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TRANSFORMING CONVOLUTIONAL 
NEURAL NETWORKS FOR VISUAL 

SEQUENCE LEARNING 

fication or regression output data . In one embodiment , the 
trained neural network model is a convolutional neural 
network ( CNN ) . 

CLAIM OF PRIORITY 
[ 0001 ] This application claims the benefit of U . S . Provi - 
sional Application No . 62 / 524 , 359 ( Attorney Docket No . 
NVIDP1171 + / 17 - SC - 0107 - US01 ) titled “ FUSING 
RECURRENT AND CONVOLUTIONAL NEURAL NET 
WORKS FOR VISUAL SEQUENCE LEARNING , ” filed 
Jun . 23 , 2017 , the entire contents of which is incorporated 
herein by reference . 

FIELD OF THE INVENTION 
[ 0002 ] The present invention relates to visual sequence 
learning , and more particularly to visual sequence learning 
using neural networks . 

BACKGROUND 
[ 0003 ] Recurrent neural networks ( RNNs ) have achieved 
excellent performance on a variety of sequential learning 
problems including language modeling , handwriting recog 
nition , machine translation , speech recognition , polyphonic 
music modeling , and intelligent video analytics . A vanilla 
recurrent neural network ( VRNN ) extends the conventional 
feedforward network to handle a variable - length sequence 
by accumulating the context of previous inputs in its internal 
state to influence proceeding outputs . While an abundance of 
work exists to understand and improve RNNs in the context 
of language and audio signals , relatively little attention has 
been paid to analyze or modify RNNs for visual sequences , 
which by nature have distinct properties . 
[ 0004 ] In contrast to language and speech , the processing 
unit of a visual sequence is in a more structured format such 
as an image or a short video snippet . Therefore , convolu 
tional neural networks ( CNNs ) usually serve as the back 
bone networks to extract semantic features , and RNNs are 
then built on top of a pre - trained CNN . A key advantage of 
the feature extraction for visual sequences is to exploit the 
extremely expressive CNN models that are pre - trained on 
large - scale image and video datasets . However , it remains an 
open question how to construct RNNs to better leverage the 
representational power and generalization ability of these 
pre - trained CNNs . In addition , visual sequences typically 
exhibit large redundancy and have diverse temporal depen 
dencies on different applications . There is a need for 
addressing these issues and / or other issues associated with 
the prior art . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0006 ] FIG . 1A illustrates a flowchart of a method for 
visual sequence learning using neural networks , in accor 
dance with one embodiment ; 
[ 0007 ] FIG . 1B illustrates a block diagram of a system for 
visual sequence learning , in accordance with one embodi 
ment ; 
[ 0008 ] FIG . 1C illustrates a block diagram of a prior art 
system for visual sequence learning ; 
10009 ] . FIG . 1D illustrates another block diagram of a prior 
art system for visual sequence learning ; 
0010 FIG . 1E illustrates another block diagram of a 
video sequence learning system , in accordance with one 
embodiment ; 
[ 0011 ] FIG . 1F illustrates another flowchart of a method 
for visual sequence learning using neural networks , in 
accordance with one embodiment ; 
[ 0012 ] FIG . 2A illustrates a saturation plot of the fraction 
of times that a forget gate unit is left or right saturated , in 
accordance with one embodiment ; 
[ 0013 ] FIG . 2B illustrates an activation histogram over 10 
bins for a first layer , in accordance with one embodiment ; 
[ 0014 ] FIG . 2C illustrates an activation histogram over 10 
bins for a second layer , in accordance with one embodiment ; 
[ 0015 ] FIG . 2D illustrates another flowchart of a method 
for visual sequence learning using neural networks , in 
accordance with one embodiment ; 
[ 0016 ] FIG . 3 illustrates a parallel processing unit , in 
accordance with one embodiment ; 
[ 0017 ] FIG . 4A illustrates a general processing cluster of 
the parallel processing unit of FIG . 3 , in accordance with one 
embodiment ; 
[ 0018 ] FIG . 4B illustrates a partition unit of the parallel 
processing unit of FIG . 3 , in accordance with one embodi 
ment ; 
[ 0019 ] FIG . 5 illustrates the streaming multi - processor of 
FIG . 4A , in accordance with one embodiment ; and 
[ 0020 ] FIG . 6 illustrates an exemplary system in which the 
various architecture and / or functionality of the various pre 
vious embodiments may be implemented . 

DETAILED DESCRIPTION 

SUMMARY 
[ 0005 ] A method , computer readable medium , and system 
are disclosed for visual sequence learning using neural 
networks . The method includes the steps of replacing a 
non - recurrent layer within a trained neural network model 
with a recurrent layer to produce a visual sequence learning 
neural network model and transforming feedforward 
weights for the non - recurrent layer into input - to - hidden 
weights of the recurrent layer to produce a transformed 
recurrent layer . The method also includes the steps of setting 
hidden - to - hidden weights of the recurrent layer to initial 
values and processing video image data by the visual 
sequence learning neural network model to generate classi 

[ 0021 ] One or more non - recurrent layers of a pre - trained 
( i . e . , trained ) convolutional neural network model are each 
transformed into a recurrent layer to produce a neural 
network model for visual sequence learning . Feedforward 
weights of a trained non - recurrent layer of the pre - trained 
convolutional neural network model that is transformed into 
a recurrent layer are used as initial values for the input - to 
hidden weights of the recurrent layer . During subsequent 
training , the input - to - hidden weights of the recurrent layer 
are fine - tuned and hidden - to - hidden weights that are initial 
ized to untrained values are learned . In one embodiment , 
accuracy of the resulting neural network model is improved 
compared with using conventional techniques and number 
of parameters of the resulting neural network is reduced . The 
transformation technique may implement any recurrent 
structure and is relevant for many visual sequence learning 
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applications , including , but not limited to sequential face 
alignment , dynamic hand gesture recognition , and action 
recognition . 
[ 0022 ] FIG . 1A illustrates a flowchart of a method for 
classifying video image data using deep neural networks , in 
accordance with one embodiment . The method 100 is 
described in the context of a neural network model , and the 
method 100 may also be performed by a program , custom 
circuitry , or by a combination of custom circuitry and a 
program . For example , the method 100 may be executed by 
a GPU , CPU , or any processor capable of performing the 
necessary processing operations . Furthermore , persons of 
ordinary skill in the art will understand that any system that 
performs method 100 is within the scope and spirit of 
embodiments of the present invention . 
[ 0023 ] At step 110 , a non - recurrent layer within a trained 
convolutional neural network model is replaced with a 
recurrent layer to produce a visual sequence learning neural 
network model . In one embodiment , the trained convolu 
tional neural network model is a two - dimensional ( 2D ) CNN 
and the training video image data corresponds to a single 
image or a single video frame . In one embodiment , the 
trained convolutional neural network model is a three 
dimensional ( 3D ) CNN and the training video image data 
corresponds to a snippet , clip , or sequence of video frames . 
[ 0024 ] In one embodiment , the transformed neural net 
work model is configured to process training video image 
data of at least one modality such as spatial ( color ) , depth , 
or optical flow . For example , neural network model may be 
trained to perform sequential face alignment using color 
data . The neural network model may be trained to perform 
hand gesture recognition using color and depth data . The 
neural network model may be trained to perform action 
recognition using color and flow data . Optical flow data may 
be computed from video image data . In one embodiment , the 
optical flow data is represented by three color channels , at 
least one layer is replaced with a recurrent layer . Optical 
flow explicitly captures dynamic motions and therefore 
provides clues to recognize actions and conveys rough shape 
cues of moving objects , e . g . , the skier and ski poles in skiing 
videos . 
[ 0025 ] . After the convolutional neural network model is 
trained , one or more non - recurrent ( e . g . , fully connected 
and / or convolutional ) layers of the trained convolutional 
neural network model may be transformed into respective 
recurrent layers . A selection criterion based on a distribution 
of activation values for each recurrent layer may be used to 
select the one or more non - recurrent layers to be trans 
formed . In one embodiment , the non - recurrent layer ( s ) to be 
replaced with recurrent layers are selected based on a 
saturation characteristic , where activation values for neurons 
in a transformed recurrent layer are distributed between 0 . 0 
and 1 . 0 . The distribution of activation values is considered 
saturated when more activation values are distributed near 
the minimum and maximum activation values than near the 
center ( the center is between 0 . 1 and 0 . 9 ) . 
[ 0026 ] At step 120 , ( pre - trained ) feedforward weights for 
the non - recurrent layer are transformed into input - to - hidden 
weights of the recurrent layer to produce a transformed 
recurrent layer . In a conventional recurrent neural network 
system , a recurrent layer is typically added to a CNN after 
the last layer of the CNN and the parameters of the recurrent 
layer ( input - to - hidden weights and hidden - to - hidden 
weights ) are initialized to untrained values . In contrast with 

the conventional neural network system , the feedforward 
weights of a pre - trained non - recurrent layer of the convo 
lutional neural network model that is transformed into a 
recurrent layer are used as initial values for the input - to 
hidden weights of the recurrent layer . 
10027 ] In one embodiment , for recurrent layers such as a 
long short term memory ( LSTM ) or gated recurrent unit 
( GRU ) , values for the multiple input - to - hidden states cor 
responding to multiple gating functions may be initialized to 
individual values based on the feedforward weights . Alter 
natively , values of all of the multiple input - to - hidden states 
may be initialized to uniform values using the feedforward 
weights . Sharing the uniform values for multiple gating 
functions reduces the number of recurrent parameters that 
are maintained i . e . , stored and updated ) . 
[ 0028 ] At step 130 , hidden - to - hidden weights of the recur 
rent layer are set to initial values . In one embodiment , initial 
values for the hidden - to - hidden weights are random values . 
[ 00291 . At step 140 , video image data is processed by the 
visual sequence learning neural network model to generate 
classification or regression output data . In the context of the 
following description , classification output data ( i . e . , pre 
dictions ) are class labels generated by the neural network 
model for at least one image of video input data . In one 
embodiment , the regression output data is the two - dimen 
sional locations of facial landmarks in the sequential face 
alignment application . In one embodiment , a class label is a 
class - conditional probability vector associated with the 
training video image data . During training , classification 
accuracy data is computed by comparing the classification 
output data with a target classification output ( provided in a 
training dataset ) and adjusting the weights to reduce differ 
ences between the classification output data with a target 
classification output . 
[ 0030 ] More illustrative information will now be set forth 
regarding various optional architectures and features with 
which the foregoing framework may or may not be imple 
mented , per the desires of the user . It should be strongly 
noted that the following information is set forth for illus 
trative purposes and should not be construed as limiting in 
any manner . Any of the following features may be optionally 
incorporated with or without the exclusion of other features 
described . 
[ 0031 ] RNNs have been well studied for decades in 
sequence learning , for language modeling , machine trans 
lation , and speech recognition . A vanilla RNN ( VRNN ) 
contains a recurrent or self - connected hidden state h , whose 
activation depends on that of the previous time step : 

h = H ( Win ) , + White _ 1 ) , ( 1 ) 
where H is an activation function , Win is the input - to 
hidden matrix , Win is the hidden - to - hidden matrix , y , is the 
input to the recurrent layer . A bias vector ( not shown ) may 
also be included . In order to enhance the capability to use 
contextual information , significant efforts have been made to 
mitigate the gradient vanishing problem for VRNN . Among 
the most successful variants are LSTM and GRU , which 
incorporate gating functions into the state dynamics . At each 
time step , LSTM maintains a memory cell c , and a hidden 
state h , that are carefully regulated by gates : 

i = sig m ( W : + Whihi - 1 ) , 

fi = sig m ( Wip , + W7jhy - 1 ) , 
0 , = sig m ( Wis / z + Whchz - 1 ) , 
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? # an h ( W ; y + Whicha - 1 ) , 
C = S Oct - 1 + i , O 
hq = 0 , Otan h ( c ) . ( 2 ) 

[ 0032 ] Similar to equation ( 1 ) , W . are the input - to - hidden 
matrices and Wh . are the hidden - to - hidden matrices . Here i , 
fç , and o , are the input , forget and output gates , respectively . 
?e is the new memory state , and O is the element - wise 
product . GRU simplifies LSTM primarily by merging the 
hidden state and memory cell and combining the forget and 
input gates into a single update gate : 

r = sig m ( Wxy , + Wmhz - 1 ) , 
z = sig m ( Wizy + Wnchy - 1 ) , 

?q = tan h ( Win + Wan ( r , Oh _ 1 ) ) , 
hi = ( 1 - 2 ) Oh , - 1 + z , ON , ( 3 ) 

where r , and Z4 are the reset and update gates , and h , is the 
candidate hidden state . Note that for the above three basic 
recurrent structures in Equations ( 1 ) , ( 2 ) , and ( 3 ) , multiple 
recurrent layers can be stacked on top of each other to 
perform deep and hierarchical recurrent processing . 
[ 0033 ] Conventionally , RNNs are attached following the 
last layer of pre - trained CNNs for visual sequence learning 
tasks , to harness the strong representational ability of the 
pre - trained CNN models and capture the long - term temporal 
contexts . In contrast with conventional techniques , a more 
effective and generalized approach is described that directly 
converts one or more layers of the pre - trained CNNs into 
recurrent layer ( s ) . 

presented in the form of single frames to the visual sequence 
learning neural network model 115 . 
[ 0036 ] The Wxy weights that are associated with the 
PreRNN layer 135 are pre - trained weights ( i . e . , weights of 
the pre - trained non - recurrently layer ) . The Wnn and Who 
weights are randomly initialized weights introduced by the 
PreRNN layer 135 . Other embodiments of the visual 
sequence learning neural network model 115 may include 
fewer or more convolutional layers 125 . Although only a 
single PreRNN layer 135 is shown in FIG . 1B , more than 
one convolutional layer 125 may be replaced with a PreRNN 
layer 135 . 
[ 0037 ] FIG . 1C illustrates a block diagram of a prior art 
system 145 for visual sequence learning . The prior art 
system 145 includes two convolutional layers 125 , a fully 
connected layer 160 , and a RNN layer 165 . A first convo 
lutional layer 125 receives input data and the RNN layer 165 
generates output data . In accordance with different backbone 
CNN architectures , the RNN layer 165 is stacked on top of 
the last layer 160 of the pre - trained convolutional neural 
network including the convolutional layers 125 and the fully 
connected layer 160 . 
[ 0038 ] The Wxv weights that are associated with the fully 
connected layer 160 are pre - trained weights . However , the 
Win weights associated with the RNN layer 165 are not 
pre - trained . The W and We weights are randomly initial 
ized weights introduced by the RNN layer 165 . In contrast 
with the visual sequence learning neural network model 115 , 
where the weights associated with the PreRNN layer 135 are 
pre - trained , the weights associated with the RNN layer 165 
of the prior art system 145 are not pre - trained . 
[ 0039 ] FIG . 1D illustrates a block diagram of another prior 
art system 155 for visual sequence learning . The prior art 
system 155 includes a convolutional layer 145 , a convolu 
tional layer 125 , a convolutional layer 170 , an average 
pooling layer 165 , and a RNN layer 165 . The first convo 
lutional layer 145 receives input data and the RNN layer 165 
generates output data . The RNN layer 165 is stacked on top 
of the average pooling layer 165 of the pre - trained convo 
lutional neural network including the convolutional layer 
145 , the convolutional layer 125 , the convolutional layer 
170 , and the average pooling layer 165 . Compared with the 
prior art system 145 , the prior art system 155 includes a 
residual ( or skip ) connection from the convolutional layer 
145 to the convolutional layer 170 . 
[ 0040 ] The Wxv , weights that associated with the convolu 
tional layer 170 are pre - trained weights . However , the Win 
weights associated with the RNN layer 165 are not pre 
trained . The W . , and W weights are randomly initialized 
weights introduced by the RNN layer 165 . In contrast with 
the visual sequence learning neural network model 115 , 
where the weights associated with the PreRNN layer 135 are 
pre - trained , the weights associated with the RNN layer 165 
of the prior art system 155 are not pre - trained . 
[ 0041 ] FIG . 1E illustrates another block diagram of a 
visual sequence learning neural network model 150 , in 
accordance with one embodiment . The visual sequence 
learning neural network model 150 includes a convolutional 
layer 145 , a convolutional layer 125 , and a PreRNN layer 
175 . The PreRNN layer 175 is a recurrent layer that replaced 
a non - recurrent layer . A first convolutional layer 125 
receives input data and the PreRNN layer 135 generates 
output data . In one embodiment , the PreRNN layer 135 
replaces a last convolutional layer 170 and an averaged 

A Neural Network Architecture for Visual 
Sequence Learning 

[ 0034 ] RNNs coupled with pre - trained CNNs are power 
ful tools to exploit the important temporal connections in 
visual sequence learning tasks . CNN models , pre - trained on 
large - scale image or video datasets , retain strong semantic 
and generality properties . When one or more recurrent layers 
are added following a pre - trained CNN , as in done conven 
tionally , the recurrent layers must be trained from scratch , 
even though a pre - trained CNN is used for feature extrac 
tion . In contrast with conventional techniques , a pre - trained 
layer of a neural network model is directly transformed into 
a recurrent layer in order to maximize the representational 
power and generalizing capacity of pre - trained convolu 
tional neural networks . In one embodiment , one or more 
layers that are transformed are pre - trained convolutional 
layers or fully connected layers . The difficulty of training 
one or more RNNs is mitigated , because components of a 
pre - trained convolutional neural network model are used as 
a partially pre - trained RNN . Therefore , the generalization 
ability of a pre - trained convolutional neural network is 
inherited by the RNN , improving the overall performance . 
[ 0035 ] FIG . 1B illustrates a block diagram of a visual 
sequence learning neural network model 115 , in accordance 
with one embodiment . The visual sequence learning neural 
network model 115 includes two convolutional layers 125 
and a PreRNN layer 135 . The PreRNN layer 135 is a 
recurrent layer that replaced a non - recurrent layer . A first 
convolutional layer 125 receives input data and the PreRNN 
layer 135 that replaced a last convolutional layer 125 
generates output data . Input video image data may be 
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pooling layer 165 . Compared with the visual sequence 
learning neural network model 115 , the visual sequence 
learning neural network model 150 includes a residual ( or 
skip ) connection from the convolutional layer 145 to the 
PreRNN layer 175 . 
[ 0042 ] The Wxy weights that associated with the PreRNN 
layer 165 are pre - trained weights ( i . e . , weights of the pre 
trained non - recurrently layer ) . The pre - trained Wr , weights 
are used in place of the input - to - hidden weight inputs to the 
PreRNN layer 165 . The Wmn and Who weights are randomly 
initialized weights introduced by the PreRNN layer 135 . 
Other embodiments of the visual sequence learning neural 
network model 115 may include fewer or more convolu 
tional layers 125 . Although only a single PreRNN layer 135 
is shown in FIG . 1E , more than one convolutional layer 145 , 
125 , and / or 170 may be replaced with a PreRNN layer 135 . 
[ 0043 ] Replacing one or more layers of a pre - trained 
convolutional neural network model with PreRNN layer ( s ) 
135 or 175 is a generic approach that can be applied to 
various architectures of pre - trained 2D and 3D neural net 
works , particularly CNNs . As illustrated FIGS . 13 and 1E , 
a layer of CNNs such as VGG and C3D with fully connected 
layers at the end of the convolutional networks can be 
replaced with a PreRNN layer 135 or 175 . Similarly , a layer 
of CNNs such as ResNet and DenseNet with convolutional 
and global average pooling layers at the end , as depicted in 
FIG . 1D can also be replaced with a PreRNN layer 135 or 
175 to produce the visual sequence learning neural network 
model 150 . Replacing a pre - trained non - recurrent layer with 
a PreRNN layer 135 or 175 is also able to adapt to all three 
basic recurrent structures including VRNN , LSTM and 
GRU . Additionally , an alternative , PreRNN - SIH can be used 
to simplify gating functions and reduce recurrent param 
eters . A benefit of replacing a pre - trained non - recurrent layer 
with a PreRNN layer 135 or 175 is that accuracy may be 
improved and training of the weights for the non - recurrent 
layer is leveraged . Any PreRNN layer 135 or 175 may use 
the PreRNN - SIH gating function technique . 
[ 0044 ] The last fully connected layer or convolutional 
layer of a pre - trained CNN is assumed to have the structure : 

y = H ( Wx90 x ) , 
where H is an activation function , Wxv are the pre - trained 
feedforward weights , x and y are the input and output of the 
layer , and o indicates matrix multiplication for the fully 
connected layer or a convolution operation for the convo 
lutional layer . In order to take advantage of the pre - trained 
non - recurrent layer , the feedforward layer is reformulated as 
a PreRNN layer 135 or 175 using the pre - trained feedfor 
ward weights as the input - to - hidden weights for the PreRNN 
layer 135 or 175 . The fully connected layer ( such as the fully 
connected layer 160 ) may be replaced by the PreRNN layer 
135 through : 

y = H ( WvX + Wha ) - 1 ) , ( 5 ) 
where x , and y , are reformed to be the input and hidden state 
of the recurrent layer at time t . The convolutional layer ( such 
as the convolutional layer 125 ) may be transformed into the 
PreRNN layer 135 or 175 by : 

y - H ( H ( B ( W . * x . ) + Y . ) + Wnw ' - 1 ) , 
where * is the convolution operation , B represents the batch 
normalization with the pre - computed mini - batch statistics , Yt 
indicates an optional residual ( or skip ) connection in 
residual networks , and H is the global average pooling . 

[ 0045 ] Replacing a non - recurrent layer with a PreRNN 
layer essentially transforms the feedforward weights Wxv 
and output y in Equation ( 4 ) as the input - to - hidden weights 
W . , and hidden state y , in Equations ( 5 ) and ( 6 ) . In com 
parison to Equation ( 1 ) for the traditional VRNN , which 
includes two randomly initialized weight matrices ( input 
to - hidden weight matrix Win and hidden - to - hidden weight 
matrix Wun ) , the PreRNN in Equations ( 5 ) and ( 6 ) only 
brings in a single hidden - to - hidden weight matrix Wnn to be 
trained from scratch , while the input - to - hidden weights Wxv 
inherited from Equation ( 4 ) have been pre - trained and can 
be just fine - tuned with additional training . As a result , the 
neural network model including the PreRNN 135 or 175 can 
fully make use of the robust generalization of a pre - trained 
neural network model and preserve the architecture to the 
greatest extent . 
10046 ] FIG . 1F illustrates another flowchart of a method 
for classifying video image data using deep neural networks , 
in accordance with one embodiment . The method 112 is 
described in the context of a neural network model , and the 
method 112 may also be performed by a program , custom 
circuitry , or by a combination of custom circuitry and a 
program . For example , the method 112 may be executed by 
a GPU , CPU , or any processor capable of performing the 
necessary processing operations . Furthermore , persons of 
ordinary skill in the art will understand that any system that 
performs method 112 is within the scope and spirit of 
embodiments of the present invention . 
[ 0047 ] Steps 110 , 120 , and 130 , are completed as previ 
ously described in conjunction with FIG . 1A . At step 132 , 
the visual sequence learning neural network model is trained 
to learn the hidden - to - hidden weights input to the PreRNN 
layer 135 or 175 . In one embodiment , input video image data 
included in a training dataset by the visual sequence learning 
neural network model 115 or 150 to generate output data . 
The output data is compared to target output data included 
in the training dataset to produce comparison results and the 
hidden - to - hidden weights are adjusted based on the com 
parison results . During training , the input - to - hidden weights 
input to the PreRNN layer 135 or 175 are also adjusted ( i . e . , 
fine - tuned ) to reduce differences between the output data 
and the target output data . In one embodiment , the training 
data set is configured for sequential face alignment and the 
video image data is color data . Sequential face alignment is 
fundamental to many applications such as face recognition , 
expression analysis , facial animation capturing , etc . In one 
embodiment , the training dataset is configured for dynamic 
hand gesture recognition and the video image data is color 
data and depth data . In one embodiment , the training dataset 
is configured for action recognition and the video image data 
is color data and optical flow data . 
[ 0048 ] In comparison with the VRNN , a prominent feature 
shared by LSTM and GRU is the additive nature in updating 
the hidden state from t to t + 1 , i . e . , keep the existing state and 
add changes on top of the existing state through the use of 
gating functions . Incrementally updating the hidden state 
helps each hidden state unit to remember the existence of a 
specific feature for a long series of steps , and more impor 
tantly , to create shortcut paths to allow the error to be 
back - propagated easily through multiple steps without van 
ishing too quickly . The gating functions of LSTM and GRU 
may also be accommodated when a non - recurrent layer is 
replaced with a PreRNN layer 135 or 175 . Each gating 

( 6 ) 
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function may be split into two components and the pre 
trained feedforward ( non - recurrent ) layer may be fused into 
the components . 

PreRNN 135 or 175 during step 120 of the method 100 or 
112 when the visual sequence learning neural network 
model 115 or 150 , respectively , is an GRU . 

Gate - Dependent Input - to - Hidden State 
Transformation 

Single Input - to - Hidden State Transformation 
( PreRNN - SIH ) 

[ 0049 ] A pre - trained feedforward layer of a CNN may be 
converted into a recurrent layer for LSTM or GRU , in a 
similar manner as for a VRNN . In Equations ( 2 ) and ( 3 ) each 
gate is composed of two components , namely , the input - to 
hidden state and the hidden - to - hidden state . For notational 
simplicity , LSTM ' s new memory state is called ? ; and 
GRU ' s candidate hidden state h , a gate . The gate - dependent 
input - to - hidden state for the PreRNN layer is defined as : 

[ 0052 ] In the aforementioned transformation scheme , each 
gate learns gate - specific input - to - hidden weights Wie , 
though each gate starts from the same initial state Wxv . In 
order to simplify the gating functions and fully utilize the 
pre - trained feedforward layer , all gates may be bound to the 
same input - to - hidden state : 

( 10 ) I Wxy . Xt 
1P ( 8 ( W ) * , ) + 

a fully connected layer , 
a convolutional layer , 

Ut ( g ) = 
I WRX 
P ( B ( W ? * X ; ) + Yo 

a fully connected layer , 
a convolutional layer , 

where V , is the single input - to - hidden ( SIH ) state that are 
adopted by all the gates for the PreRNN layer 135 or 175 . 
Compared to the gate - dependent input - to - hidden state in 
Equation . ( 7 ) , the SIH technique directly converts the pre 
trained feedforward layer to be the unified input - to - hidden 
state for all the gates . Therefore , the gating functions of 
LSTM in Equation ( 2 ) are changed to : 

i ; = sig m ( v : + Whiha - 1 ) , 

where g is a gate index , g = { i , f , o , c } for LSTM and g = { r , 
z , h } for GRU , u , ( g ) is the input - to - hidden state of gate g at 
time t and Wie is the pre - trained input - to - hidden weights of 
gate g . The feedforward weights Wie may be used to 
compute gate - specific values ( e . g . , u ( i ) , u , ( f ) , u ( o ) , and u , ( c ) 
for LSTM or u , ( r ) , u , ( z ) , and u , ( h ) f or GRU ) for multiple 
input - to - hidden states corresponding to multiple gating 
functions of the PreRNN layer 135 or 175 . 
[ 0050 ] Concretely , the pre - trained feedforward weights 
Wxv in Equation ( 4 ) are converted into the input - to - hidden 
weights for one gate and the pre - trained values are used to 
initialize the input - to - hidden weights for other gates . There 
fore , the gating functions of LSTM in Equation ( 2 ) may be 
redefined as : 

f = sig m ( v : + W 14 - 1 ) , 

0 , = sig m ( v : + Whehz - 1 ) 
? = tanh ( v : + Whchi - 1 ) , ( 11 ) 

where all the gates are computed based on the same input 
to - hidden state V . In the same way , the gating functions of 
GRU in Equation ( 3 ) are reformulated as : iq = sig m ( uz ( i ) + Whihz - 1 ) , 

fi = sig m ( u / ) + Wntha - 1 ) , r = sig m ( Vi + WWhz - 1 ) , 

0 , = sig m ( u ; ( 0 ) + Whehz - 1 ) , zzsig m ( ve + Whzht - 1 ) , 

?e = tan h ( u ( C ) + Wheht - 1 ) , ( 8 ) 
where only the hidden - to - hidden weights Wh . are randomly 
initialized , and the same updating functions in Equation ( 2 ) 
are followed to renew the memory cell c , and hidden state hy . 
Equations ( 7 ) and ( 8 ) may be used to transform the feed 
forward weights into the input - to - hidden weights of the 
PreRNN 135 or 175 during step 120 of the method 100 or 
112 when the visual sequence learning neural network 
model 115 or 150 , respectively , is an LSTM . 
[ 0051 ] Correspondingly , the gating functions of GRU in 
Equation ( 3 ) can be redefined as : 

r = sig m ( u , ( r ) + WWhz - 1 ) , 

ho = tan h ( v : + Wha ( r , Oh _ 1 ) ) , ( 12 ) 

[ 0053 ] Hence , PreRNN - SIH in Equations ( 11 ) and ( 12 ) 
only introduces the hidden - to - hidden weights W , that need 
to be trained from scratch . In addition , because the pre 
trained feedforward layer is set to be the joint input - to 
hidden state for all the gating functions of LSTM and GRU , 
the number of recurrent parameters for the PreRNN layer 
135 or 175 is reduced , and consequently the computational 
cost is also reduced compared with computing gate - specific 
input - to - hidden states ( e . g . , u , ( i ) , u , ( f ) , u , ( 0 ) , and u , ( C ) , or 
u , ( r ) , u , ( z ) , and u , ( h ) ) . In sum , when a non - recurrent layer is 
transformed into a PreRNN layer 135 or 175 using SIH , the 
feedforward weights Wxy may be used to compute values for 
a unified input - to - hidden state corresponding to multiple 
gating functions of the PreRNN layer 135 or 175 . 
[ 0054 ] As previously described , one or more non - recur 
rent layers may be selected to be replaced by PreRNN 
layer ( s ) 135 or 175 . In one embodiment , distributions of gate 
activations are used to select the one or more non - recurrent 
layers of a trained neural network model . A gate unit may be 
defined as left or right saturated if the gate activations are 
less than 0 . 1 or more than 0 . 9 , otherwise , the gate unit is 

unsaturated , 

z = sig m ( u _ ( 2 ) + Wahz - 1 ) , 
hq = tan h ( u , ( h ) + Wnn ( r , Oh , - 1 ) ) , ( 9 ) 

and the hidden state h , is updated in the same manner as in 
Equation ( 3 ) . By fusing the pre - trained feedforward layer 
into the input - to - hidden state of each gate , a PreRNN layer 
introduces fewer input - to - hidden parameters and only the 
hidden - to - hidden weights need to be trained from scratch . 
Equations ( 7 ) and ( 9 ) may be used to transform the feed - 
forward weights into the input - to - hidden weights of the 
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[ 0055 ] FIG . 2A illustrates a saturation plot 200 of the 
fraction of times that a forget gate unit is left or right 
saturated , in accordance with one embodiment . A first layer 
of an LSTM is constructed by a PreRNN layer 135 or 175 
to produce a first layer of the visual sequence learning neural 
network model 115 or 150 . Separately , a second layer of the 
LSTM is constructed by a PreRNN layer 135 or 175 to 
produce a second layer of the visual sequence learning 
neural network model 115 or 150 . The graph illustrates the 
distribution of activation values for forget gate neurons for 
the first PreRNN layer ( PreLSTM Layer 1 ) and for the 
second PreRNN layer ( PreLSTM Layer 2 ) individually . The 
graph also illustrates the distribution of activation values for 
forget gate neurons each of a first layer and a second layer 
of or a traditional LSTM ( TraLSTM ) . 
[ 0056 ] The activations in the first layer of PreLSTM 
( PreLSTM Layer 1 ) lie in the more saturated region ( i . e . , 
closer to the saturation line ) compared with the activations 
of either the first or the second layer of the TraLSTM . The 
implication of the distribution of the first layer is that 
PreLSTM is more capable to utilize the temporal context , 
e . g . , the multiple frequently right saturated forget gate units 
( bottom right of the forget gate saturation plot 200 ) corre 
spond to the memory cells that remember their values for 
long durations . Conversely , the activations of TraLSTM , 
particularly the TraLSTM Layer 1 , are dispersed in the more 
unsaturated region of the saturation plot 200 , indicating that 
the integrated temporal information decays rapidly . 
10057 ] Note that the activations in the second layer of both 
TraLSTM and PreLSTM concentrate near the origin in the 
saturation plot 200 , where the gate units are rarely left or 
right saturated . It is likely that the second recurrent layer 
( PreLSTM Layer 2 ) virtually functions in a feedforward 
fashion and the preceding hidden state is barely used . Based 
on the saturation plot 200 , the first layer of the LSTM should 
be selected to be constructed with a PreRNN layer 135 or 
175 . Specifically , a distribution of activation values for 
neurons in the transformed first layer is left and right 
saturated indicating that the first layer benefits by being 
constructed with a PreRNN layer 135 or 175 . 
[ 0058 ] In contrast , because the distribution of activation 
values for neurons in the transformed second layer are 
neither right nor left saturated for the second layer , the 
second layer of the LSTM should not be selected to be 
constructed by a PreRNN layer 135 or 175 . Therefore , for 
the visual sequence learning neural network model 115 or 
150 , the first non - recurrent layer of the LSTM is built by a 
PreRNN layer 135 or 175 and the second non - recurrent layer 
of the LSTM is not transformed . In one embodiment , fewer 
activation values for the neurons in the PreRNN layer 135 or 
175 are distributed between 0 . 1 and 0 . 9 than are distributed 
outside of 0 . 1 and 0 . 9 within a range 0 . 0 to 1 . 0 . When the 
activation values for a PreRNN layer are not saturated , the 
PreRNN layer 135 or 175 may revert back to the non 
recurrent layer , so that the non - recurrent layer is not replaced 
to produce the visual sequence learning neural network 
model 115 or 150 . The gating mechanism may be inferred 
through saturation plots for LSTM or by activation histo 
grams for GRU . 
[ 0059 ] FIG . 2B illustrates an activation histogram 205 
over 10 bins for a first layer , in accordance with one 
embodiment . A first layer of a GRU is constructed by a 
PreRNN layer 135 or 175 to produce a first layer of a visual 
sequence learning neural network model 115 or 150 . The bar 

graph illustrates the activation histogram for reset and 
update gate neurons for the first PreRNN layer ( PreGRU 
reset gate and update gate ) . The bar graph also illustrates the 
activation histogram for reset and update gate neurons for a 
first layer of a traditional GRU ( TraGRU reset gate and 
update gate ) . 
10060 ] For the first layer of PreGRU the left saturated 
( 0 . 0 - 0 . 1 ) and right saturated ( 0 . 9 - 1 . 0 ) bins dominate the 
distribution of both the reset gate and update gate , whereas 
the activations of TraGRU gates gather in the unsaturated 
bins in the center of the distribution . Based on the saturation 
plot 205 , the first layer of the GRU should be selected to be 
constructed by a PreRNN layer 135 or 175 . Specifically , a 
distribution of activation values for neurons in the trans 
formed first layer is left and right saturated indicating that 
the first layer benefits by being constructed by a PreRNN 
layer 135 or 175 . 
[ 0061 ] FIG . 2C illustrates an activation histogram 215 
over 10 bins for a second layer , in accordance with one 
embodiment . A second layer of the GRU is constructed by 
a PreRNN layer 135 or 175 to produce a second layer of a 
visual sequence learning neural network model 115 or 150 . 
The bar graph illustrates the activation histogram for reset 
and update gate neurons for the second PreRNN layer 
( PreGRU reset gate and update gate ) . The bar graph also 
illustrates the activation histogram for reset and update gate 
neurons for a second layer of a traditional GRU ( TraGRU 
reset gate and update gate ) . 
[ 0062 ] For the second layer of PreGRU the distribution of 
both the reset gate and update gate gather in the unsaturated 
region in the center of the distribution . Because the distri 
bution of activation values for neurons in the transformed 
second layer are neither right nor left saturated for the 
second layer , the second layer of the GRU should not be 
selected to be transformed into a PreRNN layer 135 or 175 . 
Therefore , for the visual sequence learning neural network 
model 115 or 150 , the first non - recurrent layer of the GRU 
is constructed by a PreRNN layer 135 or 175 and the second 
non - recurrent layer of the GRU is not transformed . 
[ 0063 ] FIG . 2D illustrates another flowchart of a method 
225 for visual sequence learning using neural networks , in 
accordance with one embodiment . The method 225 is 
described in the context of a neural network model , and the 
method 225 may also be performed by a program , custom 
circuitry , or by a combination of custom circuitry and a 
program . For example , the method 225 may be executed by 
a GPU , CPU , or any processor capable of performing the 
necessary processing operations . Furthermore , persons of 
ordinary skill in the art will understand that any system that 
performs method 225 is within the scope and spirit of 
embodiments of the present invention . 
[ 0064 ] At step 210 , at least one non - recurrent layer within 
a trained convolutional neural network model is replaced 
with a respective PreRNN layer 135 or 175 to produce a 
visual sequence learning neural network model 115 or 150 . 
Multiple steps 210 may be performed in parallel to replace 
different combinations of at least one non - recurrent layer . 
[ 0065 ] At step 212 , one or more of the non - recurrent 
layers that were replaced in one of the combinations during 
steps 210 are selected based on distribution ( s ) of activation 
values for neurons in the transformed recurrent layer ( s ) . In 
one embodiment , non - recurrent layers having activation 
values with a left and / or right saturation distribution are 
selected . In one embodiment , the non - recurrent laver ( s ) that 
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are selected are a combination of at least one convolutional 
layer or at least one fully connected layer . 
[ 0066 ] Step 120 is performed as previously described in 
conjunction with FIG . 1A . At step 230 , hidden - to - hidden 
weights of the recurrent layer ( s ) are set to initial values . 
Steps 132 and 140 are performed as previously described in 
conjunction with FIGS . 1A and 1F to complete the training . 
In one embodiment , replacing one or more non - recurrent 
layers with PreRNN layer ( s ) 135 or 175 improves classifi 
cation accuracy and the resulting visual sequence learning 
neural network model 115 or 150 converges faster during 
training compared with a traditional RNN . The faster con 
vergence may be a result of fusing the pre - trained feedfor 
ward layers into recurrent layers so that the PreRNN layers 
135 or 175 are partially pre - trained and therefore can accel 
erate convergence . 
[ 0067 ] In one embodiment , one or two fully - connected 
layers of a pre - trained VGG16 are transformed into a 
PreRNN layer 175 with unified parameters . As defined in 
Equations ( 6 ) , ( 7 ) , and ( 10 ) the pre - trained weights are fused 
into the PreRNN layers 175 . As a comparison , traditional 
RNNs build corresponding recurrent layers on top of a fully 
connected seventh layer in VGG16 . TABLE 1 shown below 
demonstrates that PreRNN and PreRNN - SIH both outper 
form traditional RNNs because an area under the curve 
( AUC ) is greater , where the cumulative error distribution 
curve represents the normalized point - to - point error for 68 
facial landmarks . 

TABLE 1 

Facial landmark detection accuracy ( in AUC ) of the 
traditional RNNs and the PreRNN and PreRNN - SIH 

be configured to implement the visual sequence learning 
neural network model 115 or 150 . 
[ 0071 ] In one embodiment , the PPU 300 is a multi 
threaded processor that is implemented on one or more 
integrated circuit devices . The PPU 300 is a latency hiding 
architecture designed to process a large number of threads in 
parallel . A thread ( i . e . , a thread of execution ) is an instan 
tiation of a set of instructions configured to be executed by 
the PPU 300 . In one embodiment , the PPU 300 is a graphics 
processing unit ( GPU ) configured to implement a graphics 
rendering pipeline for processing three - dimensional ( 3D ) 
graphics data in order to generate two - dimensional ( 2D ) 
image data for display on a display device such as a liquid 
crystal display ( LCD ) device . In other embodiments , the 
PPU 300 may be utilized for performing general - purpose 
computations . While one exemplary parallel processor is 
provided herein for illustrative purposes , it should be 
strongly noted that such processor is set forth for illustrative 
purposes only , and that any processor may be employed to 
supplement and / or substitute for the same . 
[ 0072 ] As shown in FIG . 3 , the PPU 300 includes an 
Input / Output ( I / O ) unit 305 , a host interface unit 310 , a front 
end unit 315 , a scheduler unit 320 , a work distribution unit 
325 , a hub 330 , a crossbar ( Xbar ) 370 , one or more general 
processing clusters ( GPCs ) 350 , and one or more partition 
units 380 . The PPU 300 may be connected to a host 
processor or other peripheral devices via a system bus 302 . 
The PPU 300 may also be connected to a local memory 
comprising a number of memory devices 304 . In one 
embodiment , the local memory may comprise a number of 
dynamic random access memory ( DRAM ) devices . 
[ 0073 ] The I / O unit 305 is configured to transmit and 
receive communications ( i . e . , commands , data , etc . ) from a 
host processor ( not shown ) over the system bus 302 . The I / O 
unit 305 may communicate with the host processor directly 
via the system bus 302 or through one or more intermediate 
devices such as a memory bridge . In one embodiment , the 
I / O unit 305 implements a Peripheral Component Intercon 
nect Express ( PCIe ) interface for communications over a 
PCIe bus . In alternative embodiments , the I / O unit 305 may 
implement other types of well - known interfaces for com 
municating with external devices . 
[ 0074 ] The I / O unit 305 is coupled to a host interface unit 
310 that decodes packets received via the system bus 302 . In 
one embodiment , the packets represent commands config 
ured to cause the PPU 300 to perform various operations . 
The host interface unit 310 transmits the decoded commands 
to various other units of the PPU 300 as the commands may 
specify . For example , some commands may be transmitted 
to the front end unit 315 . Other commands may be trans 
mitted to the hub 330 or other units of the PPU 300 such as 
one or more copy engines , a video encoder , a video decoder , 
a power management unit , etc . ( not explicitly shown ) . In 
other words , the host interface unit 310 is configured to route 
communications between and among the various logical 
units of the PPU 300 . 
[ 0075 ] In one embodiment , a program executed by the 
host processor encodes a command stream in a buffer that 
provides workloads to the PPU 300 for processing . A 
workload may comprise a number of instructions and data to 
be processed by those instructions . The buffer is a region in 
a memory that is accessible ( i . e . , read / write ) by both the host 
processor and the PPU 300 . For example , the host interface 
unit 310 may be configured to access the buffer in a system 

Traditional PreRNN PreRNN - SIH 

1 layer 2 layers fc fc7fc6 / 7 fcb fc7fc6 / 7 
VRNN 
LSTM 
GRU 

0 . 704 
0 . 718 
0 . 722 

0 . 716 
0 . 671 
0 . 698 

0 . 757 0 . 742 0 . 763 
0 . 769 0 . 754 0 . 746 0 . 743 0 . 746 0 . 719 
0 . 772 0 . 755 0 . 761 0 . 768 0 . 748 0 . 762 

10068 ] Transforming the fully connected layers ( fc6 , fc7 
or fc6 / 7 ) into PreRNN 175 layers significantly out - performs 
the traditional RNNs for the three basic recurrent structures . 
In one embodiment , apart from improving the accuracy , 
PreRNN - SIH reduces the recurrent parameters by up to 
82 % . In comparison , among the three basic recurrent struc 
tures , LSTM produce similar results to GRU , which both 
outperform VRNN . 
[ 0069 ] Replacing one or more non - recurrent layers of a 
pre - trained convolutional neural network model with a 
PreRNN layer 135 or 175 for visual sequence learning 
directly transforms pre - trained feedforward layers into 
recurrent layers . Replacing one or more non - recurrent layers 
with a PreRNN layer 135 or 175 may be applied to all basic 
recurrent structures and various architectures of neural net 
works , particularly CNNs . Extensive experiments on three 
applications find PreRNN and PreRNN - SIH to produce 
consistently better results than traditional RNNs , in addition 
to a significant reduction of recurrent parameters by 
PreRNN - SIH . 

Parallel Processing Architecture 
[ 0070 ] FIG . 3 illustrates a parallel processing unit ( PPU ) 
300 , in accordance with one embodiment . The PPU 300 may 
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memory connected to the system bus 302 via memory 
requests transmitted over the system bus 302 by the I / O unit 
305 . In one embodiment , the host processor writes the 
command stream to the buffer and then transmits a pointer 
to the start of the command stream to the PPU 300 . The host 
interface unit 310 provides the front end unit 315 with 
pointers to one or more command streams . The front end 
unit 315 manages the one or more streams , reading com 
mands from the streams and forwarding commands to the 
various units of the PPU 300 . 
[ 0076 ] The front end unit 315 is coupled to a scheduler 
unit 320 that configures the various GPCs 350 to process 
tasks defined by the one or more streams . The scheduler unit 
320 is configured to track state information related to the 
various tasks managed by the scheduler unit 320 . The state 
may indicate which GPC 350 a task is assigned to , whether 
the task is active or inactive , a priority level associated with 
the task , and so forth . The scheduler unit 320 manages the 
execution of a plurality of tasks on the one or more GPCs 
350 . 
[ 0077 ] The scheduler unit 320 is coupled to a work 
distribution unit 325 that is configured to dispatch tasks for 
execution on the GPCs 350 . The work distribution unit 325 
may track a number of scheduled tasks received from the 
scheduler unit 320 . In one embodiment , the work distribu 
tion unit 325 manages a pending task pool and an active task 
pool for each of the GPCs 350 . The pending task pool may 
comprise a number of slots ( e . g . , 32 slots ) that contain tasks 
assigned to be processed by a particular GPC 350 . The active 
task pool may comprise a number of slots ( e . g . , 4 slots ) for 
tasks that are actively being processed by the GPCs 350 . As 
a GPC 350 finishes the execution of a task , that task is 
evicted from the active task pool for the GPC 350 and one 
of the other tasks from the pending task pool is selected and 
scheduled for execution on the GPC 350 . If an active task 
has been idle on the GPC 350 , such as while waiting for a 
data dependency to be resolved , then the active task may be 
evicted from the GPC 350 and returned to the pending task 
pool while another task in the pending task pool is selected 
and scheduled for execution on the GPC 350 . 
[ 0078 ] The work distribution unit 325 communicates with 
the one or more GPCs 350 via XBar 370 . The XBar 370 is 
an interconnect network that couples many of the units of the 
PPU 300 to other units of the PPU 300 . For example , the 
XBar 370 may be configured to couple the work distribution 
unit 325 to a particular GPC 350 . Although not shown 
explicitly , one or more other units of the PPU 300 are 
coupled to the host interface unit 310 . The other units may 
also be connected to the XBar 370 via a hub 330 . 
[ 0079 ] The tasks are managed by the scheduler unit 320 
and dispatched to a GPC 350 by the work distribution unit 
325 . The GPC 350 is configured to process the task and 
generate results . The results may be consumed by other tasks 
within the GPC 350 , routed to a different GPC 350 via the 
XBar 370 , or stored in the memory 304 . The results can be 
written to the memory 304 via the partition units 380 , which 
implement a memory interface for reading and writing data 
to / from the memory 304 . In one embodiment , the PPU 300 
includes a number U of partition units 380 that is equal to the 
number of separate and distinct memory devices 304 
coupled to the PPU 300 . A partition unit 380 will be 
described in more detail below in conjunction with FIG . 4B . 
10080 ] In one embodiment , a host processor executes a 
driver kernel that implements an application programming 

interface ( API ) that enables one or more applications execut 
ing on the host processor to schedule operations for execu 
tion on the PPU 300 . An application may generate instruc 
tions ( i . e . , API calls ) that cause the driver kernel to generate 
one or more tasks for execution by the PPU 300 . The driver 
kernel outputs tasks to one or more streams being processed 
by the PPU 300 . Each task may comprise one or more 
groups of related threads , referred to herein as a warp . A 
thread block may refer to a plurality of groups of threads 
including instructions to perform the task . Threads in the 
same group of threads may exchange data through shared 
memory . In one embodiment , a group of threads comprises 
32 related threads . 
[ 0081 ] FIG . 4A illustrates a GPC 350 of the PPU 300 of 
FIG . 3 , in accordance with one embodiment . As shown in 
FIG . 4A , each GPC 350 includes a number of hardware units 
for processing tasks . In one embodiment , each GPC 350 
includes a pipeline manager 410 , a pre - raster operations unit 
( PROP ) 415 , a raster engine 425 , a work distribution cross 
bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 
and one or more Texture Processing Clusters ( TPCs ) 420 . It 
will be appreciated that the GPC 350 of FIG . 4A may include 
other hardware units in lieu of or in addition to the units 
shown in FIG . 4A . 
[ 0082 ] In one embodiment , the operation of the GPC 350 
is controlled by the pipeline manager 410 . The pipeline 
manager 410 manages the configuration of the one or more 
TPCs 420 for processing tasks allocated to the GPC 350 . In 
one embodiment , the pipeline manager 410 may configure at 
least one of the one or more TPCs 420 to implement at least 
a portion of a graphics rendering pipeline . For example , a 
TPC 420 may be configured to execute a vertex shader 
program on the programmable streaming multiprocessor 
( SM ) 440 . The pipeline manager 410 may also be configured 
to route packets received from the work distribution unit 325 
to the appropriate logical units within the GPC 350 . For 
example , some packets may be routed to fixed function 
hardware units in the PROP 415 and / or raster engine 425 
while other packets may be routed to the TPCs 420 for 
processing by the primitive engine 435 or the SM 440 . 
[ 0083 ] The PROP unit 415 is configured to route data 
generated by the raster engine 425 and the TPCs 420 to a 
Raster Operations ( ROP ) unit in the partition unit 380 , 
described in more detail below . The PROP unit 415 may also 
be configured to perform optimizations for color blending , 
organize pixel data , perform address translations , and the 
like . 
10084 ) The raster engine 425 includes a number of fixed 
function hardware units configured to perform various raster 
operations . In one embodiment , the raster engine 425 
includes a setup engine , a course raster engine , a culling 
engine , a clipping engine , a fine raster engine , and a tile 
coalescing engine . The setup engine receives transformed 
vertices and generates plane equations associated with the 
geometric primitive defined by the vertices . The plane 
equations are transmitted to the coarse raster engine to 
generate coverage information ( e . g . , an x , y coverage mask 
for a tile ) for the primitive . The output of the coarse raster 
engine may transmitted to the culling engine where frag 
ments associated with the primitive that fail a z - test are 
culled , and transmitted to a clipping engine where fragments 
lying outside a viewing frustum are clipped . Those frag 
ments that survive clipping and culling may be passed to a 
fine raster engine to generate attributes for the pixel frag 
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ments based on the plane equations generated by the setup 
engine . The output of the raster engine 425 comprises 
fragments to be processed , for example , by a fragment 
shader implemented within a TPC 420 . 
[ 0085 ] Each TPC 420 included in the GPC 350 includes an 
M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , one 
or more SMS 440 , and one or more texture units 445 . The 
MPC 430 controls the operation of the TPC 420 , routing 
packets received from the pipeline manager 410 to the 
appropriate units in the TPC 420 . For example , packets 
associated with a vertex may be routed to the primitive 
engine 435 , which is configured to fetch vertex attributes 
associated with the vertex from the memory 304 . In contrast , 
packets associated with a shader program may be transmit 
ted to the SM 440 . 
[ 0086 ] . In one embodiment , the texture units 445 are 
configured to load texture maps ( e . g . , a 2D array of texels ) 
from the memory 304 and sample the texture maps to 
produce sampled texture values for use in shader programs 
executed by the SM 440 . The texture units 445 implement 
texture operations such as filtering operations using mip 
maps ( i . e . , texture maps of varying levels of detail ) . The 
texture unit 445 is also used as the Load / Store path for SM 
440 to MMU 490 . In one embodiment , each TPC 420 
includes two ( 2 ) texture units 445 . 
[ 0087 ] The SM 440 comprises a programmable streaming 
processor that is configured to process tasks represented by 
a number of threads . Each SM 440 is multi - threaded and 
configured to execute a plurality of threads ( e . g . , 32 threads ) 
from a particular group of threads concurrently . In one 
embodiment , the SM 440 implements a SIMD ( Single 
Instruction , Multiple - Data ) architecture where each thread 
in a group of threads ( i . e . , a warp ) is configured to process 
a different set of data based on the same set of instructions . 
All threads in the group of threads execute the same instruc 
tions . In another embodiment , the SM 440 implements a 
SIMT ( Single - Instruction , Multiple Thread ) architecture 
where each thread in a group of threads is configured to 
process a different set of data based on the same set of 
instructions , but where individual threads in the group of 
threads are allowed to diverge during execution . In other 
words , when an instruction for the group of threads is 
dispatched for execution , some threads in the group of 
threads may be active , thereby executing the instruction , 
while other threads in the group of threads may be inactive , 
thereby performing a no - operation ( NOP ) instead of execut 
ing the instruction . The SM 440 may be described in more 
detail below in conjunction with FIG . 5 . 
[ 0088 ] The MMU 490 provides an interface between the 
GPC 350 and the partition unit 380 . The MMU 490 may 
provide translation of virtual addresses into physical 
addresses , memory protection , and arbitration of memory 
requests . In one embodiment , the MMU 490 provides one or 
more translation lookaside buffers ( TLBs ) for improving 
translation of virtual addresses into physical addresses in the 
memory 304 . 
10089 ] FIG . 4B illustrates a memory partition unit 380 of 
the PPU 300 of FIG . 3 , in accordance with one embodiment . 
As shown in FIG . 4B , the memory partition unit 380 
includes a Raster Operations ( ROP ) unit 450 , a level two 
( L2 ) cache 460 , a memory interface 470 , and an L2 crossbar 
( XBar ) 465 . The memory interface 470 is coupled to the 
memory 304 . Memory interface 470 may implement 16 , 32 , 
64 , 128 - bit data buses , or the like , for high - speed data 

transfer . In one embodiment , the PPU 300 comprises U 
memory interfaces 470 , one memory interface 470 per 
partition unit 380 , where each partition unit 380 is connected 
to a corresponding memory device 304 . For example , PPU 
300 may be connected to up to U memory devices 304 , such 
as graphics double - data - rate , version 5 , synchronous 
dynamic random access memory ( GDDR5 SDRAM ) . In one 
embodiment , the memory interface 470 implements a 
DRAM interface and U is equal to 8 . 
0090 ] In one embodiment , the PPU 300 implements a 

multi - level memory hierarchy . The memory 304 is located 
off - chip in SDRAM coupled to the PPU 300 . Data from the 
memory 304 may be fetched and stored in the L2 cache 460 , 
which is located on - chip and is shared between the various 
GPCs 350 . As shown , each partition unit 380 includes a 
portion of the L2 cache 460 associated with a corresponding 
memory device 304 . Lower level caches may then be 
implemented in various units within the GPCs 350 . For 
example , each of the SMS 440 may implement a level one 
( L1 ) cache . The L1 cache is private memory that is dedicated 
to a particular SM 440 . Data from the L2 cache 460 may be 
fetched and stored in each of the L1 caches for processing 
in the functional units of the SMS 440 . The L2 cache 460 is 
coupled to the memory interface 470 and the XBar 370 . 
[ 0091 ] The ROP unit 450 includes a ROP Manager 455 , a 
Color ROP ( CROP ) unit 452 , and a Z ROP ( ZROP ) unit 454 . 
The CROP unit 452 performs raster operations related to 
pixel color , such as color compression , pixel blending , and 
the like . The ZROP unit 454 implements depth testing in 
conjunction with the raster engine 425 . The ZROP unit 454 
receives a depth for a sample location associated with a pixel 
fragment from the culling engine of the raster engine 425 . 
The ZROP unit 454 tests the depth against a corresponding 
depth in a depth buffer for a sample location associated with 
the fragment . If the fragment passes the depth test for the 
sample location , then the ZROP unit 454 updates the depth 
buffer and transmits a result of the depth test to the raster 
engine 425 . The ROP Manager 455 controls the operation of 
the ROP unit 450 . It will be appreciated that the number of 
partition units 380 may be different than the number of 
GPCs 350 and , therefore , each ROP unit 450 may be 
coupled to each of the GPCs 350 . Therefore , the ROP 
Manager 455 tracks packets received from the different 
GPCs 350 and determines which GPC 350 that a result 
generated by the ROP unit 450 is routed to . The CROP unit 
452 and the ZROP unit 454 are coupled to the L2 cache 460 
via an L2 XBar 465 . 
[ 0092 ] FIG . 5 illustrates the streaming multi - processor 
440 of FIG . 4A , in accordance with one embodiment . As 
shown in FIG . 5 , the SM 440 includes an instruction cache 
505 , one or more scheduler units 510 , a register file 520 , one 
or more processing cores 550 , one or more special function 
units ( SFUS ) 552 , one or more load / store units ( LSUS ) 554 , 
an interconnect network 580 , a shared memory / L1 cache 
570 . 
10093 ] As described above , the work distribution unit 325 
dispatches tasks for execution on the GPCs 350 of the PPU 
300 . The tasks are allocated to a particular TPC 420 within 
a GPC 350 and , if the task is associated with a shader 
program , the task may be allocated to an SM 440 . The 
scheduler unit 510 receives the tasks from the work distri 
bution unit 325 and manages instruction scheduling for one 
or more groups of threads ( i . e . , warps ) assigned to the SM 
440 . The scheduler unit 510 schedules threads for execution 
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in groups of parallel threads , where each group is called a 
warp . In one embodiment , each warp includes 32 threads . 
The scheduler unit 510 may manage a plurality of different 
warps , scheduling the warps for execution and then dis 
patching instructions from the plurality of different warps to 
the various functional units ( i . e . , cores 550 , SFUS 552 , and 
LSUs 554 ) during each clock cycle . 
[ 0094 ] In one embodiment , each scheduler unit 510 
includes one or more instruction dispatch units 515 . Each 
dispatch unit 515 is configured to transmit instructions to 
one or more of the functional units . In the embodiment 
shown in FIG . 5 , the scheduler unit 510 includes two 
dispatch units 515 that enable two different instructions from 
the same warp to be dispatched during each clock cycle . In 
alternative embodiments , each scheduler unit 510 may 
include a single dispatch unit 515 or additional dispatch 
units 515 . 
[ 0095 ] Each SM 440 includes a register file 520 that 
provides a set of registers for the functional units of the SM 
440 . In one embodiment , the register file 520 is divided 
between each of the functional units such that each func 
tional unit is allocated a dedicated portion of the register file 
520 . In another embodiment , the register file 520 is divided 
between the different warps being executed by the SM 440 . 
The register file 520 provides temporary storage for oper 
ands connected to the data paths of the functional units . 
[ 0096 ] Each SM 440 comprises L processing cores 550 . In 
one embodiment , the SM 440 includes a large number ( e . g . , 
128 , etc . ) of distinct processing cores 550 . Each core 550 
may include a fully - pipelined , single - precision processing 
unit that includes a floating point arithmetic logic unit and an 
integer arithmetic logic unit . The core 550 may also include 
a double - precision processing unit including a floating point 
arithmetic logic unit . In one embodiment , the floating point 
arithmetic logic units implement the IEEE 754 - 2008 stan 
dard for floating point arithmetic . Each SM 440 also com 
prises M SFUS 552 that perform special functions ( e . g . , 
attribute evaluation , reciprocal square root , and the like ) , and 
N LSUS 554 that implement load and store operations 
between the shared memory / L1 cache 570 and the register 
file 520 . In one embodiment , the SM 440 includes 128 cores 
550 , 32 SFUs 552 , and 32 LSUs 554 . 
[ 0097 ] Each SM 440 includes an interconnect network 580 
that connects each of the functional units to the register file 
520 and the LSU 554 to the register file 520 , shared 
memory / L1 cache 570 . In one embodiment , the interconnect 
network 580 is a crossbar that can be configured to connect 
any of the functional units to any of the registers in the 
register file 520 and connect the LSUs 554 to the register file 
and memory locations in shared memory / L1 cache 570 . 
[ 0098 ] The shared memory / L1 cache 570 is an array of 
on - chip memory that allows for data storage and commu 
nication between the SM 440 and the primitive engine 435 
and between threads in the SM 440 . In one embodiment , the 
shared memory / L1 cache 570 comprises 64 KB of storage 
capacity and is in the path from the SM 440 to the partition 
unit 380 . The shared memory / L1 cache 570 can be used to 
cache reads and writes . 
[ 0099 ] The PPU 300 described above may be configured 
to perform highly parallel computations much faster than 
conventional CPUs . Parallel computing has advantages in 
graphics processing , data compression , biometrics , stream 
processing algorithms , and the like . 

[ 0100 ] When configured for general purpose parallel com 
putation , a simpler configuration can be used . In this model , 
as shown in FIG . 3 , fixed function graphics processing units 
are bypassed , creating a much simpler programming model . 
In this configuration , the work distribution unit 325 assigns 
and distributes blocks of threads directly to the TPCs 420 . 
The threads in a block execute the same program , using a 
unique thread ID in the calculation to ensure each thread 
generates unique results , using the SM 440 to execute the 
program and perform calculations , shared memory / L1 cache 
570 communicate between threads , and the LSU 554 to read 
and write Global memory through partition shared memory / 
L1 cache 570 and partition unit 380 . 
[ 0101 ] When configured for general purpose parallel com 
putation , the SM 440 can also write commands that sched 
uler unit 320 can use to launch new work on the TPCs 420 . 
In one embodiment , the PPU 300 comprises a graphics 
processing unit ( GPU ) . The PPU 300 is configured to 
receive commands that specify shader programs for process 
ing graphics data . Graphics data may be defined as a set of 
primitives such as points , lines , triangles , quads , triangle 
strips , and the like . Typically , a primitive includes data that 
specifies a number of vertices for the primitive ( e . g . , in a 
model - space coordinate system ) as well as attributes asso 
ciated with each vertex of the primitive . The PPU 300 can 
be configured to process the graphics primitives to generate 
a frame buffer ( i . e . , pixel data for each of the pixels of the 
display ) . 
[ 0102 ] An application writes model data for a scene ( i . e . , 
a collection of vertices and attributes ) to a memory such as 
a system memory or memory 304 . The model data defines 
each of the objects that may be visible on a display . The 
application then makes an API call to the driver kernel that 
requests the model data to be rendered and displayed . The 
driver kernel reads the model data and writes commands to 
the one or more streams to perform operations to process the 
model data . The commands may reference different shader 
programs to be implemented on the SMs 440 of the PPU 300 
including one or more of a vertex shader , hull shader , 
domain shader , geometry shader , and a pixel shader . For 
example , one or more of the SMS 440 may be configured to 
execute a vertex shader program that processes a number of 
vertices defined by the model data . In one embodiment , the 
different SMS 440 may be configured to execute different 
shader programs concurrently . For example , a first subset of 
SMS 440 may be configured to execute a vertex shader 
program while a second subset of SMS 440 may be config 
ured to execute a pixel shader program . The first subset of 
SMS 440 processes vertex data to produce processed vertex 
data and writes the processed vertex data to the L2 cache 460 
and / or the memory 304 . After the processed vertex data is 
rasterized ( i . e . , transformed from three - dimensional data 
into two - dimensional data in screen space ) to produce 
fragment data , the second subset of SMs 440 executes a 
pixel shader to produce processed fragment data , which is 
then blended with other processed fragment data and written 
to the frame buffer in memory 304 . The vertex shader 
program and pixel shader program may execute concur 
rently , processing different data from the same scene in a 
pipelined fashion until all of the model data for the scene has 
been rendered to the frame buffer . Then , the contents of the 
frame buffer are transmitted to a display controller for 
display on a display device . 
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[ 0103 ] The PPU 300 may be included in a desktop com 
puter , a laptop computer , a tablet computer , a smart - phone 
( e . g . , a wireless , hand - held device ) , personal digital assistant 
( PDA ) , a digital camera , a hand - held electronic device , and 
the like . In one embodiment , the PPU 300 is embodied on a 
single semiconductor substrate . In another embodiment , the 
PPU 300 is included in a system - on - a - chip ( SoC ) along with 
one or more other logic units such as a reduced instruction 
set computer ( RISC ) CPU , a memory management unit 
( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
[ 0104 ] In one embodiment , the PPU 300 may be included 
on a graphics card that includes one or more memory 
devices 304 such as GDDR5 SDRAM . The graphics card 
may be configured to interface with a PCIe slot on a 
motherboard of a desktop computer that includes , e . g . , a 
northbridge chipset and a southbridge chipset . In yet another 
embodiment , the PPU 300 may be an integrated graphics 
processing unit ( GPU ) included in the chipset ( i . e . , North 
bridge ) of the motherboard . 
[ 0105 ] Various programs may be executed within the PPU 
300 in order to implement the various CNN , FC 135 , and 
RNN 235 layers of the video classification systems 115 , 145 , 
200 , 215 , and 245 . For example , the device driver may 
launch a kernel on the PPU 300 to implement at least one 2D 
or 3D CNN layer on one SM 440 ( or multiple SMS 440 ) . The 
device driver ( or the initial kernel executed by the PPU 300 ) 
may also launch other kernels on the PPU 300 to perform 
other CNN layers , such as the FC 135 , RNN 235 and the 
classifier 105 , 106 , or 206 . In addition , some of the CNN 
layers may be implemented on fixed unit hardware imple 
mented within the PPU 300 . It will be appreciated that 
results from one kernel may be processed by one or more 
intervening fixed function hardware units before being pro 
cessed by a subsequent kernel on an SM 440 . 

[ 0109 ] In the present description , a single semiconductor 
platform may refer to a sole unitary semiconductor - based 
integrated circuit or chip . It should be noted that the term 
single semiconductor platform may also refer to multi - chip 
modules with increased connectivity which simulate on - chip 
operation , and make substantial improvements over utilizing 
a conventional central processing unit ( CPU ) and bus imple 
mentation . Of course , the various modules may also be 
situated separately or in various combinations of semicon 
ductor platforms per the desires of the user . 
0110 ] The system 600 may also include a secondary 
storage 610 . The secondary storage 610 includes , for 
example , a hard disk drive and / or a removable storage drive , 
representing a floppy disk drive , a magnetic tape drive , a 
compact disk drive , digital versatile disk ( DVD ) drive , 
recording device , universal serial bus ( USB ) flash memory . 
The removable storage drive reads from and / or writes to a 
removable storage unit in a well - known manner . 
[ 0111 ] Computer programs , or computer control logic 
algorithms , may be stored in the main memory 604 and / or 
the secondary storage 610 . Such computer programs , when 
executed , enable the system 600 to perform various func 
tions . The memory 604 , the storage 610 , and / or any other 
storage are possible examples of computer - readable media . 
Data streams associated with gestures may be stored in the 
main memory 604 and / or the secondary storage 610 . 
[ 0112 ] In one embodiment , the architecture and / or func 
tionality of the various previous figures may be implemented 
in the context of the central processor 601 , the graphics 
processor 606 , an integrated circuit ( not shown ) that is 
capable of at least a portion of the capabilities of both the 
central processor 601 and the graphics processor 606 , a 
chipset ( i . e . , a group of integrated circuits designed to work 
and sold as a unit for performing related functions , etc . ) , 
and / or any other integrated circuit for that matter . 
[ 0113 ] Still yet , the architecture and / or functionality of the 
various previous figures may be implemented in the context 
of a general computer system , a circuit board system , a game 
console system dedicated for entertainment purposes , an 
application - specific system , and / or any other desired sys 
tem . For example , the system 600 may take the form of a 
desktop computer , laptop computer , server , workstation , 
game consoles , embedded system , and / or any other type of 
logic . Still yet , the system 600 may take the form of various 
other devices including , but not limited to a personal digital 
assistant ( PDA ) device , a mobile phone device , head 
mounted display , autonomous vehicle , a television , etc . 
[ 0114 ] Further , while not shown , the system 600 may be 
coupled to a network ( e . g . , a telecommunications network , 
local area network ( LAN ) , wireless network , wide area 
network ( WAN ) such as the Internet , peer - to - peer network , 
cable network , or the like ) for communication purposes . 
[ 0115 ] While various embodiments have been described 
above , it should be understood that they have been presented 
by way of example only , and not limitation . Thus , the 
breadth and scope of a preferred embodiment should not be 
limited by any of the above - described exemplary embodi 
ments , but should be defined only in accordance with the 
following claims and their equivalents . 
What is claimed is : 
1 . A computer - implemented method , comprising : 
replacing a non - recurrent layer within a trained neural 

network model with a recurrent layer to produce a 
visual sequence learning neural network model ; 

Exemplary System 
[ 0106 ] FIG . 6 illustrates an exemplary system 600 in 
which the various architecture and / or functionality of the 
various previous embodiments may be implemented . The 
exemplary system 600 may be used to implement the visual 
sequence learning neural network model 115 or 150 . 
[ 0107 ] As shown , a system 600 is provided including at 
least one central processor 601 that is connected to a 
communication bus 602 . The communication bus 602 may 
be implemented using any suitable protocol , such as PCI 
( Peripheral Component Interconnect ) , PCI - Express , AGP 
( Accelerated Graphics Port ) , HyperTransport , or any other 
bus or point - to - point communication protocol ( s ) . The sys 
tem 600 also includes a main memory 604 . Control logic 
( software ) and data are stored in the main memory 604 
which may take the form of random access memory ( RAM ) . 
[ 0108 ] The system 600 also includes input devices 612 , a 
graphics processor 606 , and a display 608 , i . e . a conven 
tional CRT ( cathode ray tube ) , LCD ( liquid crystal display ) , 
LED ( light emitting diode ) , plasma display or the like . User 
input may be received from the input devices 612 , e . g . , 
keyboard , mouse , touchpad , microphone , camera , and the 
like . In one embodiment , the visual sequence learning neural 
network model may be used to recognize dynamic hand 
gestures as user input . In one embodiment , the graphics 
processor 606 may include a plurality of shader modules , a 
rasterization module , etc . Each of the foregoing modules 
may even be situated on a single semiconductor platform to 
form a graphics processing unit ( GPU ) . 
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transforming feedforward weights for the non - recurrent 
layer into input - to - hidden weights of the recurrent layer 
to produce a transformed recurrent layer ; 

setting hidden - to - hidden weights of the recurrent layer to 
initial values ; and 

processing video image data by the visual sequence 
learning neural network model to generate classifica 
tion or regression output data . 

2 . The method of claim 1 , prior to processing the video 
image data , further comprising : 

processing input video image data included in a training 
dataset by the visual sequence learning neural network 
model to generate output data ; 

comparing the output data to target output data included 
in the training dataset to produce comparison results ; 
and 

adjusting the hidden - to - hidden weights based on the com 
parison results . 

3 . The method of claim 2 , further comprising adjusting the 
input - to - hidden weights based on the comparison results . 

4 . The method of claim 2 , wherein the training dataset is 
configured for sequential face alignment and the video 
image data is color data . 

5 . The method of claim 2 , wherein the training dataset is 
configured for dynamic hand gesture recognition and the 
video image data is color data and depth data . 

6 . The method of claim 2 , wherein the training dataset is 
configured for action recognition and the video image data 
is color data and optical flow data . 

7 . The method of claim 1 , wherein the non - recurrent layer 
is a fully - connected layer . 

8 . The method of claim 1 , wherein the non - recurrent layer 
is a convolutional layer . 

9 . The method of claim 1 , wherein the transforming 
comprises computing values of parameters for multiple 
input - to - hidden state corresponding to multiple gating func 
tions of the recurrent layer using the feedforward weights . 

10 . The method of claim 1 , wherein the transforming 
comprises computing values of parameters for a unified 
input - to - hidden state corresponding to multiple gating func 
tions of the recurrent layer using the feedforward weights . 

11 . The method of claim 1 , wherein the replacing com 
prises selecting the non - recurrent layer based on a distribu 
tion of activation values for neurons in the transformed 
recurrent layer . 

12 . The method of claim 11 , wherein fewer activation 
values for the neurons in the recurrent layer are distributed 
between 0 . 1 and 0 . 9 than are distributed outside of 0 . 1 and 
0 . 9 within a range 0 . 0 to 1 . 0 . 

13 . A system , comprising : 
a memory storing video image data ; and 
a parallel processing unit that is coupled to the memory 
and configured to : 
replace a non - recurrent layer within a trained neural 

network model with a recurrent layer to produce a 
visual sequence learning neural network model ; 

transform feedforward weights for the non - recurrent 
layer into input - to - hidden weights of the recurrent 
layer to produce a transformed recurrent layer ; 

set hidden - to - hidden weights of the recurrent layer to 
initial values ; and 

process the video image data by the visual sequence 
learning neural network model to generate classifi 
cation or regression output data . 

14 . The system of claim 13 , wherein the parallel process 
ing unit is further configured , prior to processing the video 
image data , to : 

process input video image data included in a training 
dataset by the visual sequence learning neural network 
model to generate output data ; 

compare the output data to target output data included in 
the training dataset to produce comparison results ; and 

adjust the hidden - to - hidden weights based on the com 
parison results . 

15 . The system of claim 14 , wherein the parallel process 
ing unit is further configured to adjust the input - to - hidden 
weights based on the comparison results . 

16 . The system of claim 13 , wherein the parallel process 
ing unit is further configured to compute values for multiple 
input - to - hidden state corresponding to multiple gating func 
tions of the recurrent layer using the feedforward weights . 

17 . The system of claim 13 , wherein the parallel process 
ing unit is further configured to compute values for a unified 
input - to - hidden state corresponding to multiple gating func 
tions of the recurrent layer using the feedforward weights . 

18 . The system of claim 13 , wherein the parallel process 
ing unit is further configured to select the non - recurrent 
layer based on a distribution of activation values for neurons 
in the transformed recurrent layer to transform the feedfor 
ward weights . 

19 . A non - transitory computer - readable media storing 
computer instructions for visual sequence learning that , 
when executed by a processor , cause the processor to 
perform the steps of : 

replacing a non - recurrent layer within a trained neural 
network model with a recurrent layer to produce a 
visual sequence learning neural network model ; 

transforming feedforward weights for the non - recurrent 
layer into input - to - hidden weights of the recurrent layer 
to produce a transformed recurrent layer ; 

setting hidden - to - hidden weights of the recurrent layer to 
initial values ; and 

processing video image data by the visual sequence 
learning neural network model to generate classifica 
tion or regression output data . 

20 . The non - transitory computer - readable media of claim 
19 , wherein the replacing comprises selecting the non 
recurrent layer based on a distribution of activation values 
for neurons in the transformed recurrent layer . 


