream and
a set of anchors to generate a set of action tubes and a
set of action classification labels ;

iteratively processing , in one or more subsequent itera
tions , respective other groups of video clips from the
plurality of video clips by using one of the other groups
of video clips to extend a set of video clips processed
in a previous iteration , and , processing the extended set
of video clips and a set of anchors determined based on
a set of action tubes generated in the previous iteration
to generate another set of action tubes and another set
of action classification labels ; and

outputting said another set of action tubes and said
another set of action labels .

6 . The method according to claim 5 , wherein said using
one of the other groups of video clips to extend a set of video
clips processed in a previous iteration comprises using
respective video clips to extend the set of video clips on
either end of the set of video clips . The method according to
claim 6 , wherein the extended set of video clips consists of
a sequence of consecutive frames from the video stream .

8 . The method according to claim 5 , wherein , in the first
iteration and in each of the subsequent iterations , each
anchor in the set of anchors inputted corresponds to a
position of a respective anchor tube from the set of anchor
tubes generated in the immediately preceding iteration .

9 . The method according to claim 8 , wherein the position
of the respective anchor tube is determined in a video frame
latest in time in the set of video clips processed in the
preceding iteration .

10 . The method according to claim 5 , wherein the selected
video clip is a short video clip comprising less than all video
frames of the video stream .

11 . The method according to claim 10 , wherein the
selected video clip includes less than 10 video frames .

12 . The method according to claim 5 , wherein the each
video clip in the plurality of video clips consist of a same
number of video frames .

US 2019 / 0102908 A1 Apr . 4 , 2019
17

13 . The method according to claim 5 , further comprising
determining the set of anchors used in the first iteration from
configuration information .

14 . The method according to claim 13 , wherein the set of
anchors used in the first iteration is independent of features
of the selected video clip .

15 . The method according to claim 14 , wherein the set of
anchors used in the first iteration overlays an entire frame .

16 . The method according to claim 15 , wherein one of the
set of anchors used in the first iteration overlays an entire
frame .

17 . An iterative prediction system configured to perform
a task of action detection in video , comprising :

a video processor configured to process an inputted
sequence of video frames to generate an output of both
action tubes and respective action classification labels ,
wherein each said action tube comprises a bounding
box on respective video frames in a sequence of video
frames ,

wherein the video processor comprises an iterative pre
dictor that processes , based on the inputted sequence of
video frames that is incrementally expanded in succes
sive iterations , large offsets between the bounding
boxes and ground - truth .

18 . A system of one or more interconnected processors
comprising :

a backbone convolutional processing network configured
to produce a spatial feature volume for each video
frame ;

a region of interest pooling layer processing network that
processes the spatial feature volumes for multiple video

frames together with initial anchor tubes to produce
local features corresponding to the initial anchor tubes ;

a global branch processing network configured to concat
enate the region of interest pooled features from dif
ferent video frames and pass a result through a convo
lutional layer ;

the convolutional layer producing global features describ
ing contents in an entire anchor tube ; and

fully - connected processing layers that concatenate the
local and global features and process them to produce
a 4 - dimensional regression coefficient vector for each
anchor tube for action classification .

19 . The system according to claim 18 , wherein the one or
more interconnected processors are configured to iteratively
expand an input sequence of video frames to iteratively add
spatial feature volumes to the spatial feature volumes pro
cessed by the region of interest pooling layer to generate
region of interest pooled features .

20 . The system according to claim 19 , wherein , in relation
to each said iterative expansion of the input sequence of
video frames , processing output including anchor tubes
subjected to regression in an iteration is provided as the
initial anchor tubes for processing by the region of interest
pooling layer in a next iteration .

21 . The system according to claim 18 , further comprising
at least one of an autonomous vehicle control processing
network or a surveillance system that receives the coefficient
vectors produced by the fully connected layers .

