
US 20180293737A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0293737 A1

Sun et al . (43) Pub . Date : Oct . 11 , 2018

(54) SYSTEM AND METHOD FOR OPTICAL
FLOW ESTIMATION

(71) Applicant : NVIDIA Corporation , Santa Clara , CA
(US)

G06T 3 / 00 (2006 . 01)
G06T 7 / 246 (2006 . 01)
G06T 7 / 00 (2006 . 01)

(52) U . S . CI .
CPC G06T 7 / 207 (2017 . 01) ; GOON 5 / 046

(2013 . 01) ; G06T 3 / 0093 (2013 . 01) ; G06T
2207 / 10016 (2013 . 01) ; G06T 7 / 97 (2017 . 01) ;

G06T 2207 / 20016 (2013 . 01) ; G06T 77251
(2017 . 01)

(72) Inventors : Deqing Sun , Providence , RI (US) ;
Xiaodong Yang , San Jose , CA (US) ;
Ming - Yu Liu , Sunnyvale , CA (US) ;
Jan Kautz , Lexington , MA (US)

(21) Appl . No . : 15 / 942 , 213
(22) Filed : Mar . 30 , 2018

Related U . S . Application Data
(60) Provisional application No . 62 / 483 , 145 , filed on Apr .

7 , 2017

(57) ABSTRACT
A method , computer readable medium , and system are
disclosed for estimating optical flow between two images . A
first pyramidal set of features is generated for a first image
and a partial cost volume for a level of the first pyramidal set
of features is computed , by a neural network , using features
at the level of the first pyramidal set of features and warped
features extracted from a second image , where the partial
cost volume is computed across a limited range of pixels that
is less than a full resolution of the first image , in pixels , at
the level . The neural network processes the features and the
partial cost volume to produce a refined optical flow esti
mate for the first image and the second image .

Publication Classification
(51) Int . CI .

G06T 7 / 207
GOON 5 / 04

(2006 . 01)
(2006 . 01)

- 170

First
Image

Second
Image

Warp Operation

First
Location

Full Resolution
in Pixels Warped Second

Image
Limited Range

of Pixels

potag9999

First Image Warped Second
Image

Patent Application Publication Oct . 11 , 2018 Sheet 1 of 13 US 2018 / 0293737 A1

100
*

Generate a first pyramidal set
of features for a first image

110

Compute , by a neural network , a partial cost
volume for a level of the first pyramidal set of
features using features at the level of the first
pyramidal set of features and warped features

extracted from a second image , where the
partial cost volume is computed across a limited
range of pixels that is less than a full resolution

of the first image , in pixels , at the level
130

Process , by the neural network , the
features and the partial cost volume to
produce an optical flow estimate for
the first image and the second image

145

Fig . 1A

Patent Application Publication Oct . 11 , 2018 Sheet 2 of 13 US 2018 / 0293737 A1

170

? First Second
Image Image

Warp Operation

First
Location

Full Resolution
in Pixels Warped Second

Image
Limited Range

of Pixels

Q - Q?? - ? - ? - ? - ? - ?

First Image Warped Second
Image

Fig . 1B

Patent Application Publication Oct . 11 , 2018 Sheet 3 of 13 US 2018 / 0293737 A1

150

Initial Optical
Flow Estimate

Neural Network Model
115

i Second
Feature
Pyramid

First
Feature
Pyramid

Warping Layer (s)
125

warped second image features ! = L
(top)

Partial Cost Volume
Computation Layer (s)

135
partial cost volume

1 = 2 Optical Flow Estimator
Layer (s)

140
. .

- - - - - - - - - - - - - - - - - - -

Optical Flow Estimate Upsampler
152 Pyramidal Image Feature

Structure Generator
105

Context Network
145

Refined Optical Flow Estimate

Second
Image

First
Image

1 = 1
(bottom) Fig . 1C

Patent Application Publication Oct . 11 , 2018 Sheet 4 of 13 US 2018 / 0293737 A1

200 Initialize an optical flow estimate = 0
set level 1 = L

205

Generate a first
pyramidal set of features

for a first image
110

Generate a second
pyramidal set of features

for a second image
210

Warp the Ith level of the second
pyramidal set of features using the
upsampled optical flow estimate

215

1 = 1 - 1
Generate the partial cost volume for
the 7th level using the 7th level of the
first pyramidal set of features and the
warped features for the Ith level of the

second pyramidal set of features
220

240

Produce an optical flow estimate for the
Ith level using the partial cost volume for
the Ith level and the Ith level of the first

pyramidal set of features
225

Tevel 1 = 1 ?
230

No
Upsample the
optical flow
estimate

235
Yes

Fig . 2A Done
165

Patent Application Publication Oct . 11 , 2018 Sheet 5 of 13 US 2018 / 0293737 A1

Image
245

Convolutional Layer
201

Convolutional Layer
202

Convolutional Layer
203

Convolutional Layer
204
62

Convolutional Layer
206

Convolutional Layer
207

163
Convolutional Layer

208
Convolutional Layer

209
CA

Convolutional Layer
211

Convolutional Layer
212
CS

Convolutional Layer
213

Convolutional Layer
214

Bee
Fig . 2B

Patent Application Publication Oct . 11 , 2018 Sheet 6 of 13 US 2018 / 0293737 A1

250

Warping Layer (s)
125

2 .

Partial Cost Volume
Computation Layer (s)

135
bev2

Convolutional Layer
221

Convolutional Layer
222

Convolutional Layer
223

Convolutional Layer
224

Convolutional Layer
226

Convolutional Layer
227
| w2

Fig . 2C

Patent Application Publication Oct . 11 , 2018 Sheet 7 of 13 US 2018 / 0293737 A1

Convolutional Layer
228

Convolutional Layer
229

Convolutional Layer
231

Convolutional Layer
232

Convolutional Layer
233

Convolutional Layer
234

Convolutional Layer
236

incremental optical
flow estimate

refined optical flow estimate

Fig . 2D

Patent Application Publication Oct . 11 , 2018 Sheet 8 of 13 US 2018 / 0293737 A1

302 PPU 300

VO Unit
305

Front End Unit
315

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww Scheduler Unit
320

NVLink 310 Hub
330

Work Distribution Unit
325

w

GPC
350 (X)

wwwwwwwwwwwwwwwwwwwwwwww
wwwww

IZ

XBar 370

.

Memory
304 (Y) . Memory Partition Unit 380 (U)

Fig . 3

Patent Application Publication Oct . 11 , 2018 Sheet 9 of 13 US 2018 / 0293737 A1

To / From XBar 370

GPC 350
PROP Pipeline Manager

410 415

MPC
430

Primitive
Engine
435 Raster Engine

SM 425 440

DPC 420 (V)
1 . www * M M M M M

- - - - -

WDX
480

MMU 490

To / From XBar 370 To / From XBar 370

Fig . 4A

Patent Application Publication Oct . 11 , 2018 Sheet 10 of 13 US 2018 / 0293737 A1

To / From
XBar 370

Memory Partition Unit
380

ROP 450

L2 Cache 460 To / From
XBar 370

Memory Interface
470

To / From
Memory 304

Fig . 4B

Patent Application Publication Oct . 11 , 2018 Sheet 11 of 13 US 2018 / 0293737 A1

Instruction Cache 505
SM
440

Scheduler Unit 510 (K)

Dispatch 515

wwwwwwwwwwww winie www www www w w w w www www

Register File 520

Core
550 (L - 1)

SFU
552 (M - 1)

LSU
554 (N - 1)

T - - -

Interconnect Network 580

Shared Memory / L1 Cache 570

To / From
MMU 490

Fig . 5A

Patent Application Publication Oct . 11 , 2018 Sheet 12 of 13 US 2018 / 0293737 A1

CPU 530
302

302

Switch 510

304 PPU 300 PPU 300 304 NVLink
310

304 PPU 300 PPU 300 304

Parallel Processing Module
525

Fig . 5B

Patent Application Publication Oct . 11 , 2018 Sheet 13 of 13 US 2018 / 0293737 A1

565 Main
Memory

540

575 Network
Interface

535 CPU 530
Display
Devices
545

Input
Devices

560

302

Switch 510

304 PPU 300 PPU 300 304
- NVLink

310

304 PPU 300 PPU 300 304

525

Fig . 5C

US 2018 / 0293737 A1 Oct . 11 , 2018

SYSTEM AND METHOD FOR OPTICAL
FLOW ESTIMATION

CLAIM OF PRIORITY
[0001] This application claims the benefit of U . S . Provi
sional Application No . 62 / 483 , 145 (Attorney Docket No .
NVIDP1161 + / 17B00064US01) titled “ PYRAMIDAL CNN
MODEL FOR OPTICAL FLOW ESTIMATION , ” filed Apr .
7 , 2017 , the entire contents of which is incorporated herein
by reference .

[0012] FIG . 3 illustrates a parallel processing unit , in
accordance with one embodiment .
[0013] FIG . 4A illustrates a general processing cluster
within the parallel processing unit of FIG . 3 , in accordance
with one embodiment .
[0014] FIG . 4B illustrates a memory partition unit of the
parallel processing unit of FIG . 3 , in accordance with one
embodiment .
[0015] FIG . 5A illustrates the streaming multi - processor
of FIG . 4A , in accordance with one embodiment .
10016) FIG . 5B is a conceptual diagram of a processing
system implemented using the PPU of FIG . 3 , in accordance
with one embodiment .
[0017] FIG . 5C illustrates an exemplary system in which
the various architecture and / or functionality of the various
previous embodiments may be implemented .

FIELD OF THE INVENTION
[0002] The present invention relates to optical flow and
techniques for estimating optical flow for images .

BACKGROUND
[0003] Optical flow estimation is a core computer vision
problem and has many applications , e . g . , in autonomous
driving , video editing , and action recognition . Most top
performing conventional techniques for estimating optical
flow adopt an energy minimization approach . However ,
optimizing a complex energy function is usually computa
tionally expensive for real - time applications . Other conven
tional approaches have large memory requirements for stor
ing a system model . The large memory requirements cannot
always be satisfied by embedded and mobile devices . There
is a need for addressing these issues and / or other issues
associated with the prior art .

SUMMARY
[0004] A method , computer readable medium , and system
are disclosed for estimating optical flow for images . A first
pyramidal set of features is generated for a first image and
a partial cost volume for a level of the first pyramidal set of
features is computed , by a neural network , using features at
the level of the first pyramidal set of features and warped
features extracted from a second image , where the partial
cost volume is computed across a limited range of pixels that
is less than a full resolution of the first image , in pixels , at
the level . The neural network processes the features and the
partial cost volume to produce a refined optical flow esti
mate for the first image and the second image .

DETAILED DESCRIPTION
[0018] . An optical flow estimation system estimates the
two - dimensional (2D) motion of pixels between two images .
A compact but effective convolutional neural network
(CNN) model for optical flow estimation is described that
exploits the principles of pyramid structures , warping , and
correlation . Features extracted from a first image and fea
tures extracted from a second image are both stored as
pyramidal structures of image features . The CNN model
uses an upsampled optical flow computed for the previous
(1 - 1) level of the pyramid structures to warp the features of
the second image for the lth level . The CNN model com
putes a partial cost volume based on the correlation between
features of the first image and the warped features of the
second image . The correlation output provides strong cues to
estimate the flow increment and is processed by convolution
layers to refine the current optical flow . A method , computer
readable medium , and system embodiment is disclosed . The
algorithm may be executed by a GPU , CPU , or any proces
sor capable of implementing the CNN model .
[0019 . FIG . 1A illustrates a flowchart of a method 100 for
estimating optical flow , in accordance with one embodiment .
Although method 100 is described in the context of a
processing unit , the method 100 may also be performed by
a program , custom circuitry , or by a combination of custom
circuitry and a program . For example , the method 100 may
be executed by a GPU (graphics processing unit) , CPU
(central processing unit) , or any processor capable of imple
menting a neural network model . Furthermore , persons of
ordinary skill in the art will understand that any system that
performs method 100 is within the scope and spirit of
embodiments of the present invention .
[0020] At step 110 , a first pyramidal set of features is
generated for a first image . In one embodiment , a second
pyramidal set of features is also generated for a second
image , where the second image is immediately after the first
image in a video sequence . A pyramidal set of features is
generated to have L levels , where each level 1 includes
feature representations associated with a different resolution
(in pixels) of the image . In one embodiment , the bottom
(1 = 1) level of the pyramidal set of features is the first image .
A higher (1 = 2) level of the pyramidal set of features is
generated by convolving the image data (i . e . , color and / or
depth values for each pixel in the first image) with a filter .
In one embodiment , the filter is 3x3 pixels and a stride of 2
is used to generate one or more features for each application
of the filter . In one embodiment , each subsequent (1 + 1) level

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] FIG . 1A illustrates a flowchart of a method for
estimating optical flow , in accordance with one embodiment .
[0006] FIG . 1B is a conceptual diagram of illustrating a
warped second image and limited range of pixels used to
compute a partial cost volume , in accordance with one
embodiment .
[0007] FIG . 1C illustrates a block diagram of an optical
flow system , in accordance with one embodiment .
[0008] FIG . 2A illustrates a flowchart of a method for
estimating optical flow , in accordance with one embodiment .
[0009] FIG . 2B illustrates a block diagram of a feature
pyramid extraction network , in accordance with one
embodiment .
[0010] FIG . 2C illustrates a block diagram of a warping ,
partial cost volume , and flow estimator network , in accor
dance with one embodiment .
[0011] FIG . 2D illustrates a block diagram of a context
network , in accordance with one embodiment .

US 2018 / 0293737 A1 Oct . 11 , 2018

in the pyramidal set of features is generated by downsam
pling the features from the lower (1) level in the pyramidal
set of features .
[0021] In contrast with a conventional image pyramid ,
where each level is a two - dimensional array of color values
generated by downsampling color values of a higher reso
lution image , each level of the feature pyramid is three
dimensional . The third dimension is a number of channels ,
where each channel corresponds to a different feature for the
same pixel location . In one embodiment , the pyramidal set
of features is generated by a CNN having multiple layers and
each layer of the neural network generates one channel of
the features . In one embodiment , the number of feature
channels in a pyramidal set of features having 7 levels is 16
at the bottom layer (1 = 1) , increasing to 32 , 64 , 96 , 128 , and
196 at the top (1 = 7) level . Features at higher levels of the
pyramidal set of features tend to capture global structures
within the image , whereas features at lower levels describe
fine details of the image .
[0022] A drawback of conventional image pyramid having
fixed values at each level is that the raw images used to
generate the conventional image pyramid do not provide
good features to establish correspondence between different
images in a video sequence , particularly in the presence of
shadows and lighting changes . Therefore , the conventional
image pyramid is replaced with a feature pyramid (i . e . ,
pyramidal set of features) and , when the feature pyramid is
generated using a neural network , the parameters used to
generate the features may be learned through training .
[0023] At step 130 , a partial cost volume for a level of the
first pyramidal set of features is computed , by a neural
network , using features at the level of the first pyramidal set
of features and warped features extracted from a second
image , where the partial cost volume is computed across a
limited range of pixels that is less than a full resolution of the
first image , in pixels , at the level . The warping and limited
range of pixels is described in more detail in conjunction
with FIG . 1B .
[0024] Conventional optical flow estimation techniques
compute a full cost volume , building the full cost volume at
a single scale , which is both computationally expensive and
memory intensive . By contrast , constructing the partial cost
volume at multiple pyramid levels results in optical flow
estimation models that are computationally accurate and
efficient
[0025] At step 145 , the neural network processes the
features and the partial cost volume , to produce an optical
flow estimate for the first image and the second image . In
one embodiment , the optical flow estimation technique
iteratively processes each level of the feature pyramid
structures (i . e . , each pyramidal set of features) , starting at
the top level (I = L) for the first image and the second image
using an optical flow estimate from the previous iteration to
refine the optical flow estimate until the target level is
reached (1 = 1) . At the start of the process , the optical flow
estimate is initialized . In one embodiment , the optical flow
estimate is further processed to produce a refined optical
flow estimate .
100261 . For the first iteration , the top (1 = L) level of the
feature pyramid for the second image is warped toward the
top level of the feature pyramid for the first image using the
initial optical flow estimate . Importantly , the feature pyra
mid structures and warping enable a reduction in the search
range (in pixels) used to compute the partial cost volume .

The partial cost volume is computed for the top level using
the top level of the first feature pyramid and the warped top
level of the second feature pyramid . The optical flow esti
mate is then computed using the top level of the first feature
pyramid , the cost volume of the top level , and the initial
optical flow estimate . The computed optical flow estimate is
then upsampled and the process is repeated (starting at the
warping) for the (1 = 1 - 1) level of the feature pyramids . The
process continues until the bottom level of the feature
pyramids is used to produce a final optical flow estimate .
[0027] More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may or may not be imple
mented , per the desires of the user . It should be strongly
noted that the following information is set forth for illus
trative purposes and should not be construed as limiting in
any manner . Any of the following features may be optionally
incorporated with or without the exclusion of other features
described .
10028] FIG . 1B is a conceptual diagram 170 illustrating a
warped second image and limited range of pixels used to
compute a partial cost volume , in accordance with one
embodiment . An object (star) at a first location in the first
image has moved to a second location in a second image ,
where the first and second images are included in a video
sequence . A warping operation is performed on the second
image to move the object from the second location to a third
location that is closer to the first location . Note that although
the object may be assumed to be represented as image data ,
in one embodiment , the object may be represented as one or
more features generated for a level of a feature pyramidal
structure . Each feature may correspond to a pixel location in
the first and second images . The features of the second
image for a highest level of the feature pyramidal structure
are warped towards the first image using an initial optical
flow . For subsequent optical flow estimates , the features of
the second image for a subsequent (i . e . , next lower) level of
the feature pyramidal structure are warped towards the first
image using the optical flow estimate computed for the
higher level .
[0029] To estimate the optical flow , movement of the
object from the first location in the first image to the second
location in the second image is calculated . The first location
is known and the second location (i . e . , location of the object
in the second image) can be determined based on the warp
operation and a difference between the first and third loca
tions (i . e . , locations of the object in first image and the
warped second image) . As a result of the warping operation ,
the object in the warped second image is closer to the first
location , so it is not necessary to search the entire warped
second image to identify the object and the third location .
Instead , a limited range of pixels surrounding the first
location may be searched
[0030] As shown in FIG . 1B , in one embodiment , the
limited range of pixels is a 3x3 pixel region centered at the
first location . Importantly , the limited range is less than the
full resolution , in pixels , of the first image , where the full
resolution is one of the dimensions (e . g . , height or width) of
the first image . Note that the dimensions of the first image
and the warped second image for each level of the feature
pyramids are equal . In the context of the following descrip
tion , the limited range of pixels is applied to a level of the
second pyramidal set of features that is warped . The limited

US 2018 / 0293737 A1 Oct . 11 , 2018

range of pixels is centered at a first location corresponding
to the first location in the level of the first pyramidal set of
features .
[0031] FIG . 1C illustrates a block diagram of an optical
flow system 150 , in accordance with one embodiment . The
optical flow system 150 includes a pyramidal image feature
structure generator 105 , a neural network model 115 , an
upsampler 152 , and a context network 145 . The neural
network model 115 comprises multiple layers including one
or more warping layer (s) 125 , one or more partial cost
volume computation layer (s) 135 , and one or more optical
flow estimator layer (s) 140 . In one embodiment , the warping
layer (s) 125 comprises a single layer , the partial cost volume
computation layer (s) 135 comprises a single layer , and the
optical flow estimator layer (s) 140 comprises a CNN . In one
embodiment , the context network 145 is omitted and the
optical flow estimate generated by the neural network model
115 is used as the refined optical flow estimate . The context
network 145 is configured to post - process an optical flow
estimate output by the neural network model 115 , and may
perform median filtering , weighted median filtering , and / or
bilateral filtering to generate the refined optical flow esti
mate .
[0032] In one embodiment , the pyramidal image feature
structure generator 105 is implemented using a neural net
work , starting with the first and second images at the bottom
level and generating each higher level until the top level is
reached . The optical flow estimation technique is iterative ,
starting at a coarse level of detail (top level of the feature
pyramid) and finishing at a fine level of detail , as described
in detail in conjunction with FIG . 2A . Conventional tech
niques first compute two (Gaussian) image pyramids for the
first and the second images . In contrast , the pyramidal image
feature structure generator 105 is a neural network config
ured to construct feature pyramids , learning the filters that
are used to compute the features from a training dataset . In
one embodiment , features are extracted from the first image
and the second image at the bottom level by a convolutional
layer and then the extracted features are downsampled by
another convolutional layer to generate the features for the
subsequent level . Thereafter , each level is downsampled by
a convolutional layer to generate the features for the level
above until the top level is reached . If the convolutional
layers were replaced by fixed Gaussian filters , a conven
tional image pyramid could be generated . FIG . 2B illustrates
one embodiment of the pyramidal image feature structure
generator 105 .
[0033] In one embodiment , for processing by the neural
network model 115 , the top level (1 = L) , the initial optical
flow estimate is initialized to 0 and provided to the warping
layer (s) 125 and optical flow estimator layer (s) 140 by the
upsampler 152 . Beginning at the top level of the feature
pyramids , the features of the second image at the current
level are warped using the initial optical flow estimate . For
subsequent levels of the feature pyramids , the features of the
second image at the current level are warped using the
refined optical flow estimate , w ' computed by the optical
flow system 150 for the higher pyramid level that is
upsampled by the upsampler 152 .
[0034] In contrast , conventional techniques using image
pyramids use spatial and temporal differences of the two
small images at the top levels of the image pyramids to
compute the initial optical flow . At the next pyramid level ,
the optical flow is upsampled from the higher level , and used

to warp the second image toward the first image . Spatial and
temporal differences are computed for the first image and the
warped second image and the differences and the upsampled
optical flow are used to compute the new optical flow
estimate at the current level . However , the temporal differ
ence computed by the conventional optical flow techniques ,
only allow small , often subpixel , changes around the up
sampled flow .
[0035] Instead of computing the temporal difference
between the first image and the warped second image , the
partial cost volume computation layer (s) 135 computes the
correlation between features of the first image and features
of the warped second image . The partial cost volume rep
resents the correlation , and , together with the upsampled
optical flow estimate provided by the upsampler 152 and
features of the first image , the partial cost volume is input to
the optical flow estimator layer (s) 140 to predict the new
optical flow estimates . Computation of the partial cost
volume enables changes that are as large as the range of
correlation around the unsampled optical flow .
[0036] The warping layer (s) 125 warps the features of the
second image , cyl - 1 toward the first image using the
upsampled optical flow from the Ith level .

cm ! ! (x) = cz ! _ ! (x + 9w " (x)) ,
where | w ' denotes the upsampled and scaled optical flow
from the 1th level and is zero at the top level . The bilinear
interpolation method may be used to implement the warping
operation and compute the gradients for the features and
optical flow estimates for backpropagation during training of
the pyramidal image feature structure generator 105 . For
non - translational motion , warping can compensate some
geometric distortions and place image patches at the correct
scale .
[0037] At the lth pyramid level , the partial cost volume
computation layer (s) 135 computes the partial cost volume
by computing the correlation using features of the first
image , c , ' toward and warped features of the second image ,

(1)

co " (x1 , x2) = (c (x1) c (X2) ,

Where T is the transpose operator and N is the length of the
column vector ci ' (x) . For a seven level (L = 7) feature
pyramid , a partial cost volume is computed with a limited
range of d pixels , i . e . , Ix , - xylasd . Note that a one - pixel
motion at the top level corresponds to 64 (20) pixels at the
full resolution first and second images . Thus , d can be set to
a small value .
[0038] To obtain the optical flow estimate w ' at the Ith
pyramid level , the features of the first image , the partial cost
volume , and the upsampled optical flow estimate are input
the optical flow estimator layer (s) 140 . In one embodiment ,
the parameters used by the optical flow estimator layer (s)
140 for processing different levels of the feature pyramids
are not shared , so separate parameters are used for each
level . In one embodiment , within the optical flow estimator
layer (s) 140 , the inputs to every convolutional layer are the
output of and the input to the previous layer . The optical flow
is estimated for each level by the neural network model 115
until the bottom level is reached . In one embodiment , the
optical flow estimator layer (s) 140 outputs quarter resolution

US 2018 / 0293737 A1 Oct . 11 , 2018

optical flow and bilinear interpolation is used to obtain the
full - resolution optical flow estimate . In one embodiment , the
context network 145 is omitted and the upsampler 152
receives the optical flow estimate directly from the optical
flow estimator layer (s) 140 .
[0039] As context is crucial for optical flow estimation , in
one embodiment , the context network 145 is employed at the
desired pyramid level (i . e . , the bottom level) , to effectively
enlarge the receptive field size of each output unit . In one
embodiment , the context network 145 is a feed - forward
CNN , that receives the estimated optical flow and features of
the second to last layer (f ") from the optical flow estimator
layer (s) 140 , and outputs the refined optical flow estimate .
[0040] In one embodiment , the design of the context
network 145 is based on dilated convolutions and includes
seven convolutional layers . The spatial kernel for each
convolutional layer is 3x3 and the layers have different
dilation constants . A convolutional layer with a dilation
constant k means that an input unit to a filter in the layer are
k - unit apart from the other input units to the filter in the
layer , both in vertical and horizontal directions . Convolu
tional layers with large dilation constants enlarge the recep
tive field of each output unit without incurring a large
computational burden . In one embodiment , from bottom to
top , the dilation constants are 1 , 2 , 4 , 8 , 16 , 1 , and 1 .
10041] During training of the optical flow system 150 , the
neural network parameters (e . g . , weights) for the neural
network model 115 and the pyramidal image feature struc
ture generator 105 are learned , as well as the neural network
parameters of the context network 145 . Compared with
conventional techniques that use energy minimization in
place of the partial cost volume computation layer (s) 135
and optical flow estimator layer (s) 140 , the warping , partial
cost volume , and layers of the optical flow estimator layer (s)
140 within the neural network model 115 are computation
ally light . Further , the warping layer (s) 125 and partial cost
volume computation layer (s) 135 have no learnable param
eters , significantly reducing the size of the neural network
model 115 .
[0042] Assume that is the set of all the learnable
parameters in the optical flow system 150 including the
pyramidal image feature structure generator 105 and the
optical flow estimator layer (s) 140 at different pyramid
levels . Let we ' denote the optical flow field at the lth
pyramid level predicted by the neural network model 115 ,
and wor ' the corresponding supervision signal . A multiscale
training loss may be computed :

L (©) = 27 = 2 , 4 « x , Eglwe ' (x) - worf (x)] 2 + y1 @ 12
where we ' (x) - WG7 ' (x) l2 computes the L2 norm of a vector
and the second term regularizes parameters of the pyramidal
image feature structure generator 105 and the optical flow
estimator layer (s) 140 . For fine - tuning , the following robust
training loss may be used :

L (©) = 27 = 1 , 1 « Ex (lwo } (x) - wG7 ' (x) I + E) 2 + y1 @ 12
Where lwe ' (x) - WG7 ' (x)] denotes the Li norm , q < 1 gives
less penalty to outliers , and E is a small constant .
[0043] In one embodiment , the weights in the training loss
computation of equation (3) are set to be ag = 0 . 32 , a5 = 0 . 08 ,
04 = 0 . 02 , az = 0 . 01 , and az = 0 . 005 . These settings give higher
weights to loss terms at the second and third pyramid levels ,
accounting for the number of pixels at each level . The
ground truth flow may be scaled by 20 and downsampled to
obtain the supervision signals at different levels . Note that ,

in one embodiment , no further scaling of the supervision
signal is performed at each level . As a result , the upsampled
optical flow estimate is scaled at each pyramid level for
input to the warping layer (s) 125 . For example , at the second
level , the upsampled flow is scaled from the third level by
a factor of 5 (= 20 / 4) before warping features of the second
image . The trade - off weight y is set to be 0 . 0004 . For the
partial cost volume computation , the search range d is set to
4 pixels at each level .
[0044] FIG . 2A illustrates a flowchart of a method 200 for
estimating optical flow , in accordance with one embodiment .
Although method 200 is described in the context of a
processing unit , the method 200 may also be performed by
a program , custom circuitry , or by a combination of custom
circuitry and a program . For example , the method 200 may
be executed by a GPU (graphics processing unit) , CPU
(central processing unit) , or any processor capable of imple
menting a neural network model . Furthermore , persons of
ordinary skill in the art will understand that any system that
performs method 200 is within the scope and spirit of
embodiments of the present invention .
[0045] At step 205 , the optical flow estimate provided to
the warping layer (s) 125 and the optical flow estimator
layer (s) 140 is initialized to zero and the feature pyramid
level 1 is set to the top level L . At step 110 , a first pyramidal
set of features is generated by the pyramidal image feature
structure generator 105 for a first image . At step 210 , a
second pyramidal set of features , for a second image , is
generated by the pyramidal image feature structure genera
tor 105 . The first and second pyramidal sets of features may
be generated in parallel or in series .
[0046] At step 215 , the warping layer (s) 125 warps the lth
level of the second pyramidal set of features using the
upsampled optical flow estimate (or the initialized optical
flow estimate when 1 = L) to generate the warped second
image features . At step 220 , the partial cost volume com
putation layer (s) 135 generates the partial cost volume for
the Ith level using the lth level of the first pyramidal set of
features and the warped second image features (i . e . , warped
features for the Ith level of the second pyramidal set of
features) . At step 225 , the optical flow estimator layer (s) 140
produces an optical flow estimate for the Ith level using the
partial cost volume for the Ith level and the lth level of the
first pyramidal set of features . In one embodiment , the
context network 145 is omitted and the optical flow estimate
produced by the optical flow estimator layer (s) 140 is used
as the refined optical flow estimate .
[0047] At step 230 , the optical flow system 150 deter
mines if the bottom level of the feature pyramid has been
processed , and , if so , the optical flow estimate is final .
Otherwise , at step 235 , the upsampler 152 upsamples the
optical flow estimate . At step 240 , the optical flow system
150 decrements the level 1 and returns to step 215 to repeat
steps 215 through 225 for another level .
[0048] FIG . 2B illustrates a block diagram 245 of a feature
pyramid extraction neural network , in accordance with one
embodiment . In one embodiment , the pyramidal image
feature structure generator 105 is implemented as the block
diagram 245 . Although the block diagram 245 is described
in the context of processing units , the block diagram 245
may also be performed by a program , custom circuitry , or by
a combination of custom circuitry and a program .
[0049] An image is input to a convolutional layer 201 that
downsamples the image . In one embodiment , a 3x3x3

(3)

US 2018 / 0293737 A1 Oct . 11 , 2018

convolutional filter is used to perform a 2x downsampling
on a 512x512 pixel image . The downsampled image is
processed by a convolutional layer 202 . In one embodiment ,
the convolutional layer 202 performs a 16x3x3 convolution
operation on the downsampled image to extract the features
c ' . In one embodiment , the image includes 3 channels (e . g . ,
red , green , blue color channels) and the features cl includes
16 channels that are each 256x256 pixels .
[0050] The features c ' is input to a convolutional layer 203
that downsamples the features cf . In one embodiment , a
16x3x3 convolutional filter is used to perform a 2x down
sampling on the features c ' . The downsampled features c ?
are processed by a convolutional layer 204 . In one embodi
ment , the convolutional layer 204 performs a 32x3x3 con
volution operation on the downsampled features c ' to extract
the features cé . In one embodiment , the features c - includes
32 channels that are each 128x128 pixels .
[0051] The features c is input to a convolutional layer 206
that downsamples the features c2 . In one embodiment , a
32x3x3 convolutional filter is used to perform a 2x down
sampling on the features c² . The downsampled features c2
are processed by a convolutional layer 207 . In one embodi
ment , the convolutional layer 207 performs a 64x3x3 con
volution operation on the downsampled features c - to extract
the features c * . In one embodiment , the features c includes
64 channels that are each 64x64 pixels .
[0052] The features c is input to a convolutional layer 208
that downsamples the features c * . In one embodiment , a
64x3x3 convolutional filter is used to perform a 2x down
sampling on the features cº . The downsampled features c3
are processed by a convolutional layer 209 . In one embodi
ment , the convolutional layer 209 performs a 96x3x3 con
volution operation on the downsampled features c to extract
the features c4 . In one embodiment , the features c4 includes
96 channels that are each 32x32 pixels .
[0053] The features c4 is input to a convolutional layer 211
that downsamples the features c4 . In one embodiment , a
64x3x3 convolutional filter is used to perform a 2x down
sampling on the features c4 . The downsampled features c4
are processed by a convolutional layer 212 . In one embodi
ment , the convolutional layer 212 performs a 128x3x3
convolution operation on the downsampled features c4 to
extract the features c . In one embodiment , the features c
includes 128 channels that are each 16x16 pixels .
[0054] The features cis input to a convolutional layer 213
that downsamples the features c " . In one embodiment , a
128x3x3 convolutional filter is used to perform a 2x down
sampling on the features c . The downsampled features c
are processed by a convolutional layer 214 . In one embodi
ment , the convolutional layer 214 performs a 192x3x3
convolution operation on the downsampled features c to
extract the features cº . In one embodiment , the features co
includes 192 channels that are each 8x8 pixels .
[0055] FIG . 2C illustrates a block diagram 250 of a
warping , partial cost volume , and flow estimator neural
network , in accordance with one embodiment . In one
embodiment , the neural network model 115 comprises the
block diagram 250 . Although the block diagram 250 is
described in the context of processing units , the block
diagram 250 may also be performed by a program , custom
circuitry , or by a combination of custom circuitry and a
program .
[0056] The processing units in the block diagram 250
apply the same operation at each level of the feature pyra

mid , warping the features of the second image toward the
features of the first image using the upsampled optical flow
estimate from the lower level , computing the correlation
between features of the first image and the warped features
of the second image , and then decoding the optical flow at
the current level using the correlation and the upsampled
flow and features .
[0057] In one embodiment the block diagram 250 is
configured to estimate the optical flow at level 1 = 2 of the
feature pyramid . At other levels , the block diagram 250 has
the same structure except for the top level , which does not
use the upsampled optical flow and instead directly com
putes the partial cost volume using features of the first and
second images .
[0058] The warping layer (s) 125 receives the features for
the first image at the second level , c , 2 , the features for the
second image at the second level , c . 2 , and the upsampled
optical flow estimate from the third (previous) level , 1w .
The warping layer (s) 125 generates the warped features for
the second image at the second level , c . 2 . In one embodi
ment , the features for the first and second images at the
second level include 32 channels that are each 128x128
pixels , the upsampled optical flow estimate from the third
level includes 2 channels of features that are 128x128 pixels ,
and the warped features for the second image at the second
level includes 32 channels that are 128x128 pixels .
[0059] The partial cost volume computation layer (s) 135
receives the warped features for the second image at the
second level , c . 2 , the features for the first image at the
second level , c , ? , and the upsampled optical flow estimate
from the third (previous) level , w . The partial cost volume
computation layer (s) 135 computes the partial cost volume
at the second level , cv - . In one embodiment , the partial cost
volume at the second level includes 81 channels of 128x128
pixels .
[0060] The partial cost volume at the second level and the
features of the first image at the second level are input to a
sequence of convolutional layers including a convolutional
layer 221 , a convolutional layer 222 , a convolutional layer
223 , a convolutional layer 224 , a convolutional layer 226 ,
and a convolutional layer 227 to produce an optical flow
estimate for the second layer , w ? . In one embodiment , the
convolutional layers 221 , 222 , 223 , 224 , 226 , and 227 are
configured to perform convolutional operations of 115x3x3
for 128 channels , 128x3x3 for 128 channels , 128x3x3 for 96
channels , 96x3x3 for 64 channels , 64x3x3 for 32 channels ,
and 32x3x3 for 2 channels , respectively to produce the
optical flow estimate for the second layer having 2 channels
of 128x128 pixels . The output of the next to last convolution
layer 226 , f ? is provided as an input to the context network
145 .
[0061] FIG . 2D illustrates a block diagram 255 of a
context network , in accordance with one embodiment . In
one embodiment , the context network 145 comprises the
block diagram 255 . Although the block diagram 255 is
described in the context of processing units , the block
diagram 255 may also be performed by a program , custom
circuitry , or by a combination of custom circuitry and a
program .
[0062] In one embodiment , the context network 145
includes a sequence of convolutional layers including a
convolutional layer 228 , a convolutional layer 229 , a con
volutional layer 231 , a convolutional layer 232 , a convolu
tional layer 233 , a convolutional layer 234 , and a convolu

US 2018 / 0293737 A1 Oct . 11 , 2018

tional layer 236 to produce an incremental optical flow
estimate for the second level , dw2 . The incremental optical
flow estimate for the second level is summed with the optical
flow estimate for the second level to produce a refined
optical flow estimate for the second layer , W2 . In one
embodiment , the spatial kernel for each convolutional layer
is 3x3 and the convolutional layers have different dilation
constants .
[0063] In one embodiment , the convolutional layers 228 ,
229 , 231 , 232 , 233 , 234 , and 236 are configured to perform
convolutional operations of 34x3x3 , 128x3x3 , 128x3x3 ,
128x3x3 , 96x3x3 , 64x3x3 , and 32x3x3 , respectively to
produce the refined optical flow estimate for the second
layer having 2 channels of 128x128 pixels .
[0064] The optical flow system 150 uses the optical flow
estimate for the previously processed feature pyramid layer
to warp the features of the second image . The warped
features and features of the first image are then used to
construct the partial cost volume , which is processed to
estimate the optical flow . The use of feature pyramid struc
tures instead of image pyramid structures combined with
computation of a partial cost volume provides advantages of
increased accuracy , reduce model size , and reduced execu
tion time for the optical flow system 150 . While constructing
the full cost volume has been thought to be computationally
prohibitive for real - time optical flow estimation , computa
tion of the partial cost volume limiting the search range to
a small number of pixels at each feature pyramid level . The
warping layer (s) 125 links different levels of the feature
pyramids and enables the estimation of large motion .

Parallel Processing Architecture

ics , factory automation , real - time language translation ,
online search optimizations , and personalized user recom
mendations , and the like .
10067] As shown in FIG . 3 , the PPU 300 includes an
Input / Output (I / O) unit 305 , a front end unit 315 , a scheduler
unit 320 , a work distribution unit 325 , a hub 330 , a crossbar
(Xbar) 370 , one or more general processing clusters (GPCs)
350 , and one or more partition units 380 . The PPU 300 may
be connected to a host processor or other PPUS 300 via one
or more high - speed NVLink 310 interconnect . The PPU 300
may be connected to a host processor or other peripheral
devices via an interconnect 302 . The PPU 300 may also be
connected to a local memory comprising a number of
memory devices 304 . In one embodiment , the local memory
may comprise a number of dynamic random access memory
(DRAM) devices . The DRAM devices may be configured as
a high - bandwidth memory (HBM) subsystem , with multiple
DRAM dies stacked within each device .
[0068] The NVLink 310 interconnect enables systems to
scale and include one or more PPUs 300 combined with one
or more CPUs , supports cache coherence between the PPUs
300 and CPUs , and CPU mastering . Data and / or commands
may be transmitted by the NVLink 310 through the hub 330
to / from other units of the PPU 300 such as one or more copy
engines , a video encoder , a video decoder , a power man
agement unit , etc . (not explicitly shown) . The NVLink 310
is described in more detail in conjunction with FIG . 5B .
[0069] The I / O unit 305 is configured to transmit and
receive communications (i . e . , commands , data , etc .) from a
host processor (not shown) over the interconnect 302 . The
I / O unit 305 may communicate with the host processor
directly via the interconnect 302 or through one or more
intermediate devices such as a memory bridge . In one
embodiment , the I / O unit 305 may communicate with one or
more other processors , such as one or more the PPUS 300 via
the interconnect 302 . In one embodiment , the I / O unit 305
implements a Peripheral Component Interconnect Express
(PCIe) interface for communications over a PCIe bus and
the interconnect 302 is a PCIe bus . In alternative embodi
ments , the 1 / 0 unit 305 may implement other types of
well - known interfaces for communicating with external
devices .
[0070] The I / O unit 305 decodes packets received via the
interconnect 302 . In one embodiment , the packets represent
commands configured to cause the PPU 300 to perform
various operations . The I / O unit 305 transmits the decoded
commands to various other units of the PPU 300 as the
commands may specify . For example , some commands may
be transmitted to the front end unit 315 . Other commands
may be transmitted to the hub 330 or other units of the PPU
300 such as one or more copy engines , a video encoder , a
video decoder , a power management unit , etc . (not explicitly
shown) . In other words , the I / O unit 305 is configured to
route communications between and among the various logi
cal units of the PPU 300 .
[0071] In one embodiment , a program executed by the
host processor encodes a command stream in a buffer that
provides workloads to the PPU 300 for processing . A
workload may comprise several instructions and data to be
processed by those instructions . The buffer is a region in a
memory that is accessible (i . e . , read / write) by both the host
processor and the PPU 300 . For example , the host interface
unit 310 may be configured to access the buffer in a system
memory connected to the interconnect 302 via memory

[0065] FIG . 3 illustrates a parallel processing unit (PPU)
300 , in accordance with one embodiment . In one embodi
ment , the PPU 300 is a multi - threaded processor that is
implemented on one or more integrated circuit devices . The
PPU 300 is a latency hiding architecture designed to process
many threads in parallel . A thread (i . e . , a thread of execu
tion) is an instantiation of a set of instructions configured to
be executed by the PPU 300 . In one embodiment , the PPU
300 is a graphics processing unit (GPU) configured to
implement a graphics rendering pipeline for processing
three - dimensional (3D) graphics data in order to generate
two - dimensional (2D) image data for display on a display
device such as a liquid crystal display (LCD) device . In
other embodiments , the PPU 300 may be utilized for per
forming general - purpose computations . While one exem
plary parallel processor is provided herein for illustrative
purposes , it should be strongly noted that such processor is
set forth for illustrative purposes only , and that any proces
sor may be employed to supplement and / or substitute for the
same

[0066] One or more PPUS 300 may be configured to
accelerate thousands of High Performance Computing
(HPC) , data center , and machine learning applications . The
PPU 300 may be configured to accelerate numerous deep
learning systems and applications including autonomous
vehicle platforms , deep learning , high - accuracy speech ,
image , and text recognition systems , intelligent video ana
lytics , molecular simulations , drug discovery , disease diag
nosis , weather forecasting , big data analytics , astronomy ,
molecular dynamics simulation , financial modeling , robot

US 2018 / 0293737 A1 Oct . 11 , 2018

requests transmitted over the interconnect 302 by the I / O
unit 305 . In one embodiment , the host processor writes the
command stream to the buffer and then transmits a pointer
to the start of the command stream to the PPU 300 . The front
end unit 315 receives pointers to one or more command
streams . The front end unit 315 manages the one or more
streams , reading commands from the streams and forward
ing commands to the various units of the PPU 300 .
[0072] The front end unit 315 is coupled to a scheduler
unit 320 that configures the various GPCs 350 to process
tasks defined by the one or more streams . The scheduler unit
320 is configured to track state information related to the
various tasks managed by the scheduler unit 320 . The state
may indicate which GPC 350 a task is assigned to , whether
the task is active or inactive , a priority level associated with
the task , and so forth . The scheduler unit 320 manages the
execution of a plurality of tasks on the one or more GPCs
350 .
[0073] The scheduler unit 320 is coupled to a work
distribution unit 325 that is configured to dispatch tasks for
execution on the GPCs 350 . The work distribution unit 325
may track a number of scheduled tasks received from the
scheduler unit 320 . In one embodiment , the work distribu
tion unit 325 manages a pending task pool and an active task
pool for each of the GPCs 350 . The pending task pool may
comprise a number of slots (e . g . , 32 slots) that contain tasks
assigned to be processed by a particular GPC 350 . The active
task pool may comprise a number of slots (e . g . , 4 slots) for
tasks that are actively being processed by the GPCs 350 . As
a GPC 350 finishes the execution of a task , that task is
evicted from the active task pool for the GPC 350 and one
of the other tasks from the pending task pool is selected and
scheduled for execution on the GPC 350 . If an active task
has been idle on the GPC 350 , such as while waiting for a
data dependency to be resolved , then the active task may be
evicted from the GPC 350 and returned to the pending task
pool while another task in the pending task pool is selected
and scheduled for execution on the GPC 350 .
10074] The work distribution unit 325 communicates with
the one or more GPCs 350 via XBar 370 . The XBar 370 is
an interconnect network that couples many of the units of the
PPU 300 to other units of the PPU 300 . For example , the
XBar 370 may be configured to couple the work distribution
unit 325 to a particular GPC 350 . Although not shown
explicitly , one or more other units of the PPU 300 may also
be connected to the XBar 370 via the hub 330 .
[0075] The tasks are managed by the scheduler unit 320
and dispatched to a GPC 350 by the work distribution unit
325 . The GPC 350 is configured to process the task and
generate results . The results may be consumed by other tasks
within the GPC 350 , routed to a different GPC 350 via the
XBar 370 , or stored in the memory 304 . The results can be
written to the memory 304 via the partition units 380 , which
implement a memory interface for reading and writing data
to / from the memory 304 . The results can be transmitted to
another PPU 304 or CPU via the NVLink 310 . In one
embodiment , the PPU 300 includes a number U of partition
units 380 that is equal to the number of separate and distinct
memory devices 304 coupled to the PPU 300 . A partition
unit 380 will be described in more detail below in conjunc
tion with FIG . 4B .
[0076] In one embodiment , a host processor executes a
driver kernel that implements an application programming
interface (API) that enables one or more applications execut

ing on the host processor to schedule operations for execu
tion on the PPU 300 . In one embodiment , multiple compute
applications are simultaneously executed by the PPU 300
and the PPU 300 provides isolation , quality of service
(QoS) , and independent address spaces for the multiple
compute applications . An application may generate instruc
tions (i . e . , API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 300 . The driver
kernel outputs tasks to one or more streams being processed
by the PPU 300 . Each task may comprise one or more
groups of related threads , referred to herein as a warp . In one
embodiment , a warp comprises 32 related threads that may
be executed in parallel . Cooperating threads may refer to a
plurality of threads including instructions to perform the task
and that may exchange data through shared memory .
Threads and cooperating threads are described in more detail
in conjunction with FIG . 5A .
[0077] FIG . 4A illustrates a GPC 350 of the PPU 300 of
FIG . 3 , in accordance with one embodiment . As shown in
FIG . 4A , each GPC 350 includes a number of hardware units
for processing tasks . In one embodiment , each GPC 350
includes a pipeline manager 410 , a pre - raster operations unit
(PROP) 415 , a raster engine 425 , a work distribution cross
bar (WDX) 480 , a memory management unit (MMU) 490 ,
and one or more Data Processing Clusters (DPCs) 420 . It
will be appreciated that the GPC 350 of FIG . 4A may include
other hardware units in lieu of or in addition to the units
shown in FIG . 4A .
[0078] In one embodiment , the operation of the GPC 350
is controlled by the pipeline manager 410 . The pipeline
manager 410 manages the configuration of the one or more
DPCs 420 for processing tasks allocated to the GPC 350 . In
one embodiment , the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement at least
a portion of a graphics rendering pipeline . For example , a
DPC 420 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 440 . The pipeline manager 410 may also be configured
to route packets received from the work distribution unit 325
to the appropriate logical units within the GPC 350 . For
example , some packets may be routed to fixed function
hardware units in the PROP 415 and / or raster engine 425
while other packets may be routed to the DPCs 420 for
processing by the primitive engine 435 or the SM 440 . In
one embodiment , the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement a neural
network model and / or a computing pipeline .
[0079] The PROP unit 415 is configured to route data
generated by the raster engine 425 and the DPCs 420 to a
Raster Operations (ROP) unit in the partition unit 380 ,
described in more detail in conjunction with FIG . 4B . The
PROP unit 415 may also be configured to perform optimi
zations for color blending , organize pixel data , perform
address translations , and the like .
[0080] The raster engine 425 includes a number of fixed
function hardware units configured to perform various raster
operations . In one embodiment , the raster engine 425
includes a setup engine , a coarse raster engine , a culling
engine , a clipping engine , a fine raster engine , and a tile
coalescing engine . The setup engine receives transformed
vertices and generates plane equations associated with the
geometric primitive defined by the vertices . The plane
equations are transmitted to the coarse raster engine to
generate coverage information (e . g . , an x , y coverage mask

US 2018 / 0293737 A1 Oct . 11 , 2018

for a tile) for the primitive . The output of the coarse raster
engine is transmitted to the culling engine where fragments
associated with the primitive that fail a z - test are culled , and
transmitted to a clipping engine where fragments lying
outside a viewing frustum are clipped . Those fragments that
survive clipping and culling may be passed to the fine raster
engine to generate attributes for the pixel fragments based
on the plane equations generated by the setup engine . The
output of the raster engine 425 comprises fragments to be
processed , for example , by a fragment shader implemented
within a DPC 420 .
[0081] Each DPC 420 included in the GPC 350 includes
an M - Pipe Controller (MPC) 430 , a primitive engine 435 ,
and one or more SMS 440 . The MPC 430 controls the
operation of the DPC 420 , routing packets received from the
pipeline manager 410 to the appropriate units in the DPC
420 . For example , packets associated with a vertex may be
routed to the primitive engine 435 , which is configured to
fetch vertex attributes associated with the vertex from the
memory 304 . In contrast , packets associated with a shader
program may be transmitted to the SM 440 .
[0082] The SM 440 comprises a programmable streaming
processor that is configured to process tasks represented by
a number of threads . Each SM 440 is multi - threaded and
configured to execute a plurality of threads (e . g . , 32 threads)
from a particular group of threads concurrently . In one
embodiment , the SM 440 implements a SIMD (Single
Instruction , Multiple - Data) architecture where each thread
in a group of threads (i . e . , a warp) is configured to process
a different set of data based on the same set of instructions .
All threads in the group of threads execute the same instruc
tions . In another embodiment , the SM 440 implements a
SIMT (Single - Instruction , Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions , but where individual threads in the group of
threads are allowed to diverge during execution . In one
embodiment , a program counter , call stack , and execution
state is maintained for each warp , enabling concurrency
between warps and serial execution within warps when
threads within the warp diverge . In another embodiment , a
program counter , call stack , and execution state is main
tained for each individual thread , enabling equal concur
rency between all threads , within and between warps . When
execution state is maintained for each individual thread ,
threads executing the same instructions may be converged
and executed in parallel for maximum efficiency . The SM
440 will be described in more detail below in conjunction
with FIG . 5A .
[0083] The MMU 490 provides an interface between the
GPC 350 and the partition unit 380 . The MMU 490 may
provide translation of virtual addresses into physical
addresses , memory protection , and arbitration of memory
requests . In one embodiment , the MMU 490 provides one or
more translation lookaside buffers (TLBs) for performing
translation of virtual addresses into physical addresses in the
memory 304
10084] FIG . 4B illustrates a memory partition unit 380 of
the PPU 300 of FIG . 3 , in accordance with one embodiment .
As shown in FIG . 4B , the memory partition unit 380
includes a Raster Operations (ROP) unit 450 , a level two
(L2) cache 460 , and a memory interface 470 . The memory
interface 470 is coupled to the memory 304 . Memory
interface 470 may implement 32 , 64 , 128 , 1024 - bit data

buses , or the like , for high - speed data transfer . In one
embodiment , the PPU 300 incorporates U memory inter
faces 470 , one memory interface 470 per pair of partition
units 380 , where each pair of partition units 380 is connected
to a corresponding memory device 304 . For example , PPU
300 may be connected to up to Y memory devices 304 , such
as high bandwidth memory stacks or graphics double - data
rate , version 5 , synchronous dynamic random access
memory (GDDR5 SDRAM) .
[0085] In one embodiment , the memory interface 470
implements an HBM2 memory interface and Y equals half
U . In one embodiment , the HBM2 memory stacks are
located on the same physical package as the PPU 300 ,
providing substantial power and area savings compared with
conventional GDDR5 SDRAM systems . In one embodi
ment , each HBM2 stack includes four memory dies and Y
equals 4 , with HBM2 stack including two 128 - bit channels
per die for a total of 8 channels and a data bus width of 1024
bits .
[0086] In one embodiment , the memory 304 supports
Single - Error Correcting Double - Error Detecting (SECDED)
Error Correction Code (ECC) to protect data . ECC provides
higher reliability for compute applications that are sensitive
to data corruption . Reliability is especially important in
large - scale cluster computing environments where PPUS
300 process very large datasets and / or run applications for
extended periods .
[0087] In one embodiment , the PPU 300 implements a
multi - level memory hierarchy . In one embodiment , the
memory partition unit 380 supports a unified memory to
provide a single unified virtual address space for CPU and
PPU 300 memory , enabling data sharing between virtual
memory systems . In one embodiment the frequency of
accesses by a PPU 300 to memory located on other proces
sors is traced to ensure that memory pages are moved to the
physical memory of the PPU 300 that is accessing the pages
more frequently . In one embodiment , the NVLink 310
supports address translation services allowing the PPU 300
to directly access a CPU ' s page tables and providing full
access to CPU memory by the PPU 300 .
[0088] In one embodiment , copy engines transfer data
between multiple PPUS 300 or between PPUs 300 and
CPUs . The copy engines can generate page faults for
addresses that are not mapped into the page tables . The
memory partition unit 380 can then service the page faults ,
mapping the addresses into the page table , after which the
copy engine can perform the transfer . In a conventional
system , memory is pinned (i . e . , non - pageable) for multiple
copy engine operations between multiple processors , sub
stantially reducing the available memory . With hardware
page faulting , addresses can be passed to the copy engines
without worrying if the memory pages are resident , and the
copy process is transparent .
10089] Data from the memory 304 or other system
memory may be fetched by the memory partition unit 380
and stored in the L2 cache 460 , which is located on - chip and
is shared between the various GPCs 350 . As shown , each
memory partition unit 380 includes a portion of the L2 cache
460 associated with a corresponding memory device 304 .
Lower level caches may then be implemented in various
units within the GPCs 350 . For example , each of the SMS
440 may implement a level one (L1) cache . The L1 cache is
private memory that is dedicated to a particular SM 440 .
Data from the L2 cache 460 may be fetched and stored in

US 2018 / 0293737 A1 Oct . 11 , 2018

each of the L1 caches for processing in the functional units
of the SMs 440 . The L2 cache 460 is coupled to the memory
interface 470 and the XBar 370 .
[0090] The ROP unit 450 performs graphics raster opera
tions related to pixel color , such as color compression , pixel
blending , and the like . The ROP unit 450 also implements
depth testing in conjunction with the raster engine 425 ,
receiving a depth for a sample location associated with a
pixel fragment from the culling engine of the raster engine
425 . The depth is tested against a corresponding depth in a
depth buffer for a sample location associated with the
fragment . If the fragment passes the depth test for the sample
location , then the ROP unit 450 updates the depth buffer and
transmits a result of the depth test to the raster engine 425 .
It will be appreciated that the number of partition units 380
may be different than the number of GPCs 350 and , there
fore , each ROP unit 450 may be coupled to each of the GPCs
350 . The ROP unit 450 tracks packets received from the
different GPCs 350 and determines which GPC 350 that a
result generated by the ROP unit 450 is routed to through the
Xbar 370 .
[0091] FIG . 5A illustrates the streaming multi - processor
440 of FIG . 4A , in accordance with one embodiment . As
shown in FIG . 5A , the SM 440 includes an instruction cache
505 , one or more scheduler units 510 , a register file 520 , one
or more processing cores 550 , one or more special function
units (SFUS) 552 , one or more load / store units (LSUS) 554 ,
an interconnect network 580 , a shared memory / L1 cache
570 .
[0092] As described above , the work distribution unit 325
dispatches tasks for execution on the GPCs 350 of the PPU
300 . The tasks are allocated to a particular DPC 420 within
a GPC 350 and , if the task is associated with a shader
program , the task may be allocated to an SM 440 . The
scheduler unit 510 receives the tasks from the work distri
bution unit 325 and manages instruction scheduling for one
or more thread blocks assigned to the SM 440 . The scheduler
unit 510 schedules thread blocks for execution as warps of
parallel threads , where each thread block is allocated at least
one warp . In one embodiment , each warp executes 32
threads . The scheduler unit 510 may manage a plurality of
different thread blocks , allocating the warps to the different
thread blocks and then dispatching instructions from the
plurality of different cooperative groups to the various
functional units (i . e . , cores 550 , SFUS 552 , and LSUs 554)
during each clock cycle .
[0093] Cooperative Groups is a programming model for
organizing groups of communicating threads that allows
developers to express the granularity at which threads are
communicating , enabling the expression of richer , more
efficient parallel decompositions . Cooperative launch APIs
support synchronization amongst thread blocks for the
execution of parallel algorithms . Conventional program
ming models provide a single , simple construct for synchro
nizing cooperating threads : a barrier across all threads of a
thread block (i . e . , the syncthreads function) . However ,
programmers would often like to define groups of threads at
smaller than thread block granularities and synchronize
within the defined groups to enable greater performance ,
design flexibility , and software reuse in the form of collec
tive group - wide function interfaces .
[0094] Cooperative Groups enables programmers to
define groups of threads explicitly at sub - block (i . e . , as small
as a single thread) and multi - block granularities , and to

perform collective operations such as synchronization on the
threads in a cooperative group . The programming model
supports clean composition across software boundaries , so
that libraries and utility functions can synchronize safely
within their local context without having to make assump
tions about convergence . Cooperative Groups primitives
enable new patterns of cooperative parallelism , including
producer - consumer parallelism , opportunistic parallelism ,
and global synchronization across an entire grid of thread
blocks .
[0095] A dispatch unit 515 is configured to transmit
instructions to one or more of the functional units . In the
embodiment , the scheduler unit 510 includes two dispatch
units 515 that enable two different instructions from the
same warp to be dispatched during each clock cycle . In
alternative embodiments , each scheduler unit 510 may
include a single dispatch unit 515 or additional dispatch
units 515 .
[0096] Each SM 440 includes a register file 520 that
provides a set of registers for the functional units of the SM
440 . In one embodiment , the register file 520 is divided
between each of the functional units such that each func
tional unit is allocated a dedicated portion of the register file
520 . In another embodiment , the register file 520 is divided
between the different warps being executed by the SM 440 .
The register file 520 provides temporary storage for oper
ands connected to the data paths of the functional units .
[0097] Each SM 440 comprises L processing cores 550 . In
one embodiment , the SM 440 includes a large number (e . g . ,
128 , etc .) of distinct processing cores 550 . Each core 550
may include a fully - pipelined , single - precision , double - pre
cision , and / or mixed precision processing unit that includes
a floating point arithmetic logic unit and an integer arith
metic logic unit . In one embodiment , the floating point
arithmetic logic units implement the IEEE 754 - 2008 stan
dard for floating point arithmetic . In one embodiment , the
cores 550 include 64 single - precision (32 - bit) floating point
cores , 64 integer cores , 32 double - precision (64 - bit) floating
point cores , and 8 tensor cores .
[0098] Tensor cores configured to perform matrix opera
tions , and , in one embodiment , one or more tensor cores are
included in the cores 550 . In particular , the tensor cores are
configured to perform deep learning matrix arithmetic , such
as convolution operations for neural network training and
inferencing . In one embodiment , each tensor core operates
on a 4x4 matrix and performs a matrix multiply and accu
mulate operation D = AXB + C , where A , B , C , and D are 4x4
matrices .
[0099] In one embodiment , the matrix multiply inputs A
and B are 16 - bit floating point matrices , while the accumu
lation matrices C and D may be 16 - bit floating point or
32 - bit floating point matrices . Tensor Cores operate on
16 - bit floating point input data with 32 - bit floating point
accumulation . The 16 - bit floating point multiply requires 64
operations and results in a full precision product that is then
accumulated using 32 - bit floating point addition with the
other intermediate products for a 4x4x4 matrix multiply . In
practice , Tensor Cores are used to perform much larger
two - dimensional or higher dimensional matrix operations ,
built up from these smaller elements . An API , such as
CUDA 9 C + + API , exposes specialized matrix load , matrix
multiply and accumulate , and matrix store operations to
efficiently use Tensor Cores from a CUDA - C + + program . At

US 2018 / 0293737 A1 Oct . 11 , 2018
10

shared memory / L1 cache 570 and the memory partition unit
380 . When configured for general purpose parallel compu
tation , the SM 440 can also write commands that the
scheduler unit 320 can use to launch new work on the DPCs
420 .
[0105] The PPU 300 may be included in a desktop com
puter , a laptop computer , a tablet computer , servers , super
computers , a smart - phone (e . g . , a wireless , hand - held
device) , personal digital assistant (PDA) , a digital camera , a
vehicle , a head mounted display , a hand - held electronic
device , and the like . In one embodiment , the PPU 300 is
embodied on a single semiconductor substrate . In another
embodiment , the PPU 300 is included in a system - on - a - chip
(SOC) along with one or more other devices such as addi
tional PPUS 300 , the memory 204 , a reduced instruction set
computer (RISC) CPU , a memory management unit
(MMU) , a digital - to - analog converter (DAC) , and the like .
[0106] In one embodiment , the PPU 300 may be included
on a graphics card that includes one or more memory
devices 304 . The graphics card may be configured to inter
face with a PCIe slot on a motherboard of a desktop
computer . In yet another embodiment , the PPU 300 may be
an integrated graphics processing unit (GPU) or parallel
processor included in the chipset of the motherboard .

Machine Learning

the CUDA level , the warp - level interface assumes 16x16
size matrices spanning all 32 threads of the warp .
[0100] Each SM 440 also comprises M SFUS 552 that
perform special functions (e . g . , attribute evaluation , recip
rocal square root , and the like) . In one embodiment , the
SFUS 552 may include a tree traversal unit configured to
traverse a hierarchical tree data structure . In one embodi
ment , the SFUs 552 may include texture unit configured to
perform texture map filtering operations . In one embodi
ment , the texture units are configured to load texture maps
(e . g . , a 2D array of texels) from the memory 304 and sample
the texture maps to produce sampled texture values for use
in shader programs executed by the SM 440 . In one embodi
ment , the texture maps are stored in the shared memory / L1
cache 470 . The texture units implement texture operations
such as filtering operations using mip - maps (i . e . , texture
maps of varying levels of detail) . In one embodiment , each
SM 340 includes two texture units .
[0101] Each SM 440 also comprises N LSUs 554 that
implement load and store operations between the shared
memory / L1 cache 570 and the register file 520 . Each SM
440 includes an interconnect network 580 that connects each
of the functional units to the register file 520 and the LSU
554 to the register file 520 , shared memory / L1 cache 570 . In
one embodiment , the interconnect network 580 is a crossbar
that can be configured to connect any of the functional units
to any of the registers in the register file 520 and connect the
LSUS 554 to the register file and memory locations in shared
memory / L1 cache 570 .
[0102] The shared memory / L1 cache 570 is an array of
on - chip memory that allows for data storage and commu
nication between the SM 440 and the primitive engine 435
and between threads in the SM 440 . In one embodiment , the
shared memory / L1 cache 570 comprises 128 KB of storage
capacity and is in the path from the SM 440 to the partition
unit 380 . The shared memory / L1 cache 570 can be used to
cache reads and writes . One or more of the shared memory
Ll cache 570 , L2 cache 460 , and memory 304 are backing
stores .
[0103] Combining data cache and shared memory func
tionality into a single memory block provides the best
overall performance for both types of memory accesses . The
capacity is usable as a cache by programs that do not use
shared memory . For example , if shared memory is config
ured to use half of the capacity , texture and load / store
operations can use the remaining capacity . Integration
within the shared memory / L1 cache 570 enables the shared
memory / L1 cache 570 to function as a high - throughput
conduit for streaming data while simultaneously providing
high - bandwidth and low - latency access to frequently reused
data .
[0104] When configured for general purpose parallel com
putation , a simpler configuration can be used compared with
graphics processing . Specifically , the fixed function graphics
processing units shown in FIG . 3 , are bypassed , creating a
much simpler programming model . In the general purpose
parallel computation configuration , the work distribution
unit 325 assigns and distributes blocks of threads directly to
the DPCs 420 . The threads in a block execute the same
program , using a unique thread ID in the calculation to
ensure each thread generates unique results , using the SM
440 to execute the program and perform calculations , shared
memory / L1 cache 570 to communicate between threads , and
the LSU 554 to read and write global memory through the

[0107] Deep neural networks (DNNs) developed on pro
cessors , such as the PPU 300 have been used for diverse use
cases , from self - driving cars to faster drug development ,
from automatic image captioning in online image databases
to smart real - time language translation in video chat appli
cations . In one embodiment , the PPU 300 may be configured
to implement the optical flow system 150 . Deep learning is
a technique that models the neural learning process of the
human brain , continually learning , continually getting
smarter , and delivering more accurate results more quickly
over time . A child is initially taught by an adult to correctly
identify and classify various shapes , eventually being able to
identify shapes without any coaching . Similarly , a deep
learning or neural learning system needs to be trained in
object recognition and classification for it get smarter and
more efficient at identifying basic objects , occluded objects ,
etc . , while also assigning context to objects .
[0108] At the simplest level , neurons in the human brain
look at various inputs that are received , importance levels
are assigned to each of these inputs , and output is passed on
to other neurons to act upon . An artificial neuron or percep
tron is the most basic model of a neural network . In one
example , a perceptron may receive one or more inputs that
represent various features of an object that the perceptron is
being trained to recognize and classify , and each of these
features is assigned a certain weight based on the importance
of that feature in defining the shape of an object .
[0109] A deep neural network (DNN) model includes
multiple layers of many connected perceptrons (e . g . , nodes)
that can be trained with enormous amounts of input data to
quickly solve complex problems with high accuracy . In one
example , a first layer of the DLL model breaks down an
input image of an automobile into various sections and looks
for basic patterns such as lines and angles . The second layer
assembles the lines to look for higher level patterns such as
wheels , windshields , and mirrors . The next layer identifies

US 2018 / 0293737 A1 Oct . 11 , 2018

the type of vehicle , and the final few layers generate a label
for the input image , identifying the model of a specific
automobile brand .
[0110] Once the DNN is trained , the DNN can be deployed
and used to identify and classify objects or patterns in a
process known as inference . Examples of inference (the
process through which a DNN extracts useful information
from a given input) include identifying handwritten numbers
on checks deposited into ATM machines , identifying images
of friends in photos , delivering movie recommendations to
over fifty million users , identifying and classifying different
types of automobiles , pedestrians , and road hazards in
driverless cars , or translating human speech in real - time .
[0111] During training , data flows through the DNN in a
forward propagation phase until a prediction is produced
that indicates a label corresponding to the input . If the neural
network does not correctly label the input , then errors
between the correct label and the predicted label are ana
lyzed , and the weights are adjusted for each feature during
a backward propagation phase until the DNN correctly
labels the input and other inputs in a training dataset .
Training complex neural networks requires massive
amounts of parallel computing performance , including float
ing - point multiplications and additions that are supported by
the PPU 300 . Inferencing is less compute - intensive than
training , being a latency - sensitive process where a trained
neural network is applied to new inputs it has not seen before
to classify images , translate speech , and generally infer new
information .
[0112] Neural networks rely heavily on matrix math
operations , and complex multi - layered networks require
tremendous amounts of floating - point performance and
bandwidth for both efficiency and speed . With thousands of
processing cores , optimized for matrix math operations , and
delivering tens to hundreds of TFLOPS of performance , the
PPU 300 is a computing platform capable of delivering
performance required for deep neural network - based artifi
cial intelligence and machine learning applications .

[0115] In the context of the present description , a single
semiconductor platform may refer to a sole unitary semi
conductor - based integrated circuit fabricated on a die or
chip . It should be noted that the term single semiconductor
platform may also refer to multi - chip modules with
increased connectivity which simulate on - chip operation
and make substantial improvements over utilizing a conven
tional bus implementation . Of course , the various circuits or
devices may also be situated separately or in various com
binations of semiconductor platforms per the desires of the
user . Alternately , the parallel processing module 525 may be
implemented as a circuit board substrate and each of the
PPUs 300 and / or memories 304 may be packaged devices .
In one embodiment , the CPU 530 , switch 510 , and the
parallel processing module 525 are situated on a single
semiconductor platform .
10116] . In one embodiment , the signaling rate of each
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300
includes six NVLink 310 interfaces (as shown in FIG . 5B ,
five NVLink 310 interfaces are included for each PPU 300) .
Each NVLink 310 provides a data transfer rate of 25
Gigabytes / second in each direction , with six links providing
300 Gigabytes / second . The NVLinks 310 can be used exclu
sively for PPU - to - PPU communication as shown in FIG . 5B ,
or some combination of PPU - to - PPU and PPU - to - CPU ,
when the CPU 530 also includes one or more NVLink 310
interfaces .
[0117] In one embodiment , the NVLink 310 allows direct
load / store / atomic access from the CPU 530 to each PPU ' s
300 memory 304 . In one embodiment , the NVLink 310
supports coherency operations , allowing data read from the
memories 304 to be stored in the cache hierarchy of the CPU
530 , reducing cache access latency for the CPU 530 . In one
embodiment , the NVLink 310 includes support for Address
Translation Services (ATS) , allowing the PPU 300 to
directly access page tables within the CPU 530 . One or more
of the NVLinks 310 may also be configured to operate in a
low - power mode .
(0118] FIG . 5C illustrates an exemplary system 565 in
which the various architecture and / or functionality of the
various previous embodiments may be implemented . The
exemplary system 565 may be configured to implement the
method 100 shown in FIG . 1A and / or the method 200 shown
in FIG . 2A .
[0119] As shown , a system 565 is provided including at
least one central processing unit 530 that is connected to a
communication bus 575 . The communication bus 575 may
be implemented using any suitable protocol , such as PCI
(Peripheral Component Interconnect) , PCI - Express , AGP
(Accelerated Graphics Port) , HyperTransport , or any other
bus or point - to - point communication protocol (s) . The sys
tem 565 also includes a main memory 540 . Control logic
(software) and data are stored in the main memory 540
which may take the form of random access memory (RAM) .
[0120] The system 565 also includes input devices 560 ,
the parallel processing system 525 , and display devices 545 ,
i . e . a conventional CRT (cathode ray tube) , LCD (liquid
crystal display) , LED (light emitting diode) , plasma display
or the like . User input may be received from the input
devices 560 , e . g . , keyboard , mouse , touchpad , microphone ,
and the like . Each of the foregoing modules and / or devices
may even be situated on a single semiconductor platform to
form the system 565 . Alternately , the various modules may

Exemplary Computing System
[0113] Systems with multiple GPUs and CPUs are used in
a variety of industries as developers expose and leverage
more parallelism in applications such as artificial intelli
gence computing . High - performance GPU - accelerated sys
tems with tens to many thousands of compute nodes are
deployed in data centers , research facilities , and supercom
puters to solve ever larger problems . As the number of
processing devices within the high - performance systems
increases , the communication and data transfer mechanisms
need to scale to support the increased bandwidth .
[0114] FIG . 5B is a conceptual diagram of a processing
system 500 implemented using the PPU 300 of FIG . 3 , in
accordance with one embodiment . The exemplary system
565 may be configured to implement the method 100 shown
in FIG . 1A and / or the method shown in FIG . 2A . The
processing system 500 includes a CPU 530 , switch 510 , and
multiple PPUS 300 each and respective memories 304 . The
NVLink 310 provides high - speed communication links
between each of the PPUS 300 . The switch 510 interfaces
between the interconnect 302 and the CPU 530 . The PPUS
300 , memories 304 , and NVLinks 310 may be situated on a
single semiconductor platform to form a parallel processing
module 525 .

US 2018 / 0293737 A1 Oct . 11 , 2018

also be situated separately or in various combinations of
semiconductor platforms per the desires of the user .
[0121] Further , the system 565 may be coupled to a
network (e . g . , a telecommunications network , local area
network (LAN) , wireless network , wide area network
(WAN) such as the Internet , peer - to - peer network , cable
network , or the like) through a network interface 535 for
communication purposes .
[0122] The system 565 may also include a secondary
storage (not shown) . The secondary storage 610 includes ,
for example , a hard disk drive and / or a removable storage
drive , representing a floppy disk drive , a magnetic tape
drive , a compact disk drive , digital versatile disk (DVD)
drive , recording device , universal serial bus (USB) flash
memory . The removable storage drive reads from and / or
writes to a removable storage unit in a well - known manner .
[0123] Computer programs , or computer control logic
algorithms , may be stored in the main memory 540 and / or
the secondary storage . Such computer programs , when
executed , enable the system 565 to perform various func
tions . The memory 540 , the storage , and / or any other storage
are possible examples of computer - readable media .
[0124 The architecture and / or functionality of the various
previous figures may be implemented in the context of a
general computer system , a circuit board system , a game
console system dedicated for entertainment purposes , an
application - specific system , and / or any other desired sys
tem . For example , the system 565 may take the form of a
desktop computer , a laptop computer , a tablet computer ,
servers , supercomputers , a smart - phone (e . g . , a wireless ,
hand - held device) , personal digital assistant (PDA) , a digital
camera , a vehicle , a head mounted display , a hand - held
electronic device , a mobile phone device , a television ,
workstation , game consoles , embedded system , and / or any
other type of logic .
[0125] While various embodiments have been described
above , it should be understood that they have been presented
by way of example only , and not limitation . Thus , the
breadth and scope of a preferred embodiment should not be
limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following claims and their equivalents .
What is claimed is :
1 . A computer - implemented method , comprising :
generating a first pyramidal set of features for a first
image ;

computing , by a neural network , a partial cost volume for
a level of the first pyramidal set of features using
features at the level of the first pyramidal set of features
and warped features extracted from a second image ,
wherein the partial cost volume is computed across a
limited range of pixels that is less than a full resolution
of the first image , in pixels , at the level ; and

processing , by the neural network , the features and the
partial cost volume to produce an optical flow estimate
for the first image and the second image .

2 . The computer - implemented method of claim 1 ,
wherein the features extracted from the second image are
included in a second pyramidal set of features extracted
from the second image .

3 . The computer - implemented method of claim 2 ,
wherein the features extracted from the second image for the
level of the second pyramidal set of images are warped
toward the features extracted from the first image using an

optical flow estimate for a second level of the first pyramidal
set of images to produce the warped features .

4 . The computer - implemented method of claim 1 , further
comprising :

convolving the first image with overlapping filters to
extract the features for a first level of the first pyramidal
set of features ;

convolving the first level with additional filters to extract
the features for a subsequent level of the first pyramidal
set of features ; and

the convolving the subsequent level with additional filters
to extract the features for another subsequent level of
the first pyramidal set of features until a last level of the
first pyramidal set of features is generated .

5 . The computer - implemented method of claim 1 ,
wherein a single layer of the neural network generates the
warped features .

6 . The computer - implemented method of claim 1 , The
computer - implemented method of claim 1 , wherein the
neural network is a convolutional neural network .

7 . The computer - implemented method of claim 1 ,
wherein a single layer of the neural network computes the
partial cost function .

8 . The computer - implemented method of claim 1 ,
wherein the optical flow estimate is computed based on a
previous optical flow estimate produced using a previous
level of the first pyramidal set of features .

9 . The computer - implemented method of claim 8 , further
comprising upscaling the previous optical flow estimate
before computing the optical flow estimate .

10 . The computer - implemented method of claim 9 ,
wherein an initial optical flow estimate of zero is used to
compute the previous optical flow estimate .

11 . The computer - implemented method of claim 8 , further
comprising repeating the computing and processing for each
level in the first pyramidal set of features .

12 . The computer - implemented method of claim 1 ,
wherein the second image is after the first image in a video
sequence .

13 . The computer - implemented method of claim 1 , fur
ther comprising processing the optical flow estimate by a
context network to produce a refined optical flow estimate .

14 . A system , comprising :
a parallel processing unit configured to implement a

neural network and a pyramidal image feature structure
generator , wherein
the pyramidal image feature structure generator is

configured to generate a first pyramidal set of fea
tures for a first image and

the neural network is configured to generate an optical
flow estimate for the first image and a second image
by :
computing a partial cost volume for a level of the

first pyramidal set of features using features at the
level of the first pyramidal set of features and
warped features extracted from the second image ,
wherein the partial cost volume is computed
across a limited range of pixels that is less than a
full resolution of the first image , in pixels , at the
level ; and

processing the features and the partial cost volume to
produce an optical flow estimate for the first image
and the second image .

US 2018 / 0293737 A1 Oct . 11 , 2018
13

15 . The system of claim 14 , wherein the pyramidal image
feature structure generator is further configured to generate
a second pyramidal set of features for the second image that
includes the features extracted from the second image .

16 . The system of claim 15 , further comprising a warping
layer that is configured to warp the features extracted from
the second image for the level of the second pyramidal set
of images toward the features extracted from the first image
using an optical flow estimate for a second level of the first
pyramidal set of images to produce the warped features .

17 . The system of claim 14 , wherein the pyramidal image
feature structure generator generates the first pyramidal set
of features for a first image by :

convolving the first image with overlapping filters to
extract the features for a first level of the first pyramidal
set of features ;

convolving the first level with additional filters to extract
the features for a subsequent level of the first pyramidal
set of features ; and

the convolving the subsequent level with additional filters
to extract the features for another subsequent level of
the first pyramidal set of features until a last level of the
first pyramidal set of features is generated .

18 . The system of claim 14 , wherein a single layer of the
neural network generates the warped features .

19 . The system of claim 14 , wherein the neural network
is a convolutional neural network .
20 . A non - transitory computer - readable media storing

computer instructions for estimating optical flow that , when
executed by a processor , cause the processor to perform the
steps of :

generating a first pyramidal set of features for a first
image ;

computing , by a neural network , a partial cost volume for
a level of the first pyramidal set of features using
features at the level of the first pyramidal set of features
and warped features extracted from a second image ,
wherein the partial cost volume is computed across a
limited range of pixels that is less than a full resolution
of the first image , in pixels , at the level ; and

processing , by the neural network , the features and the
partial cost volume to produce an optical flow estimate
for the first image and the second image .

* * * * *

