
THAI MAITINIU A UN ALTRO DE LA DIONAUT MINIMUM US 20180288431A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0288431 A1

Liu et al . (43) Pub . Date : Oct . 4 , 2018

(54) SYSTEM AND METHOD FOR CONTENT
AND MOTION CONTROLLED ACTION
VIDEO GENERATION (52)

(71) Applicant : NVIDIA Corporation , Santa Clara , CA
(US)

GO6N 3 / 08 (2006 . 01)
G06T 13 / 40 (2006 . 01)
U . S . CI .
CPC H04N 19 / 521 (2014 . 11) ; G06K 9 / 00201

(2013 . 01) ; G06N 3 / 08 (2013 . 01) ; G06T
2207 / 30196 (2013 . 01) ; G06T 13 / 40 (2013 . 01) ;
GO6T 2207 / 20081 (2013 . 01) ; G06K 9 / 00281

(2013 . 01)
(72) Inventors : Ming - Yu Liu , Sunnyvale , CA (US) ;

Xiaodong Yang , San Jose , CA (US) ;
Jan Kautz , Lexington , MA (US) ;
Sergey Tulyakov , Santa Clara , CA (US)

(21) Appl . No . : 15 / 939 , 098 ABSTRACT (57)

(22) Filed : Mar . 28 , 2018
Related U . S . Application Data

(60) Provisional application No . 62 / 480 , 094 , filed on Mar .
31 , 2017 .

A method , computer readable medium , and system are
disclosed for action video generation . The method includes
the steps of generating , by a recurrent neural network , a
sequence of motion vectors from a first set of random
variables and receiving , by a generator neural network , the
sequence of motion vectors and a content vector sample . The
sequence of motion vectors and the content vector sample
are sampled by the generator neural network to produce a
video clip .

(51)
Publication Classification

Int . Cl .
H04N 19 / 513 (2006 . 01)
G06K 9 / 00 (2006 . 01)

Content subspace Motion subspace
103

wy ,

- * * * * *

in

his Street 102
104

Patent Application Publication Oct . 4 , 2018 Sheet 1 of 14 US 2018 / 0288431 A1

Content subspace Motion subspace
103

w ww is internating
e Efeito Han en th

in stinn
HITS tv httientin 102

101 104
RY Fig . IA

102 + 103

101 - 103
Fig . 1B

102 + 104

oldala
DUOJU iii

101 + 104
Fig . 1C

Patent Application Publication Oct . 4 , 2018 Sheet 2 of 14 US 2018 / 0288431 A1

105 + 107

106 + 107

Fig . ID

105 + 108

106 + 108
yo Fig . 1E

Patent Application Publication Oct . 4 , 2018 Sheet 3 of 14 US 2018 / 0288431 A1

Start

Generate , by a recurrent neural
network , a sequence of motion

vectors from a first set of
random variables

110

Receive , by a generator neural
network , the sequence of motion

vectors and a content vector
sample

120

Process the sequence of motion
vectors and the content vector
sample by the generator neural
network to produce a video clip

130

End
Fig . 1F

200 200

US 2018 / 02884311

x (2)

= 6] # * .

220

326

???

230 - 230

g

0ct . 4 , 2018 Sheet 4 of 14

Z — + Dv??

-

Fig . 24

, , ,

? ?

?

,

?

• •

,

205

- 215 215

?

????
???????? ?

Sr

?????

???????????????????

• • •

• •

• • •t • •

•

• • • ?? ? • • ?

• • , ? ? • • ; ; • •

• •

i + : •

,

• • • +

? , , ,

Patent Application Publication

,

??)

RM ?

?

,

,

,

? ?

r

,

?

?

?

?

?

,

,

,

,

,

,

, ,

, ,

,

,

,

,

,

,

, ,

,

,

,

,

,

, , ? , , , ?

??

210

Patent Application Publication Oct . 4 , 2018 Sheet 5 of 14 US 2018 / 0288431 A1

240
Start

110 sample a real video to
produce real images

242

sample the real video to
produce real video clips

243

120

130

sample the video
clip to produce
image frames

sample the video
clip to produce sets
of sequential frames

250 245

Process the image frames and
the real images by an image
discriminator to generate

updated parameters for the
generator neural network

260

Process the sets of sequential
frames by a video discriminator
to generate updated parameters
for the RNN and the generator

neural network
262

End

Fig . 2B

Patent Application Publication Oct . 4 , 2018 Sheet 6 of 14 US 2018 / 0288431 A1

265
Start

1
110 110
120 120
130 130

Generate , by the recurrent neural
network , an additional sequence of
motion vectors from a second set of

random variables
270

Process the additional sequence
of motion vectors and the

content vector sample by the
generator neural network to

produce an additional video clip
275

(End)

Fig . 2C

Patent Application Publication Oct . 4 , 2018 Sheet 7 of 14 US 2018 / 0288431 A1

280 280
Start A Start

110

120

130

Receive , by the generator neural
network , an additional content

vector sample
285

Process the first sequence of
motion vectors and the additional

content vector sample by the
generator neural network to

produce an additional video clip
290

End
Fig . 2D

Patent Application Publication Oct . 4 , 2018 Sheet 8 of 14 US 2018 / 0288431 A1

255

(0) ZC RM
212 220

= 26 .
JLM FG) ,

(K)
UM 02 FG) (K) , wwwwwwwwwww Grk)

4 4 4 4 4 4 4 4 4 4 * * * * * *

Fig . 2E

Kangen annan

3041Y)
Memory

NVLink 310

302

www www

Patent Application Publication

E

de

med

e

}

330
Hub

305
1 / 0 Unit

Fig . 3

Memory Partition Unit 380 (U)

Oct . 4 , 2018 Sheet 9 of 14

XBar 370

350 (X)
GPC

.

.

.

325
Work Distribution Unit

320
Scheduler Unit

315
Front End Unit

PPU 300

US 2018 / 0288431 A1

*

* * *

1111111101114444444444444
1

11111 * * * * * * * * * 444444

Patent Application Publication Oct . 4 , 2018 Sheet 10 of 14 US 2018 / 0288431 A1

To / From XBar 370

GPC 350

PROP Pipeline Manager
410 415

w

imi vine MPC
430 in

mi is si
Primitive
Engine
435

?? ??? ??
wisi in

??

SM ?? ??
Raster Engine

425 ??

440 ??

ini viss

?? ?? ?? ?? ??? ?? ?? wir

ini DPC 420 (V) ber e serveerd
wym wwwwwwwwwwwwwww
Lawwi we we het

ini

ini
w w ww . w wing

WDX
480

MMU 490

To / From XBar 370 To / From XBar 370

Fig . 4A

Patent Application Publication Oct . 4 , 2018 Sheet 11 of 14 US 2018 / 0288431 A1

To / From
XBar 370

Memory Partition Unit
380

ROP 450

L2 Cache 460 To / From
XBar 370

: :

:

: : :

:

:

: :

:

:

:

: : : Memory Interface
470

To / From
Memory 304

Fig . 4B

Patent Application Publication Oct . 4 , 2018 Sheet 12 of 14 US 2018 / 0288431 A1

SM 440

Instruction Cache 505

Scheduler Unit 510 (K) whether
the

mother to

Dispatch 515 whether wwwwwwwwwwwwwww than

whether

own unter and were were tren we went tout le western w a reness we were were were weren t sure w were were where well

Register File 520

Core
550 (L - 1)

SFU
552 (M - 1)

{ ??
554 (N - 1) i

wag on www
with w ith or

L on w
with

ww
www www Liiwi wamp wann man

wwwwww www mong
was man now

many women whommen when
manga wamm manna

wwwhhom mohohoto went
en mano naman mann
where morning www www without

Interconnect Network 580

Shared Memory / L1 Cache 570

Fig . 5A

Patent Application Publication Oct . 4 , 2018 Sheet 13 of 14 US 2018 / 0288431 A1

500

CPU 530
302 302

Switch 510

304 PPU 300 PPU 300 304
4 . . .

NVLink
310

304 PPU 300 PPU 300 304

Parallel Processing Module
525

Fig . 5B

-

- -

- -

- -

- -

- -

- = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - = - = -

= - =

.

* *

* * *

535

Patent Application Publication

Interface
Network

304

304

WY
PPU 300 m

PPU 300

CPU 530

540
Memory
Main

525

Fig . 5C

Switch 510

545
Devices
Display

Oct . 4 , 2018 Sheet 14 of 14

PPU 300

PPU 300

560
Devices
Input

304

304

302

, 575

fremmesidente
565

310
NVLink

US 2018 / 0288431 A1

US 2018 / 0288431 A1 Oct . 4 , 2018

SYSTEM AND METHOD FOR CONTENT
AND MOTION CONTROLLED ACTION

VIDEO GENERATION

CLAIM OF PRIORITY
[0001] This application claims the benefit of U . S . Provi
sional Application No . 62 / 480 , 094 (Attorney Docket No .
NVIDP1159 + / 17SC0061US01) titled “ Content and Motion
Controlled Action Video Generation , ” filed Mar . 31 , 2017 ,
the entire contents of which is incorporated herein by
reference .

FIELD OF THE INVENTION
[0002] The present invention relates to video generation ,
and more particularly to content and motion controlled
action video generation .

BACKGROUND
[0003] Deep generative models have recently received an
increasing amount of attention , not only because deep gen
erative models provide a means to learn deep feature rep
resentations in an unsupervised manner that can potentially
leverage all the unlabeled images on Internet for training ,
but also because they can be used to generate novel images
useful for various vision applications . As steady progress
toward better image generation is made , it is also important
to study the video generation problem . However , the exten
sion from generating images to generating videos turns out
to be a highly challenging task , although the generated data
has just one more dimension — the time dimension .
0004 The video generation problem may be a much

harder problem for the following reasons . First , since a
video is a spatio - temporal recording of visual information of
objects performing various actions , a generative model
needs to learn the plausible physical motion models of
objects in addition to learning appearance models for the
objects . If the learned object motion model is incorrect , the
generated video may contain objects performing physically
impossible motion . Second , the time dimension brings in a
huge amount of variations . Consider the speed variations
that a person can have as performing a squat movement .
Each speed pattern results in a different video , although the
appearances of the human in the videos are the same . Third ,
as human beings have evolved to be rather sensitive to
motion , motion artifacts are particularly perceptible .
[0005] There is a need for addressing these issues and / or
other issues associated with the prior art .

[0008] FIG . 1B illustrates video clips generated using
different points in the content subspace and a single motion
trajectory in the motion subspace , in accordance with one
embodiment .
[0009] FIG . 1C illustrates video clips generated using the
different points in the content subspace shown in FIG . 1B
and a second motion trajectory in the motion subspace , in
accordance with one embodiment .
[0010] FIG . 1D illustrates video clips generated using
different points in a second content subspace and a single
motion trajectory in a second motion subspace , in accor
dance with one embodiment .
[0011] FIG . 1E illustrates video clips generated using the
different points in the second content subspace shown in
FIG . 1D and a second motion trajectory in the second
motion subspace , in accordance with one embodiment .
[0012] FIG . 1F illustrates a flowchart of a method for
generating a video clip , in accordance with one embodiment .
[00131 FIG . 2A illustrates a block diagram of a video
generation system , in accordance with one embodiment .
[0014] . FIG . 2B illustrates a flowchart of a method for
training the video generation system , in accordance with one
embodiment .
[0015] FIG . 2C illustrates another flowchart of a method
for generating a video clip , in accordance with one embodi
ment .
[0016] FIG . 2D illustrates another flowchart of a method
for generating a video clip , in accordance with one embodi
ment .
[0017] FIG . 2E illustrates another block diagram of a
video generation system , in accordance with one embodi
ment .
10018] FIG . 3 illustrates a parallel processing unit , in
accordance with one embodiment .
[0019] FIG . 4A illustrates a general processing cluster
within the parallel processing unit of FIG . 3 , in accordance
with one embodiment .
[0020] FIG . 4B illustrates a memory partition unit of the
parallel processing unit of FIG . 3 , in accordance with one
embodiment .

[0021] FIG . 5A illustrates the streaming multi - processor
of FIG . 4A , in accordance with one embodiment .
[0022] FIG . 5B is a conceptual diagram of a processing
system implemented using the PPU of FIG . 3 , in accordance
with one embodiment .
[0023] FIG . 5C illustrates an exemplary system in which
the various architecture and / or functionality of the various
previous embodiments may be implemented .

SUMMARY
[0006] A method , computer readable medium , and system
are disclosed for generating a video clip . A recurrent neural
network generates a sequence of motion vectors from a first
set of random variables and a generator neural network
receives the sequence of motion vectors and a content vector
sample . The sequence of motion vectors and the content
vector sample are processed by the generator neural network
to produce a video clip .

DETAILED DESCRIPTION
[0024] A video clip may be considered to be a point in a
latent space and a generative adversarial network framework
may be used to learn a mapping from the latent space to
video clips . However , assuming a video clip is a point in the
latent space unnecessarily increases the complexity of the
video generation problem because videos of the same action
with different execution speed are represented by different
points in the latent space . Moreover , assuming a video clip
is a point in the latent space forces every generated video
clip to have the same length , while the length of real - world
video clips varies . An alternative approach assumes a latent
space of images and considers that a video clip is generated

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG . 1A is a conceptual diagram illustrating an
image latent space divided into a content subspace and a
motion subspace , in accordance with one embodiment .

US 2018 / 0288431 A1 Oct . 4 , 2018

by traversing the points in the latent space . Video clips of
different lengths correspond to latent space trajectories of
different lengths .
[0025] . In addition , as videos are about objects (content)
performing actions (motion) , the latent space of images
should be further decomposed into two subspaces , where the
deviation of a point in the first subspace (the content
subspace) leads content changes in a video clip and the
deviation in the second subspace (the motion subspace)
results in temporal motions . Through this modeling , videos
of the same action executed with different speeds can be
generated by traversing the same trajectory in the motion
space with different speeds .
[0026] FIG . 1A is a conceptual diagram illustrating an
image latent space divided into a content subspace and a
motion subspace , in accordance with one embodiment . A
first content vector sample 101 and a second content vector
sample 102 may be used to generate two different video clips
using a single motion trajectory defined by a sequence of
motion vectors . A first motion trajectory 103 and a second
motion trajectory 104 are each sampled in the motion
subspace to produce two different sequences of motion
vectors . A single content vector sample may be used to
generate two different video clips using each of the motion
trajectories 103 and 104 .
[0027] Decomposing motion and content allows a more
controlled video generation process . By changing the con
tent representation while fixing the motion trajectory , video
clips may be generated of different objects performing the
same motion . By sampling different points in the content
subspace and the same motion trajectory in the motion
subspace , video clips may be generated of different objects
performing the same motion .
[0028] FIG . 1B illustrates video clips generated using
different points in the content subspace and a single motion
trajectory in the motion subspace , in accordance with one
embodiment . Images in the upper row of FIG . 1B are
generated using the second content vector sample 102 and
the first motion trajectory 103 . In one embodiment , as shown
in FIG . 1B , the first motion trajectory 103 corresponds to an
expression of fear . Images in the lower row of FIG . 1B are
generated using the first content vector sample 101 and the
first motion trajectory 103 .
[0029] FIG . 1C illustrates video clips generated using the
different points in the content subspace shown in FIG . 1B
and a second motion trajectory in the motion subspace , in
accordance with one embodiment . As shown in FIGS . 1B
and 1C , different video clips may be generated of the same
object performing different motion by applying a different
trajectory in the motion subspace to the same content vector
sample 101 or 102 . In one embodiment , as shown in FIG .
1C , the first motion trajectory 104 corresponds to an expres
sion of disgust . Images in the upper row of FIG . 1C are
generated using the second content vector sample 102 and
the second motion trajectory 104 . Images in the lower row
of FIG . 1C are generated using the first content vector
sample 101 and the second motion trajectory 104 . By
changing motion trajectories while fixing the content rep
resentation , videos may be generated of the same object
performing different motion .
[0030] FIG . ID illustrates video clips generated using
different points in a second content subspace and a single
motion trajectory in a second motion subspace , in accor
dance with one embodiment . In one embodiment , as shown

in FIG . 1D , a third motion trajectory 107 corresponds to a
motion of waving one hand . Images in the upper row of FIG .
1D are generated using a third content vector sample 105
and the third motion trajectory 107 . Images in the lower row
of FIG . 1D are generated using the fourth content vector
sample 106 and the third motion trajectory 107 . Video clips
may be generated of different objects performing the same
motion by applying the same motion trajectory in the motion
subspace to different sampled points in the content subspace .
[0031] FIG . 1E illustrates video clips generated using the
different points in the second content subspace shown in
FIG . 1D and a fourth motion trajectory in the second motion
subspace , in accordance with one embodiment . As shown in
FIGS . 1D and 1E , different video clips may be generated of
the same object performing different motion by applying a
different trajectory in the second motion subspace to the
same content vector sample 105 or 106 . In one embodiment ,
as shown in FIG . 1E , the fourth motion trajectory 108
corresponds to waving two hands . Images in the upper row
of FIG . 1E are generated using the third content vector
sample 105 and the fourth motion trajectory 108 . Images in
the lower row of FIG . 1E are generated using the fourth
content vector sample 106 and the fourth motion trajectory
108 .
[0032] A video generation framework , such as Motion and
Content decomposed Generative Adversarial Network
(MOCOGAN) framework , may be used for video generation
using a motion and content decomposed representation of
the image latent space , where each latent code represents an
image . In one embodiment , the video generation framework
generates a video clip by sequentially generating video
frames . At each time step (e . g . , frame) , an image generative
network maps a random vector to an image . The random
vector consists of two parts where the first is sampled from
the content subspace and the second is sampled from the
motion subspace . The content component represents the
objects present in the video clip and the motion component
represents the object dynamics .
[0033] FIG . 1F illustrates a flowchart of a method 100 for
generating a video clip , in accordance with one embodiment .
Although method 100 is described in the context of a video
generation system , the method 100 may also be performed
by a program , custom circuitry , or by a combination of
custom circuitry and a program . For example , the method
100 may be executed by a GPU (graphics processing unit) ,
CPU (central processing unit) , or any processor capable of
implementing a recurrent neural network (RNN) and a
generator neural network . Furthermore , persons of ordinary
skill in the art will understand that any system that performs
method 100 is within the scope and spirit of embodiments of
the present invention .
[0034] At step 110 , an RNN included in the video gen
eration system generates a sequence of motion vectors from
a first set of random variables . In one embodiment , network
parameters used by the RNN to sample the motion subspace
and produce the sequence of motion vectors are learned
during training . Despite lacking supervision regarding the
decomposition of motion and content in natural videos , in
one embodiment , the video generation system can learn to
disentangle these two components using an adversarial
training scheme . In one embodiment , the adversarial training
scheme includes both image and video discriminators and is
used to train the RNN and a generator neural network . The

US 2018 / 0288431 A1 Oct . 4 , 2018

short video clip , the same realization , Zc , is used for gen
erating different frames in a video clip . Motion in the video
clip is modeled by a trajectory (i . e . , path) in the motion
subspace Zm . The sequence of vectors for generating a video
is represented by

baby . . . , ") = () LLUM UM

combination of the generator neural network and discrimi
nators forms a generative adversarial network (GAN) .
[0035] At step 120 , the generator neural network included
in the video generation system receives the sequence of
motion vectors and a content vector sample . Because con -
tent in a short video clip usually remains the same , in one
embodiment , the content subspace is modeled using a
Gaussian distribution and the same realization may be used
to generate each frame in the video clip . In one embodiment ,
an encoder generates the content vector sample based on
identified content . In other words , a content vector sample
for a particular animal , adult or child , man or women , etc . ,
may be selected by the encoder .
[0036] . At step 130 , the sequence of motion vectors and the
content vector sample are processed by the generator neural
network to produce a video clip . The objective of the
generator neural network is to generate images resembling
real images . In one embodiment , the video generation sys
tem also includes at least one of an image and video
discriminator that distinguishes real images from generated
ones . The discriminator (s) is used to train the generator
neural network to generate images that appear to be real . In
one embodiment , the generator neural network and discrimi
nator (s) in the GAN may each be implemented as convolu
tional neural networks (CNNs) . After being trained , the
RNN and generator neural network may be deployed to
generate realistic video clips with controlled content and
motion and varying numbers of frames .
[0037] More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may or may not be imple
mented , per the desires of the user . It should be strongly
noted that the following information is set forth for illus
trative purposes and should not be construed as limiting in
any manner . Any of the following features may be optionally
incorporated with or without the exclusion of other features
described .
[0038] A latent space of images Z = Rd where each point
ZEZ , represents an image , and a video of K frames is
represented by a path of length K in the latent space , [z 1) ,
. . . , zk] . The value of K can vary to control the length of
the video clip that is generated . Therefore , videos of differ
ent lengths can be generated by paths of different lengths .
Moreover , videos of the same action executed with different
speeds can be generated by traversing the same path in the
latent space with different speeds .
[0039] As previously described in conjunction with FIG .
1A , Z , may be decomposed into the content Zr , and motion
Zm subspaces : ZzZcxZm where Zc = Rac , ZMER AM , and
d = dr + dw . The content subspace models motion - indepen
dent appearance in videos , while the motion subspace mod
els motion - dependent appearance in videos . For example , in
a video of a person smiling , content represents the identity
of the person , while motion represents the changes of facial
muscle configurations of the person . A combination of the
person ' s identity and the facial muscle configuration repre
sents a face image of the person . A sequence of combina
tions represents a video clip of the person smiling . By
swapping the look of the person with the look of another
person , a video of a different person smiling is represented .
[0040] In one embodiment , the content subspace is mod
eled using a Gaussian distribution : Zompz = N (ZIO , ID)
where Id , is an identity matrix of size dcxdc . Based on the
observation that the content remains largely the same in a

where ZcEZc and ZMEZ , for all k ' s . Since not all paths
in Zm correspond to physically plausible motion , the RNN
should learn to generate valid paths .
[0041] FIG . 2A illustrates a block diagram of a video
generation system 200 , in accordance with one embodiment .
The video generation system 200 includes an RNN 210 , a
generator neural network 220 , samplers 205 and 215 , image
discriminator 225 , and video discriminator 230 .
[0042] The content subspace may be sampled once to
produce a fixed content vector sample (zo) while a series of
random variables [Ell) , . . . , E (K] is sampled and mapped
to a sequence of motion vectors (represented as a series of
motion codes [zy (1) , . . . , Zy (K)]) by the RNN (RJ) 210 . The
hidden state of the RNN 210 is h) . In one embodiment , at
each time step , the RNN 210 samples a random motion
vector from a Gaussian distribution E - PEN (EIO , L1 _) of
the random variables and outputs a vector in Zm , which is
used as the motion representation . Let Ruk) be the output
of the recurrent neural network at time k . Then , ZMK) = RM
(k) . Intuitively , the function of the RNN 210 is to map a
sequence of independent and identically distributed (i . i . d .)
random variables [E1) , . . . , Elk)] to a sequence of
correlated random variables [Rm (1) , . . . , RM (1)] represent
ing the dynamics in a video . Injecting noise at every iteration
models uncertainty of the future motion at each timestep . In
one embodiment the RNN 210 is implemented using a
one - layer gated recurrent (GRU) neural network .
[0043] The generator neural network (G) 220 produces a
video clip (V) using the sequence of motion vectors and the
content vector sample , where the video clip includes frames
â (*) , where K is the number of frames . The vectors in Z , are
mapped to images by the generator neural network 220 ,
from a sequence of vectors

to a sequence of images , = [x (1) , . . . , (K)] , where

K = c () IZM

and Zmk) ' s are from the RNN 210 .
[0044] During training , parameters (e . g . , weights) of the
RNN 210 and generator neural network 220 are updated to
improve accuracy of the video generation system 200
(where accuracy means generated video clips are judged by
the discriminators to be real) . The sampler (S) 205 , is a
function that samples a single frame from a video clip and

US 2018 / 0288431 A1 Oct . 4 , 2018

the sampler S , 215 is a function that samples T consecutive
frames of a video clip . The generated video clip and a real
video clip (v from a training dataset) are sampled by the
image sampler 205 and a video sampler 215 . The image
sampler samples individual images from the generated video
clip and the real video clip . The video sampler samples
sequences of consecutive frames from the generated video
clip and the real video clip to produce sets of sequential
frames (i . e . , shorter video clips) . An image discriminator
(D) distinguishes real images from generated images . A
video discriminator (Du) distinguishes real video clips from
generated video clips . D , is the image discriminator 225 and
Dy is the video discriminator 230 . The image discriminator
225 is an image discriminative neural network that is trained
using real and fake images and the video discriminator 230
is a video discriminative neural network that is trained using
real and fake (e . g . , synthesized) videos . The image discrimi
nator 225 and the video discriminator 230 each generate a
true / false output (i . e . , real / not real) .
[0045] The generator neural network 220 can be trained to
synthesize an image that resembles an image x drawn from
a distribution prof real images from a content component of
a random vector input z , where Z = R " . The generator neural
network 220 receives z as an input and outputs an image ,
X = G (z) , that has the same support as x , where the distribu
tion of G 2) is pc . The image discriminator 225 estimates
the probability that an input image is drawn from Px . Ideally ,
Dz (x) = 1 if x ~ Px and Dr = 0 if X ~ PG : Training of the
image discriminator 225 (D) and the video discriminator
230 (Dv) is achieved by solving a minimax problem given
by

samples a real video to produce real images . At step 245 , the
image sampler 205 samples the generated video clip to
produce image frames . At step 243 , the video sampler 215
samples the real video to produce real video clips . At step
250 , the video sampler 215 samples the generated video clip
to produce sets of sequential frames .
[0050] At step 260 , the image discriminator 225 processes
the real images and the image frames to generate updated
parameters for the generator neural network 220 . The image
discriminator 225 processes the image frames to distinguish
the real images from generated image frames and generate
the updated parameters to reduce differences between the
real images and the image frames produced by the generator
neural network 220 . At step 262 , the video discriminator 230
processes the real video clips and the sets of sequential
frames to generate updated parameters for the RNN 210 and
the generator neural network 220 . The video discriminator
230 processes the image frames to distinguish the real
images from generated image frames and generate the
updated parameters to reduce differences between the real
images and the image frames produced by the generator
neural network 220 . Once training is completed the video
generating system 200 may be deployed to generate video
clips .

maxminF (D1 , G)

[0046] where the functional F , is given by
FAD , G) = Ex - pxd - log Df (x)] + Ex - p _ { - log (1 - D (G

(z)))] . (3)

In practice , equation (2) is solved by alternating gradient
update .
10047) Given enough capacity to D , and G , and sufficient
training iterations , the distribution pg , converges to px . As a
result , from a random vector input z , the generator neural
network 220 (G) can synthesize an image that resembles
one drawn from the true distribution , pr .
[0048] FIG . 2B illustrates a flowchart of a method 240 for
training the video generation system 200 , in accordance with
one embodiment . Although method 240 is described in the
context of a video generation system , the method 240 may
also be performed by a program , custom circuitry , or by a
combination of custom circuitry and a program . For
example , the method 100 may be executed by a GPU , CPU ,
or any processor capable of implementing the RNN 210 , the
generator neural network 220 , the image discriminator 225 ,
and the video discriminator 230 . Furthermore , persons of
ordinary skill in the art will understand that any system that
performs method 240 is within the scope and spirit of
embodiments of the present invention .
[0049] The steps 110 , 120 , and 130 are performed as
previously described in conjunction with FIG . 1F . Real
videos are provided during the training phase of the video
generation system 200 . At step 242 , the image sampler 205

10051] Both the image discriminator 225 and the video
discriminator 230 play the role of judge , providing criti
cisms to the RNN 210 and the generator neural network 220 .
The image discriminator 225 is specialized in criticizing the
generator neural network 220 based on individual images .
The image discriminator 225 is trained to determine if a
frame is sampled from a real video clip , V , or from a
generated video clip V . On the other hand , the video dis
criminator 230 provides criticisms to the generator neural
network 220 based on the generated video clip . The video
discriminator 230 takes a fixed length video clip , of T
frames , and decides if a video clip was sampled from a real
video or from . In contrast with the image discriminator
225 , which is based on a CNN architecture , the video
discriminator 230 is based on a spatio - temporal CNN archi
tecture . In one embodiment , the video clip length T is a
hyperparameter that is set to 16 . T can be smaller than the
generated video length K . A video clip of length K can be
divided into K - T + 1 clips in a sliding - window fashion , and
each of the T length sequences can be input to the video
discriminator 230 .
10052] The video discriminator 230 also evaluates the
generated motion . Since the generator neural network 220
has no concept of motion , the criticisms on the motion part
go directly to the RNN 210 . In order to generate a video with
realistic dynamics that fools the video discriminator 230 , the
RNN 210 has to learn to generate a sequence of motion
codes [Zy ' ') , . . . , ZM “)] from a sequence of i . i . d . noise
inputs [Ell) , . . . , EK] in a way such that the generator
neural network 220 can map z (K) = [Zc , ZM ")] to consecutive
frames in a video .
[0053] Ideally , the video discriminator 230 alone should
be sufficient for training the generator neural network 220
and the RNN 210 , because the video discriminator 230
provides feedback on both static image appearance and
video dynamics . However , in one embodiment , using image
discriminator 225 significantly improves the convergence of
the adversarial training . This may be because training the
image discriminator 225 is simpler , as it only needs to focus
on static appearances .

1)

US 2018 / 0288431 A1 Oct . 4 , 2018

[0054] Let py be the distribution of video clips of variable
lengths . Let k be a discrete random variable denoting the
length of a video clip sampled from pr . (In practice , the
distribution of K , termed px , can be estimated by computing
a histogram of video clip length from training data) . To
generate a video , a content vector , zc , and a length , K are
sampled . The RNN 210 is then operated for K steps and , at
each time step , the RNN 210 takes a random variable E as
the input . A generated video is then given by

v = C6 (. . . ((DI
[0055] Recall that image discriminator 225 and the video
discriminator 230 take one frame and T consecutive frames
in a video as input , respectively . In order to represent the
sampling mechanisms , two random access functions , the
image sampler 205 and the video sampler 215 and are
introduced . The image sampler 205 takes a video clip (either
V ~ py or ?mp) and outputs a random frame from the clip ,
while the video sampler 215 takes a video clip and randomly
returns T consecutive frames from the clip . With this nota
tion , the video generation system learning problem is :

max min Fy (D1 , Dy , G1 , Rm) GRy DRM

Where the objective function FD , Dy , G , RM) is
Ey [- log D / (S (v))] + E [- log (1 - D (S ())))] + E [

log D « Sc (v))] + E [- log (1 - D - S (O)))] , (6)

Where E , is a shorthand for E - p , and E , for E - py . In
equation (6) , the first and second terms encourage image
discriminator 225 to output 1 for a video frame from a real
video clip v and 0 for a video frame from a generated one
V . Similarly , the third and fourth terms encourage l) y to
output 1 for T consecutive frames in a real video clip v and
O for T consecutive frames in a generated one ? . The second
and fourth terms encourage the image generator and the
recurrent neural network to produce realistic images and
video sequences of T - consecutive frames , such that no
discriminator can distinguish them from real images and
videos .
[0056] In one embodiment , the video generation system
200 is trained using the alternating gradient update algo
rithm . Specifically , in one step , the image discriminator 225
and the video discriminator 230 are updated while fixing the
generator neural network 220 and the RNN 210 . In the
alternating step , the generator neural network 220 and the
RNN 210 are updated while fixing the image discriminator
225 and the video discriminator 230 .
[0057] FIG . 2C illustrates another flowchart of a method
265 for generating a video clip , in accordance with one
embodiment . Although method 265 is described in the
context of a video generation system , the method 265 may
also be performed by a program , custom circuitry , or by a
combination of custom circuitry and a program . For
example , the method 265 may be executed by a GPU , CPU ,
or any processor capable of implementing the RNN 210 and
the generator neural network 220 . Furthermore , persons of
ordinary skill in the art will understand that any system that

performs method 265 is within the scope and spirit of
embodiments of the present invention .
[0058] The steps 110 , 120 , and 130 are performed as
previously described in conjunction with FIG . 1F . At step
270 , the RNN 210 generates an additional sequence of
motion vectors from a second set of random variables . The
second set of random variables encodes a second path in the
motion subspace . For example , the second set of random
variables may define the motion trajectory 104 while , at step
110 , the first set of random variables defines the motion
trajectory 103 . At step 275 , the generator neural network 220
processes the additional sequence of motion vectors and the
content vector to produce an additional video clip . For
example , the content vector may be the content sample
vector 102 and the video clip and the additional video clip
may be the top rows of FIGS . 1B and 1C , respectively . In
another example , the content vector may be the content
sample vector 101 and the video clip and the additional
video clip may be the bottom rows of FIGS . 1B and 1C ,
respectively .
[0059] FIG . 2D illustrates another flowchart of a method
280 for generating a video clip , in accordance with one
embodiment . Although method 280 is described in the
context of a video generation system , the method 280 may
also be performed by a program , custom circuitry , or by a
combination of custom circuitry and a program . For
example , the method 280 may be executed by a GPU , CPU ,
or any processor capable of implementing the RNN 210 and
the generator neural network 220 . Furthermore , persons of
ordinary skill in the art will understand that any system that
performs method 280 is within the scope and spirit of
embodiments of the present invention .
[0060] The steps 110 , 120 , and 130 are performed as
previously described in conjunction with FIG . 1F . At step
285 , the generator neural network 220 receives an additional
content vector sample . In one embodiment , the additional
content vector sample is different than the content vector
samples received at step 120 . For example , the content
vector sample may correspond to the third content vector
sample 105 while the additional content vector sample
corresponds to the fourth content vector sample 106 shown
in FIGS . 1D and 1E . At step 290 , the generator neural
network 220 processes the first sequence of motion vectors
and the additional content sample vector to produce an
additional video clip . For example , the content vector
sample and the additional content vector sample may be the
third content vector sample 105 and the fourth content
vector sample 106 that are both processed with the motion
trajectory vector 107 or 108 to produce the video clips
shown in FIGS . 1D and 1E , respectively . In another
example , the content vector may be the content sample
vector 101 and the video clip and the additional video clip
may be the bottom rows of FIGS . 1B and 1C , respectively .
[0061] FIG . 2E illustrates a block diagram of a video
generation system 255 , in accordance with one embodiment .
The video generation system 255 includes the RNN 212 and
the generator neural network 220 . During training , the video
generation system 255 also includes the samplers 205 and
215 , image discriminator 225 , and video discriminator 230 .
[0062] Dynamics in videos are often categorical (e . g . ,
discrete action categories : walking , running , jumping , etc .) .
Examples of an action categories are facial expressions or
motion directions . In one embodiment , the input to the RNN
210 is augmented with a categorical random variable , Zg . In

US 2018 / 0288431 A1 Oct . 4 , 2018

101
one embodiment , Z , is a one - hot vector . For example , when
six different facial expressions are available the one - hot
vector for the facial expression category comprises 6 bits ,
one bit for each label . In one embodiment , Z , is fixed since
the action category in a short video remains the constant .
The input to the RNN 210 is then given by

ZA -)
To relate za to the true action category , the objective function
in equation (6) may be augmented to F (D1 , D G ,
Rw + L (G , Q) where L , is a lower bound of the mutual
information between the generated video clip and Za , a is a
hyperparameter , and the auxiliary distribution Q (which
approximates the distribution of the action category variable
conditioning on the video clip) is implemented by adding a
softmax layer to the last feature layer of the video discrimi
nator 230 . In one embodiment , à = 1 . Note that when the
labeled training data are available , Q can be trained to output
the category label for a real input video clip to further
improve the performance .
[0063] In one embodiment , the generator neural network
220 in the video generation system 200 is replaced with an
encoder - decoder architecture , where the encoder produces
the content code Zc and the initial motion code z (0)
Subsequent motion codes are produced by the RNN 210 and
concatenated with the content code to generate each frame .
In other words , the input is an image and the output is a
video clip .
[0064] Given sufficient video training data , the video
generation system 200 automatically learns to disentangle
motion from content in an unsupervised manner . For
instance , given videos of people performing different facial
expressions , the video generation system 200 learns to
separate a person ' s identity from their expression , thus
allowing synthesis of a new video clip of a person perform
ing different expressions , or fixing the expression and gen
erating various identities . The video clip generation is
enabled by a generative adversarial network , which gener
ates a video clip by sequentially generating video frames .
Each video frame is generated from a random vector , which
consists of two parts , one signifying content and one signi
fying motion . The content subspace is modeled with a
Gaussian distribution , whereas the motion subspace is mod
eled with the RNN 210 . The content subspace and motion
subspace are sampled in order to synthesize each video
frame .

device such as a liquid crystal display (LCD) device . In
other embodiments , the PPU 300 may be utilized for per
forming general - purpose computations . While one exem
plary parallel processor is provided herein for illustrative
purposes , it should be strongly noted that such processor is
set forth for illustrative purposes only , and that any proces
sor may be employed to supplement and / or substitute for the
same
[0066] One or more PPUs 300 may be configured to
accelerate thousands of High Performance Computing
(HPC) , data center , and machine learning applications . The
PPU 300 may be configured to accelerate numerous deep
learning systems and applications including autonomous
vehicle platforms , deep learning , high - accuracy speech ,
image , and text recognition systems , intelligent video ana
lytics , molecular simulations , drug discovery , disease diag
nosis , weather forecasting , big data analytics , astronomy ,
molecular dynamics simulation , financial modeling , robot
ics , factory automation , real - time language translation ,
online search optimizations , and personalized user recom
mendations , and the like .
[0067] As shown in FIG . 3 , the PPU 300 includes an
Input / Output (I / O) unit 305 , a front end unit 315 , a scheduler
unit 320 , a work distribution unit 325 , a hub 330 , a crossbar
(Xbar) 370 , one or more general processing clusters (GPCs)
350 , and one or more partition units 380 . The PPU 300 may
be connected to a host processor or other PPUS 300 via one
or more high - speed NVLink 310 interconnect . The PPU 300
may be connected to a host processor or other peripheral
devices via an interconnect 302 . The PPU 300 may also be
connected to a local memory comprising a number of
memory devices 304 . In one embodiment , the local memory
may comprise a number of dynamic random access memory
(DRAM) devices . The DRAM devices may be configured as
a high - bandwidth memory (HBM) subsystem , with multiple
DRAM dies stacked within each device .
10068] The NVLink 310 interconnect enables systems to
scale and include one or more PPUS 300 combined with one
or more CPUs , supports cache coherence between the PPUS
300 and CPUs , and CPU mastering . Data and / or commands
may be transmitted by the NVLink 310 through the hub 330
to / from other units of the PPU 300 such as one or more copy
engines , a video encoder , a video decoder , a power man
agement unit , etc . (not explicitly shown) . The NVLink 310
is described in more detail in conjunction with FIG . 5A .
[0069] The I / O unit 305 is configured to transmit and
receive communications (i . e . , commands , data , etc .) from a
host processor (not shown) over the interconnect 302 . The
1 / 0 unit 305 may communicate with the host processor
directly via the interconnect 302 or through one or more
intermediate devices such as a memory bridge . In one
embodiment , the I / O unit 305 may communicate with one or
more other processors , such as one or more the PPUS 300 via
the interconnect 302 . In one embodiment , the I / O unit 305
implements a Peripheral Component Interconnect Express
(PCIe) interface for communications over a PCIe bus and
the interconnect 302 is a PCIe bus . In alternative embodi
ments , the 1 / 0 unit 305 may implement other types of
well - known interfaces for communicating with external
devices .
[0070] The I / O unit 305 decodes packets received via the
interconnect 302 . In one embodiment , the packets represent
commands configured to cause the PPU 300 to perform
various operations . The I / O unit 305 transmits the decoded

Parallel Processing Architecture
[0065] FIG . 3 illustrates a parallel processing unit (PPU)
300 , in accordance with one embodiment . In one embodi
ment , the PPU 300 is a multi - threaded processor that is
implemented on one or more integrated circuit devices . The
PPU 300 is a latency hiding architecture designed to process
many threads in parallel . A thread (i . e . , a thread of execu
tion) is an instantiation of a set of instructions configured to
be executed by the PPU 300 . In one embodiment , the PPU
300 is a graphics processing unit (GPU) configured to
implement a graphics rendering pipeline for processing
three - dimensional (3D) graphics data in order to generate
two - dimensional (2D) image data for display on a display

US 2018 / 0288431 A1 Oct . 4 , 2018

commands to various other units of the PPU 300 as the
commands may specify . For example , some commands may
be transmitted to the front end unit 315 . Other commands
may be transmitted to the hub 330 or other units of the PPU
300 such as one or more copy engines , a video encoder , a
video decoder , a power management unit , etc . (not explicitly
shown) . In other words , the I / O unit 305 is configured to
route communications between and among the various logi
cal units of the PPU 300 .
[0071] In one embodiment , a program executed by the
host processor encodes a command stream in a buffer that
provides workloads to the PPU 300 for processing . A
workload may comprise several instructions and data to be
processed by those instructions . The buffer is a region in a
memory that is accessible (i . e . , read / write) by both the host
processor and the PPU 300 . For example , the host interface
unit 310 may be configured to access the buffer in a system
memory connected to the interconnect 302 via memory
requests transmitted over the interconnect 302 by the I / O
unit 305 . In one embodiment , the host processor writes the
command stream to the buffer and then transmits a pointer
to the start of the command stream to the PPU 300 . The front
end unit 315 receives pointers to one or more command
streams . The front end unit 315 manages the one or more
streams , reading commands from the streams and forward
ing commands to the various units of the PPU 300 .
10072] The front end unit 315 is coupled to a scheduler
unit 320 that configures the various GPCs 350 to process
tasks defined by the one or more streams . The scheduler unit
320 is configured to track state information related to the
various tasks managed by the scheduler unit 320 . The state
may indicate which GPC 350 a task is assigned to , whether
the task is active or inactive , a priority level associated with
the task , and so forth . The scheduler unit 320 manages the
execution of a plurality of tasks on the one or more GPCs
350 .
[0073] The scheduler unit 320 is coupled to a work
distribution unit 325 that is configured to dispatch tasks for
execution on the GPCs 350 . The work distribution unit 325
may track a number of scheduled tasks received from the
scheduler unit 320 . In one embodiment , the work distribu
tion unit 325 manages a pending task pool and an active task
pool for each of the GPCs 350 . The pending task pool may
comprise a number of slots (e . g . , 32 slots) that contain tasks
assigned to be processed by a particular GPC 350 . The active
task pool may comprise a number of slots (e . g . , 4 slots) for
tasks that are actively being processed by the GPCs 350 . As
a GPC 350 finishes the execution of a task , that task is
evicted from the active task pool for the GPC 350 and one
of the other tasks from the pending task pool is selected and
scheduled for execution on the GPC 350 . If an active task
has been idle on the GPC 350 , such as while waiting for a
data dependency to be resolved , then the active task may be
evicted from the GPC 350 and returned to the pending task
pool while another task in the pending task pool is selected
and scheduled for execution on the GPC 350 .
10074] . The work distribution unit 325 communicates with
the one or more GPCs 350 via XBar 370 . The XBar 370 is
an interconnect network that couples many of the units of the
PPU 300 to other units of the PPU 300 . For example , the
XBar 370 may be configured to couple the work distribution
unit 325 to a particular GPC 350 . Although not shown
explicitly , one or more other units of the PPU 300 may also
be connected to the XBar 370 via the hub 330 .

[0075] The tasks are managed by the scheduler unit 320
and dispatched to a GPC 350 by the work distribution unit
325 . The GPC 350 is configured to process the task and
generate results . The results may be consumed by other tasks
within the GPC 350 , routed to a different GPC 350 via the
XBar 370 , or stored in the memory 304 . The results can be
written to the memory 304 via the partition units 380 , which
implement a memory interface for reading and writing data
to / from the memory 304 . The results can be transmitted to
another PPU 304 or CPU via the NVLink 310 . In one
embodiment , the PPU 300 includes a number U of partition
units 380 that is equal to the number of separate and distinct
memory devices 304 coupled to the PPU 300 . A partition
unit 380 will be described in more detail below in conjunc
tion with FIG . 4B .
[0076] In one embodiment , a host processor executes a
driver kernel that implements an application programming
interface (API) that enables one or more applications execut
ing on the host processor to schedule operations for execu
tion on the PPU 300 . In one embodiment , multiple compute
applications are simultaneously executed by the PPU 300
and the PPU 300 provides isolation , quality of service
(QoS) , and independent address spaces for the multiple
compute applications . An application may generate instruc
tions (i . e . , API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 300 . The driver
kernel outputs tasks to one or more streams being processed
by the PPU 300 . Each task may comprise one or more
groups of related threads , referred to herein as a warp . In one
embodiment , a warp comprises 32 related threads that may
be executed in parallel . Cooperating threads may refer to a
plurality of threads including instructions to perform the task
and that may exchange data through shared memory .
Threads and cooperating threads are described in more detail
in conjunction with FIG . 5A .
[0077] FIG . 4A illustrates a GPC 350 of the PPU 300 of
FIG . 3 , in accordance with one embodiment . As shown in
FIG . 4A , each GPC 350 includes a number of hardware units
for processing tasks . In one embodiment , each GPC 350
includes a pipeline manager 410 , a pre - raster operations unit
(PROP) 415 , a raster engine 425 , a work distribution cross
bar (WDX) 480 , a memory management unit (MMU) 490 ,
and one or more Data Processing Clusters (DPCs) 420 . It
will be appreciated that the GPC 350 of FIG . 4A may include
other hardware units in lieu of or in addition to the units
shown in FIG . 4A .
[0078] In one embodiment , the operation of the GPC 350
is controlled by the pipeline manager 410 . The pipeline
manager 410 manages the configuration of the one or more
DPCs 420 for processing tasks allocated to the GPC 350 . In
one embodiment , the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement at least
a portion of a graphics rendering pipeline . For example , a
DPC 420 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 440 . The pipeline manager 410 may also be configured
to route packets received from the work distribution unit 325
to the appropriate logical units within the GPC 350 . For
example , some packets may be routed to fixed function
hardware units in the PROP 415 and / or raster engine 425
while other packets may be routed to the DPCs 420 for
processing by the primitive engine 435 or the SM 440 . In
one embodiment , the pipeline manager 410 may configure at

US 2018 / 0288431 A1 Oct . 4 , 2018

least one of the one or more DPCs 420 to implement a neural
network model and / or a computing pipeline .
[0079] The PROP unit 415 is configured to route data
generated by the raster engine 425 and the DPCs 420 to a
Raster Operations (ROP) unit in the partition unit 380 ,
described in more detail in conjunction with FIG . 4B . The
PROP unit 415 may also be configured to perform optimi
zations for color blending , organize pixel data , perform
address translations , and the like .
[0080] The raster engine 425 includes a number of fixed
function hardware units configured to perform various raster
operations . In one embodiment , the raster engine 425
includes a setup engine , a coarse raster engine , a culling
engine , a clipping engine , a fine raster engine , and a tile
coalescing engine . The setup engine receives transformed
vertices and generates plane equations associated with the
geometric primitive defined by the vertices . The plane
equations are transmitted to the coarse raster engine to
generate coverage information (e . g . , an x , y coverage mask
for a tile) for the primitive . The output of the coarse raster
engine is transmitted to the culling engine where fragments
associated with the primitive that fail a z - test are culled , and
transmitted to a clipping engine where fragments lying
outside a viewing frustum are clipped . Those fragments that
survive clipping and culling may be passed to the fine raster
engine to generate attributes for the pixel fragments based
on the plane equations generated by the setup engine . The
output of the raster engine 425 comprises fragments to be
processed , for example , by a fragment shader implemented
within a DPC 420 .
[0081] Each DPC 420 included in the GPC 350 includes
an M - Pipe Controller (MPC) 430 , a primitive engine 435 ,
and one or more SMs 440 . The MPC 430 controls the
operation of the DPC 420 , routing packets received from the
pipeline manager 410 to the appropriate units in the DPC
420 . For example , packets associated with a vertex may be
routed to the primitive engine 435 , which is configured to
fetch vertex attributes associated with the vertex from the
memory 304 . In contrast , packets associated with a shader
program may be transmitted to the SM 440 .
[0082] The SM 440 comprises a programmable streaming
processor that is configured to process tasks represented by
a number of threads . Each SM 440 is multi - threaded and
configured to execute a plurality of threads (e . g . , 32 threads)
from a particular group of threads concurrently . In one
embodiment , the SM 440 implements a SIMD (Single
Instruction , Multiple - Data) architecture where each thread
in a group of threads (i . e . , a warp) is configured to process
a different set of data based on the same set of instructions .
All threads in the group of threads execute the same instruc
tions . In another embodiment , the SM 440 implements a
SIMT (Single - Instruction , Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions , but where individual threads in the group of
threads are allowed to diverge during execution . In one
embodiment , a program counter , call stack , and execution
state is maintained for each warp , enabling concurrency
between warps and serial execution within warps when
threads within the warp diverge . In another embodiment , a
program counter , call stack , and execution state is main
tained for each individual thread , enabling equal concur
rency between all threads , within and between warps . When
execution state is maintained for each individual thread ,

threads executing the same instructions may be converged
and executed in parallel for maximum efficiency . The SM
440 will be described in more detail below in conjunction
with FIG . 5A .
[0083] The MMU 490 provides an interface between the
GPC 350 and the partition unit 380 . The MMU 490 may
provide translation of virtual addresses into physical
addresses , memory protection , and arbitration of memory
requests . In one embodiment , the MMU 490 provides one or
more translation lookaside buffers (TLBs) for performing
translation of virtual addresses into physical addresses in the
memory 304 .
[0084] FIG . 4B illustrates a memory partition unit 380 of
the PPU 300 of FIG . 3 , in accordance with one embodiment .
As shown in FIG . 4B , the memory partition unit 380
includes a Raster Operations (ROP) unit 450 , a level two
(L2) cache 460 , and a memory interface 470 . The memory
interface 470 is coupled to the memory 304 . Memory
interface 470 may implement 32 , 64 , 128 , 1024 - bit data
buses , or the like , for high - speed data transfer . In one
embodiment , the PPU 300 incorporates U memory inter
faces 470 , one memory interface 470 per pair of partition
units 380 , where each pair of partition units 380 is connected
to a corresponding memory device 304 . For example , PPU
300 may be connected to up to Y memory devices 304 , such
as high bandwidth memory stacks or graphics double - data
rate , version 5 , synchronous dynamic random access
memory (GDDR5 SDRAM) .
[0085] In one embodiment , the memory interface 470
implements an HBM2 memory interface and Y equals half
U . In one embodiment , the HBM2 memory stacks are
located on the same physical package as the PPU 300 ,
providing substantial power and area savings compared with
conventional GDDR5 SDRAM systems . In one embodi
ment , each HBM2 stack includes four memory dies and Y
equals 4 , with HBM2 stack including two 128 - bit channels
per die for a total of 8 channels and a data bus width of 1024
bits .
[0086] In one embodiment , the memory 304 supports
Single - Error Correcting Double - Error Detecting (SECDED)
Error Correction Code (ECC) to protect data . ECC provides
higher reliability for compute applications that are sensitive
to data corruption . Reliability is especially important in
large - scale cluster computing environments where PPUS
300 process very large datasets and / or run applications for
extended periods .
10087] In one embodiment , the PPU 300 implements a
multi - level memory hierarchy . In one embodiment , the
memory partition unit 380 supports a unified memory to
provide a single unified virtual address space for CPU and
PPU 300 memory , enabling data sharing between virtual
memory systems . In one embodiment the frequency of
accesses by a PPU 300 to memory located on other proces
sors is traced to ensure that memory pages are moved to the
physical memory of the PPU 300 that is accessing the pages
more frequently . In one embodiment , the NVLink 310
supports address translation services allowing the PPU 300
to directly access a CPU ' s page tables and providing full
access to CPU memory by the PPU 300 .
[0088] In one embodiment , copy engines transfer data
between multiple PPUS 300 or between PPUS 300 and
CPUs . The copy engines can generate page faults for
addresses that are not mapped into the page tables . The
memory partition unit 380 can then service the page faults ,

US 2018 / 0288431 A1 Oct . 4 , 2018

mapping the addresses into the page table , after which the
copy engine can perform the transfer . In a conventional
system , memory is pinned (i . e . , non - pageable) for multiple
copy engine operations between multiple processors , sub
stantially reducing the available memory . With hardware
page faulting , addresses can be passed to the copy engines
without worrying if the memory pages are resident , and the
copy process is transparent .
[0089] Data from the memory 304 or other system
memory may be fetched by the memory partition unit 380
and stored in the L2 cache 460 , which is located on - chip and
is shared between the various GPCs 350 . As shown , each
memory partition unit 380 includes a portion of the L2 cache
460 associated with a corresponding memory device 304 .
Lower level caches may then be implemented in various
units within the GPCs 350 . For example , each of the SMS
440 may implement a level one (L) cache . The L1 cache is
private memory that is dedicated to a particular SM 440 .
Data from the L2 cache 460 may be fetched and stored in
each of the Ll caches for processing in the functional units
of the SMs 440 . The L2 cache 460 is coupled to the memory
interface 470 and the XBar 370 .
[0090] The ROP unit 450 performs graphics raster opera
tions related to pixel color , such as color compression , pixel
blending , and the like . The ROP unit 450 also implements
depth testing in conjunction with the raster engine 425 ,
receiving a depth for a sample location associated with a
pixel fragment from the culling engine of the raster engine
425 . The depth is tested against a corresponding depth in a
depth buffer for a sample location associated with the
fragment . If the fragment passes the depth test for the sample
location , then the ROP unit 450 updates the depth buffer and
transmits a result of the depth test to the raster engine 425 .
It will be appreciated that the number of partition units 380
may be different than the number of GPCs 350 and , there
fore , each ROP unit 450 may be coupled to each of the GPCs
350 . The ROP unit 450 tracks packets received from the
different GPCs 350 and determines which GPC 350 that a
result generated by the ROP unit 450 is routed to through the
Xbar 370 .

plurality of different cooperative groups to the various
functional units (i . e . , cores 550 , SFUS 552 , and LSUS 554)
during each clock cycle .
[0093] Cooperative Groups is a programming model for
organizing groups of communicating threads that allows
developers to express the granularity at which threads are
communicating , enabling the expression of richer , more
efficient parallel decompositions . Cooperative launch APIs
support synchronization amongst thread blocks for the
execution of parallel algorithms . Conventional program
ming models provide a single , simple construct for synchro
nizing cooperating threads : a barrier across all threads of a
thread block (i . e . , the syncthreads function) . However ,
programmers would often like to define groups of threads at
smaller than thread block granularities and synchronize
within the defined groups to enable greater performance ,
design flexibility , and software reuse in the form of collec
tive group - wide function interfaces .
[0094] Cooperative Groups enables programmers to
define groups of threads explicitly at sub - block (i . e . , as small
as a single thread) and multi - block granularities , and to
perform collective operations such as synchronization on the
threads in a cooperative group . The programming model
supports clean composition across software boundaries , so
that libraries and utility functions can synchronize safely
within their local context without having to make assump
tions about convergence . Cooperative Groups primitives
enable new patterns of cooperative parallelism , including
producer - consumer parallelism , opportunistic parallelism ,
and global synchronization across an entire grid of thread
blocks .
[0095] A dispatch unit 515 is configured to transmit
instructions to one or more of the functional units . In the
embodiment , the scheduler unit 510 includes two dispatch
units 515 that enable two different instructions from the
same warp to be dispatched during each clock cycle . In
alternative embodiments , each scheduler unit 510 may
include a single dispatch unit 515 or additional dispatch
units 515 .
[0096] Each SM 440 includes a register file 520 that
provides a set of registers for the functional units of the SM
440 . In one embodiment , the register file 520 is divided
between each of the functional units such that each func
tional unit is allocated a dedicated portion of the register file
520 . In another embodiment , the register file 520 is divided
between the different warps being executed by the SM 440 .
The register file 520 provides temporary storage for oper
ands connected to the data paths of the functional units .
[0097] Each SM 440 comprises L processing cores 550 . In
one embodiment , the SM 440 includes a large number (e . g . ,
128 , etc .) of distinct processing cores 550 . Each core 550
may include a fully - pipelined , single - precision , double - pre
cision , and / or mixed precision processing unit that includes
a floating point arithmetic logic unit and an integer arith
metic logic unit . In one embodiment , the floating point
arithmetic logic units implement the IEEE 754 - 2008 stan
dard for floating point arithmetic . In one embodiment , the
cores 550 include 64 single - precision (32 - bit) floating point
cores , 64 integer cores , 32 double - precision (64 - bit) floating
point cores , and 8 tensor cores .
[0098] Tensor cores configured to perform matrix opera
tions , and , in one embodiment , one or more tensor cores are
included in the cores 550 . In particular , the tensor cores are
configured to perform deep learning matrix arithmetic , such

[0091] FIG . 5A illustrates the streaming multi - processor
440 of FIG . 4A , in accordance with one embodiment . As
shown in FIG . 5A , the SM 440 includes an instruction cache
505 , one or more scheduler units 510 , a register file 520 , one
or more processing cores 550 , one or more special function
units (SFUS) 552 , one or more load / store units (LSUS) 554 ,
an interconnect network 580 , a shared memory / L1 cache
570 .

[0092] As described above , the work distribution unit 325
dispatches tasks for execution on the GPCs 350 of the PPU
300 . The tasks are allocated to a particular DPC 420 within
a GPC 350 and , if the task is associated with a shader
program , the task may be allocated to an SM 440 . The
scheduler unit 510 receives the tasks from the work distri
bution unit 325 and manages instruction scheduling for one
or more thread blocks assigned to the SM 440 . The scheduler
unit 510 schedules thread blocks for execution as warps of
parallel threads , where each thread block is allocated at least
one warp . In one embodiment , each warp executes 32
threads . The scheduler unit 510 may manage a plurality of
different thread blocks , allocating the warps to the different
thread blocks and then dispatching instructions from the

US 2018 / 0288431 A1 Oct . 4 , 2018

m

ured to use half of the capacity , texture and load / store
operations can use the remaining capacity . Integration
within the shared memory / L1 cache 570 enables the shared
memory / L1 cache 570 to function as a high - throughput
conduit for streaming data while simultaneously providing
high - bandwidth and low - latency access to frequently reused
data .
[0104] When configured for general purpose parallel com
putation , a simpler configuration can be used compared with
graphics processing . Specifically , the fixed function graphics
processing units shown in FIG . 3 , are bypassed , creating a
much simpler programming model . In the general purpose
parallel computation configuration , the work distribution
unit 325 assigns and distributes blocks of threads directly to
the DPCs 420 . The threads in a block execute the same
program , using a unique thread ID in the calculation to
ensure each thread generates unique results , using the SM
440 to execute the program and perform calculations , shared
memory / L1 cache 570 to communicate between threads , and
the LSU 554 to read and write global memory through the
shared memory / L1 cache 570 and the memory partition unit
380 . When configured for general purpose parallel compu
tation , the SM 440 can also write commands that the
scheduler unit 320 can use to launch new work on the DPCs
420 .

as convolution operations for neural network training and
inferencing . In one embodiment , each tensor core operates
on a 4x4 matrix and performs a matrix multiply and accu
mulate operation D = AXB + C , where A , B , C , and D are 4x4
matrices .
[0099] In one embodiment , the matrix multiply inputs A
and B are 16 - bit floating point matrices , while the accumu
lation matrices C and D may be 16 - bit floating point or
32 - bit floating point matrices . Tensor Cores operate on
16 - bit floating point input data with 32 - bit floating point
accumulation . The 16 - bit floating point multiply requires 64
operations and results in a full precision product that is then
accumulated using 32 - bit floating point addition with the
other intermediate products for a 4x4x4 matrix multiply . In
practice , Tensor Cores are used to perform much larger
two - dimensional or higher dimensional matrix operations ,
built up from these smaller elements . An API , such as
CUDA 9 C + + API , exposes specialized matrix load , matrix
multiply and accumulate , and matrix store operations to
efficiently use Tensor Cores from a CUDA - C + + program . At
the CUDA level , the warp - level interface assumes 16x16
size matrices spanning all 32 threads of the warp .
[0100] Each SM 440 also comprises M SFUS 552 that
perform special functions (e . g . , attribute evaluation , recip
rocal square root , and the like) . In one embodiment , the
SFUS 552 may include a tree traversal unit configured to
traverse a hierarchical tree data structure . In one embodi
ment , the SFUs 552 may include texture unit configured to
perform texture map filtering operations . In one embodi
ment , the texture units are configured to load texture maps
(e . g . , a 2D array of texels) from the memory 304 and sample
the texture maps to produce sampled texture values for use
in shader programs executed by the SM 440 . In one embodi
ment , the texture maps are stored in the shared memory / L1
cache 470 . The texture units implement texture operations
such as filtering operations using mip - maps (i . e . , texture
maps of varying levels of detail) . In one embodiment , each
SM 340 includes two texture units .
10101] Each SM 440 also comprises N LSUS 554 that
implement load and store operations between the shared
memory / L1 cache 570 and the register file 520 . Each SM
440 includes an interconnect network 580 that connects each
of the functional units to the register file 520 and the LSU
554 to the register file 520 , shared memory / L1 cache 570 . In
one embodiment , the interconnect network 580 is a crossbar
that can be configured to connect any of the functional units
to any of the registers in the register file 520 and connect the
LSUs 554 to the register file and memory locations in shared
memory / L1 cache 570 .
[0102] The shared memory / L1 cache 570 is an array of
on - chip memory that allows for data storage and commu
nication between the SM 440 and the primitive engine 435
and between threads in the SM 440 . In one embodiment , the
shared memory / L1 cache 570 comprises 128 KB of storage
capacity and is in the path from the SM 440 to the partition
unit 380 . The shared memory / L1 cache 570 can be used to
cache reads and writes . One or more of the shared memory !
L1 cache 570 , L2 cache 460 , and memory 304 are backing
stores .
[0103] Combining data cache and shared memory func
tionality into a single memory block provides the best
overall performance for both types of memory accesses . The
capacity is usable as a cache by programs that do not use
shared memory . For example , if shared memory is config -

[0105] The PPU 300 may be included in a desktop com
puter , a laptop computer , a tablet computer , servers , super
computers , a smart - phone (e . g . , a wireless , hand - held
device) , personal digital assistant (PDA) , a digital camera , a
vehicle , a head mounted display , a hand - held electronic
device , and the like . In one embodiment , the PPU 300 is
embodied on a single semiconductor substrate . In another
embodiment , the PPU 300 is included in a system - on - a - chip
(SOC) along with one or more other devices such as addi
tional PPUS 300 , the memory 204 , a reduced instruction set
computer (RISC) CPU , a memory management unit
(MMU) , a digital - to - analog converter (DAC) , and the like .
[0106] In one embodiment , the PPU 300 may be included
on a graphics card that includes one or more memory
devices 304 . The graphics card may be configured to inter
face with a PCIe slot on a motherboard of a desktop
computer . In yet another embodiment , the PPU 300 may be
an integrated graphics processing unit (GPU) or parallel
processor included in the chipset of the motherboard .

Machine Learning
[0107] Deep neural networks (DNNs) developed on pro
cessors , such as the PPU 300 have been used for diverse use
cases , from self - driving cars to faster drug development ,
from automatic image captioning in online image databases
to smart real - time language translation in video chat appli
cations . The PPU 300 may be configured to implement the
video generation system 200 during training and for deploy
ment . Deep learning is a technique that models the neural
learning process of the human brain , continually learning ,
continually getting smarter , and delivering more accurate
results more quickly over time . A child is initially taught by
an adult to correctly identify and classify various shapes ,
eventually being able to identify shapes without any coach
ing . Similarly , a deep learning or neural learning system
needs to be trained in object recognition and classification
for it get smarter and more efficient at identifying basic
objects , occluded objects , etc . , while also assigning context
to objects .

US 2018 / 0288431 A1 Oct . 4 , 2018

[0108] At the simplest level , neurons in the human brain
look at various inputs that are received , importance levels
are assigned to each of these inputs , and output is passed on
to other neurons to act upon . An artificial neuron or percep -
tron is the most basic model of a neural network . In one
example , a perceptron may receive one or more inputs that
represent various features of an object that the perceptron is
being trained to recognize and classify , and each of these
features is assigned a certain weight based on the importance
of that feature in defining the shape of an object .
[0109] A deep neural network (DNN) model includes
multiple layers of many connected perceptrons (e . g . , nodes)
that can be trained with enormous amounts of input data to
quickly solve complex problems with high accuracy . In one
example , a first layer of the DLL model breaks down an
input image of an automobile into various sections and looks
for basic patterns such as lines and angles . The second layer
assembles the lines to look for higher level patterns such as
wheels , windshields , and mirrors . The next layer identifies
the type of vehicle , and the final few layers generate a label
for the input image , identifying the model of a specific
automobile brand .
[0110] Once the DNN is trained , the DNN can be deployed
and used to identify and classify objects or patterns in a
process known as inference . Examples of inference (the
process through which a DNN extracts useful information
from a given input) include identifying handwritten numbers
on checks deposited into ATM machines , identifying images
of friends in photos , delivering movie recommendations to
over fifty million users , identifying and classifying different
types of automobiles , pedestrians , and road hazards in
driverless cars , or translating human speech in real - time .
[0111] During training , data flows through the DNN in a
forward propagation phase until a prediction is produced
that indicates a label corresponding to the input . If the neural
network does not correctly label the input , then errors
between the correct label and the predicted label are ana
lyzed , and the weights are adjusted for each feature during
a backward propagation phase until the DNN correctly
labels the input and other inputs in a training dataset .
Training complex neural networks requires massive
amounts of parallel computing performance , including float
ing - point multiplications and additions that are supported by
the PPU 300 . Inferencing is less compute - intensive than
training , being a latency - sensitive process where a trained
neural network is applied to new inputs it has not seen before
to classify images , translate speech , and generally infer new
information .
[0112] Neural networks rely heavily on matrix math
operations , and complex multi - layered networks require
tremendous amounts of floating - point performance and
bandwidth for both efficiency and speed . With thousands of
processing cores , optimized for matrix math operations , and
delivering tens to hundreds of TFLOPS of performance , the
PPU 300 is a computing platform capable of delivering
performance required for deep neural network - based artifi
cial intelligence and machine learning applications .

deployed in data centers , research facilities , and supercom
puters to solve ever larger problems . As the number of
processing devices within the high - performance systems
increases , the communication and data transfer mechanisms
need to scale to support the increased
[0114] FIG . 5B is a conceptual diagram of a processing
system 500 implemented using the PPU 300 of FIG . 3 , in
accordance with one embodiment . The exemplary system
565 may be configured to implement the methods or system
shown in FIGS . 1F , 2B , 2C , and 2D . The processing system
500 includes a CPU 530 , switch 510 , and multiple PPUS 300
each and respective memories 304 . The NVLink 310 pro
vides a high - speed communication links between each of the
PPUs 300 . The switch 510 interfaces between the intercon
nect 302 and the CPU 530 . The PPUS 300 , memories 304 ,
and NVLinks 310 may be situated on a single semiconductor
platform to form a parallel processing module 525 .
[0115] In the context of the present description , a single
semiconductor platform may refer to a sole unitary semi
conductor - based integrated circuit fabricated on a die or
chip . It should be noted that the term single semiconductor
platform may also refer to multi - chip modules with
increased connectivity which simulate on - chip operation
and make substantial improvements over utilizing a conven
tional bus implementation . Of course , the various circuits or
devices may also be situated separately or in various com
binations of semiconductor platforms per the desires of the
user . Alternately , the parallel processing module 525 may be
implemented as a circuit board substrate and each of the
PPUs 300 and / or memories 304 may be packaged devices .
In one embodiment , the CPU 530 , switch 510 , and the
parallel processing module 525 are situated on a single
semiconductor platform .
[0116] In one embodiment , the signaling rate of each
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300
includes six NVLink 310 interfaces (as shown in FIG . 5B ,
five NVLink 310 interfaces are included for each PPU 300) .
Each NVLink 310 provides a data transfer rate of 25
Gigabytes / second in each direction , with six links providing
300 Gigabytes / second . The NVLinks 310 can be used exclu
sively for PPU - to - PPU communication as shown in FIG . 5B ,
or some combination of PPU - to - PPU and PPU - to - CPU ,
when the CPU 530 also includes one or more NVLink 310
interfaces .
10117] In one embodiment , the NVLink 310 allows direct
load / store / atomic access from the CPU 530 to each PPU ' s
300 memory 304 . In one embodiment , the NVLink 310
supports coherency operations , allowing data read from the
memories 304 to be stored in the cache hierarchy of the CPU
530 , reducing cache access latency for the CPU 530 . In one
embodiment , the NVLink 310 includes support for Address
Translation Services (ATS) , allowing the PPU 300 to
directly access page tables within the CPU 530 . One or more
of the NVLinks 310 may also be configured to operate in a
low - power mode .
[0118] FIG . 5C illustrates an exemplary system 565 in
which the various architecture and / or functionality of the
various previous embodiments may be implemented . The
exemplary system 565 may be configured to implement the
methods or system shown in FIGS . 1F , 2A , 2B , 2C , and 2D .
[0119] As shown , a system 565 is provided including at
least one central processing unit 530 that is connected to a
communication bus 575 . The communication bus 575 may
be implemented using any suitable protocol , such as PCI

Exemplary Computing System
[0113] Systems with multiple GPUs and CPUs are used in
a variety of industries as developers expose and leverage
more parallelism in applications such as artificial intelli
gence computing . High - performance GPU - accelerated sys
tems with tens to many thousands of compute nodes are

US 2018 / 0288431 A1 Oct . 4 , 2018

(Peripheral Component Interconnect) , PCI - Express , AGP
(Accelerated Graphics Port) , HyperTransport , or any other
bus or point - to - point communication protocol (s) . The sys
tem 565 also includes a main memory 540 . Control logic
(software) and data are stored in the main memory 540
which may take the form of random access memory (RAM) .
[0120] The system 565 also includes input devices 560 ,
the parallel processing system 525 , and display devices 545 ,
i . e . a conventional CRT (cathode ray tube) , LCD (liquid
crystal display) , LED light emitting diode) , plasma display
or the like . User input may be received from the input
devices 560 , e . g . , keyboard , mouse , touchpad , microphone ,
and the like . Each of the foregoing modules and / or devices
may even be situated on a single semiconductor platform to
form the system 565 . Alternately , the various modules may
also be situated separately or in various combinations of
semiconductor platforms per the desires of the user .
[0121] Further , the system 565 may be coupled to a
network (e . g . , a telecommunications network , local area
network (LAN) , wireless network , wide area network
(WAN) such as the Internet , peer - to - peer network , cable
network , or the like) through a network interface 535 for
communication purposes .
[0122] The system 565 may also include a secondary
storage (not shown) . The secondary storage 610 includes ,
for example , a hard disk drive and / or a removable storage
drive , representing a floppy disk drive , a magnetic tape
drive , a compact disk drive , digital versatile disk (DVD)
drive , recording device , universal serial bus (USB) flash
memory . The removable storage drive reads from and / or
writes to a removable storage unit in a well - known manner .
[0123] Computer programs , or computer control logic
algorithms , may be stored in the main memory 540 and / or
the secondary storage . Such computer programs , when
executed , enable the system 565 to perform various func
tions . The memory 540 , the storage , and / or any other storage
are possible examples of computer - readable media .
[0124] The architecture and / or functionality of the various
previous figures may be implemented in the context of a
general computer system , a circuit board system , a game
console system dedicated for entertainment purposes , an
application - specific system , and / or any other desired sys
tem . For example , the system 565 may take the form of a
desktop computer , a laptop computer , a tablet computer ,
servers , supercomputers , a smart - phone (e . g . , a wireless ,
hand - held device) , personal digital assistant (PDA) , a digital
camera , a vehicle , a head mounted display , a hand - held
electronic device , a mobile phone device , a television ,
workstation , game consoles , embedded system , and / or any
other type of logic .
[0125] While various embodiments have been described
above , it should be understood that they have been presented
by way of example only , and not limitation . Thus , the
breadth and scope of a preferred embodiment should not be
limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following claims and their equivalents .
What is claimed is :
1 . A computer - implemented method , comprising :
generating , by a recurrent neural network , a sequence of
motion vectors from a first set of random variables ;

receiving , by a generator neural network , the sequence of
motion vectors and a content vector sample ; and

processing the sequence of motion vectors and the content
vector sample by the generator neural network to
produce a video clip .

2 . The computer - implemented method of claim 1 , further
comprising :

generating , by the recurrent neural network , an additional
sequence of motion vectors from a second set of
random variables ; and

processing the additional sequence of motion vectors and
the content vector sample by the generator neural
network to produce an additional video clip .

3 . The computer - implemented method of claim 2 ,
wherein a number of frames in the video clip differs from a
number of frames in the additional video clip .

4 . The computer - implemented method of claim 1 , further
comprising :

receiving , by the generator neural network , an additional
content vector sample ; and

processing the first sequence of motion vectors and the
additional content vector sample by the generator neu
ral network to produce an additional video clip .

5 . The computer - implemented method of claim 1 , further
comprising generating , by an encoder , the content vector
sample based on identified content .

6 . The computer - implemented method of claim 1 , further
comprising sampling a Gaussian distribution of content to
produce the content vector sample .

7 . The computer - implemented method of claim 1 , further
comprising :
sampling the video clip to produce image frames ; and
processing the image frames by a discriminative neural

network configured to distinguish real images from
generated images to generate updated parameters for
the generator neural network .

8 . The computer - implemented method of claim 1 , further
comprising :

sampling the video clip to produce sets of sequential
frames , and

processing the sets of sequential frames by a discrimina
tive neural network configured to distinguish real video
clips from generated video clips to generate updated
parameters for the generator neural network and the
recurrent neural network .

9 . The computer - implemented method of claim 1 , further
comprising , prior to generating the sequence of motion
vectors , combining an action label associated with an action
category with the first set of random variables .

10 . The computer - implemented method of claim 9 ,
wherein the action category represents facial expression .

11 . The computer - implemented method of claim 9 ,
wherein the action category represents motion directions .

12 . A system , comprising :
a parallel processing unit configured to implement a

recurrent neural network and a generator network ,
wherein
the recurrent neural network is configured to generate

a sequence of motion vectors from a first set of
random variables ,

the generator neural network receives the sequence of
motion vectors and a content vector sample , and

the generator neural network processes the sequence of
motion vectors and the content vector sample to
produce a video clip .

US 2018 / 0288431 A1 Oct . 4 , 2018

13 . The system of claim 12 , wherein
the recurrent neural network is further configured to

generate an additional sequence of motion vectors from
a second set of random variables ; and

the generator neural network is further configured to
process the additional sequence of motion vectors and
the content vector sample by to produce an additional
video clip .

14 . The system of claim 13 , wherein a number of frames
in the video clip differs from a number of frames in the
additional video clip .

15 . The system of claim 12 , wherein
the generator neural network is further configured to

receive an additional content vector sample ; and
the generator neural network is further configured to

process the first sequence of motion vectors and the
additional content vector sample to produce an addi
tional video clip .

16 . The system 12 , further comprising an encode config
ured to generate the content vector sample based on iden
tified content .

17 . The system of claim 12 , further comprising sampling
a Gaussian distribution of content to produce the content
vector sample .

18 . The system of claim 12 , further comprising :
an image sampler configured to sample the video clip to

produce image frames ; and

a discriminative neural network configured to :
process the image frames , distinguishing real images

from the image frames ; and
generate updated parameters for the generator neural
network

19 . The system of claim 12 , further comprising :
a video sampler configured to sample the video clip to

produce sets of sequential frames ; and
a discriminative neural network configured to :
process the sets of sequential frames , distinguishing real

video clips from the sets of sequential frames ; and
generate updated parameters for the generator neural
network and the recurrent neural network .

20 . A non - transitory computer - readable media storing
computer instructions for translating images that , when
executed by a processor , cause the processor to perform the
steps of :

generating , by a recurrent neural network , a sequence of
motion vectors from a first set of random variables ; and

receiving , by a generator neural network , the sequence of
motion vectors and a content vector sample ; and

processing the sequence of motion vectors and the content
vector sample by the generator neural network to
produce a video clip .

* * * * *

