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SYSTEM AND METHOD FOR CONTENT 
AND MOTION CONTROLLED ACTION 

VIDEO GENERATION 

CLAIM OF PRIORITY 
[ 0001 ] This application claims the benefit of U . S . Provi 
sional Application No . 62 / 480 , 094 ( Attorney Docket No . 
NVIDP1159 + / 17SC0061US01 ) titled “ Content and Motion 
Controlled Action Video Generation , ” filed Mar . 31 , 2017 , 
the entire contents of which is incorporated herein by 
reference . 

FIELD OF THE INVENTION 
[ 0002 ] The present invention relates to video generation , 
and more particularly to content and motion controlled 
action video generation . 

BACKGROUND 
[ 0003 ] Deep generative models have recently received an 
increasing amount of attention , not only because deep gen 
erative models provide a means to learn deep feature rep 
resentations in an unsupervised manner that can potentially 
leverage all the unlabeled images on Internet for training , 
but also because they can be used to generate novel images 
useful for various vision applications . As steady progress 
toward better image generation is made , it is also important 
to study the video generation problem . However , the exten 
sion from generating images to generating videos turns out 
to be a highly challenging task , although the generated data 
has just one more dimension — the time dimension . 
0004 The video generation problem may be a much 

harder problem for the following reasons . First , since a 
video is a spatio - temporal recording of visual information of 
objects performing various actions , a generative model 
needs to learn the plausible physical motion models of 
objects in addition to learning appearance models for the 
objects . If the learned object motion model is incorrect , the 
generated video may contain objects performing physically 
impossible motion . Second , the time dimension brings in a 
huge amount of variations . Consider the speed variations 
that a person can have as performing a squat movement . 
Each speed pattern results in a different video , although the 
appearances of the human in the videos are the same . Third , 
as human beings have evolved to be rather sensitive to 
motion , motion artifacts are particularly perceptible . 
[ 0005 ] There is a need for addressing these issues and / or 
other issues associated with the prior art . 

[ 0008 ] FIG . 1B illustrates video clips generated using 
different points in the content subspace and a single motion 
trajectory in the motion subspace , in accordance with one 
embodiment . 
[ 0009 ] FIG . 1C illustrates video clips generated using the 
different points in the content subspace shown in FIG . 1B 
and a second motion trajectory in the motion subspace , in 
accordance with one embodiment . 
[ 0010 ] FIG . 1D illustrates video clips generated using 
different points in a second content subspace and a single 
motion trajectory in a second motion subspace , in accor 
dance with one embodiment . 
[ 0011 ] FIG . 1E illustrates video clips generated using the 
different points in the second content subspace shown in 
FIG . 1D and a second motion trajectory in the second 
motion subspace , in accordance with one embodiment . 
[ 0012 ] FIG . 1F illustrates a flowchart of a method for 
generating a video clip , in accordance with one embodiment . 
[ 00131 FIG . 2A illustrates a block diagram of a video 
generation system , in accordance with one embodiment . 
[ 0014 ] . FIG . 2B illustrates a flowchart of a method for 
training the video generation system , in accordance with one 
embodiment . 
[ 0015 ] FIG . 2C illustrates another flowchart of a method 
for generating a video clip , in accordance with one embodi 
ment . 
[ 0016 ] FIG . 2D illustrates another flowchart of a method 
for generating a video clip , in accordance with one embodi 
ment . 
[ 0017 ] FIG . 2E illustrates another block diagram of a 
video generation system , in accordance with one embodi 
ment . 
10018 ] FIG . 3 illustrates a parallel processing unit , in 
accordance with one embodiment . 
[ 0019 ] FIG . 4A illustrates a general processing cluster 
within the parallel processing unit of FIG . 3 , in accordance 
with one embodiment . 
[ 0020 ] FIG . 4B illustrates a memory partition unit of the 
parallel processing unit of FIG . 3 , in accordance with one 
embodiment . 

[ 0021 ] FIG . 5A illustrates the streaming multi - processor 
of FIG . 4A , in accordance with one embodiment . 
[ 0022 ] FIG . 5B is a conceptual diagram of a processing 
system implemented using the PPU of FIG . 3 , in accordance 
with one embodiment . 
[ 0023 ] FIG . 5C illustrates an exemplary system in which 
the various architecture and / or functionality of the various 
previous embodiments may be implemented . 

SUMMARY 
[ 0006 ] A method , computer readable medium , and system 
are disclosed for generating a video clip . A recurrent neural 
network generates a sequence of motion vectors from a first 
set of random variables and a generator neural network 
receives the sequence of motion vectors and a content vector 
sample . The sequence of motion vectors and the content 
vector sample are processed by the generator neural network 
to produce a video clip . 

DETAILED DESCRIPTION 
[ 0024 ] A video clip may be considered to be a point in a 
latent space and a generative adversarial network framework 
may be used to learn a mapping from the latent space to 
video clips . However , assuming a video clip is a point in the 
latent space unnecessarily increases the complexity of the 
video generation problem because videos of the same action 
with different execution speed are represented by different 
points in the latent space . Moreover , assuming a video clip 
is a point in the latent space forces every generated video 
clip to have the same length , while the length of real - world 
video clips varies . An alternative approach assumes a latent 
space of images and considers that a video clip is generated 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0007 ] FIG . 1A is a conceptual diagram illustrating an 
image latent space divided into a content subspace and a 
motion subspace , in accordance with one embodiment . 
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by traversing the points in the latent space . Video clips of 
different lengths correspond to latent space trajectories of 
different lengths . 
[ 0025 ] . In addition , as videos are about objects ( content ) 
performing actions ( motion ) , the latent space of images 
should be further decomposed into two subspaces , where the 
deviation of a point in the first subspace ( the content 
subspace ) leads content changes in a video clip and the 
deviation in the second subspace ( the motion subspace ) 
results in temporal motions . Through this modeling , videos 
of the same action executed with different speeds can be 
generated by traversing the same trajectory in the motion 
space with different speeds . 
[ 0026 ] FIG . 1A is a conceptual diagram illustrating an 
image latent space divided into a content subspace and a 
motion subspace , in accordance with one embodiment . A 
first content vector sample 101 and a second content vector 
sample 102 may be used to generate two different video clips 
using a single motion trajectory defined by a sequence of 
motion vectors . A first motion trajectory 103 and a second 
motion trajectory 104 are each sampled in the motion 
subspace to produce two different sequences of motion 
vectors . A single content vector sample may be used to 
generate two different video clips using each of the motion 
trajectories 103 and 104 . 
[ 0027 ] Decomposing motion and content allows a more 
controlled video generation process . By changing the con 
tent representation while fixing the motion trajectory , video 
clips may be generated of different objects performing the 
same motion . By sampling different points in the content 
subspace and the same motion trajectory in the motion 
subspace , video clips may be generated of different objects 
performing the same motion . 
[ 0028 ] FIG . 1B illustrates video clips generated using 
different points in the content subspace and a single motion 
trajectory in the motion subspace , in accordance with one 
embodiment . Images in the upper row of FIG . 1B are 
generated using the second content vector sample 102 and 
the first motion trajectory 103 . In one embodiment , as shown 
in FIG . 1B , the first motion trajectory 103 corresponds to an 
expression of fear . Images in the lower row of FIG . 1B are 
generated using the first content vector sample 101 and the 
first motion trajectory 103 . 
[ 0029 ] FIG . 1C illustrates video clips generated using the 
different points in the content subspace shown in FIG . 1B 
and a second motion trajectory in the motion subspace , in 
accordance with one embodiment . As shown in FIGS . 1B 
and 1C , different video clips may be generated of the same 
object performing different motion by applying a different 
trajectory in the motion subspace to the same content vector 
sample 101 or 102 . In one embodiment , as shown in FIG . 
1C , the first motion trajectory 104 corresponds to an expres 
sion of disgust . Images in the upper row of FIG . 1C are 
generated using the second content vector sample 102 and 
the second motion trajectory 104 . Images in the lower row 
of FIG . 1C are generated using the first content vector 
sample 101 and the second motion trajectory 104 . By 
changing motion trajectories while fixing the content rep 
resentation , videos may be generated of the same object 
performing different motion . 
[ 0030 ] FIG . ID illustrates video clips generated using 
different points in a second content subspace and a single 
motion trajectory in a second motion subspace , in accor 
dance with one embodiment . In one embodiment , as shown 

in FIG . 1D , a third motion trajectory 107 corresponds to a 
motion of waving one hand . Images in the upper row of FIG . 
1D are generated using a third content vector sample 105 
and the third motion trajectory 107 . Images in the lower row 
of FIG . 1D are generated using the fourth content vector 
sample 106 and the third motion trajectory 107 . Video clips 
may be generated of different objects performing the same 
motion by applying the same motion trajectory in the motion 
subspace to different sampled points in the content subspace . 
[ 0031 ] FIG . 1E illustrates video clips generated using the 
different points in the second content subspace shown in 
FIG . 1D and a fourth motion trajectory in the second motion 
subspace , in accordance with one embodiment . As shown in 
FIGS . 1D and 1E , different video clips may be generated of 
the same object performing different motion by applying a 
different trajectory in the second motion subspace to the 
same content vector sample 105 or 106 . In one embodiment , 
as shown in FIG . 1E , the fourth motion trajectory 108 
corresponds to waving two hands . Images in the upper row 
of FIG . 1E are generated using the third content vector 
sample 105 and the fourth motion trajectory 108 . Images in 
the lower row of FIG . 1E are generated using the fourth 
content vector sample 106 and the fourth motion trajectory 
108 . 
[ 0032 ] A video generation framework , such as Motion and 
Content decomposed Generative Adversarial Network 
( MOCOGAN ) framework , may be used for video generation 
using a motion and content decomposed representation of 
the image latent space , where each latent code represents an 
image . In one embodiment , the video generation framework 
generates a video clip by sequentially generating video 
frames . At each time step ( e . g . , frame ) , an image generative 
network maps a random vector to an image . The random 
vector consists of two parts where the first is sampled from 
the content subspace and the second is sampled from the 
motion subspace . The content component represents the 
objects present in the video clip and the motion component 
represents the object dynamics . 
[ 0033 ] FIG . 1F illustrates a flowchart of a method 100 for 
generating a video clip , in accordance with one embodiment . 
Although method 100 is described in the context of a video 
generation system , the method 100 may also be performed 
by a program , custom circuitry , or by a combination of 
custom circuitry and a program . For example , the method 
100 may be executed by a GPU ( graphics processing unit ) , 
CPU ( central processing unit ) , or any processor capable of 
implementing a recurrent neural network ( RNN ) and a 
generator neural network . Furthermore , persons of ordinary 
skill in the art will understand that any system that performs 
method 100 is within the scope and spirit of embodiments of 
the present invention . 
[ 0034 ] At step 110 , an RNN included in the video gen 
eration system generates a sequence of motion vectors from 
a first set of random variables . In one embodiment , network 
parameters used by the RNN to sample the motion subspace 
and produce the sequence of motion vectors are learned 
during training . Despite lacking supervision regarding the 
decomposition of motion and content in natural videos , in 
one embodiment , the video generation system can learn to 
disentangle these two components using an adversarial 
training scheme . In one embodiment , the adversarial training 
scheme includes both image and video discriminators and is 
used to train the RNN and a generator neural network . The 
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short video clip , the same realization , Zc , is used for gen 
erating different frames in a video clip . Motion in the video 
clip is modeled by a trajectory ( i . e . , path ) in the motion 
subspace Zm . The sequence of vectors for generating a video 
is represented by 

baby . . . , " ) = ( ) LLUM UM 

combination of the generator neural network and discrimi 
nators forms a generative adversarial network ( GAN ) . 
[ 0035 ] At step 120 , the generator neural network included 
in the video generation system receives the sequence of 
motion vectors and a content vector sample . Because con - 
tent in a short video clip usually remains the same , in one 
embodiment , the content subspace is modeled using a 
Gaussian distribution and the same realization may be used 
to generate each frame in the video clip . In one embodiment , 
an encoder generates the content vector sample based on 
identified content . In other words , a content vector sample 
for a particular animal , adult or child , man or women , etc . , 
may be selected by the encoder . 
[ 0036 ] . At step 130 , the sequence of motion vectors and the 
content vector sample are processed by the generator neural 
network to produce a video clip . The objective of the 
generator neural network is to generate images resembling 
real images . In one embodiment , the video generation sys 
tem also includes at least one of an image and video 
discriminator that distinguishes real images from generated 
ones . The discriminator ( s ) is used to train the generator 
neural network to generate images that appear to be real . In 
one embodiment , the generator neural network and discrimi 
nator ( s ) in the GAN may each be implemented as convolu 
tional neural networks ( CNNs ) . After being trained , the 
RNN and generator neural network may be deployed to 
generate realistic video clips with controlled content and 
motion and varying numbers of frames . 
[ 0037 ] More illustrative information will now be set forth 
regarding various optional architectures and features with 
which the foregoing framework may or may not be imple 
mented , per the desires of the user . It should be strongly 
noted that the following information is set forth for illus 
trative purposes and should not be construed as limiting in 
any manner . Any of the following features may be optionally 
incorporated with or without the exclusion of other features 
described . 
[ 0038 ] A latent space of images Z = Rd where each point 
ZEZ , represents an image , and a video of K frames is 
represented by a path of length K in the latent space , [ z 1 ) , 
. . . , zk ] . The value of K can vary to control the length of 
the video clip that is generated . Therefore , videos of differ 
ent lengths can be generated by paths of different lengths . 
Moreover , videos of the same action executed with different 
speeds can be generated by traversing the same path in the 
latent space with different speeds . 
[ 0039 ] As previously described in conjunction with FIG . 
1A , Z , may be decomposed into the content Zr , and motion 
Zm subspaces : ZzZcxZm where Zc = Rac , ZMER AM , and 
d = dr + dw . The content subspace models motion - indepen 
dent appearance in videos , while the motion subspace mod 
els motion - dependent appearance in videos . For example , in 
a video of a person smiling , content represents the identity 
of the person , while motion represents the changes of facial 
muscle configurations of the person . A combination of the 
person ' s identity and the facial muscle configuration repre 
sents a face image of the person . A sequence of combina 
tions represents a video clip of the person smiling . By 
swapping the look of the person with the look of another 
person , a video of a different person smiling is represented . 
[ 0040 ] In one embodiment , the content subspace is mod 
eled using a Gaussian distribution : Zompz = N ( ZIO , ID ) 
where Id , is an identity matrix of size dcxdc . Based on the 
observation that the content remains largely the same in a 

where ZcEZc and ZMEZ , for all k ' s . Since not all paths 
in Zm correspond to physically plausible motion , the RNN 
should learn to generate valid paths . 
[ 0041 ] FIG . 2A illustrates a block diagram of a video 
generation system 200 , in accordance with one embodiment . 
The video generation system 200 includes an RNN 210 , a 
generator neural network 220 , samplers 205 and 215 , image 
discriminator 225 , and video discriminator 230 . 
[ 0042 ] The content subspace may be sampled once to 
produce a fixed content vector sample ( zo ) while a series of 
random variables [ Ell ) , . . . , E ( K ] is sampled and mapped 
to a sequence of motion vectors ( represented as a series of 
motion codes [ zy ( 1 ) , . . . , Zy ( K ) ] ) by the RNN ( RJ ) 210 . The 
hidden state of the RNN 210 is h ) . In one embodiment , at 
each time step , the RNN 210 samples a random motion 
vector from a Gaussian distribution E - PEN ( EIO , L1 _ ) of 
the random variables and outputs a vector in Zm , which is 
used as the motion representation . Let Ruk ) be the output 
of the recurrent neural network at time k . Then , ZMK ) = RM 
( k ) . Intuitively , the function of the RNN 210 is to map a 
sequence of independent and identically distributed ( i . i . d . ) 
random variables [ E1 ) , . . . , Elk ) ] to a sequence of 
correlated random variables [ Rm ( 1 ) , . . . , RM ( 1 ) ] represent 
ing the dynamics in a video . Injecting noise at every iteration 
models uncertainty of the future motion at each timestep . In 
one embodiment the RNN 210 is implemented using a 
one - layer gated recurrent ( GRU ) neural network . 
[ 0043 ] The generator neural network ( G ) 220 produces a 
video clip ( V ) using the sequence of motion vectors and the 
content vector sample , where the video clip includes frames 
â ( * ) , where K is the number of frames . The vectors in Z , are 
mapped to images by the generator neural network 220 , 
from a sequence of vectors 

to a sequence of images , = [ x ( 1 ) , . . . , ( K ) ] , where 

# K = c ( ) IZM 

and Zmk ) ' s are from the RNN 210 . 
[ 0044 ] During training , parameters ( e . g . , weights ) of the 
RNN 210 and generator neural network 220 are updated to 
improve accuracy of the video generation system 200 
( where accuracy means generated video clips are judged by 
the discriminators to be real ) . The sampler ( S ) 205 , is a 
function that samples a single frame from a video clip and 
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the sampler S , 215 is a function that samples T consecutive 
frames of a video clip . The generated video clip and a real 
video clip ( v from a training dataset ) are sampled by the 
image sampler 205 and a video sampler 215 . The image 
sampler samples individual images from the generated video 
clip and the real video clip . The video sampler samples 
sequences of consecutive frames from the generated video 
clip and the real video clip to produce sets of sequential 
frames ( i . e . , shorter video clips ) . An image discriminator 
( D ) distinguishes real images from generated images . A 
video discriminator ( Du ) distinguishes real video clips from 
generated video clips . D , is the image discriminator 225 and 
Dy is the video discriminator 230 . The image discriminator 
225 is an image discriminative neural network that is trained 
using real and fake images and the video discriminator 230 
is a video discriminative neural network that is trained using 
real and fake ( e . g . , synthesized ) videos . The image discrimi 
nator 225 and the video discriminator 230 each generate a 
true / false output ( i . e . , real / not real ) . 
[ 0045 ] The generator neural network 220 can be trained to 
synthesize an image that resembles an image x drawn from 
a distribution prof real images from a content component of 
a random vector input z , where Z = R " . The generator neural 
network 220 receives z as an input and outputs an image , 
X = G ( z ) , that has the same support as x , where the distribu 
tion of G 2 ) is pc . The image discriminator 225 estimates 
the probability that an input image is drawn from Px . Ideally , 
Dz ( x ) = 1 if x ~ Px and Dr = 0 if X ~ PG : Training of the 
image discriminator 225 ( D ) and the video discriminator 
230 ( Dv ) is achieved by solving a minimax problem given 
by 

samples a real video to produce real images . At step 245 , the 
image sampler 205 samples the generated video clip to 
produce image frames . At step 243 , the video sampler 215 
samples the real video to produce real video clips . At step 
250 , the video sampler 215 samples the generated video clip 
to produce sets of sequential frames . 
[ 0050 ] At step 260 , the image discriminator 225 processes 
the real images and the image frames to generate updated 
parameters for the generator neural network 220 . The image 
discriminator 225 processes the image frames to distinguish 
the real images from generated image frames and generate 
the updated parameters to reduce differences between the 
real images and the image frames produced by the generator 
neural network 220 . At step 262 , the video discriminator 230 
processes the real video clips and the sets of sequential 
frames to generate updated parameters for the RNN 210 and 
the generator neural network 220 . The video discriminator 
230 processes the image frames to distinguish the real 
images from generated image frames and generate the 
updated parameters to reduce differences between the real 
images and the image frames produced by the generator 
neural network 220 . Once training is completed the video 
generating system 200 may be deployed to generate video 
clips . 

maxminF ( D1 , G ) 

[ 0046 ] where the functional F , is given by 
FAD , G ) = Ex - pxd - log Df ( x ) ] + Ex - p _ { - log ( 1 - D ( G 

( z ) ) ) ] . ( 3 ) 

In practice , equation ( 2 ) is solved by alternating gradient 
update . 
10047 ) Given enough capacity to D , and G , and sufficient 
training iterations , the distribution pg , converges to px . As a 
result , from a random vector input z , the generator neural 
network 220 ( G ) can synthesize an image that resembles 
one drawn from the true distribution , pr . 
[ 0048 ] FIG . 2B illustrates a flowchart of a method 240 for 
training the video generation system 200 , in accordance with 
one embodiment . Although method 240 is described in the 
context of a video generation system , the method 240 may 
also be performed by a program , custom circuitry , or by a 
combination of custom circuitry and a program . For 
example , the method 100 may be executed by a GPU , CPU , 
or any processor capable of implementing the RNN 210 , the 
generator neural network 220 , the image discriminator 225 , 
and the video discriminator 230 . Furthermore , persons of 
ordinary skill in the art will understand that any system that 
performs method 240 is within the scope and spirit of 
embodiments of the present invention . 
[ 0049 ] The steps 110 , 120 , and 130 are performed as 
previously described in conjunction with FIG . 1F . Real 
videos are provided during the training phase of the video 
generation system 200 . At step 242 , the image sampler 205 

10051 ] Both the image discriminator 225 and the video 
discriminator 230 play the role of judge , providing criti 
cisms to the RNN 210 and the generator neural network 220 . 
The image discriminator 225 is specialized in criticizing the 
generator neural network 220 based on individual images . 
The image discriminator 225 is trained to determine if a 
frame is sampled from a real video clip , V , or from a 
generated video clip V . On the other hand , the video dis 
criminator 230 provides criticisms to the generator neural 
network 220 based on the generated video clip . The video 
discriminator 230 takes a fixed length video clip , of T 
frames , and decides if a video clip was sampled from a real 
video or from . In contrast with the image discriminator 
225 , which is based on a CNN architecture , the video 
discriminator 230 is based on a spatio - temporal CNN archi 
tecture . In one embodiment , the video clip length T is a 
hyperparameter that is set to 16 . T can be smaller than the 
generated video length K . A video clip of length K can be 
divided into K - T + 1 clips in a sliding - window fashion , and 
each of the T length sequences can be input to the video 
discriminator 230 . 
10052 ] The video discriminator 230 also evaluates the 
generated motion . Since the generator neural network 220 
has no concept of motion , the criticisms on the motion part 
go directly to the RNN 210 . In order to generate a video with 
realistic dynamics that fools the video discriminator 230 , the 
RNN 210 has to learn to generate a sequence of motion 
codes [ Zy ' ' ) , . . . , ZM “ ) ] from a sequence of i . i . d . noise 
inputs [ Ell ) , . . . , EK ] in a way such that the generator 
neural network 220 can map z ( K ) = [ Zc , ZM " ) ] to consecutive 
frames in a video . 
[ 0053 ] Ideally , the video discriminator 230 alone should 
be sufficient for training the generator neural network 220 
and the RNN 210 , because the video discriminator 230 
provides feedback on both static image appearance and 
video dynamics . However , in one embodiment , using image 
discriminator 225 significantly improves the convergence of 
the adversarial training . This may be because training the 
image discriminator 225 is simpler , as it only needs to focus 
on static appearances . 

1 ) 
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[ 0054 ] Let py be the distribution of video clips of variable 
lengths . Let k be a discrete random variable denoting the 
length of a video clip sampled from pr . ( In practice , the 
distribution of K , termed px , can be estimated by computing 
a histogram of video clip length from training data ) . To 
generate a video , a content vector , zc , and a length , K are 
sampled . The RNN 210 is then operated for K steps and , at 
each time step , the RNN 210 takes a random variable E as 
the input . A generated video is then given by 

v = C6 ( . . . ( ( DI 
[ 0055 ] Recall that image discriminator 225 and the video 
discriminator 230 take one frame and T consecutive frames 
in a video as input , respectively . In order to represent the 
sampling mechanisms , two random access functions , the 
image sampler 205 and the video sampler 215 and are 
introduced . The image sampler 205 takes a video clip ( either 
V ~ py or ?mp ) and outputs a random frame from the clip , 
while the video sampler 215 takes a video clip and randomly 
returns T consecutive frames from the clip . With this nota 
tion , the video generation system learning problem is : 

max min Fy ( D1 , Dy , G1 , Rm ) GRy DRM 

Where the objective function FD , Dy , G , RM ) is 
Ey [ - log D / ( S ( v ) ) ] + E [ - log ( 1 - D ( S ( ) ) ) ) ] + E [ 

log D « Sc ( v ) ) ] + E [ - log ( 1 - D - S ( O ) ) ) ] , ( 6 ) 

Where E , is a shorthand for E - p , and E , for E - py . In 
equation ( 6 ) , the first and second terms encourage image 
discriminator 225 to output 1 for a video frame from a real 
video clip v and 0 for a video frame from a generated one 
V . Similarly , the third and fourth terms encourage l ) y to 
output 1 for T consecutive frames in a real video clip v and 
O for T consecutive frames in a generated one ? . The second 
and fourth terms encourage the image generator and the 
recurrent neural network to produce realistic images and 
video sequences of T - consecutive frames , such that no 
discriminator can distinguish them from real images and 
videos . 
[ 0056 ] In one embodiment , the video generation system 
200 is trained using the alternating gradient update algo 
rithm . Specifically , in one step , the image discriminator 225 
and the video discriminator 230 are updated while fixing the 
generator neural network 220 and the RNN 210 . In the 
alternating step , the generator neural network 220 and the 
RNN 210 are updated while fixing the image discriminator 
225 and the video discriminator 230 . 
[ 0057 ] FIG . 2C illustrates another flowchart of a method 
265 for generating a video clip , in accordance with one 
embodiment . Although method 265 is described in the 
context of a video generation system , the method 265 may 
also be performed by a program , custom circuitry , or by a 
combination of custom circuitry and a program . For 
example , the method 265 may be executed by a GPU , CPU , 
or any processor capable of implementing the RNN 210 and 
the generator neural network 220 . Furthermore , persons of 
ordinary skill in the art will understand that any system that 

performs method 265 is within the scope and spirit of 
embodiments of the present invention . 
[ 0058 ] The steps 110 , 120 , and 130 are performed as 
previously described in conjunction with FIG . 1F . At step 
270 , the RNN 210 generates an additional sequence of 
motion vectors from a second set of random variables . The 
second set of random variables encodes a second path in the 
motion subspace . For example , the second set of random 
variables may define the motion trajectory 104 while , at step 
110 , the first set of random variables defines the motion 
trajectory 103 . At step 275 , the generator neural network 220 
processes the additional sequence of motion vectors and the 
content vector to produce an additional video clip . For 
example , the content vector may be the content sample 
vector 102 and the video clip and the additional video clip 
may be the top rows of FIGS . 1B and 1C , respectively . In 
another example , the content vector may be the content 
sample vector 101 and the video clip and the additional 
video clip may be the bottom rows of FIGS . 1B and 1C , 
respectively . 
[ 0059 ] FIG . 2D illustrates another flowchart of a method 
280 for generating a video clip , in accordance with one 
embodiment . Although method 280 is described in the 
context of a video generation system , the method 280 may 
also be performed by a program , custom circuitry , or by a 
combination of custom circuitry and a program . For 
example , the method 280 may be executed by a GPU , CPU , 
or any processor capable of implementing the RNN 210 and 
the generator neural network 220 . Furthermore , persons of 
ordinary skill in the art will understand that any system that 
performs method 280 is within the scope and spirit of 
embodiments of the present invention . 
[ 0060 ] The steps 110 , 120 , and 130 are performed as 
previously described in conjunction with FIG . 1F . At step 
285 , the generator neural network 220 receives an additional 
content vector sample . In one embodiment , the additional 
content vector sample is different than the content vector 
samples received at step 120 . For example , the content 
vector sample may correspond to the third content vector 
sample 105 while the additional content vector sample 
corresponds to the fourth content vector sample 106 shown 
in FIGS . 1D and 1E . At step 290 , the generator neural 
network 220 processes the first sequence of motion vectors 
and the additional content sample vector to produce an 
additional video clip . For example , the content vector 
sample and the additional content vector sample may be the 
third content vector sample 105 and the fourth content 
vector sample 106 that are both processed with the motion 
trajectory vector 107 or 108 to produce the video clips 
shown in FIGS . 1D and 1E , respectively . In another 
example , the content vector may be the content sample 
vector 101 and the video clip and the additional video clip 
may be the bottom rows of FIGS . 1B and 1C , respectively . 
[ 0061 ] FIG . 2E illustrates a block diagram of a video 
generation system 255 , in accordance with one embodiment . 
The video generation system 255 includes the RNN 212 and 
the generator neural network 220 . During training , the video 
generation system 255 also includes the samplers 205 and 
215 , image discriminator 225 , and video discriminator 230 . 
[ 0062 ] Dynamics in videos are often categorical ( e . g . , 
discrete action categories : walking , running , jumping , etc . ) . 
Examples of an action categories are facial expressions or 
motion directions . In one embodiment , the input to the RNN 
210 is augmented with a categorical random variable , Zg . In 
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101 
one embodiment , Z , is a one - hot vector . For example , when 
six different facial expressions are available the one - hot 
vector for the facial expression category comprises 6 bits , 
one bit for each label . In one embodiment , Z , is fixed since 
the action category in a short video remains the constant . 
The input to the RNN 210 is then given by 

ZA - ) 
To relate za to the true action category , the objective function 
in equation ( 6 ) may be augmented to F ( D1 , D G , 
Rw + L ( G , Q ) where L , is a lower bound of the mutual 
information between the generated video clip and Za , a is a 
hyperparameter , and the auxiliary distribution Q ( which 
approximates the distribution of the action category variable 
conditioning on the video clip ) is implemented by adding a 
softmax layer to the last feature layer of the video discrimi 
nator 230 . In one embodiment , à = 1 . Note that when the 
labeled training data are available , Q can be trained to output 
the category label for a real input video clip to further 
improve the performance . 
[ 0063 ] In one embodiment , the generator neural network 
220 in the video generation system 200 is replaced with an 
encoder - decoder architecture , where the encoder produces 
the content code Zc and the initial motion code z ( 0 ) 
Subsequent motion codes are produced by the RNN 210 and 
concatenated with the content code to generate each frame . 
In other words , the input is an image and the output is a 
video clip . 
[ 0064 ] Given sufficient video training data , the video 
generation system 200 automatically learns to disentangle 
motion from content in an unsupervised manner . For 
instance , given videos of people performing different facial 
expressions , the video generation system 200 learns to 
separate a person ' s identity from their expression , thus 
allowing synthesis of a new video clip of a person perform 
ing different expressions , or fixing the expression and gen 
erating various identities . The video clip generation is 
enabled by a generative adversarial network , which gener 
ates a video clip by sequentially generating video frames . 
Each video frame is generated from a random vector , which 
consists of two parts , one signifying content and one signi 
fying motion . The content subspace is modeled with a 
Gaussian distribution , whereas the motion subspace is mod 
eled with the RNN 210 . The content subspace and motion 
subspace are sampled in order to synthesize each video 
frame . 

device such as a liquid crystal display ( LCD ) device . In 
other embodiments , the PPU 300 may be utilized for per 
forming general - purpose computations . While one exem 
plary parallel processor is provided herein for illustrative 
purposes , it should be strongly noted that such processor is 
set forth for illustrative purposes only , and that any proces 
sor may be employed to supplement and / or substitute for the 
same 
[ 0066 ] One or more PPUs 300 may be configured to 
accelerate thousands of High Performance Computing 
( HPC ) , data center , and machine learning applications . The 
PPU 300 may be configured to accelerate numerous deep 
learning systems and applications including autonomous 
vehicle platforms , deep learning , high - accuracy speech , 
image , and text recognition systems , intelligent video ana 
lytics , molecular simulations , drug discovery , disease diag 
nosis , weather forecasting , big data analytics , astronomy , 
molecular dynamics simulation , financial modeling , robot 
ics , factory automation , real - time language translation , 
online search optimizations , and personalized user recom 
mendations , and the like . 
[ 0067 ] As shown in FIG . 3 , the PPU 300 includes an 
Input / Output ( I / O ) unit 305 , a front end unit 315 , a scheduler 
unit 320 , a work distribution unit 325 , a hub 330 , a crossbar 
( Xbar ) 370 , one or more general processing clusters ( GPCs ) 
350 , and one or more partition units 380 . The PPU 300 may 
be connected to a host processor or other PPUS 300 via one 
or more high - speed NVLink 310 interconnect . The PPU 300 
may be connected to a host processor or other peripheral 
devices via an interconnect 302 . The PPU 300 may also be 
connected to a local memory comprising a number of 
memory devices 304 . In one embodiment , the local memory 
may comprise a number of dynamic random access memory 
( DRAM ) devices . The DRAM devices may be configured as 
a high - bandwidth memory ( HBM ) subsystem , with multiple 
DRAM dies stacked within each device . 
10068 ] The NVLink 310 interconnect enables systems to 
scale and include one or more PPUS 300 combined with one 
or more CPUs , supports cache coherence between the PPUS 
300 and CPUs , and CPU mastering . Data and / or commands 
may be transmitted by the NVLink 310 through the hub 330 
to / from other units of the PPU 300 such as one or more copy 
engines , a video encoder , a video decoder , a power man 
agement unit , etc . ( not explicitly shown ) . The NVLink 310 
is described in more detail in conjunction with FIG . 5A . 
[ 0069 ] The I / O unit 305 is configured to transmit and 
receive communications ( i . e . , commands , data , etc . ) from a 
host processor ( not shown ) over the interconnect 302 . The 
1 / 0 unit 305 may communicate with the host processor 
directly via the interconnect 302 or through one or more 
intermediate devices such as a memory bridge . In one 
embodiment , the I / O unit 305 may communicate with one or 
more other processors , such as one or more the PPUS 300 via 
the interconnect 302 . In one embodiment , the I / O unit 305 
implements a Peripheral Component Interconnect Express 
( PCIe ) interface for communications over a PCIe bus and 
the interconnect 302 is a PCIe bus . In alternative embodi 
ments , the 1 / 0 unit 305 may implement other types of 
well - known interfaces for communicating with external 
devices . 
[ 0070 ] The I / O unit 305 decodes packets received via the 
interconnect 302 . In one embodiment , the packets represent 
commands configured to cause the PPU 300 to perform 
various operations . The I / O unit 305 transmits the decoded 

Parallel Processing Architecture 
[ 0065 ] FIG . 3 illustrates a parallel processing unit ( PPU ) 
300 , in accordance with one embodiment . In one embodi 
ment , the PPU 300 is a multi - threaded processor that is 
implemented on one or more integrated circuit devices . The 
PPU 300 is a latency hiding architecture designed to process 
many threads in parallel . A thread ( i . e . , a thread of execu 
tion ) is an instantiation of a set of instructions configured to 
be executed by the PPU 300 . In one embodiment , the PPU 
300 is a graphics processing unit ( GPU ) configured to 
implement a graphics rendering pipeline for processing 
three - dimensional ( 3D ) graphics data in order to generate 
two - dimensional ( 2D ) image data for display on a display 
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commands to various other units of the PPU 300 as the 
commands may specify . For example , some commands may 
be transmitted to the front end unit 315 . Other commands 
may be transmitted to the hub 330 or other units of the PPU 
300 such as one or more copy engines , a video encoder , a 
video decoder , a power management unit , etc . ( not explicitly 
shown ) . In other words , the I / O unit 305 is configured to 
route communications between and among the various logi 
cal units of the PPU 300 . 
[ 0071 ] In one embodiment , a program executed by the 
host processor encodes a command stream in a buffer that 
provides workloads to the PPU 300 for processing . A 
workload may comprise several instructions and data to be 
processed by those instructions . The buffer is a region in a 
memory that is accessible ( i . e . , read / write ) by both the host 
processor and the PPU 300 . For example , the host interface 
unit 310 may be configured to access the buffer in a system 
memory connected to the interconnect 302 via memory 
requests transmitted over the interconnect 302 by the I / O 
unit 305 . In one embodiment , the host processor writes the 
command stream to the buffer and then transmits a pointer 
to the start of the command stream to the PPU 300 . The front 
end unit 315 receives pointers to one or more command 
streams . The front end unit 315 manages the one or more 
streams , reading commands from the streams and forward 
ing commands to the various units of the PPU 300 . 
10072 ] The front end unit 315 is coupled to a scheduler 
unit 320 that configures the various GPCs 350 to process 
tasks defined by the one or more streams . The scheduler unit 
320 is configured to track state information related to the 
various tasks managed by the scheduler unit 320 . The state 
may indicate which GPC 350 a task is assigned to , whether 
the task is active or inactive , a priority level associated with 
the task , and so forth . The scheduler unit 320 manages the 
execution of a plurality of tasks on the one or more GPCs 
350 . 
[ 0073 ] The scheduler unit 320 is coupled to a work 
distribution unit 325 that is configured to dispatch tasks for 
execution on the GPCs 350 . The work distribution unit 325 
may track a number of scheduled tasks received from the 
scheduler unit 320 . In one embodiment , the work distribu 
tion unit 325 manages a pending task pool and an active task 
pool for each of the GPCs 350 . The pending task pool may 
comprise a number of slots ( e . g . , 32 slots ) that contain tasks 
assigned to be processed by a particular GPC 350 . The active 
task pool may comprise a number of slots ( e . g . , 4 slots ) for 
tasks that are actively being processed by the GPCs 350 . As 
a GPC 350 finishes the execution of a task , that task is 
evicted from the active task pool for the GPC 350 and one 
of the other tasks from the pending task pool is selected and 
scheduled for execution on the GPC 350 . If an active task 
has been idle on the GPC 350 , such as while waiting for a 
data dependency to be resolved , then the active task may be 
evicted from the GPC 350 and returned to the pending task 
pool while another task in the pending task pool is selected 
and scheduled for execution on the GPC 350 . 
10074 ] . The work distribution unit 325 communicates with 
the one or more GPCs 350 via XBar 370 . The XBar 370 is 
an interconnect network that couples many of the units of the 
PPU 300 to other units of the PPU 300 . For example , the 
XBar 370 may be configured to couple the work distribution 
unit 325 to a particular GPC 350 . Although not shown 
explicitly , one or more other units of the PPU 300 may also 
be connected to the XBar 370 via the hub 330 . 

[ 0075 ] The tasks are managed by the scheduler unit 320 
and dispatched to a GPC 350 by the work distribution unit 
325 . The GPC 350 is configured to process the task and 
generate results . The results may be consumed by other tasks 
within the GPC 350 , routed to a different GPC 350 via the 
XBar 370 , or stored in the memory 304 . The results can be 
written to the memory 304 via the partition units 380 , which 
implement a memory interface for reading and writing data 
to / from the memory 304 . The results can be transmitted to 
another PPU 304 or CPU via the NVLink 310 . In one 
embodiment , the PPU 300 includes a number U of partition 
units 380 that is equal to the number of separate and distinct 
memory devices 304 coupled to the PPU 300 . A partition 
unit 380 will be described in more detail below in conjunc 
tion with FIG . 4B . 
[ 0076 ] In one embodiment , a host processor executes a 
driver kernel that implements an application programming 
interface ( API ) that enables one or more applications execut 
ing on the host processor to schedule operations for execu 
tion on the PPU 300 . In one embodiment , multiple compute 
applications are simultaneously executed by the PPU 300 
and the PPU 300 provides isolation , quality of service 
( QoS ) , and independent address spaces for the multiple 
compute applications . An application may generate instruc 
tions ( i . e . , API calls ) that cause the driver kernel to generate 
one or more tasks for execution by the PPU 300 . The driver 
kernel outputs tasks to one or more streams being processed 
by the PPU 300 . Each task may comprise one or more 
groups of related threads , referred to herein as a warp . In one 
embodiment , a warp comprises 32 related threads that may 
be executed in parallel . Cooperating threads may refer to a 
plurality of threads including instructions to perform the task 
and that may exchange data through shared memory . 
Threads and cooperating threads are described in more detail 
in conjunction with FIG . 5A . 
[ 0077 ] FIG . 4A illustrates a GPC 350 of the PPU 300 of 
FIG . 3 , in accordance with one embodiment . As shown in 
FIG . 4A , each GPC 350 includes a number of hardware units 
for processing tasks . In one embodiment , each GPC 350 
includes a pipeline manager 410 , a pre - raster operations unit 
( PROP ) 415 , a raster engine 425 , a work distribution cross 
bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 
and one or more Data Processing Clusters ( DPCs ) 420 . It 
will be appreciated that the GPC 350 of FIG . 4A may include 
other hardware units in lieu of or in addition to the units 
shown in FIG . 4A . 
[ 0078 ] In one embodiment , the operation of the GPC 350 
is controlled by the pipeline manager 410 . The pipeline 
manager 410 manages the configuration of the one or more 
DPCs 420 for processing tasks allocated to the GPC 350 . In 
one embodiment , the pipeline manager 410 may configure at 
least one of the one or more DPCs 420 to implement at least 
a portion of a graphics rendering pipeline . For example , a 
DPC 420 may be configured to execute a vertex shader 
program on the programmable streaming multiprocessor 
( SM ) 440 . The pipeline manager 410 may also be configured 
to route packets received from the work distribution unit 325 
to the appropriate logical units within the GPC 350 . For 
example , some packets may be routed to fixed function 
hardware units in the PROP 415 and / or raster engine 425 
while other packets may be routed to the DPCs 420 for 
processing by the primitive engine 435 or the SM 440 . In 
one embodiment , the pipeline manager 410 may configure at 



US 2018 / 0288431 A1 Oct . 4 , 2018 

least one of the one or more DPCs 420 to implement a neural 
network model and / or a computing pipeline . 
[ 0079 ] The PROP unit 415 is configured to route data 
generated by the raster engine 425 and the DPCs 420 to a 
Raster Operations ( ROP ) unit in the partition unit 380 , 
described in more detail in conjunction with FIG . 4B . The 
PROP unit 415 may also be configured to perform optimi 
zations for color blending , organize pixel data , perform 
address translations , and the like . 
[ 0080 ] The raster engine 425 includes a number of fixed 
function hardware units configured to perform various raster 
operations . In one embodiment , the raster engine 425 
includes a setup engine , a coarse raster engine , a culling 
engine , a clipping engine , a fine raster engine , and a tile 
coalescing engine . The setup engine receives transformed 
vertices and generates plane equations associated with the 
geometric primitive defined by the vertices . The plane 
equations are transmitted to the coarse raster engine to 
generate coverage information ( e . g . , an x , y coverage mask 
for a tile ) for the primitive . The output of the coarse raster 
engine is transmitted to the culling engine where fragments 
associated with the primitive that fail a z - test are culled , and 
transmitted to a clipping engine where fragments lying 
outside a viewing frustum are clipped . Those fragments that 
survive clipping and culling may be passed to the fine raster 
engine to generate attributes for the pixel fragments based 
on the plane equations generated by the setup engine . The 
output of the raster engine 425 comprises fragments to be 
processed , for example , by a fragment shader implemented 
within a DPC 420 . 
[ 0081 ] Each DPC 420 included in the GPC 350 includes 
an M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , 
and one or more SMs 440 . The MPC 430 controls the 
operation of the DPC 420 , routing packets received from the 
pipeline manager 410 to the appropriate units in the DPC 
420 . For example , packets associated with a vertex may be 
routed to the primitive engine 435 , which is configured to 
fetch vertex attributes associated with the vertex from the 
memory 304 . In contrast , packets associated with a shader 
program may be transmitted to the SM 440 . 
[ 0082 ] The SM 440 comprises a programmable streaming 
processor that is configured to process tasks represented by 
a number of threads . Each SM 440 is multi - threaded and 
configured to execute a plurality of threads ( e . g . , 32 threads ) 
from a particular group of threads concurrently . In one 
embodiment , the SM 440 implements a SIMD ( Single 
Instruction , Multiple - Data ) architecture where each thread 
in a group of threads ( i . e . , a warp ) is configured to process 
a different set of data based on the same set of instructions . 
All threads in the group of threads execute the same instruc 
tions . In another embodiment , the SM 440 implements a 
SIMT ( Single - Instruction , Multiple Thread ) architecture 
where each thread in a group of threads is configured to 
process a different set of data based on the same set of 
instructions , but where individual threads in the group of 
threads are allowed to diverge during execution . In one 
embodiment , a program counter , call stack , and execution 
state is maintained for each warp , enabling concurrency 
between warps and serial execution within warps when 
threads within the warp diverge . In another embodiment , a 
program counter , call stack , and execution state is main 
tained for each individual thread , enabling equal concur 
rency between all threads , within and between warps . When 
execution state is maintained for each individual thread , 

threads executing the same instructions may be converged 
and executed in parallel for maximum efficiency . The SM 
440 will be described in more detail below in conjunction 
with FIG . 5A . 
[ 0083 ] The MMU 490 provides an interface between the 
GPC 350 and the partition unit 380 . The MMU 490 may 
provide translation of virtual addresses into physical 
addresses , memory protection , and arbitration of memory 
requests . In one embodiment , the MMU 490 provides one or 
more translation lookaside buffers ( TLBs ) for performing 
translation of virtual addresses into physical addresses in the 
memory 304 . 
[ 0084 ] FIG . 4B illustrates a memory partition unit 380 of 
the PPU 300 of FIG . 3 , in accordance with one embodiment . 
As shown in FIG . 4B , the memory partition unit 380 
includes a Raster Operations ( ROP ) unit 450 , a level two 
( L2 ) cache 460 , and a memory interface 470 . The memory 
interface 470 is coupled to the memory 304 . Memory 
interface 470 may implement 32 , 64 , 128 , 1024 - bit data 
buses , or the like , for high - speed data transfer . In one 
embodiment , the PPU 300 incorporates U memory inter 
faces 470 , one memory interface 470 per pair of partition 
units 380 , where each pair of partition units 380 is connected 
to a corresponding memory device 304 . For example , PPU 
300 may be connected to up to Y memory devices 304 , such 
as high bandwidth memory stacks or graphics double - data 
rate , version 5 , synchronous dynamic random access 
memory ( GDDR5 SDRAM ) . 
[ 0085 ] In one embodiment , the memory interface 470 
implements an HBM2 memory interface and Y equals half 
U . In one embodiment , the HBM2 memory stacks are 
located on the same physical package as the PPU 300 , 
providing substantial power and area savings compared with 
conventional GDDR5 SDRAM systems . In one embodi 
ment , each HBM2 stack includes four memory dies and Y 
equals 4 , with HBM2 stack including two 128 - bit channels 
per die for a total of 8 channels and a data bus width of 1024 
bits . 
[ 0086 ] In one embodiment , the memory 304 supports 
Single - Error Correcting Double - Error Detecting ( SECDED ) 
Error Correction Code ( ECC ) to protect data . ECC provides 
higher reliability for compute applications that are sensitive 
to data corruption . Reliability is especially important in 
large - scale cluster computing environments where PPUS 
300 process very large datasets and / or run applications for 
extended periods . 
10087 ] In one embodiment , the PPU 300 implements a 
multi - level memory hierarchy . In one embodiment , the 
memory partition unit 380 supports a unified memory to 
provide a single unified virtual address space for CPU and 
PPU 300 memory , enabling data sharing between virtual 
memory systems . In one embodiment the frequency of 
accesses by a PPU 300 to memory located on other proces 
sors is traced to ensure that memory pages are moved to the 
physical memory of the PPU 300 that is accessing the pages 
more frequently . In one embodiment , the NVLink 310 
supports address translation services allowing the PPU 300 
to directly access a CPU ' s page tables and providing full 
access to CPU memory by the PPU 300 . 
[ 0088 ] In one embodiment , copy engines transfer data 
between multiple PPUS 300 or between PPUS 300 and 
CPUs . The copy engines can generate page faults for 
addresses that are not mapped into the page tables . The 
memory partition unit 380 can then service the page faults , 
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mapping the addresses into the page table , after which the 
copy engine can perform the transfer . In a conventional 
system , memory is pinned ( i . e . , non - pageable ) for multiple 
copy engine operations between multiple processors , sub 
stantially reducing the available memory . With hardware 
page faulting , addresses can be passed to the copy engines 
without worrying if the memory pages are resident , and the 
copy process is transparent . 
[ 0089 ] Data from the memory 304 or other system 
memory may be fetched by the memory partition unit 380 
and stored in the L2 cache 460 , which is located on - chip and 
is shared between the various GPCs 350 . As shown , each 
memory partition unit 380 includes a portion of the L2 cache 
460 associated with a corresponding memory device 304 . 
Lower level caches may then be implemented in various 
units within the GPCs 350 . For example , each of the SMS 
440 may implement a level one ( L ) cache . The L1 cache is 
private memory that is dedicated to a particular SM 440 . 
Data from the L2 cache 460 may be fetched and stored in 
each of the Ll caches for processing in the functional units 
of the SMs 440 . The L2 cache 460 is coupled to the memory 
interface 470 and the XBar 370 . 
[ 0090 ] The ROP unit 450 performs graphics raster opera 
tions related to pixel color , such as color compression , pixel 
blending , and the like . The ROP unit 450 also implements 
depth testing in conjunction with the raster engine 425 , 
receiving a depth for a sample location associated with a 
pixel fragment from the culling engine of the raster engine 
425 . The depth is tested against a corresponding depth in a 
depth buffer for a sample location associated with the 
fragment . If the fragment passes the depth test for the sample 
location , then the ROP unit 450 updates the depth buffer and 
transmits a result of the depth test to the raster engine 425 . 
It will be appreciated that the number of partition units 380 
may be different than the number of GPCs 350 and , there 
fore , each ROP unit 450 may be coupled to each of the GPCs 
350 . The ROP unit 450 tracks packets received from the 
different GPCs 350 and determines which GPC 350 that a 
result generated by the ROP unit 450 is routed to through the 
Xbar 370 . 

plurality of different cooperative groups to the various 
functional units ( i . e . , cores 550 , SFUS 552 , and LSUS 554 ) 
during each clock cycle . 
[ 0093 ] Cooperative Groups is a programming model for 
organizing groups of communicating threads that allows 
developers to express the granularity at which threads are 
communicating , enabling the expression of richer , more 
efficient parallel decompositions . Cooperative launch APIs 
support synchronization amongst thread blocks for the 
execution of parallel algorithms . Conventional program 
ming models provide a single , simple construct for synchro 
nizing cooperating threads : a barrier across all threads of a 
thread block ( i . e . , the syncthreads function ) . However , 
programmers would often like to define groups of threads at 
smaller than thread block granularities and synchronize 
within the defined groups to enable greater performance , 
design flexibility , and software reuse in the form of collec 
tive group - wide function interfaces . 
[ 0094 ] Cooperative Groups enables programmers to 
define groups of threads explicitly at sub - block ( i . e . , as small 
as a single thread ) and multi - block granularities , and to 
perform collective operations such as synchronization on the 
threads in a cooperative group . The programming model 
supports clean composition across software boundaries , so 
that libraries and utility functions can synchronize safely 
within their local context without having to make assump 
tions about convergence . Cooperative Groups primitives 
enable new patterns of cooperative parallelism , including 
producer - consumer parallelism , opportunistic parallelism , 
and global synchronization across an entire grid of thread 
blocks . 
[ 0095 ] A dispatch unit 515 is configured to transmit 
instructions to one or more of the functional units . In the 
embodiment , the scheduler unit 510 includes two dispatch 
units 515 that enable two different instructions from the 
same warp to be dispatched during each clock cycle . In 
alternative embodiments , each scheduler unit 510 may 
include a single dispatch unit 515 or additional dispatch 
units 515 . 
[ 0096 ] Each SM 440 includes a register file 520 that 
provides a set of registers for the functional units of the SM 
440 . In one embodiment , the register file 520 is divided 
between each of the functional units such that each func 
tional unit is allocated a dedicated portion of the register file 
520 . In another embodiment , the register file 520 is divided 
between the different warps being executed by the SM 440 . 
The register file 520 provides temporary storage for oper 
ands connected to the data paths of the functional units . 
[ 0097 ] Each SM 440 comprises L processing cores 550 . In 
one embodiment , the SM 440 includes a large number ( e . g . , 
128 , etc . ) of distinct processing cores 550 . Each core 550 
may include a fully - pipelined , single - precision , double - pre 
cision , and / or mixed precision processing unit that includes 
a floating point arithmetic logic unit and an integer arith 
metic logic unit . In one embodiment , the floating point 
arithmetic logic units implement the IEEE 754 - 2008 stan 
dard for floating point arithmetic . In one embodiment , the 
cores 550 include 64 single - precision ( 32 - bit ) floating point 
cores , 64 integer cores , 32 double - precision ( 64 - bit ) floating 
point cores , and 8 tensor cores . 
[ 0098 ] Tensor cores configured to perform matrix opera 
tions , and , in one embodiment , one or more tensor cores are 
included in the cores 550 . In particular , the tensor cores are 
configured to perform deep learning matrix arithmetic , such 

[ 0091 ] FIG . 5A illustrates the streaming multi - processor 
440 of FIG . 4A , in accordance with one embodiment . As 
shown in FIG . 5A , the SM 440 includes an instruction cache 
505 , one or more scheduler units 510 , a register file 520 , one 
or more processing cores 550 , one or more special function 
units ( SFUS ) 552 , one or more load / store units ( LSUS ) 554 , 
an interconnect network 580 , a shared memory / L1 cache 
570 . 

[ 0092 ] As described above , the work distribution unit 325 
dispatches tasks for execution on the GPCs 350 of the PPU 
300 . The tasks are allocated to a particular DPC 420 within 
a GPC 350 and , if the task is associated with a shader 
program , the task may be allocated to an SM 440 . The 
scheduler unit 510 receives the tasks from the work distri 
bution unit 325 and manages instruction scheduling for one 
or more thread blocks assigned to the SM 440 . The scheduler 
unit 510 schedules thread blocks for execution as warps of 
parallel threads , where each thread block is allocated at least 
one warp . In one embodiment , each warp executes 32 
threads . The scheduler unit 510 may manage a plurality of 
different thread blocks , allocating the warps to the different 
thread blocks and then dispatching instructions from the 
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ured to use half of the capacity , texture and load / store 
operations can use the remaining capacity . Integration 
within the shared memory / L1 cache 570 enables the shared 
memory / L1 cache 570 to function as a high - throughput 
conduit for streaming data while simultaneously providing 
high - bandwidth and low - latency access to frequently reused 
data . 
[ 0104 ] When configured for general purpose parallel com 
putation , a simpler configuration can be used compared with 
graphics processing . Specifically , the fixed function graphics 
processing units shown in FIG . 3 , are bypassed , creating a 
much simpler programming model . In the general purpose 
parallel computation configuration , the work distribution 
unit 325 assigns and distributes blocks of threads directly to 
the DPCs 420 . The threads in a block execute the same 
program , using a unique thread ID in the calculation to 
ensure each thread generates unique results , using the SM 
440 to execute the program and perform calculations , shared 
memory / L1 cache 570 to communicate between threads , and 
the LSU 554 to read and write global memory through the 
shared memory / L1 cache 570 and the memory partition unit 
380 . When configured for general purpose parallel compu 
tation , the SM 440 can also write commands that the 
scheduler unit 320 can use to launch new work on the DPCs 
420 . 

as convolution operations for neural network training and 
inferencing . In one embodiment , each tensor core operates 
on a 4x4 matrix and performs a matrix multiply and accu 
mulate operation D = AXB + C , where A , B , C , and D are 4x4 
matrices . 
[ 0099 ] In one embodiment , the matrix multiply inputs A 
and B are 16 - bit floating point matrices , while the accumu 
lation matrices C and D may be 16 - bit floating point or 
32 - bit floating point matrices . Tensor Cores operate on 
16 - bit floating point input data with 32 - bit floating point 
accumulation . The 16 - bit floating point multiply requires 64 
operations and results in a full precision product that is then 
accumulated using 32 - bit floating point addition with the 
other intermediate products for a 4x4x4 matrix multiply . In 
practice , Tensor Cores are used to perform much larger 
two - dimensional or higher dimensional matrix operations , 
built up from these smaller elements . An API , such as 
CUDA 9 C + + API , exposes specialized matrix load , matrix 
multiply and accumulate , and matrix store operations to 
efficiently use Tensor Cores from a CUDA - C + + program . At 
the CUDA level , the warp - level interface assumes 16x16 
size matrices spanning all 32 threads of the warp . 
[ 0100 ] Each SM 440 also comprises M SFUS 552 that 
perform special functions ( e . g . , attribute evaluation , recip 
rocal square root , and the like ) . In one embodiment , the 
SFUS 552 may include a tree traversal unit configured to 
traverse a hierarchical tree data structure . In one embodi 
ment , the SFUs 552 may include texture unit configured to 
perform texture map filtering operations . In one embodi 
ment , the texture units are configured to load texture maps 
( e . g . , a 2D array of texels ) from the memory 304 and sample 
the texture maps to produce sampled texture values for use 
in shader programs executed by the SM 440 . In one embodi 
ment , the texture maps are stored in the shared memory / L1 
cache 470 . The texture units implement texture operations 
such as filtering operations using mip - maps ( i . e . , texture 
maps of varying levels of detail ) . In one embodiment , each 
SM 340 includes two texture units . 
10101 ] Each SM 440 also comprises N LSUS 554 that 
implement load and store operations between the shared 
memory / L1 cache 570 and the register file 520 . Each SM 
440 includes an interconnect network 580 that connects each 
of the functional units to the register file 520 and the LSU 
554 to the register file 520 , shared memory / L1 cache 570 . In 
one embodiment , the interconnect network 580 is a crossbar 
that can be configured to connect any of the functional units 
to any of the registers in the register file 520 and connect the 
LSUs 554 to the register file and memory locations in shared 
memory / L1 cache 570 . 
[ 0102 ] The shared memory / L1 cache 570 is an array of 
on - chip memory that allows for data storage and commu 
nication between the SM 440 and the primitive engine 435 
and between threads in the SM 440 . In one embodiment , the 
shared memory / L1 cache 570 comprises 128 KB of storage 
capacity and is in the path from the SM 440 to the partition 
unit 380 . The shared memory / L1 cache 570 can be used to 
cache reads and writes . One or more of the shared memory ! 
L1 cache 570 , L2 cache 460 , and memory 304 are backing 
stores . 
[ 0103 ] Combining data cache and shared memory func 
tionality into a single memory block provides the best 
overall performance for both types of memory accesses . The 
capacity is usable as a cache by programs that do not use 
shared memory . For example , if shared memory is config - 

[ 0105 ] The PPU 300 may be included in a desktop com 
puter , a laptop computer , a tablet computer , servers , super 
computers , a smart - phone ( e . g . , a wireless , hand - held 
device ) , personal digital assistant ( PDA ) , a digital camera , a 
vehicle , a head mounted display , a hand - held electronic 
device , and the like . In one embodiment , the PPU 300 is 
embodied on a single semiconductor substrate . In another 
embodiment , the PPU 300 is included in a system - on - a - chip 
( SOC ) along with one or more other devices such as addi 
tional PPUS 300 , the memory 204 , a reduced instruction set 
computer ( RISC ) CPU , a memory management unit 
( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
[ 0106 ] In one embodiment , the PPU 300 may be included 
on a graphics card that includes one or more memory 
devices 304 . The graphics card may be configured to inter 
face with a PCIe slot on a motherboard of a desktop 
computer . In yet another embodiment , the PPU 300 may be 
an integrated graphics processing unit ( GPU ) or parallel 
processor included in the chipset of the motherboard . 

Machine Learning 
[ 0107 ] Deep neural networks ( DNNs ) developed on pro 
cessors , such as the PPU 300 have been used for diverse use 
cases , from self - driving cars to faster drug development , 
from automatic image captioning in online image databases 
to smart real - time language translation in video chat appli 
cations . The PPU 300 may be configured to implement the 
video generation system 200 during training and for deploy 
ment . Deep learning is a technique that models the neural 
learning process of the human brain , continually learning , 
continually getting smarter , and delivering more accurate 
results more quickly over time . A child is initially taught by 
an adult to correctly identify and classify various shapes , 
eventually being able to identify shapes without any coach 
ing . Similarly , a deep learning or neural learning system 
needs to be trained in object recognition and classification 
for it get smarter and more efficient at identifying basic 
objects , occluded objects , etc . , while also assigning context 
to objects . 
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[ 0108 ] At the simplest level , neurons in the human brain 
look at various inputs that are received , importance levels 
are assigned to each of these inputs , and output is passed on 
to other neurons to act upon . An artificial neuron or percep - 
tron is the most basic model of a neural network . In one 
example , a perceptron may receive one or more inputs that 
represent various features of an object that the perceptron is 
being trained to recognize and classify , and each of these 
features is assigned a certain weight based on the importance 
of that feature in defining the shape of an object . 
[ 0109 ] A deep neural network ( DNN ) model includes 
multiple layers of many connected perceptrons ( e . g . , nodes ) 
that can be trained with enormous amounts of input data to 
quickly solve complex problems with high accuracy . In one 
example , a first layer of the DLL model breaks down an 
input image of an automobile into various sections and looks 
for basic patterns such as lines and angles . The second layer 
assembles the lines to look for higher level patterns such as 
wheels , windshields , and mirrors . The next layer identifies 
the type of vehicle , and the final few layers generate a label 
for the input image , identifying the model of a specific 
automobile brand . 
[ 0110 ] Once the DNN is trained , the DNN can be deployed 
and used to identify and classify objects or patterns in a 
process known as inference . Examples of inference ( the 
process through which a DNN extracts useful information 
from a given input ) include identifying handwritten numbers 
on checks deposited into ATM machines , identifying images 
of friends in photos , delivering movie recommendations to 
over fifty million users , identifying and classifying different 
types of automobiles , pedestrians , and road hazards in 
driverless cars , or translating human speech in real - time . 
[ 0111 ] During training , data flows through the DNN in a 
forward propagation phase until a prediction is produced 
that indicates a label corresponding to the input . If the neural 
network does not correctly label the input , then errors 
between the correct label and the predicted label are ana 
lyzed , and the weights are adjusted for each feature during 
a backward propagation phase until the DNN correctly 
labels the input and other inputs in a training dataset . 
Training complex neural networks requires massive 
amounts of parallel computing performance , including float 
ing - point multiplications and additions that are supported by 
the PPU 300 . Inferencing is less compute - intensive than 
training , being a latency - sensitive process where a trained 
neural network is applied to new inputs it has not seen before 
to classify images , translate speech , and generally infer new 
information . 
[ 0112 ] Neural networks rely heavily on matrix math 
operations , and complex multi - layered networks require 
tremendous amounts of floating - point performance and 
bandwidth for both efficiency and speed . With thousands of 
processing cores , optimized for matrix math operations , and 
delivering tens to hundreds of TFLOPS of performance , the 
PPU 300 is a computing platform capable of delivering 
performance required for deep neural network - based artifi 
cial intelligence and machine learning applications . 

deployed in data centers , research facilities , and supercom 
puters to solve ever larger problems . As the number of 
processing devices within the high - performance systems 
increases , the communication and data transfer mechanisms 
need to scale to support the increased 
[ 0114 ] FIG . 5B is a conceptual diagram of a processing 
system 500 implemented using the PPU 300 of FIG . 3 , in 
accordance with one embodiment . The exemplary system 
565 may be configured to implement the methods or system 
shown in FIGS . 1F , 2B , 2C , and 2D . The processing system 
500 includes a CPU 530 , switch 510 , and multiple PPUS 300 
each and respective memories 304 . The NVLink 310 pro 
vides a high - speed communication links between each of the 
PPUs 300 . The switch 510 interfaces between the intercon 
nect 302 and the CPU 530 . The PPUS 300 , memories 304 , 
and NVLinks 310 may be situated on a single semiconductor 
platform to form a parallel processing module 525 . 
[ 0115 ] In the context of the present description , a single 
semiconductor platform may refer to a sole unitary semi 
conductor - based integrated circuit fabricated on a die or 
chip . It should be noted that the term single semiconductor 
platform may also refer to multi - chip modules with 
increased connectivity which simulate on - chip operation 
and make substantial improvements over utilizing a conven 
tional bus implementation . Of course , the various circuits or 
devices may also be situated separately or in various com 
binations of semiconductor platforms per the desires of the 
user . Alternately , the parallel processing module 525 may be 
implemented as a circuit board substrate and each of the 
PPUs 300 and / or memories 304 may be packaged devices . 
In one embodiment , the CPU 530 , switch 510 , and the 
parallel processing module 525 are situated on a single 
semiconductor platform . 
[ 0116 ] In one embodiment , the signaling rate of each 
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300 
includes six NVLink 310 interfaces ( as shown in FIG . 5B , 
five NVLink 310 interfaces are included for each PPU 300 ) . 
Each NVLink 310 provides a data transfer rate of 25 
Gigabytes / second in each direction , with six links providing 
300 Gigabytes / second . The NVLinks 310 can be used exclu 
sively for PPU - to - PPU communication as shown in FIG . 5B , 
or some combination of PPU - to - PPU and PPU - to - CPU , 
when the CPU 530 also includes one or more NVLink 310 
interfaces . 
10117 ] In one embodiment , the NVLink 310 allows direct 
load / store / atomic access from the CPU 530 to each PPU ' s 
300 memory 304 . In one embodiment , the NVLink 310 
supports coherency operations , allowing data read from the 
memories 304 to be stored in the cache hierarchy of the CPU 
530 , reducing cache access latency for the CPU 530 . In one 
embodiment , the NVLink 310 includes support for Address 
Translation Services ( ATS ) , allowing the PPU 300 to 
directly access page tables within the CPU 530 . One or more 
of the NVLinks 310 may also be configured to operate in a 
low - power mode . 
[ 0118 ] FIG . 5C illustrates an exemplary system 565 in 
which the various architecture and / or functionality of the 
various previous embodiments may be implemented . The 
exemplary system 565 may be configured to implement the 
methods or system shown in FIGS . 1F , 2A , 2B , 2C , and 2D . 
[ 0119 ] As shown , a system 565 is provided including at 
least one central processing unit 530 that is connected to a 
communication bus 575 . The communication bus 575 may 
be implemented using any suitable protocol , such as PCI 

Exemplary Computing System 
[ 0113 ] Systems with multiple GPUs and CPUs are used in 
a variety of industries as developers expose and leverage 
more parallelism in applications such as artificial intelli 
gence computing . High - performance GPU - accelerated sys 
tems with tens to many thousands of compute nodes are 
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( Peripheral Component Interconnect ) , PCI - Express , AGP 
( Accelerated Graphics Port ) , HyperTransport , or any other 
bus or point - to - point communication protocol ( s ) . The sys 
tem 565 also includes a main memory 540 . Control logic 
( software ) and data are stored in the main memory 540 
which may take the form of random access memory ( RAM ) . 
[ 0120 ] The system 565 also includes input devices 560 , 
the parallel processing system 525 , and display devices 545 , 
i . e . a conventional CRT ( cathode ray tube ) , LCD ( liquid 
crystal display ) , LED light emitting diode ) , plasma display 
or the like . User input may be received from the input 
devices 560 , e . g . , keyboard , mouse , touchpad , microphone , 
and the like . Each of the foregoing modules and / or devices 
may even be situated on a single semiconductor platform to 
form the system 565 . Alternately , the various modules may 
also be situated separately or in various combinations of 
semiconductor platforms per the desires of the user . 
[ 0121 ] Further , the system 565 may be coupled to a 
network ( e . g . , a telecommunications network , local area 
network ( LAN ) , wireless network , wide area network 
( WAN ) such as the Internet , peer - to - peer network , cable 
network , or the like ) through a network interface 535 for 
communication purposes . 
[ 0122 ] The system 565 may also include a secondary 
storage ( not shown ) . The secondary storage 610 includes , 
for example , a hard disk drive and / or a removable storage 
drive , representing a floppy disk drive , a magnetic tape 
drive , a compact disk drive , digital versatile disk ( DVD ) 
drive , recording device , universal serial bus ( USB ) flash 
memory . The removable storage drive reads from and / or 
writes to a removable storage unit in a well - known manner . 
[ 0123 ] Computer programs , or computer control logic 
algorithms , may be stored in the main memory 540 and / or 
the secondary storage . Such computer programs , when 
executed , enable the system 565 to perform various func 
tions . The memory 540 , the storage , and / or any other storage 
are possible examples of computer - readable media . 
[ 0124 ] The architecture and / or functionality of the various 
previous figures may be implemented in the context of a 
general computer system , a circuit board system , a game 
console system dedicated for entertainment purposes , an 
application - specific system , and / or any other desired sys 
tem . For example , the system 565 may take the form of a 
desktop computer , a laptop computer , a tablet computer , 
servers , supercomputers , a smart - phone ( e . g . , a wireless , 
hand - held device ) , personal digital assistant ( PDA ) , a digital 
camera , a vehicle , a head mounted display , a hand - held 
electronic device , a mobile phone device , a television , 
workstation , game consoles , embedded system , and / or any 
other type of logic . 
[ 0125 ] While various embodiments have been described 
above , it should be understood that they have been presented 
by way of example only , and not limitation . Thus , the 
breadth and scope of a preferred embodiment should not be 
limited by any of the above - described exemplary embodi 
ments , but should be defined only in accordance with the 
following claims and their equivalents . 
What is claimed is : 
1 . A computer - implemented method , comprising : 
generating , by a recurrent neural network , a sequence of 
motion vectors from a first set of random variables ; 

receiving , by a generator neural network , the sequence of 
motion vectors and a content vector sample ; and 

processing the sequence of motion vectors and the content 
vector sample by the generator neural network to 
produce a video clip . 

2 . The computer - implemented method of claim 1 , further 
comprising : 

generating , by the recurrent neural network , an additional 
sequence of motion vectors from a second set of 
random variables ; and 

processing the additional sequence of motion vectors and 
the content vector sample by the generator neural 
network to produce an additional video clip . 

3 . The computer - implemented method of claim 2 , 
wherein a number of frames in the video clip differs from a 
number of frames in the additional video clip . 

4 . The computer - implemented method of claim 1 , further 
comprising : 

receiving , by the generator neural network , an additional 
content vector sample ; and 

processing the first sequence of motion vectors and the 
additional content vector sample by the generator neu 
ral network to produce an additional video clip . 

5 . The computer - implemented method of claim 1 , further 
comprising generating , by an encoder , the content vector 
sample based on identified content . 

6 . The computer - implemented method of claim 1 , further 
comprising sampling a Gaussian distribution of content to 
produce the content vector sample . 

7 . The computer - implemented method of claim 1 , further 
comprising : 
sampling the video clip to produce image frames ; and 
processing the image frames by a discriminative neural 

network configured to distinguish real images from 
generated images to generate updated parameters for 
the generator neural network . 

8 . The computer - implemented method of claim 1 , further 
comprising : 

sampling the video clip to produce sets of sequential 
frames , and 

processing the sets of sequential frames by a discrimina 
tive neural network configured to distinguish real video 
clips from generated video clips to generate updated 
parameters for the generator neural network and the 
recurrent neural network . 

9 . The computer - implemented method of claim 1 , further 
comprising , prior to generating the sequence of motion 
vectors , combining an action label associated with an action 
category with the first set of random variables . 

10 . The computer - implemented method of claim 9 , 
wherein the action category represents facial expression . 

11 . The computer - implemented method of claim 9 , 
wherein the action category represents motion directions . 

12 . A system , comprising : 
a parallel processing unit configured to implement a 

recurrent neural network and a generator network , 
wherein 
the recurrent neural network is configured to generate 

a sequence of motion vectors from a first set of 
random variables , 

the generator neural network receives the sequence of 
motion vectors and a content vector sample , and 

the generator neural network processes the sequence of 
motion vectors and the content vector sample to 
produce a video clip . 
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13 . The system of claim 12 , wherein 
the recurrent neural network is further configured to 

generate an additional sequence of motion vectors from 
a second set of random variables ; and 

the generator neural network is further configured to 
process the additional sequence of motion vectors and 
the content vector sample by to produce an additional 
video clip . 

14 . The system of claim 13 , wherein a number of frames 
in the video clip differs from a number of frames in the 
additional video clip . 

15 . The system of claim 12 , wherein 
the generator neural network is further configured to 

receive an additional content vector sample ; and 
the generator neural network is further configured to 

process the first sequence of motion vectors and the 
additional content vector sample to produce an addi 
tional video clip . 

16 . The system 12 , further comprising an encode config 
ured to generate the content vector sample based on iden 
tified content . 

17 . The system of claim 12 , further comprising sampling 
a Gaussian distribution of content to produce the content 
vector sample . 

18 . The system of claim 12 , further comprising : 
an image sampler configured to sample the video clip to 

produce image frames ; and 

a discriminative neural network configured to : 
process the image frames , distinguishing real images 

from the image frames ; and 
generate updated parameters for the generator neural 
network 

19 . The system of claim 12 , further comprising : 
a video sampler configured to sample the video clip to 

produce sets of sequential frames ; and 
a discriminative neural network configured to : 
process the sets of sequential frames , distinguishing real 

video clips from the sets of sequential frames ; and 
generate updated parameters for the generator neural 
network and the recurrent neural network . 

20 . A non - transitory computer - readable media storing 
computer instructions for translating images that , when 
executed by a processor , cause the processor to perform the 
steps of : 

generating , by a recurrent neural network , a sequence of 
motion vectors from a first set of random variables ; and 

receiving , by a generator neural network , the sequence of 
motion vectors and a content vector sample ; and 

processing the sequence of motion vectors and the content 
vector sample by the generator neural network to 
produce a video clip . 

* * * * * 


