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SYSTEM AND METHOD FOR OPTICAL 
FLOW ESTIMATION 

CLAIM OF PRIORITY 
[ 0001 ] This application claims the benefit of U . S . Provi 
sional Application No . 62 / 483 , 145 ( Attorney Docket No . 
NVIDP1161 + / 17B00064US01 ) titled “ PYRAMIDAL CNN 
MODEL FOR OPTICAL FLOW ESTIMATION , ” filed Apr . 
7 , 2017 , the entire contents of which is incorporated herein 
by reference . 

[ 0012 ] FIG . 3 illustrates a parallel processing unit , in 
accordance with one embodiment . 
[ 0013 ] FIG . 4A illustrates a general processing cluster 
within the parallel processing unit of FIG . 3 , in accordance 
with one embodiment . 
[ 0014 ] FIG . 4B illustrates a memory partition unit of the 
parallel processing unit of FIG . 3 , in accordance with one 
embodiment . 
[ 0015 ] FIG . 5A illustrates the streaming multi - processor 
of FIG . 4A , in accordance with one embodiment . 
10016 ) FIG . 5B is a conceptual diagram of a processing 
system implemented using the PPU of FIG . 3 , in accordance 
with one embodiment . 
[ 0017 ] FIG . 5C illustrates an exemplary system in which 
the various architecture and / or functionality of the various 
previous embodiments may be implemented . 

FIELD OF THE INVENTION 
[ 0002 ] The present invention relates to optical flow and 
techniques for estimating optical flow for images . 

BACKGROUND 
[ 0003 ] Optical flow estimation is a core computer vision 
problem and has many applications , e . g . , in autonomous 
driving , video editing , and action recognition . Most top 
performing conventional techniques for estimating optical 
flow adopt an energy minimization approach . However , 
optimizing a complex energy function is usually computa 
tionally expensive for real - time applications . Other conven 
tional approaches have large memory requirements for stor 
ing a system model . The large memory requirements cannot 
always be satisfied by embedded and mobile devices . There 
is a need for addressing these issues and / or other issues 
associated with the prior art . 

SUMMARY 
[ 0004 ] A method , computer readable medium , and system 
are disclosed for estimating optical flow for images . A first 
pyramidal set of features is generated for a first image and 
a partial cost volume for a level of the first pyramidal set of 
features is computed , by a neural network , using features at 
the level of the first pyramidal set of features and warped 
features extracted from a second image , where the partial 
cost volume is computed across a limited range of pixels that 
is less than a full resolution of the first image , in pixels , at 
the level . The neural network processes the features and the 
partial cost volume to produce a refined optical flow esti 
mate for the first image and the second image . 

DETAILED DESCRIPTION 
[ 0018 ] . An optical flow estimation system estimates the 
two - dimensional ( 2D ) motion of pixels between two images . 
A compact but effective convolutional neural network 
( CNN ) model for optical flow estimation is described that 
exploits the principles of pyramid structures , warping , and 
correlation . Features extracted from a first image and fea 
tures extracted from a second image are both stored as 
pyramidal structures of image features . The CNN model 
uses an upsampled optical flow computed for the previous 
( 1 - 1 ) level of the pyramid structures to warp the features of 
the second image for the lth level . The CNN model com 
putes a partial cost volume based on the correlation between 
features of the first image and the warped features of the 
second image . The correlation output provides strong cues to 
estimate the flow increment and is processed by convolution 
layers to refine the current optical flow . A method , computer 
readable medium , and system embodiment is disclosed . The 
algorithm may be executed by a GPU , CPU , or any proces 
sor capable of implementing the CNN model . 
[ 0019 . FIG . 1A illustrates a flowchart of a method 100 for 
estimating optical flow , in accordance with one embodiment . 
Although method 100 is described in the context of a 
processing unit , the method 100 may also be performed by 
a program , custom circuitry , or by a combination of custom 
circuitry and a program . For example , the method 100 may 
be executed by a GPU ( graphics processing unit ) , CPU 
( central processing unit ) , or any processor capable of imple 
menting a neural network model . Furthermore , persons of 
ordinary skill in the art will understand that any system that 
performs method 100 is within the scope and spirit of 
embodiments of the present invention . 
[ 0020 ] At step 110 , a first pyramidal set of features is 
generated for a first image . In one embodiment , a second 
pyramidal set of features is also generated for a second 
image , where the second image is immediately after the first 
image in a video sequence . A pyramidal set of features is 
generated to have L levels , where each level 1 includes 
feature representations associated with a different resolution 
( in pixels ) of the image . In one embodiment , the bottom 
( 1 = 1 ) level of the pyramidal set of features is the first image . 
A higher ( 1 = 2 ) level of the pyramidal set of features is 
generated by convolving the image data ( i . e . , color and / or 
depth values for each pixel in the first image ) with a filter . 
In one embodiment , the filter is 3x3 pixels and a stride of 2 
is used to generate one or more features for each application 
of the filter . In one embodiment , each subsequent ( 1 + 1 ) level 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0005 ] FIG . 1A illustrates a flowchart of a method for 
estimating optical flow , in accordance with one embodiment . 
[ 0006 ] FIG . 1B is a conceptual diagram of illustrating a 
warped second image and limited range of pixels used to 
compute a partial cost volume , in accordance with one 
embodiment . 
[ 0007 ] FIG . 1C illustrates a block diagram of an optical 
flow system , in accordance with one embodiment . 
[ 0008 ] FIG . 2A illustrates a flowchart of a method for 
estimating optical flow , in accordance with one embodiment . 
[ 0009 ] FIG . 2B illustrates a block diagram of a feature 
pyramid extraction network , in accordance with one 
embodiment . 
[ 0010 ] FIG . 2C illustrates a block diagram of a warping , 
partial cost volume , and flow estimator network , in accor 
dance with one embodiment . 
[ 0011 ] FIG . 2D illustrates a block diagram of a context 
network , in accordance with one embodiment . 
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in the pyramidal set of features is generated by downsam 
pling the features from the lower ( 1 ) level in the pyramidal 
set of features . 
[ 0021 ] In contrast with a conventional image pyramid , 
where each level is a two - dimensional array of color values 
generated by downsampling color values of a higher reso 
lution image , each level of the feature pyramid is three 
dimensional . The third dimension is a number of channels , 
where each channel corresponds to a different feature for the 
same pixel location . In one embodiment , the pyramidal set 
of features is generated by a CNN having multiple layers and 
each layer of the neural network generates one channel of 
the features . In one embodiment , the number of feature 
channels in a pyramidal set of features having 7 levels is 16 
at the bottom layer ( 1 = 1 ) , increasing to 32 , 64 , 96 , 128 , and 
196 at the top ( 1 = 7 ) level . Features at higher levels of the 
pyramidal set of features tend to capture global structures 
within the image , whereas features at lower levels describe 
fine details of the image . 
[ 0022 ] A drawback of conventional image pyramid having 
fixed values at each level is that the raw images used to 
generate the conventional image pyramid do not provide 
good features to establish correspondence between different 
images in a video sequence , particularly in the presence of 
shadows and lighting changes . Therefore , the conventional 
image pyramid is replaced with a feature pyramid ( i . e . , 
pyramidal set of features ) and , when the feature pyramid is 
generated using a neural network , the parameters used to 
generate the features may be learned through training . 
[ 0023 ] At step 130 , a partial cost volume for a level of the 
first pyramidal set of features is computed , by a neural 
network , using features at the level of the first pyramidal set 
of features and warped features extracted from a second 
image , where the partial cost volume is computed across a 
limited range of pixels that is less than a full resolution of the 
first image , in pixels , at the level . The warping and limited 
range of pixels is described in more detail in conjunction 
with FIG . 1B . 
[ 0024 ] Conventional optical flow estimation techniques 
compute a full cost volume , building the full cost volume at 
a single scale , which is both computationally expensive and 
memory intensive . By contrast , constructing the partial cost 
volume at multiple pyramid levels results in optical flow 
estimation models that are computationally accurate and 
efficient 
[ 0025 ] At step 145 , the neural network processes the 
features and the partial cost volume , to produce an optical 
flow estimate for the first image and the second image . In 
one embodiment , the optical flow estimation technique 
iteratively processes each level of the feature pyramid 
structures ( i . e . , each pyramidal set of features ) , starting at 
the top level ( I = L ) for the first image and the second image 
using an optical flow estimate from the previous iteration to 
refine the optical flow estimate until the target level is 
reached ( 1 = 1 ) . At the start of the process , the optical flow 
estimate is initialized . In one embodiment , the optical flow 
estimate is further processed to produce a refined optical 
flow estimate . 
100261 . For the first iteration , the top ( 1 = L ) level of the 
feature pyramid for the second image is warped toward the 
top level of the feature pyramid for the first image using the 
initial optical flow estimate . Importantly , the feature pyra 
mid structures and warping enable a reduction in the search 
range ( in pixels ) used to compute the partial cost volume . 

The partial cost volume is computed for the top level using 
the top level of the first feature pyramid and the warped top 
level of the second feature pyramid . The optical flow esti 
mate is then computed using the top level of the first feature 
pyramid , the cost volume of the top level , and the initial 
optical flow estimate . The computed optical flow estimate is 
then upsampled and the process is repeated ( starting at the 
warping ) for the ( 1 = 1 - 1 ) level of the feature pyramids . The 
process continues until the bottom level of the feature 
pyramids is used to produce a final optical flow estimate . 
[ 0027 ] More illustrative information will now be set forth 
regarding various optional architectures and features with 
which the foregoing framework may or may not be imple 
mented , per the desires of the user . It should be strongly 
noted that the following information is set forth for illus 
trative purposes and should not be construed as limiting in 
any manner . Any of the following features may be optionally 
incorporated with or without the exclusion of other features 
described . 
10028 ] FIG . 1B is a conceptual diagram 170 illustrating a 
warped second image and limited range of pixels used to 
compute a partial cost volume , in accordance with one 
embodiment . An object ( star ) at a first location in the first 
image has moved to a second location in a second image , 
where the first and second images are included in a video 
sequence . A warping operation is performed on the second 
image to move the object from the second location to a third 
location that is closer to the first location . Note that although 
the object may be assumed to be represented as image data , 
in one embodiment , the object may be represented as one or 
more features generated for a level of a feature pyramidal 
structure . Each feature may correspond to a pixel location in 
the first and second images . The features of the second 
image for a highest level of the feature pyramidal structure 
are warped towards the first image using an initial optical 
flow . For subsequent optical flow estimates , the features of 
the second image for a subsequent ( i . e . , next lower ) level of 
the feature pyramidal structure are warped towards the first 
image using the optical flow estimate computed for the 
higher level . 
[ 0029 ] To estimate the optical flow , movement of the 
object from the first location in the first image to the second 
location in the second image is calculated . The first location 
is known and the second location ( i . e . , location of the object 
in the second image ) can be determined based on the warp 
operation and a difference between the first and third loca 
tions ( i . e . , locations of the object in first image and the 
warped second image ) . As a result of the warping operation , 
the object in the warped second image is closer to the first 
location , so it is not necessary to search the entire warped 
second image to identify the object and the third location . 
Instead , a limited range of pixels surrounding the first 
location may be searched 
[ 0030 ] As shown in FIG . 1B , in one embodiment , the 
limited range of pixels is a 3x3 pixel region centered at the 
first location . Importantly , the limited range is less than the 
full resolution , in pixels , of the first image , where the full 
resolution is one of the dimensions ( e . g . , height or width ) of 
the first image . Note that the dimensions of the first image 
and the warped second image for each level of the feature 
pyramids are equal . In the context of the following descrip 
tion , the limited range of pixels is applied to a level of the 
second pyramidal set of features that is warped . The limited 
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range of pixels is centered at a first location corresponding 
to the first location in the level of the first pyramidal set of 
features . 
[ 0031 ] FIG . 1C illustrates a block diagram of an optical 
flow system 150 , in accordance with one embodiment . The 
optical flow system 150 includes a pyramidal image feature 
structure generator 105 , a neural network model 115 , an 
upsampler 152 , and a context network 145 . The neural 
network model 115 comprises multiple layers including one 
or more warping layer ( s ) 125 , one or more partial cost 
volume computation layer ( s ) 135 , and one or more optical 
flow estimator layer ( s ) 140 . In one embodiment , the warping 
layer ( s ) 125 comprises a single layer , the partial cost volume 
computation layer ( s ) 135 comprises a single layer , and the 
optical flow estimator layer ( s ) 140 comprises a CNN . In one 
embodiment , the context network 145 is omitted and the 
optical flow estimate generated by the neural network model 
115 is used as the refined optical flow estimate . The context 
network 145 is configured to post - process an optical flow 
estimate output by the neural network model 115 , and may 
perform median filtering , weighted median filtering , and / or 
bilateral filtering to generate the refined optical flow esti 
mate . 
[ 0032 ] In one embodiment , the pyramidal image feature 
structure generator 105 is implemented using a neural net 
work , starting with the first and second images at the bottom 
level and generating each higher level until the top level is 
reached . The optical flow estimation technique is iterative , 
starting at a coarse level of detail ( top level of the feature 
pyramid ) and finishing at a fine level of detail , as described 
in detail in conjunction with FIG . 2A . Conventional tech 
niques first compute two ( Gaussian ) image pyramids for the 
first and the second images . In contrast , the pyramidal image 
feature structure generator 105 is a neural network config 
ured to construct feature pyramids , learning the filters that 
are used to compute the features from a training dataset . In 
one embodiment , features are extracted from the first image 
and the second image at the bottom level by a convolutional 
layer and then the extracted features are downsampled by 
another convolutional layer to generate the features for the 
subsequent level . Thereafter , each level is downsampled by 
a convolutional layer to generate the features for the level 
above until the top level is reached . If the convolutional 
layers were replaced by fixed Gaussian filters , a conven 
tional image pyramid could be generated . FIG . 2B illustrates 
one embodiment of the pyramidal image feature structure 
generator 105 . 
[ 0033 ] In one embodiment , for processing by the neural 
network model 115 , the top level ( 1 = L ) , the initial optical 
flow estimate is initialized to 0 and provided to the warping 
layer ( s ) 125 and optical flow estimator layer ( s ) 140 by the 
upsampler 152 . Beginning at the top level of the feature 
pyramids , the features of the second image at the current 
level are warped using the initial optical flow estimate . For 
subsequent levels of the feature pyramids , the features of the 
second image at the current level are warped using the 
refined optical flow estimate , w ' computed by the optical 
flow system 150 for the higher pyramid level that is 
upsampled by the upsampler 152 . 
[ 0034 ] In contrast , conventional techniques using image 
pyramids use spatial and temporal differences of the two 
small images at the top levels of the image pyramids to 
compute the initial optical flow . At the next pyramid level , 
the optical flow is upsampled from the higher level , and used 

to warp the second image toward the first image . Spatial and 
temporal differences are computed for the first image and the 
warped second image and the differences and the upsampled 
optical flow are used to compute the new optical flow 
estimate at the current level . However , the temporal differ 
ence computed by the conventional optical flow techniques , 
only allow small , often subpixel , changes around the up 
sampled flow . 
[ 0035 ] Instead of computing the temporal difference 
between the first image and the warped second image , the 
partial cost volume computation layer ( s ) 135 computes the 
correlation between features of the first image and features 
of the warped second image . The partial cost volume rep 
resents the correlation , and , together with the upsampled 
optical flow estimate provided by the upsampler 152 and 
features of the first image , the partial cost volume is input to 
the optical flow estimator layer ( s ) 140 to predict the new 
optical flow estimates . Computation of the partial cost 
volume enables changes that are as large as the range of 
correlation around the unsampled optical flow . 
[ 0036 ] The warping layer ( s ) 125 warps the features of the 
second image , cyl - 1 toward the first image using the 
upsampled optical flow from the Ith level . 

cm ! ! ( x ) = cz ! _ ! ( x + 9w " ( x ) ) , 
where | w ' denotes the upsampled and scaled optical flow 
from the 1th level and is zero at the top level . The bilinear 
interpolation method may be used to implement the warping 
operation and compute the gradients for the features and 
optical flow estimates for backpropagation during training of 
the pyramidal image feature structure generator 105 . For 
non - translational motion , warping can compensate some 
geometric distortions and place image patches at the correct 
scale . 
[ 0037 ] At the lth pyramid level , the partial cost volume 
computation layer ( s ) 135 computes the partial cost volume 
by computing the correlation using features of the first 
image , c , ' toward and warped features of the second image , 

( 1 ) 

co " ( x1 , x2 ) = ( c ( x1 ) c ( X2 ) , 

Where T is the transpose operator and N is the length of the 
column vector ci ' ( x ) . For a seven level ( L = 7 ) feature 
pyramid , a partial cost volume is computed with a limited 
range of d pixels , i . e . , Ix , - xylasd . Note that a one - pixel 
motion at the top level corresponds to 64 ( 20 ) pixels at the 
full resolution first and second images . Thus , d can be set to 
a small value . 
[ 0038 ] To obtain the optical flow estimate w ' at the Ith 
pyramid level , the features of the first image , the partial cost 
volume , and the upsampled optical flow estimate are input 
the optical flow estimator layer ( s ) 140 . In one embodiment , 
the parameters used by the optical flow estimator layer ( s ) 
140 for processing different levels of the feature pyramids 
are not shared , so separate parameters are used for each 
level . In one embodiment , within the optical flow estimator 
layer ( s ) 140 , the inputs to every convolutional layer are the 
output of and the input to the previous layer . The optical flow 
is estimated for each level by the neural network model 115 
until the bottom level is reached . In one embodiment , the 
optical flow estimator layer ( s ) 140 outputs quarter resolution 
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optical flow and bilinear interpolation is used to obtain the 
full - resolution optical flow estimate . In one embodiment , the 
context network 145 is omitted and the upsampler 152 
receives the optical flow estimate directly from the optical 
flow estimator layer ( s ) 140 . 
[ 0039 ] As context is crucial for optical flow estimation , in 
one embodiment , the context network 145 is employed at the 
desired pyramid level ( i . e . , the bottom level ) , to effectively 
enlarge the receptive field size of each output unit . In one 
embodiment , the context network 145 is a feed - forward 
CNN , that receives the estimated optical flow and features of 
the second to last layer ( f " ) from the optical flow estimator 
layer ( s ) 140 , and outputs the refined optical flow estimate . 
[ 0040 ] In one embodiment , the design of the context 
network 145 is based on dilated convolutions and includes 
seven convolutional layers . The spatial kernel for each 
convolutional layer is 3x3 and the layers have different 
dilation constants . A convolutional layer with a dilation 
constant k means that an input unit to a filter in the layer are 
k - unit apart from the other input units to the filter in the 
layer , both in vertical and horizontal directions . Convolu 
tional layers with large dilation constants enlarge the recep 
tive field of each output unit without incurring a large 
computational burden . In one embodiment , from bottom to 
top , the dilation constants are 1 , 2 , 4 , 8 , 16 , 1 , and 1 . 
10041 ] During training of the optical flow system 150 , the 
neural network parameters ( e . g . , weights ) for the neural 
network model 115 and the pyramidal image feature struc 
ture generator 105 are learned , as well as the neural network 
parameters of the context network 145 . Compared with 
conventional techniques that use energy minimization in 
place of the partial cost volume computation layer ( s ) 135 
and optical flow estimator layer ( s ) 140 , the warping , partial 
cost volume , and layers of the optical flow estimator layer ( s ) 
140 within the neural network model 115 are computation 
ally light . Further , the warping layer ( s ) 125 and partial cost 
volume computation layer ( s ) 135 have no learnable param 
eters , significantly reducing the size of the neural network 
model 115 . 
[ 0042 ] Assume that is the set of all the learnable 
parameters in the optical flow system 150 including the 
pyramidal image feature structure generator 105 and the 
optical flow estimator layer ( s ) 140 at different pyramid 
levels . Let we ' denote the optical flow field at the lth 
pyramid level predicted by the neural network model 115 , 
and wor ' the corresponding supervision signal . A multiscale 
training loss may be computed : 

L ( © ) = 27 = 2 , 4 « x , Eglwe ' ( x ) - worf ( x ) ] 2 + y1 @ 12 
where we ' ( x ) - WG7 ' ( x ) l2 computes the L2 norm of a vector 
and the second term regularizes parameters of the pyramidal 
image feature structure generator 105 and the optical flow 
estimator layer ( s ) 140 . For fine - tuning , the following robust 
training loss may be used : 

L ( © ) = 27 = 1 , 1 « Ex ( lwo } ( x ) - wG7 ' ( x ) I + E ) 2 + y1 @ 12 
Where lwe ' ( x ) - WG7 ' ( x ) ] denotes the Li norm , q < 1 gives 
less penalty to outliers , and E is a small constant . 
[ 0043 ] In one embodiment , the weights in the training loss 
computation of equation ( 3 ) are set to be ag = 0 . 32 , a5 = 0 . 08 , 
04 = 0 . 02 , az = 0 . 01 , and az = 0 . 005 . These settings give higher 
weights to loss terms at the second and third pyramid levels , 
accounting for the number of pixels at each level . The 
ground truth flow may be scaled by 20 and downsampled to 
obtain the supervision signals at different levels . Note that , 

in one embodiment , no further scaling of the supervision 
signal is performed at each level . As a result , the upsampled 
optical flow estimate is scaled at each pyramid level for 
input to the warping layer ( s ) 125 . For example , at the second 
level , the upsampled flow is scaled from the third level by 
a factor of 5 ( = 20 / 4 ) before warping features of the second 
image . The trade - off weight y is set to be 0 . 0004 . For the 
partial cost volume computation , the search range d is set to 
4 pixels at each level . 
[ 0044 ] FIG . 2A illustrates a flowchart of a method 200 for 
estimating optical flow , in accordance with one embodiment . 
Although method 200 is described in the context of a 
processing unit , the method 200 may also be performed by 
a program , custom circuitry , or by a combination of custom 
circuitry and a program . For example , the method 200 may 
be executed by a GPU ( graphics processing unit ) , CPU 
( central processing unit ) , or any processor capable of imple 
menting a neural network model . Furthermore , persons of 
ordinary skill in the art will understand that any system that 
performs method 200 is within the scope and spirit of 
embodiments of the present invention . 
[ 0045 ] At step 205 , the optical flow estimate provided to 
the warping layer ( s ) 125 and the optical flow estimator 
layer ( s ) 140 is initialized to zero and the feature pyramid 
level 1 is set to the top level L . At step 110 , a first pyramidal 
set of features is generated by the pyramidal image feature 
structure generator 105 for a first image . At step 210 , a 
second pyramidal set of features , for a second image , is 
generated by the pyramidal image feature structure genera 
tor 105 . The first and second pyramidal sets of features may 
be generated in parallel or in series . 
[ 0046 ] At step 215 , the warping layer ( s ) 125 warps the lth 
level of the second pyramidal set of features using the 
upsampled optical flow estimate ( or the initialized optical 
flow estimate when 1 = L ) to generate the warped second 
image features . At step 220 , the partial cost volume com 
putation layer ( s ) 135 generates the partial cost volume for 
the Ith level using the lth level of the first pyramidal set of 
features and the warped second image features ( i . e . , warped 
features for the Ith level of the second pyramidal set of 
features ) . At step 225 , the optical flow estimator layer ( s ) 140 
produces an optical flow estimate for the Ith level using the 
partial cost volume for the Ith level and the lth level of the 
first pyramidal set of features . In one embodiment , the 
context network 145 is omitted and the optical flow estimate 
produced by the optical flow estimator layer ( s ) 140 is used 
as the refined optical flow estimate . 
[ 0047 ] At step 230 , the optical flow system 150 deter 
mines if the bottom level of the feature pyramid has been 
processed , and , if so , the optical flow estimate is final . 
Otherwise , at step 235 , the upsampler 152 upsamples the 
optical flow estimate . At step 240 , the optical flow system 
150 decrements the level 1 and returns to step 215 to repeat 
steps 215 through 225 for another level . 
[ 0048 ] FIG . 2B illustrates a block diagram 245 of a feature 
pyramid extraction neural network , in accordance with one 
embodiment . In one embodiment , the pyramidal image 
feature structure generator 105 is implemented as the block 
diagram 245 . Although the block diagram 245 is described 
in the context of processing units , the block diagram 245 
may also be performed by a program , custom circuitry , or by 
a combination of custom circuitry and a program . 
[ 0049 ] An image is input to a convolutional layer 201 that 
downsamples the image . In one embodiment , a 3x3x3 

( 3 ) 
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convolutional filter is used to perform a 2x downsampling 
on a 512x512 pixel image . The downsampled image is 
processed by a convolutional layer 202 . In one embodiment , 
the convolutional layer 202 performs a 16x3x3 convolution 
operation on the downsampled image to extract the features 
c ' . In one embodiment , the image includes 3 channels ( e . g . , 
red , green , blue color channels ) and the features cl includes 
16 channels that are each 256x256 pixels . 
[ 0050 ] The features c ' is input to a convolutional layer 203 
that downsamples the features cf . In one embodiment , a 
16x3x3 convolutional filter is used to perform a 2x down 
sampling on the features c ' . The downsampled features c ? 
are processed by a convolutional layer 204 . In one embodi 
ment , the convolutional layer 204 performs a 32x3x3 con 
volution operation on the downsampled features c ' to extract 
the features cé . In one embodiment , the features c - includes 
32 channels that are each 128x128 pixels . 
[ 0051 ] The features c is input to a convolutional layer 206 
that downsamples the features c2 . In one embodiment , a 
32x3x3 convolutional filter is used to perform a 2x down 
sampling on the features c² . The downsampled features c2 
are processed by a convolutional layer 207 . In one embodi 
ment , the convolutional layer 207 performs a 64x3x3 con 
volution operation on the downsampled features c - to extract 
the features c * . In one embodiment , the features c includes 
64 channels that are each 64x64 pixels . 
[ 0052 ] The features c is input to a convolutional layer 208 
that downsamples the features c * . In one embodiment , a 
64x3x3 convolutional filter is used to perform a 2x down 
sampling on the features cº . The downsampled features c3 
are processed by a convolutional layer 209 . In one embodi 
ment , the convolutional layer 209 performs a 96x3x3 con 
volution operation on the downsampled features c to extract 
the features c4 . In one embodiment , the features c4 includes 
96 channels that are each 32x32 pixels . 
[ 0053 ] The features c4 is input to a convolutional layer 211 
that downsamples the features c4 . In one embodiment , a 
64x3x3 convolutional filter is used to perform a 2x down 
sampling on the features c4 . The downsampled features c4 
are processed by a convolutional layer 212 . In one embodi 
ment , the convolutional layer 212 performs a 128x3x3 
convolution operation on the downsampled features c4 to 
extract the features c . In one embodiment , the features c 
includes 128 channels that are each 16x16 pixels . 
[ 0054 ] The features cis input to a convolutional layer 213 
that downsamples the features c " . In one embodiment , a 
128x3x3 convolutional filter is used to perform a 2x down 
sampling on the features c . The downsampled features c 
are processed by a convolutional layer 214 . In one embodi 
ment , the convolutional layer 214 performs a 192x3x3 
convolution operation on the downsampled features c to 
extract the features cº . In one embodiment , the features co 
includes 192 channels that are each 8x8 pixels . 
[ 0055 ] FIG . 2C illustrates a block diagram 250 of a 
warping , partial cost volume , and flow estimator neural 
network , in accordance with one embodiment . In one 
embodiment , the neural network model 115 comprises the 
block diagram 250 . Although the block diagram 250 is 
described in the context of processing units , the block 
diagram 250 may also be performed by a program , custom 
circuitry , or by a combination of custom circuitry and a 
program . 
[ 0056 ] The processing units in the block diagram 250 
apply the same operation at each level of the feature pyra 

mid , warping the features of the second image toward the 
features of the first image using the upsampled optical flow 
estimate from the lower level , computing the correlation 
between features of the first image and the warped features 
of the second image , and then decoding the optical flow at 
the current level using the correlation and the upsampled 
flow and features . 
[ 0057 ] In one embodiment the block diagram 250 is 
configured to estimate the optical flow at level 1 = 2 of the 
feature pyramid . At other levels , the block diagram 250 has 
the same structure except for the top level , which does not 
use the upsampled optical flow and instead directly com 
putes the partial cost volume using features of the first and 
second images . 
[ 0058 ] The warping layer ( s ) 125 receives the features for 
the first image at the second level , c , 2 , the features for the 
second image at the second level , c . 2 , and the upsampled 
optical flow estimate from the third ( previous ) level , 1w . 
The warping layer ( s ) 125 generates the warped features for 
the second image at the second level , c . 2 . In one embodi 
ment , the features for the first and second images at the 
second level include 32 channels that are each 128x128 
pixels , the upsampled optical flow estimate from the third 
level includes 2 channels of features that are 128x128 pixels , 
and the warped features for the second image at the second 
level includes 32 channels that are 128x128 pixels . 
[ 0059 ] The partial cost volume computation layer ( s ) 135 
receives the warped features for the second image at the 
second level , c . 2 , the features for the first image at the 
second level , c , ? , and the upsampled optical flow estimate 
from the third ( previous ) level , w . The partial cost volume 
computation layer ( s ) 135 computes the partial cost volume 
at the second level , cv - . In one embodiment , the partial cost 
volume at the second level includes 81 channels of 128x128 
pixels . 
[ 0060 ] The partial cost volume at the second level and the 
features of the first image at the second level are input to a 
sequence of convolutional layers including a convolutional 
layer 221 , a convolutional layer 222 , a convolutional layer 
223 , a convolutional layer 224 , a convolutional layer 226 , 
and a convolutional layer 227 to produce an optical flow 
estimate for the second layer , w ? . In one embodiment , the 
convolutional layers 221 , 222 , 223 , 224 , 226 , and 227 are 
configured to perform convolutional operations of 115x3x3 
for 128 channels , 128x3x3 for 128 channels , 128x3x3 for 96 
channels , 96x3x3 for 64 channels , 64x3x3 for 32 channels , 
and 32x3x3 for 2 channels , respectively to produce the 
optical flow estimate for the second layer having 2 channels 
of 128x128 pixels . The output of the next to last convolution 
layer 226 , f ? is provided as an input to the context network 
145 . 
[ 0061 ] FIG . 2D illustrates a block diagram 255 of a 
context network , in accordance with one embodiment . In 
one embodiment , the context network 145 comprises the 
block diagram 255 . Although the block diagram 255 is 
described in the context of processing units , the block 
diagram 255 may also be performed by a program , custom 
circuitry , or by a combination of custom circuitry and a 
program . 
[ 0062 ] In one embodiment , the context network 145 
includes a sequence of convolutional layers including a 
convolutional layer 228 , a convolutional layer 229 , a con 
volutional layer 231 , a convolutional layer 232 , a convolu 
tional layer 233 , a convolutional layer 234 , and a convolu 
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tional layer 236 to produce an incremental optical flow 
estimate for the second level , dw2 . The incremental optical 
flow estimate for the second level is summed with the optical 
flow estimate for the second level to produce a refined 
optical flow estimate for the second layer , W2 . In one 
embodiment , the spatial kernel for each convolutional layer 
is 3x3 and the convolutional layers have different dilation 
constants . 
[ 0063 ] In one embodiment , the convolutional layers 228 , 
229 , 231 , 232 , 233 , 234 , and 236 are configured to perform 
convolutional operations of 34x3x3 , 128x3x3 , 128x3x3 , 
128x3x3 , 96x3x3 , 64x3x3 , and 32x3x3 , respectively to 
produce the refined optical flow estimate for the second 
layer having 2 channels of 128x128 pixels . 
[ 0064 ] The optical flow system 150 uses the optical flow 
estimate for the previously processed feature pyramid layer 
to warp the features of the second image . The warped 
features and features of the first image are then used to 
construct the partial cost volume , which is processed to 
estimate the optical flow . The use of feature pyramid struc 
tures instead of image pyramid structures combined with 
computation of a partial cost volume provides advantages of 
increased accuracy , reduce model size , and reduced execu 
tion time for the optical flow system 150 . While constructing 
the full cost volume has been thought to be computationally 
prohibitive for real - time optical flow estimation , computa 
tion of the partial cost volume limiting the search range to 
a small number of pixels at each feature pyramid level . The 
warping layer ( s ) 125 links different levels of the feature 
pyramids and enables the estimation of large motion . 

Parallel Processing Architecture 

ics , factory automation , real - time language translation , 
online search optimizations , and personalized user recom 
mendations , and the like . 
10067 ] As shown in FIG . 3 , the PPU 300 includes an 
Input / Output ( I / O ) unit 305 , a front end unit 315 , a scheduler 
unit 320 , a work distribution unit 325 , a hub 330 , a crossbar 
( Xbar ) 370 , one or more general processing clusters ( GPCs ) 
350 , and one or more partition units 380 . The PPU 300 may 
be connected to a host processor or other PPUS 300 via one 
or more high - speed NVLink 310 interconnect . The PPU 300 
may be connected to a host processor or other peripheral 
devices via an interconnect 302 . The PPU 300 may also be 
connected to a local memory comprising a number of 
memory devices 304 . In one embodiment , the local memory 
may comprise a number of dynamic random access memory 
( DRAM ) devices . The DRAM devices may be configured as 
a high - bandwidth memory ( HBM ) subsystem , with multiple 
DRAM dies stacked within each device . 
[ 0068 ] The NVLink 310 interconnect enables systems to 
scale and include one or more PPUs 300 combined with one 
or more CPUs , supports cache coherence between the PPUs 
300 and CPUs , and CPU mastering . Data and / or commands 
may be transmitted by the NVLink 310 through the hub 330 
to / from other units of the PPU 300 such as one or more copy 
engines , a video encoder , a video decoder , a power man 
agement unit , etc . ( not explicitly shown ) . The NVLink 310 
is described in more detail in conjunction with FIG . 5B . 
[ 0069 ] The I / O unit 305 is configured to transmit and 
receive communications ( i . e . , commands , data , etc . ) from a 
host processor ( not shown ) over the interconnect 302 . The 
I / O unit 305 may communicate with the host processor 
directly via the interconnect 302 or through one or more 
intermediate devices such as a memory bridge . In one 
embodiment , the I / O unit 305 may communicate with one or 
more other processors , such as one or more the PPUS 300 via 
the interconnect 302 . In one embodiment , the I / O unit 305 
implements a Peripheral Component Interconnect Express 
( PCIe ) interface for communications over a PCIe bus and 
the interconnect 302 is a PCIe bus . In alternative embodi 
ments , the 1 / 0 unit 305 may implement other types of 
well - known interfaces for communicating with external 
devices . 
[ 0070 ] The I / O unit 305 decodes packets received via the 
interconnect 302 . In one embodiment , the packets represent 
commands configured to cause the PPU 300 to perform 
various operations . The I / O unit 305 transmits the decoded 
commands to various other units of the PPU 300 as the 
commands may specify . For example , some commands may 
be transmitted to the front end unit 315 . Other commands 
may be transmitted to the hub 330 or other units of the PPU 
300 such as one or more copy engines , a video encoder , a 
video decoder , a power management unit , etc . ( not explicitly 
shown ) . In other words , the I / O unit 305 is configured to 
route communications between and among the various logi 
cal units of the PPU 300 . 
[ 0071 ] In one embodiment , a program executed by the 
host processor encodes a command stream in a buffer that 
provides workloads to the PPU 300 for processing . A 
workload may comprise several instructions and data to be 
processed by those instructions . The buffer is a region in a 
memory that is accessible ( i . e . , read / write ) by both the host 
processor and the PPU 300 . For example , the host interface 
unit 310 may be configured to access the buffer in a system 
memory connected to the interconnect 302 via memory 

[ 0065 ] FIG . 3 illustrates a parallel processing unit ( PPU ) 
300 , in accordance with one embodiment . In one embodi 
ment , the PPU 300 is a multi - threaded processor that is 
implemented on one or more integrated circuit devices . The 
PPU 300 is a latency hiding architecture designed to process 
many threads in parallel . A thread ( i . e . , a thread of execu 
tion ) is an instantiation of a set of instructions configured to 
be executed by the PPU 300 . In one embodiment , the PPU 
300 is a graphics processing unit ( GPU ) configured to 
implement a graphics rendering pipeline for processing 
three - dimensional ( 3D ) graphics data in order to generate 
two - dimensional ( 2D ) image data for display on a display 
device such as a liquid crystal display ( LCD ) device . In 
other embodiments , the PPU 300 may be utilized for per 
forming general - purpose computations . While one exem 
plary parallel processor is provided herein for illustrative 
purposes , it should be strongly noted that such processor is 
set forth for illustrative purposes only , and that any proces 
sor may be employed to supplement and / or substitute for the 
same 

[ 0066 ] One or more PPUS 300 may be configured to 
accelerate thousands of High Performance Computing 
( HPC ) , data center , and machine learning applications . The 
PPU 300 may be configured to accelerate numerous deep 
learning systems and applications including autonomous 
vehicle platforms , deep learning , high - accuracy speech , 
image , and text recognition systems , intelligent video ana 
lytics , molecular simulations , drug discovery , disease diag 
nosis , weather forecasting , big data analytics , astronomy , 
molecular dynamics simulation , financial modeling , robot 
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requests transmitted over the interconnect 302 by the I / O 
unit 305 . In one embodiment , the host processor writes the 
command stream to the buffer and then transmits a pointer 
to the start of the command stream to the PPU 300 . The front 
end unit 315 receives pointers to one or more command 
streams . The front end unit 315 manages the one or more 
streams , reading commands from the streams and forward 
ing commands to the various units of the PPU 300 . 
[ 0072 ] The front end unit 315 is coupled to a scheduler 
unit 320 that configures the various GPCs 350 to process 
tasks defined by the one or more streams . The scheduler unit 
320 is configured to track state information related to the 
various tasks managed by the scheduler unit 320 . The state 
may indicate which GPC 350 a task is assigned to , whether 
the task is active or inactive , a priority level associated with 
the task , and so forth . The scheduler unit 320 manages the 
execution of a plurality of tasks on the one or more GPCs 
350 . 
[ 0073 ] The scheduler unit 320 is coupled to a work 
distribution unit 325 that is configured to dispatch tasks for 
execution on the GPCs 350 . The work distribution unit 325 
may track a number of scheduled tasks received from the 
scheduler unit 320 . In one embodiment , the work distribu 
tion unit 325 manages a pending task pool and an active task 
pool for each of the GPCs 350 . The pending task pool may 
comprise a number of slots ( e . g . , 32 slots ) that contain tasks 
assigned to be processed by a particular GPC 350 . The active 
task pool may comprise a number of slots ( e . g . , 4 slots ) for 
tasks that are actively being processed by the GPCs 350 . As 
a GPC 350 finishes the execution of a task , that task is 
evicted from the active task pool for the GPC 350 and one 
of the other tasks from the pending task pool is selected and 
scheduled for execution on the GPC 350 . If an active task 
has been idle on the GPC 350 , such as while waiting for a 
data dependency to be resolved , then the active task may be 
evicted from the GPC 350 and returned to the pending task 
pool while another task in the pending task pool is selected 
and scheduled for execution on the GPC 350 . 
10074 ] The work distribution unit 325 communicates with 
the one or more GPCs 350 via XBar 370 . The XBar 370 is 
an interconnect network that couples many of the units of the 
PPU 300 to other units of the PPU 300 . For example , the 
XBar 370 may be configured to couple the work distribution 
unit 325 to a particular GPC 350 . Although not shown 
explicitly , one or more other units of the PPU 300 may also 
be connected to the XBar 370 via the hub 330 . 
[ 0075 ] The tasks are managed by the scheduler unit 320 
and dispatched to a GPC 350 by the work distribution unit 
325 . The GPC 350 is configured to process the task and 
generate results . The results may be consumed by other tasks 
within the GPC 350 , routed to a different GPC 350 via the 
XBar 370 , or stored in the memory 304 . The results can be 
written to the memory 304 via the partition units 380 , which 
implement a memory interface for reading and writing data 
to / from the memory 304 . The results can be transmitted to 
another PPU 304 or CPU via the NVLink 310 . In one 
embodiment , the PPU 300 includes a number U of partition 
units 380 that is equal to the number of separate and distinct 
memory devices 304 coupled to the PPU 300 . A partition 
unit 380 will be described in more detail below in conjunc 
tion with FIG . 4B . 
[ 0076 ] In one embodiment , a host processor executes a 
driver kernel that implements an application programming 
interface ( API ) that enables one or more applications execut 

ing on the host processor to schedule operations for execu 
tion on the PPU 300 . In one embodiment , multiple compute 
applications are simultaneously executed by the PPU 300 
and the PPU 300 provides isolation , quality of service 
( QoS ) , and independent address spaces for the multiple 
compute applications . An application may generate instruc 
tions ( i . e . , API calls ) that cause the driver kernel to generate 
one or more tasks for execution by the PPU 300 . The driver 
kernel outputs tasks to one or more streams being processed 
by the PPU 300 . Each task may comprise one or more 
groups of related threads , referred to herein as a warp . In one 
embodiment , a warp comprises 32 related threads that may 
be executed in parallel . Cooperating threads may refer to a 
plurality of threads including instructions to perform the task 
and that may exchange data through shared memory . 
Threads and cooperating threads are described in more detail 
in conjunction with FIG . 5A . 
[ 0077 ] FIG . 4A illustrates a GPC 350 of the PPU 300 of 
FIG . 3 , in accordance with one embodiment . As shown in 
FIG . 4A , each GPC 350 includes a number of hardware units 
for processing tasks . In one embodiment , each GPC 350 
includes a pipeline manager 410 , a pre - raster operations unit 
( PROP ) 415 , a raster engine 425 , a work distribution cross 
bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 
and one or more Data Processing Clusters ( DPCs ) 420 . It 
will be appreciated that the GPC 350 of FIG . 4A may include 
other hardware units in lieu of or in addition to the units 
shown in FIG . 4A . 
[ 0078 ] In one embodiment , the operation of the GPC 350 
is controlled by the pipeline manager 410 . The pipeline 
manager 410 manages the configuration of the one or more 
DPCs 420 for processing tasks allocated to the GPC 350 . In 
one embodiment , the pipeline manager 410 may configure at 
least one of the one or more DPCs 420 to implement at least 
a portion of a graphics rendering pipeline . For example , a 
DPC 420 may be configured to execute a vertex shader 
program on the programmable streaming multiprocessor 
( SM ) 440 . The pipeline manager 410 may also be configured 
to route packets received from the work distribution unit 325 
to the appropriate logical units within the GPC 350 . For 
example , some packets may be routed to fixed function 
hardware units in the PROP 415 and / or raster engine 425 
while other packets may be routed to the DPCs 420 for 
processing by the primitive engine 435 or the SM 440 . In 
one embodiment , the pipeline manager 410 may configure at 
least one of the one or more DPCs 420 to implement a neural 
network model and / or a computing pipeline . 
[ 0079 ] The PROP unit 415 is configured to route data 
generated by the raster engine 425 and the DPCs 420 to a 
Raster Operations ( ROP ) unit in the partition unit 380 , 
described in more detail in conjunction with FIG . 4B . The 
PROP unit 415 may also be configured to perform optimi 
zations for color blending , organize pixel data , perform 
address translations , and the like . 
[ 0080 ] The raster engine 425 includes a number of fixed 
function hardware units configured to perform various raster 
operations . In one embodiment , the raster engine 425 
includes a setup engine , a coarse raster engine , a culling 
engine , a clipping engine , a fine raster engine , and a tile 
coalescing engine . The setup engine receives transformed 
vertices and generates plane equations associated with the 
geometric primitive defined by the vertices . The plane 
equations are transmitted to the coarse raster engine to 
generate coverage information ( e . g . , an x , y coverage mask 
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for a tile ) for the primitive . The output of the coarse raster 
engine is transmitted to the culling engine where fragments 
associated with the primitive that fail a z - test are culled , and 
transmitted to a clipping engine where fragments lying 
outside a viewing frustum are clipped . Those fragments that 
survive clipping and culling may be passed to the fine raster 
engine to generate attributes for the pixel fragments based 
on the plane equations generated by the setup engine . The 
output of the raster engine 425 comprises fragments to be 
processed , for example , by a fragment shader implemented 
within a DPC 420 . 
[ 0081 ] Each DPC 420 included in the GPC 350 includes 
an M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , 
and one or more SMS 440 . The MPC 430 controls the 
operation of the DPC 420 , routing packets received from the 
pipeline manager 410 to the appropriate units in the DPC 
420 . For example , packets associated with a vertex may be 
routed to the primitive engine 435 , which is configured to 
fetch vertex attributes associated with the vertex from the 
memory 304 . In contrast , packets associated with a shader 
program may be transmitted to the SM 440 . 
[ 0082 ] The SM 440 comprises a programmable streaming 
processor that is configured to process tasks represented by 
a number of threads . Each SM 440 is multi - threaded and 
configured to execute a plurality of threads ( e . g . , 32 threads ) 
from a particular group of threads concurrently . In one 
embodiment , the SM 440 implements a SIMD ( Single 
Instruction , Multiple - Data ) architecture where each thread 
in a group of threads ( i . e . , a warp ) is configured to process 
a different set of data based on the same set of instructions . 
All threads in the group of threads execute the same instruc 
tions . In another embodiment , the SM 440 implements a 
SIMT ( Single - Instruction , Multiple Thread ) architecture 
where each thread in a group of threads is configured to 
process a different set of data based on the same set of 
instructions , but where individual threads in the group of 
threads are allowed to diverge during execution . In one 
embodiment , a program counter , call stack , and execution 
state is maintained for each warp , enabling concurrency 
between warps and serial execution within warps when 
threads within the warp diverge . In another embodiment , a 
program counter , call stack , and execution state is main 
tained for each individual thread , enabling equal concur 
rency between all threads , within and between warps . When 
execution state is maintained for each individual thread , 
threads executing the same instructions may be converged 
and executed in parallel for maximum efficiency . The SM 
440 will be described in more detail below in conjunction 
with FIG . 5A . 
[ 0083 ] The MMU 490 provides an interface between the 
GPC 350 and the partition unit 380 . The MMU 490 may 
provide translation of virtual addresses into physical 
addresses , memory protection , and arbitration of memory 
requests . In one embodiment , the MMU 490 provides one or 
more translation lookaside buffers ( TLBs ) for performing 
translation of virtual addresses into physical addresses in the 
memory 304 
10084 ] FIG . 4B illustrates a memory partition unit 380 of 
the PPU 300 of FIG . 3 , in accordance with one embodiment . 
As shown in FIG . 4B , the memory partition unit 380 
includes a Raster Operations ( ROP ) unit 450 , a level two 
( L2 ) cache 460 , and a memory interface 470 . The memory 
interface 470 is coupled to the memory 304 . Memory 
interface 470 may implement 32 , 64 , 128 , 1024 - bit data 

buses , or the like , for high - speed data transfer . In one 
embodiment , the PPU 300 incorporates U memory inter 
faces 470 , one memory interface 470 per pair of partition 
units 380 , where each pair of partition units 380 is connected 
to a corresponding memory device 304 . For example , PPU 
300 may be connected to up to Y memory devices 304 , such 
as high bandwidth memory stacks or graphics double - data 
rate , version 5 , synchronous dynamic random access 
memory ( GDDR5 SDRAM ) . 
[ 0085 ] In one embodiment , the memory interface 470 
implements an HBM2 memory interface and Y equals half 
U . In one embodiment , the HBM2 memory stacks are 
located on the same physical package as the PPU 300 , 
providing substantial power and area savings compared with 
conventional GDDR5 SDRAM systems . In one embodi 
ment , each HBM2 stack includes four memory dies and Y 
equals 4 , with HBM2 stack including two 128 - bit channels 
per die for a total of 8 channels and a data bus width of 1024 
bits . 
[ 0086 ] In one embodiment , the memory 304 supports 
Single - Error Correcting Double - Error Detecting ( SECDED ) 
Error Correction Code ( ECC ) to protect data . ECC provides 
higher reliability for compute applications that are sensitive 
to data corruption . Reliability is especially important in 
large - scale cluster computing environments where PPUS 
300 process very large datasets and / or run applications for 
extended periods . 
[ 0087 ] In one embodiment , the PPU 300 implements a 
multi - level memory hierarchy . In one embodiment , the 
memory partition unit 380 supports a unified memory to 
provide a single unified virtual address space for CPU and 
PPU 300 memory , enabling data sharing between virtual 
memory systems . In one embodiment the frequency of 
accesses by a PPU 300 to memory located on other proces 
sors is traced to ensure that memory pages are moved to the 
physical memory of the PPU 300 that is accessing the pages 
more frequently . In one embodiment , the NVLink 310 
supports address translation services allowing the PPU 300 
to directly access a CPU ' s page tables and providing full 
access to CPU memory by the PPU 300 . 
[ 0088 ] In one embodiment , copy engines transfer data 
between multiple PPUS 300 or between PPUs 300 and 
CPUs . The copy engines can generate page faults for 
addresses that are not mapped into the page tables . The 
memory partition unit 380 can then service the page faults , 
mapping the addresses into the page table , after which the 
copy engine can perform the transfer . In a conventional 
system , memory is pinned ( i . e . , non - pageable ) for multiple 
copy engine operations between multiple processors , sub 
stantially reducing the available memory . With hardware 
page faulting , addresses can be passed to the copy engines 
without worrying if the memory pages are resident , and the 
copy process is transparent . 
10089 ] Data from the memory 304 or other system 
memory may be fetched by the memory partition unit 380 
and stored in the L2 cache 460 , which is located on - chip and 
is shared between the various GPCs 350 . As shown , each 
memory partition unit 380 includes a portion of the L2 cache 
460 associated with a corresponding memory device 304 . 
Lower level caches may then be implemented in various 
units within the GPCs 350 . For example , each of the SMS 
440 may implement a level one ( L1 ) cache . The L1 cache is 
private memory that is dedicated to a particular SM 440 . 
Data from the L2 cache 460 may be fetched and stored in 
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each of the L1 caches for processing in the functional units 
of the SMs 440 . The L2 cache 460 is coupled to the memory 
interface 470 and the XBar 370 . 
[ 0090 ] The ROP unit 450 performs graphics raster opera 
tions related to pixel color , such as color compression , pixel 
blending , and the like . The ROP unit 450 also implements 
depth testing in conjunction with the raster engine 425 , 
receiving a depth for a sample location associated with a 
pixel fragment from the culling engine of the raster engine 
425 . The depth is tested against a corresponding depth in a 
depth buffer for a sample location associated with the 
fragment . If the fragment passes the depth test for the sample 
location , then the ROP unit 450 updates the depth buffer and 
transmits a result of the depth test to the raster engine 425 . 
It will be appreciated that the number of partition units 380 
may be different than the number of GPCs 350 and , there 
fore , each ROP unit 450 may be coupled to each of the GPCs 
350 . The ROP unit 450 tracks packets received from the 
different GPCs 350 and determines which GPC 350 that a 
result generated by the ROP unit 450 is routed to through the 
Xbar 370 . 
[ 0091 ] FIG . 5A illustrates the streaming multi - processor 
440 of FIG . 4A , in accordance with one embodiment . As 
shown in FIG . 5A , the SM 440 includes an instruction cache 
505 , one or more scheduler units 510 , a register file 520 , one 
or more processing cores 550 , one or more special function 
units ( SFUS ) 552 , one or more load / store units ( LSUS ) 554 , 
an interconnect network 580 , a shared memory / L1 cache 
570 . 
[ 0092 ] As described above , the work distribution unit 325 
dispatches tasks for execution on the GPCs 350 of the PPU 
300 . The tasks are allocated to a particular DPC 420 within 
a GPC 350 and , if the task is associated with a shader 
program , the task may be allocated to an SM 440 . The 
scheduler unit 510 receives the tasks from the work distri 
bution unit 325 and manages instruction scheduling for one 
or more thread blocks assigned to the SM 440 . The scheduler 
unit 510 schedules thread blocks for execution as warps of 
parallel threads , where each thread block is allocated at least 
one warp . In one embodiment , each warp executes 32 
threads . The scheduler unit 510 may manage a plurality of 
different thread blocks , allocating the warps to the different 
thread blocks and then dispatching instructions from the 
plurality of different cooperative groups to the various 
functional units ( i . e . , cores 550 , SFUS 552 , and LSUs 554 ) 
during each clock cycle . 
[ 0093 ] Cooperative Groups is a programming model for 
organizing groups of communicating threads that allows 
developers to express the granularity at which threads are 
communicating , enabling the expression of richer , more 
efficient parallel decompositions . Cooperative launch APIs 
support synchronization amongst thread blocks for the 
execution of parallel algorithms . Conventional program 
ming models provide a single , simple construct for synchro 
nizing cooperating threads : a barrier across all threads of a 
thread block ( i . e . , the syncthreads function ) . However , 
programmers would often like to define groups of threads at 
smaller than thread block granularities and synchronize 
within the defined groups to enable greater performance , 
design flexibility , and software reuse in the form of collec 
tive group - wide function interfaces . 
[ 0094 ] Cooperative Groups enables programmers to 
define groups of threads explicitly at sub - block ( i . e . , as small 
as a single thread ) and multi - block granularities , and to 

perform collective operations such as synchronization on the 
threads in a cooperative group . The programming model 
supports clean composition across software boundaries , so 
that libraries and utility functions can synchronize safely 
within their local context without having to make assump 
tions about convergence . Cooperative Groups primitives 
enable new patterns of cooperative parallelism , including 
producer - consumer parallelism , opportunistic parallelism , 
and global synchronization across an entire grid of thread 
blocks . 
[ 0095 ] A dispatch unit 515 is configured to transmit 
instructions to one or more of the functional units . In the 
embodiment , the scheduler unit 510 includes two dispatch 
units 515 that enable two different instructions from the 
same warp to be dispatched during each clock cycle . In 
alternative embodiments , each scheduler unit 510 may 
include a single dispatch unit 515 or additional dispatch 
units 515 . 
[ 0096 ] Each SM 440 includes a register file 520 that 
provides a set of registers for the functional units of the SM 
440 . In one embodiment , the register file 520 is divided 
between each of the functional units such that each func 
tional unit is allocated a dedicated portion of the register file 
520 . In another embodiment , the register file 520 is divided 
between the different warps being executed by the SM 440 . 
The register file 520 provides temporary storage for oper 
ands connected to the data paths of the functional units . 
[ 0097 ] Each SM 440 comprises L processing cores 550 . In 
one embodiment , the SM 440 includes a large number ( e . g . , 
128 , etc . ) of distinct processing cores 550 . Each core 550 
may include a fully - pipelined , single - precision , double - pre 
cision , and / or mixed precision processing unit that includes 
a floating point arithmetic logic unit and an integer arith 
metic logic unit . In one embodiment , the floating point 
arithmetic logic units implement the IEEE 754 - 2008 stan 
dard for floating point arithmetic . In one embodiment , the 
cores 550 include 64 single - precision ( 32 - bit ) floating point 
cores , 64 integer cores , 32 double - precision ( 64 - bit ) floating 
point cores , and 8 tensor cores . 
[ 0098 ] Tensor cores configured to perform matrix opera 
tions , and , in one embodiment , one or more tensor cores are 
included in the cores 550 . In particular , the tensor cores are 
configured to perform deep learning matrix arithmetic , such 
as convolution operations for neural network training and 
inferencing . In one embodiment , each tensor core operates 
on a 4x4 matrix and performs a matrix multiply and accu 
mulate operation D = AXB + C , where A , B , C , and D are 4x4 
matrices . 
[ 0099 ] In one embodiment , the matrix multiply inputs A 
and B are 16 - bit floating point matrices , while the accumu 
lation matrices C and D may be 16 - bit floating point or 
32 - bit floating point matrices . Tensor Cores operate on 
16 - bit floating point input data with 32 - bit floating point 
accumulation . The 16 - bit floating point multiply requires 64 
operations and results in a full precision product that is then 
accumulated using 32 - bit floating point addition with the 
other intermediate products for a 4x4x4 matrix multiply . In 
practice , Tensor Cores are used to perform much larger 
two - dimensional or higher dimensional matrix operations , 
built up from these smaller elements . An API , such as 
CUDA 9 C + + API , exposes specialized matrix load , matrix 
multiply and accumulate , and matrix store operations to 
efficiently use Tensor Cores from a CUDA - C + + program . At 
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shared memory / L1 cache 570 and the memory partition unit 
380 . When configured for general purpose parallel compu 
tation , the SM 440 can also write commands that the 
scheduler unit 320 can use to launch new work on the DPCs 
420 . 
[ 0105 ] The PPU 300 may be included in a desktop com 
puter , a laptop computer , a tablet computer , servers , super 
computers , a smart - phone ( e . g . , a wireless , hand - held 
device ) , personal digital assistant ( PDA ) , a digital camera , a 
vehicle , a head mounted display , a hand - held electronic 
device , and the like . In one embodiment , the PPU 300 is 
embodied on a single semiconductor substrate . In another 
embodiment , the PPU 300 is included in a system - on - a - chip 
( SOC ) along with one or more other devices such as addi 
tional PPUS 300 , the memory 204 , a reduced instruction set 
computer ( RISC ) CPU , a memory management unit 
( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
[ 0106 ] In one embodiment , the PPU 300 may be included 
on a graphics card that includes one or more memory 
devices 304 . The graphics card may be configured to inter 
face with a PCIe slot on a motherboard of a desktop 
computer . In yet another embodiment , the PPU 300 may be 
an integrated graphics processing unit ( GPU ) or parallel 
processor included in the chipset of the motherboard . 

Machine Learning 

the CUDA level , the warp - level interface assumes 16x16 
size matrices spanning all 32 threads of the warp . 
[ 0100 ] Each SM 440 also comprises M SFUS 552 that 
perform special functions ( e . g . , attribute evaluation , recip 
rocal square root , and the like ) . In one embodiment , the 
SFUS 552 may include a tree traversal unit configured to 
traverse a hierarchical tree data structure . In one embodi 
ment , the SFUs 552 may include texture unit configured to 
perform texture map filtering operations . In one embodi 
ment , the texture units are configured to load texture maps 
( e . g . , a 2D array of texels ) from the memory 304 and sample 
the texture maps to produce sampled texture values for use 
in shader programs executed by the SM 440 . In one embodi 
ment , the texture maps are stored in the shared memory / L1 
cache 470 . The texture units implement texture operations 
such as filtering operations using mip - maps ( i . e . , texture 
maps of varying levels of detail ) . In one embodiment , each 
SM 340 includes two texture units . 
[ 0101 ] Each SM 440 also comprises N LSUs 554 that 
implement load and store operations between the shared 
memory / L1 cache 570 and the register file 520 . Each SM 
440 includes an interconnect network 580 that connects each 
of the functional units to the register file 520 and the LSU 
554 to the register file 520 , shared memory / L1 cache 570 . In 
one embodiment , the interconnect network 580 is a crossbar 
that can be configured to connect any of the functional units 
to any of the registers in the register file 520 and connect the 
LSUS 554 to the register file and memory locations in shared 
memory / L1 cache 570 . 
[ 0102 ] The shared memory / L1 cache 570 is an array of 
on - chip memory that allows for data storage and commu 
nication between the SM 440 and the primitive engine 435 
and between threads in the SM 440 . In one embodiment , the 
shared memory / L1 cache 570 comprises 128 KB of storage 
capacity and is in the path from the SM 440 to the partition 
unit 380 . The shared memory / L1 cache 570 can be used to 
cache reads and writes . One or more of the shared memory 
Ll cache 570 , L2 cache 460 , and memory 304 are backing 
stores . 
[ 0103 ] Combining data cache and shared memory func 
tionality into a single memory block provides the best 
overall performance for both types of memory accesses . The 
capacity is usable as a cache by programs that do not use 
shared memory . For example , if shared memory is config 
ured to use half of the capacity , texture and load / store 
operations can use the remaining capacity . Integration 
within the shared memory / L1 cache 570 enables the shared 
memory / L1 cache 570 to function as a high - throughput 
conduit for streaming data while simultaneously providing 
high - bandwidth and low - latency access to frequently reused 
data . 
[ 0104 ] When configured for general purpose parallel com 
putation , a simpler configuration can be used compared with 
graphics processing . Specifically , the fixed function graphics 
processing units shown in FIG . 3 , are bypassed , creating a 
much simpler programming model . In the general purpose 
parallel computation configuration , the work distribution 
unit 325 assigns and distributes blocks of threads directly to 
the DPCs 420 . The threads in a block execute the same 
program , using a unique thread ID in the calculation to 
ensure each thread generates unique results , using the SM 
440 to execute the program and perform calculations , shared 
memory / L1 cache 570 to communicate between threads , and 
the LSU 554 to read and write global memory through the 

[ 0107 ] Deep neural networks ( DNNs ) developed on pro 
cessors , such as the PPU 300 have been used for diverse use 
cases , from self - driving cars to faster drug development , 
from automatic image captioning in online image databases 
to smart real - time language translation in video chat appli 
cations . In one embodiment , the PPU 300 may be configured 
to implement the optical flow system 150 . Deep learning is 
a technique that models the neural learning process of the 
human brain , continually learning , continually getting 
smarter , and delivering more accurate results more quickly 
over time . A child is initially taught by an adult to correctly 
identify and classify various shapes , eventually being able to 
identify shapes without any coaching . Similarly , a deep 
learning or neural learning system needs to be trained in 
object recognition and classification for it get smarter and 
more efficient at identifying basic objects , occluded objects , 
etc . , while also assigning context to objects . 
[ 0108 ] At the simplest level , neurons in the human brain 
look at various inputs that are received , importance levels 
are assigned to each of these inputs , and output is passed on 
to other neurons to act upon . An artificial neuron or percep 
tron is the most basic model of a neural network . In one 
example , a perceptron may receive one or more inputs that 
represent various features of an object that the perceptron is 
being trained to recognize and classify , and each of these 
features is assigned a certain weight based on the importance 
of that feature in defining the shape of an object . 
[ 0109 ] A deep neural network ( DNN ) model includes 
multiple layers of many connected perceptrons ( e . g . , nodes ) 
that can be trained with enormous amounts of input data to 
quickly solve complex problems with high accuracy . In one 
example , a first layer of the DLL model breaks down an 
input image of an automobile into various sections and looks 
for basic patterns such as lines and angles . The second layer 
assembles the lines to look for higher level patterns such as 
wheels , windshields , and mirrors . The next layer identifies 
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the type of vehicle , and the final few layers generate a label 
for the input image , identifying the model of a specific 
automobile brand . 
[ 0110 ] Once the DNN is trained , the DNN can be deployed 
and used to identify and classify objects or patterns in a 
process known as inference . Examples of inference ( the 
process through which a DNN extracts useful information 
from a given input ) include identifying handwritten numbers 
on checks deposited into ATM machines , identifying images 
of friends in photos , delivering movie recommendations to 
over fifty million users , identifying and classifying different 
types of automobiles , pedestrians , and road hazards in 
driverless cars , or translating human speech in real - time . 
[ 0111 ] During training , data flows through the DNN in a 
forward propagation phase until a prediction is produced 
that indicates a label corresponding to the input . If the neural 
network does not correctly label the input , then errors 
between the correct label and the predicted label are ana 
lyzed , and the weights are adjusted for each feature during 
a backward propagation phase until the DNN correctly 
labels the input and other inputs in a training dataset . 
Training complex neural networks requires massive 
amounts of parallel computing performance , including float 
ing - point multiplications and additions that are supported by 
the PPU 300 . Inferencing is less compute - intensive than 
training , being a latency - sensitive process where a trained 
neural network is applied to new inputs it has not seen before 
to classify images , translate speech , and generally infer new 
information . 
[ 0112 ] Neural networks rely heavily on matrix math 
operations , and complex multi - layered networks require 
tremendous amounts of floating - point performance and 
bandwidth for both efficiency and speed . With thousands of 
processing cores , optimized for matrix math operations , and 
delivering tens to hundreds of TFLOPS of performance , the 
PPU 300 is a computing platform capable of delivering 
performance required for deep neural network - based artifi 
cial intelligence and machine learning applications . 

[ 0115 ] In the context of the present description , a single 
semiconductor platform may refer to a sole unitary semi 
conductor - based integrated circuit fabricated on a die or 
chip . It should be noted that the term single semiconductor 
platform may also refer to multi - chip modules with 
increased connectivity which simulate on - chip operation 
and make substantial improvements over utilizing a conven 
tional bus implementation . Of course , the various circuits or 
devices may also be situated separately or in various com 
binations of semiconductor platforms per the desires of the 
user . Alternately , the parallel processing module 525 may be 
implemented as a circuit board substrate and each of the 
PPUs 300 and / or memories 304 may be packaged devices . 
In one embodiment , the CPU 530 , switch 510 , and the 
parallel processing module 525 are situated on a single 
semiconductor platform . 
10116 ] . In one embodiment , the signaling rate of each 
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300 
includes six NVLink 310 interfaces ( as shown in FIG . 5B , 
five NVLink 310 interfaces are included for each PPU 300 ) . 
Each NVLink 310 provides a data transfer rate of 25 
Gigabytes / second in each direction , with six links providing 
300 Gigabytes / second . The NVLinks 310 can be used exclu 
sively for PPU - to - PPU communication as shown in FIG . 5B , 
or some combination of PPU - to - PPU and PPU - to - CPU , 
when the CPU 530 also includes one or more NVLink 310 
interfaces . 
[ 0117 ] In one embodiment , the NVLink 310 allows direct 
load / store / atomic access from the CPU 530 to each PPU ' s 
300 memory 304 . In one embodiment , the NVLink 310 
supports coherency operations , allowing data read from the 
memories 304 to be stored in the cache hierarchy of the CPU 
530 , reducing cache access latency for the CPU 530 . In one 
embodiment , the NVLink 310 includes support for Address 
Translation Services ( ATS ) , allowing the PPU 300 to 
directly access page tables within the CPU 530 . One or more 
of the NVLinks 310 may also be configured to operate in a 
low - power mode . 
( 0118 ] FIG . 5C illustrates an exemplary system 565 in 
which the various architecture and / or functionality of the 
various previous embodiments may be implemented . The 
exemplary system 565 may be configured to implement the 
method 100 shown in FIG . 1A and / or the method 200 shown 
in FIG . 2A . 
[ 0119 ] As shown , a system 565 is provided including at 
least one central processing unit 530 that is connected to a 
communication bus 575 . The communication bus 575 may 
be implemented using any suitable protocol , such as PCI 
( Peripheral Component Interconnect ) , PCI - Express , AGP 
( Accelerated Graphics Port ) , HyperTransport , or any other 
bus or point - to - point communication protocol ( s ) . The sys 
tem 565 also includes a main memory 540 . Control logic 
( software ) and data are stored in the main memory 540 
which may take the form of random access memory ( RAM ) . 
[ 0120 ] The system 565 also includes input devices 560 , 
the parallel processing system 525 , and display devices 545 , 
i . e . a conventional CRT ( cathode ray tube ) , LCD ( liquid 
crystal display ) , LED ( light emitting diode ) , plasma display 
or the like . User input may be received from the input 
devices 560 , e . g . , keyboard , mouse , touchpad , microphone , 
and the like . Each of the foregoing modules and / or devices 
may even be situated on a single semiconductor platform to 
form the system 565 . Alternately , the various modules may 

Exemplary Computing System 
[ 0113 ] Systems with multiple GPUs and CPUs are used in 
a variety of industries as developers expose and leverage 
more parallelism in applications such as artificial intelli 
gence computing . High - performance GPU - accelerated sys 
tems with tens to many thousands of compute nodes are 
deployed in data centers , research facilities , and supercom 
puters to solve ever larger problems . As the number of 
processing devices within the high - performance systems 
increases , the communication and data transfer mechanisms 
need to scale to support the increased bandwidth . 
[ 0114 ] FIG . 5B is a conceptual diagram of a processing 
system 500 implemented using the PPU 300 of FIG . 3 , in 
accordance with one embodiment . The exemplary system 
565 may be configured to implement the method 100 shown 
in FIG . 1A and / or the method shown in FIG . 2A . The 
processing system 500 includes a CPU 530 , switch 510 , and 
multiple PPUS 300 each and respective memories 304 . The 
NVLink 310 provides high - speed communication links 
between each of the PPUS 300 . The switch 510 interfaces 
between the interconnect 302 and the CPU 530 . The PPUS 
300 , memories 304 , and NVLinks 310 may be situated on a 
single semiconductor platform to form a parallel processing 
module 525 . 
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also be situated separately or in various combinations of 
semiconductor platforms per the desires of the user . 
[ 0121 ] Further , the system 565 may be coupled to a 
network ( e . g . , a telecommunications network , local area 
network ( LAN ) , wireless network , wide area network 
( WAN ) such as the Internet , peer - to - peer network , cable 
network , or the like ) through a network interface 535 for 
communication purposes . 
[ 0122 ] The system 565 may also include a secondary 
storage ( not shown ) . The secondary storage 610 includes , 
for example , a hard disk drive and / or a removable storage 
drive , representing a floppy disk drive , a magnetic tape 
drive , a compact disk drive , digital versatile disk ( DVD ) 
drive , recording device , universal serial bus ( USB ) flash 
memory . The removable storage drive reads from and / or 
writes to a removable storage unit in a well - known manner . 
[ 0123 ] Computer programs , or computer control logic 
algorithms , may be stored in the main memory 540 and / or 
the secondary storage . Such computer programs , when 
executed , enable the system 565 to perform various func 
tions . The memory 540 , the storage , and / or any other storage 
are possible examples of computer - readable media . 
[ 0124 The architecture and / or functionality of the various 
previous figures may be implemented in the context of a 
general computer system , a circuit board system , a game 
console system dedicated for entertainment purposes , an 
application - specific system , and / or any other desired sys 
tem . For example , the system 565 may take the form of a 
desktop computer , a laptop computer , a tablet computer , 
servers , supercomputers , a smart - phone ( e . g . , a wireless , 
hand - held device ) , personal digital assistant ( PDA ) , a digital 
camera , a vehicle , a head mounted display , a hand - held 
electronic device , a mobile phone device , a television , 
workstation , game consoles , embedded system , and / or any 
other type of logic . 
[ 0125 ] While various embodiments have been described 
above , it should be understood that they have been presented 
by way of example only , and not limitation . Thus , the 
breadth and scope of a preferred embodiment should not be 
limited by any of the above - described exemplary embodi 
ments , but should be defined only in accordance with the 
following claims and their equivalents . 
What is claimed is : 
1 . A computer - implemented method , comprising : 
generating a first pyramidal set of features for a first 
image ; 

computing , by a neural network , a partial cost volume for 
a level of the first pyramidal set of features using 
features at the level of the first pyramidal set of features 
and warped features extracted from a second image , 
wherein the partial cost volume is computed across a 
limited range of pixels that is less than a full resolution 
of the first image , in pixels , at the level ; and 

processing , by the neural network , the features and the 
partial cost volume to produce an optical flow estimate 
for the first image and the second image . 

2 . The computer - implemented method of claim 1 , 
wherein the features extracted from the second image are 
included in a second pyramidal set of features extracted 
from the second image . 

3 . The computer - implemented method of claim 2 , 
wherein the features extracted from the second image for the 
level of the second pyramidal set of images are warped 
toward the features extracted from the first image using an 

optical flow estimate for a second level of the first pyramidal 
set of images to produce the warped features . 

4 . The computer - implemented method of claim 1 , further 
comprising : 

convolving the first image with overlapping filters to 
extract the features for a first level of the first pyramidal 
set of features ; 

convolving the first level with additional filters to extract 
the features for a subsequent level of the first pyramidal 
set of features ; and 

the convolving the subsequent level with additional filters 
to extract the features for another subsequent level of 
the first pyramidal set of features until a last level of the 
first pyramidal set of features is generated . 

5 . The computer - implemented method of claim 1 , 
wherein a single layer of the neural network generates the 
warped features . 

6 . The computer - implemented method of claim 1 , The 
computer - implemented method of claim 1 , wherein the 
neural network is a convolutional neural network . 

7 . The computer - implemented method of claim 1 , 
wherein a single layer of the neural network computes the 
partial cost function . 

8 . The computer - implemented method of claim 1 , 
wherein the optical flow estimate is computed based on a 
previous optical flow estimate produced using a previous 
level of the first pyramidal set of features . 

9 . The computer - implemented method of claim 8 , further 
comprising upscaling the previous optical flow estimate 
before computing the optical flow estimate . 

10 . The computer - implemented method of claim 9 , 
wherein an initial optical flow estimate of zero is used to 
compute the previous optical flow estimate . 

11 . The computer - implemented method of claim 8 , further 
comprising repeating the computing and processing for each 
level in the first pyramidal set of features . 

12 . The computer - implemented method of claim 1 , 
wherein the second image is after the first image in a video 
sequence . 

13 . The computer - implemented method of claim 1 , fur 
ther comprising processing the optical flow estimate by a 
context network to produce a refined optical flow estimate . 

14 . A system , comprising : 
a parallel processing unit configured to implement a 

neural network and a pyramidal image feature structure 
generator , wherein 
the pyramidal image feature structure generator is 

configured to generate a first pyramidal set of fea 
tures for a first image and 

the neural network is configured to generate an optical 
flow estimate for the first image and a second image 
by : 
computing a partial cost volume for a level of the 

first pyramidal set of features using features at the 
level of the first pyramidal set of features and 
warped features extracted from the second image , 
wherein the partial cost volume is computed 
across a limited range of pixels that is less than a 
full resolution of the first image , in pixels , at the 
level ; and 

processing the features and the partial cost volume to 
produce an optical flow estimate for the first image 
and the second image . 



US 2018 / 0293737 A1 Oct . 11 , 2018 
13 

15 . The system of claim 14 , wherein the pyramidal image 
feature structure generator is further configured to generate 
a second pyramidal set of features for the second image that 
includes the features extracted from the second image . 

16 . The system of claim 15 , further comprising a warping 
layer that is configured to warp the features extracted from 
the second image for the level of the second pyramidal set 
of images toward the features extracted from the first image 
using an optical flow estimate for a second level of the first 
pyramidal set of images to produce the warped features . 

17 . The system of claim 14 , wherein the pyramidal image 
feature structure generator generates the first pyramidal set 
of features for a first image by : 

convolving the first image with overlapping filters to 
extract the features for a first level of the first pyramidal 
set of features ; 

convolving the first level with additional filters to extract 
the features for a subsequent level of the first pyramidal 
set of features ; and 

the convolving the subsequent level with additional filters 
to extract the features for another subsequent level of 
the first pyramidal set of features until a last level of the 
first pyramidal set of features is generated . 

18 . The system of claim 14 , wherein a single layer of the 
neural network generates the warped features . 

19 . The system of claim 14 , wherein the neural network 
is a convolutional neural network . 
20 . A non - transitory computer - readable media storing 

computer instructions for estimating optical flow that , when 
executed by a processor , cause the processor to perform the 
steps of : 

generating a first pyramidal set of features for a first 
image ; 

computing , by a neural network , a partial cost volume for 
a level of the first pyramidal set of features using 
features at the level of the first pyramidal set of features 
and warped features extracted from a second image , 
wherein the partial cost volume is computed across a 
limited range of pixels that is less than a full resolution 
of the first image , in pixels , at the level ; and 

processing , by the neural network , the features and the 
partial cost volume to produce an optical flow estimate 
for the first image and the second image . 

* * * * * 


