
US 20180373985A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0373985 A1

Yang et al . (43) Pub . Date : Dec . 27 , 2018

(54) TRANSFORMING CONVOLUTIONAL
NEURAL NETWORKS FOR VISUAL
SEQUENCE LEARNING

(71) Applicant : NVIDIA Corporation , Santa Clara , CA
(US)

(72) Inventors : Xiaodong Yang , San Jose , CA (US) ;
Pavlo Molchanov , San Jose , CA (US) ;
Jan Kautz , Lexington , MA (US)

Publication Classification
(51) Int . Ci .

G06N 3 / 08 (2006 . 01)
GO6N 3 / 04 (2006 . 01)

(52) USCI
CPC GO6N 3 / 082 (2013 . 01) ; G06K 9 / 00718

(2013 . 01) ; GO6N 3 / 0481 (2013 . 01)
(57) ABSTRACT
A method , computer readable medium , and system are
disclosed for visual sequence learning using neural net
works . The method includes the steps of replacing a non
recurrent layer within a trained convolutional neural net
work model with a recurrent layer to produce a visual
sequence learning neural network model and transforming
feedforward weights for the non - recurrent layer into input
to - hidden weights of the recurrent layer to produce a trans
formed recurrent layer . The method also includes the steps
of setting hidden - to - hidden weights of the recurrent layer to
initial values and processing video image data by the visual
sequence learning neural network model to generate classi
fication or regression output data .

(21) Appl . No . : 15 / 880 , 472

(22) Filed : Jan . 25 , 2018

Related U . S . Application Data
(60) Provisional application No . 62 / 524 , 359 , filed on Jun .

23 , 2017

Start 100

Replace a non - recurrent layer within a trained
convolutional neural network (CNN) model with a

recurrent layer to produce a visual sequence learning
neural network model

110

Transform feedforward weights for the non - recurrent
layer into input - to - hidden weights of the recurrent layer

to produce a transformed recurrent layer
120

Set hidden - to - hidden weights of the recurrent
layer to initial values

130

Process video image data by the visual sequence
learning neural network model to generate

classification or regression output data
140

End

Patent Application Publication Dec . 27 , 2018 Sheet 1 of 15 US 2018 / 0373985 A1

Start 100

Replace a non - recurrent layer within a trained
convolutional neural network (CNN) model with a

recurrent layer to produce a visual sequence learning
neural network model

110

Transform feedforward weights for the non - recurrent
layer into input - to - hidden weights of the recurrent layer

to produce a transformed recurrent layer
120

Set hidden - to - hidden weights of the recurrent
layer to initial values

130
AAAT

Process video image data by the visual sequence
learning neural network model to generate

classification or regression output data
140

(End
Fig . IA

Patent Application Publication Dec . 27 , 2018 Sheet 2 of 15 US 2018 / 0373985 A1

775
* Output Data

Who
PreRNN Layer

135

W

Convolutional Layer
125

Convolutional Layer
125 uhhhhhh . .

Input Data

Fig . 1B

Patent Application Publication Dec . 27 , 2018 Sheet 3 of 15 US 2018 / 0373985 A1

Output Data to 145

Who
Wuh RNN Layer

165

Fully Connected Layer
160

Convolutional Layer
125

Convolutional Layer
125

Input Data

PRIOR ART
Fig . 1C

Patent Application Publication Dec . 27 , 2018 Sheet 4 of 15 US 2018 / 0373985 A1

155
Output Data

Who
RNN Layer

165

Win

Average Pooling
165

Convolutional Layer
170

Convolutional Layer
125

Convolutional Layer
145

Input Data

PRIOR ART
Fig . 1D

Patent Application Publication Dec . 27 , 2018 Sheet 5 of 15 US 2018 / 0373985 A1

150
Output Data

Who
Whh PreRNN Layer

175

Convolutional Layer
125

Convolutional Layer
145

Input Data

Fig . IE

Patent Application Publication Dec . 27 , 2018 Sheet 6 of 15 US 2018 / 0373985 A1

112

M ' ' ' ' ' ' ' ' ' ' '

Replace a non - recurrent layer within a trained
convolutional neural network (CNN) model with a

recurrent layer to produce a visual sequence learning
neural network model

110

Transform feedforward weights for the non - recurrent
layer into input - to - hidden weights of the recurrent layer

to produce a transformed recurrent layer
120

Set hidden - to - hidden weights of the recurrent
layer to initial values

130

Train the visual sequence learning neural
network model to learn the hidden - to - hidden

weights with input video image data included in
a training dataset

132

Process video image data by the visual sequence
learning neural network model to generate

classification or regression output data
140

Fig . IF

Patent Application Publication Dec . 27 , 2018 Sheet 7 of 15 US 2018 / 0373985 A1

200

. Forget Gate .
. .

. . . .
. . .

. .
. . .

.
. ·

! ! ! .

.

. Saturated
Line

Left Saturated Fraction

BILLEDER
Right Saturated Fraction

Unsaturated
TraLSTM Layer 1

w Near the Origin PreLSTM
Layer 1

Fig . 2A

205

Patent Application Publication

wwwwwwwwwwwwwwwww
. * * * * * * * * * * * * * *

* * * * * * * * * * * *

*

.

Layer 1

Unsaturated TraGRU Gates

Saturated PreGRU Reset and Update Gates

Saturated PreGRU Reset and Update Gates

Dec . 27 , 2018 Sheet 8 of 15

+

US 2018 / 0373985 A1

Fig . 2B

Foto Tomis 222222222222222222222222222222
1 : Foto

*

samo mora

Fig . 2C Layer 2

Porto Torio Biasio PreGRU Gates Unsaturated *

215

US 2018 / 0373985 A1 Dec . 27 , 2018 Sheet 9 of 15 Patent Application Publication

Patent Application Publication Dec . 27 , 2018 Sheet 10 of 15 US 2018 / 0373985 A1

Start 225

Replace at least one non
recurrent layer within a trained
CNN model with recurrent
layer (s) to produce a visual
sequence learning neural

network model
210

Replace at least one non
recurrent layer within a trained
CNN model with recurrent
layer (s) to produce a visual
sequence learning neural

network model
210

Select one or more of the non - recurrent layers
based on distribution (s) of activation values for
neurons in the transformed recurrent layer (s)

212 w

Transform feedforward weights for the selected non - recurrent
layer (s) into input - to - hidden weights of the recurrent layer (s) to

produce one or more transformed recurrent layers
120 AAAAAAAA

Set hidden - to - hidden weights of the
recurrent layer (s) to initial values

230

Train the visual sequence learning neural network
model to learn the hidden - to - hidden weights with input

video image data included in a training dataset
132 wwwwwwwwwwwwww

Process video image data by the visual
sequence learning neural network model to

generate classification or regression output data
140

Fig . 2D

Patent Application Publication Dec . 27 , 2018 Sheet 11 of 15 US 2018 / 0373985 A1

PPU 200

V / O Unit
305

Host Interface Unit
310

.

Front End Unit
315

System Bus 302
Scheduler Unit

320 Hub
330

Work Distribution Unit
325

*

*

*

*

* GPC
350 (X) *

*

*

*

XBar 370

* Memory
304 (0)

* Memory Partition Unit 380 (U)
*

* - ? . ~ ~ ~ ~ ~ ~ ~

w w w w w w w w w w w w How

Fig . 3

Patent Application Publication Dec . 27 , 2018 Sheet 12 of 15 US 2018 / 0373985 A1

To / From XBar 370

GPC 350
Pipeline Manager

410
PROP
415

MPC
430

Primitive Engine
435 wwwwwwwwwwwwwwwwww SM

440 Raster Engine
425 w

Texture
445 TPC 420 (V) N AURANTER

WDX
480

MMU 490 24

To / From XBar 370 To / From XBar 370

Fig . 4A

Patent Application Publication Dec . 27 , 2018 Sheet 13 of 15 US 2018 / 0373985 A1

From XBar 370

Memory Partition Unit 380

ROP 450
ROP Manager

455

CROP ZROP
454

TO
452 XBar 370

L2 XBar 465

L2 460 ??
XBar 370

Memory Interface
470

To Memory 304

Fig . 4B

Patent Application Publication Dec . 27 , 2018 Sheet 14 of 15 US 2018 / 0373985 A1

SM 440

Instruction Cache 505

Scheduler Unit 510 (K)

Dispatch 515 Dispatch 515

Register File 520
ht

ww Core
550 (L - 1)

SFU
552 (M - 1)

LSU
554 (N - 1)

www . www wwwwwwwwwwwwwwwwwwwwwwwww www www
Wwwwwwwwww w w Kingiiiiiiiiiiii

T - - - I h - - -

Interconnect Network 580

Shared Memory / L1 Cache 570

Fig . 5

Patent Application Publication Dec . 27 , 2018 Sheet 15 of 15 US 2018 / 0373985 A1

009
LLLLLLLLLLL

Nive CENTRAL
PROCESSOR

601
tetettettette tententeettiset tetett

tetett ???????????????????????????

??????????????????????????

MAIN MEMORY
604 AX . XXXXOX 000063

. .

tetettent INPUT DEVICES
612 BUS

602 hihihihihihihi etett

Attentatetxetestetettet moramo
WLY x69 . 00 . 1242 . XXIS . . . 2

LE SECONDARY
STORAGE

610 hihihihihihihi etettetett 120000 66X3 XXXX
Attentateteate

GRAPHICS
PROCESSOR

606 W : 0 0 50 55 X X X X X X

DISPLAY
608 KAHY 1 . 4 1 . 9 . 9 . 2777 KK

?????????????

Fig . 6

US 2018 / 0373985 A1 Dec . 27 , 2018

TRANSFORMING CONVOLUTIONAL
NEURAL NETWORKS FOR VISUAL

SEQUENCE LEARNING

fication or regression output data . In one embodiment , the
trained neural network model is a convolutional neural
network (CNN) .

CLAIM OF PRIORITY
[0001] This application claims the benefit of U . S . Provi -
sional Application No . 62 / 524 , 359 (Attorney Docket No .
NVIDP1171 + / 17 - SC - 0107 - US01) titled “ FUSING
RECURRENT AND CONVOLUTIONAL NEURAL NET
WORKS FOR VISUAL SEQUENCE LEARNING , ” filed
Jun . 23 , 2017 , the entire contents of which is incorporated
herein by reference .

FIELD OF THE INVENTION
[0002] The present invention relates to visual sequence
learning , and more particularly to visual sequence learning
using neural networks .

BACKGROUND
[0003] Recurrent neural networks (RNNs) have achieved
excellent performance on a variety of sequential learning
problems including language modeling , handwriting recog
nition , machine translation , speech recognition , polyphonic
music modeling , and intelligent video analytics . A vanilla
recurrent neural network (VRNN) extends the conventional
feedforward network to handle a variable - length sequence
by accumulating the context of previous inputs in its internal
state to influence proceeding outputs . While an abundance of
work exists to understand and improve RNNs in the context
of language and audio signals , relatively little attention has
been paid to analyze or modify RNNs for visual sequences ,
which by nature have distinct properties .
[0004] In contrast to language and speech , the processing
unit of a visual sequence is in a more structured format such
as an image or a short video snippet . Therefore , convolu
tional neural networks (CNNs) usually serve as the back
bone networks to extract semantic features , and RNNs are
then built on top of a pre - trained CNN . A key advantage of
the feature extraction for visual sequences is to exploit the
extremely expressive CNN models that are pre - trained on
large - scale image and video datasets . However , it remains an
open question how to construct RNNs to better leverage the
representational power and generalization ability of these
pre - trained CNNs . In addition , visual sequences typically
exhibit large redundancy and have diverse temporal depen
dencies on different applications . There is a need for
addressing these issues and / or other issues associated with
the prior art .

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG . 1A illustrates a flowchart of a method for
visual sequence learning using neural networks , in accor
dance with one embodiment ;
[0007] FIG . 1B illustrates a block diagram of a system for
visual sequence learning , in accordance with one embodi
ment ;
[0008] FIG . 1C illustrates a block diagram of a prior art
system for visual sequence learning ;
10009] . FIG . 1D illustrates another block diagram of a prior
art system for visual sequence learning ;
0010 FIG . 1E illustrates another block diagram of a
video sequence learning system , in accordance with one
embodiment ;
[0011] FIG . 1F illustrates another flowchart of a method
for visual sequence learning using neural networks , in
accordance with one embodiment ;
[0012] FIG . 2A illustrates a saturation plot of the fraction
of times that a forget gate unit is left or right saturated , in
accordance with one embodiment ;
[0013] FIG . 2B illustrates an activation histogram over 10
bins for a first layer , in accordance with one embodiment ;
[0014] FIG . 2C illustrates an activation histogram over 10
bins for a second layer , in accordance with one embodiment ;
[0015] FIG . 2D illustrates another flowchart of a method
for visual sequence learning using neural networks , in
accordance with one embodiment ;
[0016] FIG . 3 illustrates a parallel processing unit , in
accordance with one embodiment ;
[0017] FIG . 4A illustrates a general processing cluster of
the parallel processing unit of FIG . 3 , in accordance with one
embodiment ;
[0018] FIG . 4B illustrates a partition unit of the parallel
processing unit of FIG . 3 , in accordance with one embodi
ment ;
[0019] FIG . 5 illustrates the streaming multi - processor of
FIG . 4A , in accordance with one embodiment ; and
[0020] FIG . 6 illustrates an exemplary system in which the
various architecture and / or functionality of the various pre
vious embodiments may be implemented .

DETAILED DESCRIPTION

SUMMARY
[0005] A method , computer readable medium , and system
are disclosed for visual sequence learning using neural
networks . The method includes the steps of replacing a
non - recurrent layer within a trained neural network model
with a recurrent layer to produce a visual sequence learning
neural network model and transforming feedforward
weights for the non - recurrent layer into input - to - hidden
weights of the recurrent layer to produce a transformed
recurrent layer . The method also includes the steps of setting
hidden - to - hidden weights of the recurrent layer to initial
values and processing video image data by the visual
sequence learning neural network model to generate classi

[0021] One or more non - recurrent layers of a pre - trained
(i . e . , trained) convolutional neural network model are each
transformed into a recurrent layer to produce a neural
network model for visual sequence learning . Feedforward
weights of a trained non - recurrent layer of the pre - trained
convolutional neural network model that is transformed into
a recurrent layer are used as initial values for the input - to
hidden weights of the recurrent layer . During subsequent
training , the input - to - hidden weights of the recurrent layer
are fine - tuned and hidden - to - hidden weights that are initial
ized to untrained values are learned . In one embodiment ,
accuracy of the resulting neural network model is improved
compared with using conventional techniques and number
of parameters of the resulting neural network is reduced . The
transformation technique may implement any recurrent
structure and is relevant for many visual sequence learning

US 2018 / 0373985 A1 Dec . 27 , 2018

applications , including , but not limited to sequential face
alignment , dynamic hand gesture recognition , and action
recognition .
[0022] FIG . 1A illustrates a flowchart of a method for
classifying video image data using deep neural networks , in
accordance with one embodiment . The method 100 is
described in the context of a neural network model , and the
method 100 may also be performed by a program , custom
circuitry , or by a combination of custom circuitry and a
program . For example , the method 100 may be executed by
a GPU , CPU , or any processor capable of performing the
necessary processing operations . Furthermore , persons of
ordinary skill in the art will understand that any system that
performs method 100 is within the scope and spirit of
embodiments of the present invention .
[0023] At step 110 , a non - recurrent layer within a trained
convolutional neural network model is replaced with a
recurrent layer to produce a visual sequence learning neural
network model . In one embodiment , the trained convolu
tional neural network model is a two - dimensional (2D) CNN
and the training video image data corresponds to a single
image or a single video frame . In one embodiment , the
trained convolutional neural network model is a three
dimensional (3D) CNN and the training video image data
corresponds to a snippet , clip , or sequence of video frames .
[0024] In one embodiment , the transformed neural net
work model is configured to process training video image
data of at least one modality such as spatial (color) , depth ,
or optical flow . For example , neural network model may be
trained to perform sequential face alignment using color
data . The neural network model may be trained to perform
hand gesture recognition using color and depth data . The
neural network model may be trained to perform action
recognition using color and flow data . Optical flow data may
be computed from video image data . In one embodiment , the
optical flow data is represented by three color channels , at
least one layer is replaced with a recurrent layer . Optical
flow explicitly captures dynamic motions and therefore
provides clues to recognize actions and conveys rough shape
cues of moving objects , e . g . , the skier and ski poles in skiing
videos .
[0025] . After the convolutional neural network model is
trained , one or more non - recurrent (e . g . , fully connected
and / or convolutional) layers of the trained convolutional
neural network model may be transformed into respective
recurrent layers . A selection criterion based on a distribution
of activation values for each recurrent layer may be used to
select the one or more non - recurrent layers to be trans
formed . In one embodiment , the non - recurrent layer (s) to be
replaced with recurrent layers are selected based on a
saturation characteristic , where activation values for neurons
in a transformed recurrent layer are distributed between 0 . 0
and 1 . 0 . The distribution of activation values is considered
saturated when more activation values are distributed near
the minimum and maximum activation values than near the
center (the center is between 0 . 1 and 0 . 9) .
[0026] At step 120 , (pre - trained) feedforward weights for
the non - recurrent layer are transformed into input - to - hidden
weights of the recurrent layer to produce a transformed
recurrent layer . In a conventional recurrent neural network
system , a recurrent layer is typically added to a CNN after
the last layer of the CNN and the parameters of the recurrent
layer (input - to - hidden weights and hidden - to - hidden
weights) are initialized to untrained values . In contrast with

the conventional neural network system , the feedforward
weights of a pre - trained non - recurrent layer of the convo
lutional neural network model that is transformed into a
recurrent layer are used as initial values for the input - to
hidden weights of the recurrent layer .
10027] In one embodiment , for recurrent layers such as a
long short term memory (LSTM) or gated recurrent unit
(GRU) , values for the multiple input - to - hidden states cor
responding to multiple gating functions may be initialized to
individual values based on the feedforward weights . Alter
natively , values of all of the multiple input - to - hidden states
may be initialized to uniform values using the feedforward
weights . Sharing the uniform values for multiple gating
functions reduces the number of recurrent parameters that
are maintained i . e . , stored and updated) .
[0028] At step 130 , hidden - to - hidden weights of the recur
rent layer are set to initial values . In one embodiment , initial
values for the hidden - to - hidden weights are random values .
[00291 . At step 140 , video image data is processed by the
visual sequence learning neural network model to generate
classification or regression output data . In the context of the
following description , classification output data (i . e . , pre
dictions) are class labels generated by the neural network
model for at least one image of video input data . In one
embodiment , the regression output data is the two - dimen
sional locations of facial landmarks in the sequential face
alignment application . In one embodiment , a class label is a
class - conditional probability vector associated with the
training video image data . During training , classification
accuracy data is computed by comparing the classification
output data with a target classification output (provided in a
training dataset) and adjusting the weights to reduce differ
ences between the classification output data with a target
classification output .
[0030] More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may or may not be imple
mented , per the desires of the user . It should be strongly
noted that the following information is set forth for illus
trative purposes and should not be construed as limiting in
any manner . Any of the following features may be optionally
incorporated with or without the exclusion of other features
described .
[0031] RNNs have been well studied for decades in
sequence learning , for language modeling , machine trans
lation , and speech recognition . A vanilla RNN (VRNN)
contains a recurrent or self - connected hidden state h , whose
activation depends on that of the previous time step :

h = H (Win) , + White _ 1) , (1)
where H is an activation function , Win is the input - to
hidden matrix , Win is the hidden - to - hidden matrix , y , is the
input to the recurrent layer . A bias vector (not shown) may
also be included . In order to enhance the capability to use
contextual information , significant efforts have been made to
mitigate the gradient vanishing problem for VRNN . Among
the most successful variants are LSTM and GRU , which
incorporate gating functions into the state dynamics . At each
time step , LSTM maintains a memory cell c , and a hidden
state h , that are carefully regulated by gates :

i = sig m (W : + Whihi - 1) ,

fi = sig m (Wip , + W7jhy - 1) ,
0 , = sig m (Wis / z + Whchz - 1) ,

US 2018 / 0373985 A1 Dec . 27 , 2018

? # an h (W ; y + Whicha - 1) ,
C = S Oct - 1 + i , O
hq = 0 , Otan h (c) . (2)

[0032] Similar to equation (1) , W . are the input - to - hidden
matrices and Wh . are the hidden - to - hidden matrices . Here i ,
fç , and o , are the input , forget and output gates , respectively .
?e is the new memory state , and O is the element - wise
product . GRU simplifies LSTM primarily by merging the
hidden state and memory cell and combining the forget and
input gates into a single update gate :

r = sig m (Wxy , + Wmhz - 1) ,
z = sig m (Wizy + Wnchy - 1) ,

?q = tan h (Win + Wan (r , Oh _ 1)) ,
hi = (1 - 2) Oh , - 1 + z , ON , (3)

where r , and Z4 are the reset and update gates , and h , is the
candidate hidden state . Note that for the above three basic
recurrent structures in Equations (1) , (2) , and (3) , multiple
recurrent layers can be stacked on top of each other to
perform deep and hierarchical recurrent processing .
[0033] Conventionally , RNNs are attached following the
last layer of pre - trained CNNs for visual sequence learning
tasks , to harness the strong representational ability of the
pre - trained CNN models and capture the long - term temporal
contexts . In contrast with conventional techniques , a more
effective and generalized approach is described that directly
converts one or more layers of the pre - trained CNNs into
recurrent layer (s) .

presented in the form of single frames to the visual sequence
learning neural network model 115 .
[0036] The Wxy weights that are associated with the
PreRNN layer 135 are pre - trained weights (i . e . , weights of
the pre - trained non - recurrently layer) . The Wnn and Who
weights are randomly initialized weights introduced by the
PreRNN layer 135 . Other embodiments of the visual
sequence learning neural network model 115 may include
fewer or more convolutional layers 125 . Although only a
single PreRNN layer 135 is shown in FIG . 1B , more than
one convolutional layer 125 may be replaced with a PreRNN
layer 135 .
[0037] FIG . 1C illustrates a block diagram of a prior art
system 145 for visual sequence learning . The prior art
system 145 includes two convolutional layers 125 , a fully
connected layer 160 , and a RNN layer 165 . A first convo
lutional layer 125 receives input data and the RNN layer 165
generates output data . In accordance with different backbone
CNN architectures , the RNN layer 165 is stacked on top of
the last layer 160 of the pre - trained convolutional neural
network including the convolutional layers 125 and the fully
connected layer 160 .
[0038] The Wxv weights that are associated with the fully
connected layer 160 are pre - trained weights . However , the
Win weights associated with the RNN layer 165 are not
pre - trained . The W and We weights are randomly initial
ized weights introduced by the RNN layer 165 . In contrast
with the visual sequence learning neural network model 115 ,
where the weights associated with the PreRNN layer 135 are
pre - trained , the weights associated with the RNN layer 165
of the prior art system 145 are not pre - trained .
[0039] FIG . 1D illustrates a block diagram of another prior
art system 155 for visual sequence learning . The prior art
system 155 includes a convolutional layer 145 , a convolu
tional layer 125 , a convolutional layer 170 , an average
pooling layer 165 , and a RNN layer 165 . The first convo
lutional layer 145 receives input data and the RNN layer 165
generates output data . The RNN layer 165 is stacked on top
of the average pooling layer 165 of the pre - trained convo
lutional neural network including the convolutional layer
145 , the convolutional layer 125 , the convolutional layer
170 , and the average pooling layer 165 . Compared with the
prior art system 145 , the prior art system 155 includes a
residual (or skip) connection from the convolutional layer
145 to the convolutional layer 170 .
[0040] The Wxv , weights that associated with the convolu
tional layer 170 are pre - trained weights . However , the Win
weights associated with the RNN layer 165 are not pre
trained . The W . , and W weights are randomly initialized
weights introduced by the RNN layer 165 . In contrast with
the visual sequence learning neural network model 115 ,
where the weights associated with the PreRNN layer 135 are
pre - trained , the weights associated with the RNN layer 165
of the prior art system 155 are not pre - trained .
[0041] FIG . 1E illustrates another block diagram of a
visual sequence learning neural network model 150 , in
accordance with one embodiment . The visual sequence
learning neural network model 150 includes a convolutional
layer 145 , a convolutional layer 125 , and a PreRNN layer
175 . The PreRNN layer 175 is a recurrent layer that replaced
a non - recurrent layer . A first convolutional layer 125
receives input data and the PreRNN layer 135 generates
output data . In one embodiment , the PreRNN layer 135
replaces a last convolutional layer 170 and an averaged

A Neural Network Architecture for Visual
Sequence Learning

[0034] RNNs coupled with pre - trained CNNs are power
ful tools to exploit the important temporal connections in
visual sequence learning tasks . CNN models , pre - trained on
large - scale image or video datasets , retain strong semantic
and generality properties . When one or more recurrent layers
are added following a pre - trained CNN , as in done conven
tionally , the recurrent layers must be trained from scratch ,
even though a pre - trained CNN is used for feature extrac
tion . In contrast with conventional techniques , a pre - trained
layer of a neural network model is directly transformed into
a recurrent layer in order to maximize the representational
power and generalizing capacity of pre - trained convolu
tional neural networks . In one embodiment , one or more
layers that are transformed are pre - trained convolutional
layers or fully connected layers . The difficulty of training
one or more RNNs is mitigated , because components of a
pre - trained convolutional neural network model are used as
a partially pre - trained RNN . Therefore , the generalization
ability of a pre - trained convolutional neural network is
inherited by the RNN , improving the overall performance .
[0035] FIG . 1B illustrates a block diagram of a visual
sequence learning neural network model 115 , in accordance
with one embodiment . The visual sequence learning neural
network model 115 includes two convolutional layers 125
and a PreRNN layer 135 . The PreRNN layer 135 is a
recurrent layer that replaced a non - recurrent layer . A first
convolutional layer 125 receives input data and the PreRNN
layer 135 that replaced a last convolutional layer 125
generates output data . Input video image data may be

US 2018 / 0373985 A1 Dec . 27 , 2018

pooling layer 165 . Compared with the visual sequence
learning neural network model 115 , the visual sequence
learning neural network model 150 includes a residual (or
skip) connection from the convolutional layer 145 to the
PreRNN layer 175 .
[0042] The Wxy weights that associated with the PreRNN
layer 165 are pre - trained weights (i . e . , weights of the pre
trained non - recurrently layer) . The pre - trained Wr , weights
are used in place of the input - to - hidden weight inputs to the
PreRNN layer 165 . The Wmn and Who weights are randomly
initialized weights introduced by the PreRNN layer 135 .
Other embodiments of the visual sequence learning neural
network model 115 may include fewer or more convolu
tional layers 125 . Although only a single PreRNN layer 135
is shown in FIG . 1E , more than one convolutional layer 145 ,
125 , and / or 170 may be replaced with a PreRNN layer 135 .
[0043] Replacing one or more layers of a pre - trained
convolutional neural network model with PreRNN layer (s)
135 or 175 is a generic approach that can be applied to
various architectures of pre - trained 2D and 3D neural net
works , particularly CNNs . As illustrated FIGS . 13 and 1E ,
a layer of CNNs such as VGG and C3D with fully connected
layers at the end of the convolutional networks can be
replaced with a PreRNN layer 135 or 175 . Similarly , a layer
of CNNs such as ResNet and DenseNet with convolutional
and global average pooling layers at the end , as depicted in
FIG . 1D can also be replaced with a PreRNN layer 135 or
175 to produce the visual sequence learning neural network
model 150 . Replacing a pre - trained non - recurrent layer with
a PreRNN layer 135 or 175 is also able to adapt to all three
basic recurrent structures including VRNN , LSTM and
GRU . Additionally , an alternative , PreRNN - SIH can be used
to simplify gating functions and reduce recurrent param
eters . A benefit of replacing a pre - trained non - recurrent layer
with a PreRNN layer 135 or 175 is that accuracy may be
improved and training of the weights for the non - recurrent
layer is leveraged . Any PreRNN layer 135 or 175 may use
the PreRNN - SIH gating function technique .
[0044] The last fully connected layer or convolutional
layer of a pre - trained CNN is assumed to have the structure :

y = H (Wx90 x) ,
where H is an activation function , Wxv are the pre - trained
feedforward weights , x and y are the input and output of the
layer , and o indicates matrix multiplication for the fully
connected layer or a convolution operation for the convo
lutional layer . In order to take advantage of the pre - trained
non - recurrent layer , the feedforward layer is reformulated as
a PreRNN layer 135 or 175 using the pre - trained feedfor
ward weights as the input - to - hidden weights for the PreRNN
layer 135 or 175 . The fully connected layer (such as the fully
connected layer 160) may be replaced by the PreRNN layer
135 through :

y = H (WvX + Wha) - 1) , (5)
where x , and y , are reformed to be the input and hidden state
of the recurrent layer at time t . The convolutional layer (such
as the convolutional layer 125) may be transformed into the
PreRNN layer 135 or 175 by :

y - H (H (B (W . * x .) + Y .) + Wnw ' - 1) ,
where * is the convolution operation , B represents the batch
normalization with the pre - computed mini - batch statistics , Yt
indicates an optional residual (or skip) connection in
residual networks , and H is the global average pooling .

[0045] Replacing a non - recurrent layer with a PreRNN
layer essentially transforms the feedforward weights Wxv
and output y in Equation (4) as the input - to - hidden weights
W . , and hidden state y , in Equations (5) and (6) . In com
parison to Equation (1) for the traditional VRNN , which
includes two randomly initialized weight matrices (input
to - hidden weight matrix Win and hidden - to - hidden weight
matrix Wun) , the PreRNN in Equations (5) and (6) only
brings in a single hidden - to - hidden weight matrix Wnn to be
trained from scratch , while the input - to - hidden weights Wxv
inherited from Equation (4) have been pre - trained and can
be just fine - tuned with additional training . As a result , the
neural network model including the PreRNN 135 or 175 can
fully make use of the robust generalization of a pre - trained
neural network model and preserve the architecture to the
greatest extent .
10046] FIG . 1F illustrates another flowchart of a method
for classifying video image data using deep neural networks ,
in accordance with one embodiment . The method 112 is
described in the context of a neural network model , and the
method 112 may also be performed by a program , custom
circuitry , or by a combination of custom circuitry and a
program . For example , the method 112 may be executed by
a GPU , CPU , or any processor capable of performing the
necessary processing operations . Furthermore , persons of
ordinary skill in the art will understand that any system that
performs method 112 is within the scope and spirit of
embodiments of the present invention .
[0047] Steps 110 , 120 , and 130 , are completed as previ
ously described in conjunction with FIG . 1A . At step 132 ,
the visual sequence learning neural network model is trained
to learn the hidden - to - hidden weights input to the PreRNN
layer 135 or 175 . In one embodiment , input video image data
included in a training dataset by the visual sequence learning
neural network model 115 or 150 to generate output data .
The output data is compared to target output data included
in the training dataset to produce comparison results and the
hidden - to - hidden weights are adjusted based on the com
parison results . During training , the input - to - hidden weights
input to the PreRNN layer 135 or 175 are also adjusted (i . e . ,
fine - tuned) to reduce differences between the output data
and the target output data . In one embodiment , the training
data set is configured for sequential face alignment and the
video image data is color data . Sequential face alignment is
fundamental to many applications such as face recognition ,
expression analysis , facial animation capturing , etc . In one
embodiment , the training dataset is configured for dynamic
hand gesture recognition and the video image data is color
data and depth data . In one embodiment , the training dataset
is configured for action recognition and the video image data
is color data and optical flow data .
[0048] In comparison with the VRNN , a prominent feature
shared by LSTM and GRU is the additive nature in updating
the hidden state from t to t + 1 , i . e . , keep the existing state and
add changes on top of the existing state through the use of
gating functions . Incrementally updating the hidden state
helps each hidden state unit to remember the existence of a
specific feature for a long series of steps , and more impor
tantly , to create shortcut paths to allow the error to be
back - propagated easily through multiple steps without van
ishing too quickly . The gating functions of LSTM and GRU
may also be accommodated when a non - recurrent layer is
replaced with a PreRNN layer 135 or 175 . Each gating

(6)

US 2018 / 0373985 A1 Dec . 27 , 2018

function may be split into two components and the pre
trained feedforward (non - recurrent) layer may be fused into
the components .

PreRNN 135 or 175 during step 120 of the method 100 or
112 when the visual sequence learning neural network
model 115 or 150 , respectively , is an GRU .

Gate - Dependent Input - to - Hidden State
Transformation

Single Input - to - Hidden State Transformation
(PreRNN - SIH)

[0049] A pre - trained feedforward layer of a CNN may be
converted into a recurrent layer for LSTM or GRU , in a
similar manner as for a VRNN . In Equations (2) and (3) each
gate is composed of two components , namely , the input - to
hidden state and the hidden - to - hidden state . For notational
simplicity , LSTM ' s new memory state is called ? ; and
GRU ' s candidate hidden state h , a gate . The gate - dependent
input - to - hidden state for the PreRNN layer is defined as :

[0052] In the aforementioned transformation scheme , each
gate learns gate - specific input - to - hidden weights Wie ,
though each gate starts from the same initial state Wxv . In
order to simplify the gating functions and fully utilize the
pre - trained feedforward layer , all gates may be bound to the
same input - to - hidden state :

(10) I Wxy . Xt
1P (8 (W) * ,) +

a fully connected layer ,
a convolutional layer ,

Ut (g) =
I WRX
P (B (W ? * X ;) + Yo

a fully connected layer ,
a convolutional layer ,

where V , is the single input - to - hidden (SIH) state that are
adopted by all the gates for the PreRNN layer 135 or 175 .
Compared to the gate - dependent input - to - hidden state in
Equation . (7) , the SIH technique directly converts the pre
trained feedforward layer to be the unified input - to - hidden
state for all the gates . Therefore , the gating functions of
LSTM in Equation (2) are changed to :

i ; = sig m (v : + Whiha - 1) ,

where g is a gate index , g = { i , f , o , c } for LSTM and g = { r ,
z , h } for GRU , u , (g) is the input - to - hidden state of gate g at
time t and Wie is the pre - trained input - to - hidden weights of
gate g . The feedforward weights Wie may be used to
compute gate - specific values (e . g . , u (i) , u , (f) , u (o) , and u , (c)
for LSTM or u , (r) , u , (z) , and u , (h) f or GRU) for multiple
input - to - hidden states corresponding to multiple gating
functions of the PreRNN layer 135 or 175 .
[0050] Concretely , the pre - trained feedforward weights
Wxv in Equation (4) are converted into the input - to - hidden
weights for one gate and the pre - trained values are used to
initialize the input - to - hidden weights for other gates . There
fore , the gating functions of LSTM in Equation (2) may be
redefined as :

f = sig m (v : + W 14 - 1) ,

0 , = sig m (v : + Whehz - 1)
? = tanh (v : + Whchi - 1) , (11)

where all the gates are computed based on the same input
to - hidden state V . In the same way , the gating functions of
GRU in Equation (3) are reformulated as : iq = sig m (uz (i) + Whihz - 1) ,

fi = sig m (u /) + Wntha - 1) , r = sig m (Vi + WWhz - 1) ,

0 , = sig m (u ; (0) + Whehz - 1) , zzsig m (ve + Whzht - 1) ,

?e = tan h (u (C) + Wheht - 1) , (8)
where only the hidden - to - hidden weights Wh . are randomly
initialized , and the same updating functions in Equation (2)
are followed to renew the memory cell c , and hidden state hy .
Equations (7) and (8) may be used to transform the feed
forward weights into the input - to - hidden weights of the
PreRNN 135 or 175 during step 120 of the method 100 or
112 when the visual sequence learning neural network
model 115 or 150 , respectively , is an LSTM .
[0051] Correspondingly , the gating functions of GRU in
Equation (3) can be redefined as :

r = sig m (u , (r) + WWhz - 1) ,

ho = tan h (v : + Wha (r , Oh _ 1)) , (12)

[0053] Hence , PreRNN - SIH in Equations (11) and (12)
only introduces the hidden - to - hidden weights W , that need
to be trained from scratch . In addition , because the pre
trained feedforward layer is set to be the joint input - to
hidden state for all the gating functions of LSTM and GRU ,
the number of recurrent parameters for the PreRNN layer
135 or 175 is reduced , and consequently the computational
cost is also reduced compared with computing gate - specific
input - to - hidden states (e . g . , u , (i) , u , (f) , u , (0) , and u , (C) , or
u , (r) , u , (z) , and u , (h)) . In sum , when a non - recurrent layer is
transformed into a PreRNN layer 135 or 175 using SIH , the
feedforward weights Wxy may be used to compute values for
a unified input - to - hidden state corresponding to multiple
gating functions of the PreRNN layer 135 or 175 .
[0054] As previously described , one or more non - recur
rent layers may be selected to be replaced by PreRNN
layer (s) 135 or 175 . In one embodiment , distributions of gate
activations are used to select the one or more non - recurrent
layers of a trained neural network model . A gate unit may be
defined as left or right saturated if the gate activations are
less than 0 . 1 or more than 0 . 9 , otherwise , the gate unit is

unsaturated ,

z = sig m (u _ (2) + Wahz - 1) ,
hq = tan h (u , (h) + Wnn (r , Oh , - 1)) , (9)

and the hidden state h , is updated in the same manner as in
Equation (3) . By fusing the pre - trained feedforward layer
into the input - to - hidden state of each gate , a PreRNN layer
introduces fewer input - to - hidden parameters and only the
hidden - to - hidden weights need to be trained from scratch .
Equations (7) and (9) may be used to transform the feed -
forward weights into the input - to - hidden weights of the

US 2018 / 0373985 A1 Dec . 27 , 2018

[0055] FIG . 2A illustrates a saturation plot 200 of the
fraction of times that a forget gate unit is left or right
saturated , in accordance with one embodiment . A first layer
of an LSTM is constructed by a PreRNN layer 135 or 175
to produce a first layer of the visual sequence learning neural
network model 115 or 150 . Separately , a second layer of the
LSTM is constructed by a PreRNN layer 135 or 175 to
produce a second layer of the visual sequence learning
neural network model 115 or 150 . The graph illustrates the
distribution of activation values for forget gate neurons for
the first PreRNN layer (PreLSTM Layer 1) and for the
second PreRNN layer (PreLSTM Layer 2) individually . The
graph also illustrates the distribution of activation values for
forget gate neurons each of a first layer and a second layer
of or a traditional LSTM (TraLSTM) .
[0056] The activations in the first layer of PreLSTM
(PreLSTM Layer 1) lie in the more saturated region (i . e . ,
closer to the saturation line) compared with the activations
of either the first or the second layer of the TraLSTM . The
implication of the distribution of the first layer is that
PreLSTM is more capable to utilize the temporal context ,
e . g . , the multiple frequently right saturated forget gate units
(bottom right of the forget gate saturation plot 200) corre
spond to the memory cells that remember their values for
long durations . Conversely , the activations of TraLSTM ,
particularly the TraLSTM Layer 1 , are dispersed in the more
unsaturated region of the saturation plot 200 , indicating that
the integrated temporal information decays rapidly .
10057] Note that the activations in the second layer of both
TraLSTM and PreLSTM concentrate near the origin in the
saturation plot 200 , where the gate units are rarely left or
right saturated . It is likely that the second recurrent layer
(PreLSTM Layer 2) virtually functions in a feedforward
fashion and the preceding hidden state is barely used . Based
on the saturation plot 200 , the first layer of the LSTM should
be selected to be constructed with a PreRNN layer 135 or
175 . Specifically , a distribution of activation values for
neurons in the transformed first layer is left and right
saturated indicating that the first layer benefits by being
constructed with a PreRNN layer 135 or 175 .
[0058] In contrast , because the distribution of activation
values for neurons in the transformed second layer are
neither right nor left saturated for the second layer , the
second layer of the LSTM should not be selected to be
constructed by a PreRNN layer 135 or 175 . Therefore , for
the visual sequence learning neural network model 115 or
150 , the first non - recurrent layer of the LSTM is built by a
PreRNN layer 135 or 175 and the second non - recurrent layer
of the LSTM is not transformed . In one embodiment , fewer
activation values for the neurons in the PreRNN layer 135 or
175 are distributed between 0 . 1 and 0 . 9 than are distributed
outside of 0 . 1 and 0 . 9 within a range 0 . 0 to 1 . 0 . When the
activation values for a PreRNN layer are not saturated , the
PreRNN layer 135 or 175 may revert back to the non
recurrent layer , so that the non - recurrent layer is not replaced
to produce the visual sequence learning neural network
model 115 or 150 . The gating mechanism may be inferred
through saturation plots for LSTM or by activation histo
grams for GRU .
[0059] FIG . 2B illustrates an activation histogram 205
over 10 bins for a first layer , in accordance with one
embodiment . A first layer of a GRU is constructed by a
PreRNN layer 135 or 175 to produce a first layer of a visual
sequence learning neural network model 115 or 150 . The bar

graph illustrates the activation histogram for reset and
update gate neurons for the first PreRNN layer (PreGRU
reset gate and update gate) . The bar graph also illustrates the
activation histogram for reset and update gate neurons for a
first layer of a traditional GRU (TraGRU reset gate and
update gate) .
10060] For the first layer of PreGRU the left saturated
(0 . 0 - 0 . 1) and right saturated (0 . 9 - 1 . 0) bins dominate the
distribution of both the reset gate and update gate , whereas
the activations of TraGRU gates gather in the unsaturated
bins in the center of the distribution . Based on the saturation
plot 205 , the first layer of the GRU should be selected to be
constructed by a PreRNN layer 135 or 175 . Specifically , a
distribution of activation values for neurons in the trans
formed first layer is left and right saturated indicating that
the first layer benefits by being constructed by a PreRNN
layer 135 or 175 .
[0061] FIG . 2C illustrates an activation histogram 215
over 10 bins for a second layer , in accordance with one
embodiment . A second layer of the GRU is constructed by
a PreRNN layer 135 or 175 to produce a second layer of a
visual sequence learning neural network model 115 or 150 .
The bar graph illustrates the activation histogram for reset
and update gate neurons for the second PreRNN layer
(PreGRU reset gate and update gate) . The bar graph also
illustrates the activation histogram for reset and update gate
neurons for a second layer of a traditional GRU (TraGRU
reset gate and update gate) .
[0062] For the second layer of PreGRU the distribution of
both the reset gate and update gate gather in the unsaturated
region in the center of the distribution . Because the distri
bution of activation values for neurons in the transformed
second layer are neither right nor left saturated for the
second layer , the second layer of the GRU should not be
selected to be transformed into a PreRNN layer 135 or 175 .
Therefore , for the visual sequence learning neural network
model 115 or 150 , the first non - recurrent layer of the GRU
is constructed by a PreRNN layer 135 or 175 and the second
non - recurrent layer of the GRU is not transformed .
[0063] FIG . 2D illustrates another flowchart of a method
225 for visual sequence learning using neural networks , in
accordance with one embodiment . The method 225 is
described in the context of a neural network model , and the
method 225 may also be performed by a program , custom
circuitry , or by a combination of custom circuitry and a
program . For example , the method 225 may be executed by
a GPU , CPU , or any processor capable of performing the
necessary processing operations . Furthermore , persons of
ordinary skill in the art will understand that any system that
performs method 225 is within the scope and spirit of
embodiments of the present invention .
[0064] At step 210 , at least one non - recurrent layer within
a trained convolutional neural network model is replaced
with a respective PreRNN layer 135 or 175 to produce a
visual sequence learning neural network model 115 or 150 .
Multiple steps 210 may be performed in parallel to replace
different combinations of at least one non - recurrent layer .
[0065] At step 212 , one or more of the non - recurrent
layers that were replaced in one of the combinations during
steps 210 are selected based on distribution (s) of activation
values for neurons in the transformed recurrent layer (s) . In
one embodiment , non - recurrent layers having activation
values with a left and / or right saturation distribution are
selected . In one embodiment , the non - recurrent laver (s) that

US 2018 / 0373985 A1 Dec . 27 , 2018

are selected are a combination of at least one convolutional
layer or at least one fully connected layer .
[0066] Step 120 is performed as previously described in
conjunction with FIG . 1A . At step 230 , hidden - to - hidden
weights of the recurrent layer (s) are set to initial values .
Steps 132 and 140 are performed as previously described in
conjunction with FIGS . 1A and 1F to complete the training .
In one embodiment , replacing one or more non - recurrent
layers with PreRNN layer (s) 135 or 175 improves classifi
cation accuracy and the resulting visual sequence learning
neural network model 115 or 150 converges faster during
training compared with a traditional RNN . The faster con
vergence may be a result of fusing the pre - trained feedfor
ward layers into recurrent layers so that the PreRNN layers
135 or 175 are partially pre - trained and therefore can accel
erate convergence .
[0067] In one embodiment , one or two fully - connected
layers of a pre - trained VGG16 are transformed into a
PreRNN layer 175 with unified parameters . As defined in
Equations (6) , (7) , and (10) the pre - trained weights are fused
into the PreRNN layers 175 . As a comparison , traditional
RNNs build corresponding recurrent layers on top of a fully
connected seventh layer in VGG16 . TABLE 1 shown below
demonstrates that PreRNN and PreRNN - SIH both outper
form traditional RNNs because an area under the curve
(AUC) is greater , where the cumulative error distribution
curve represents the normalized point - to - point error for 68
facial landmarks .

TABLE 1

Facial landmark detection accuracy (in AUC) of the
traditional RNNs and the PreRNN and PreRNN - SIH

be configured to implement the visual sequence learning
neural network model 115 or 150 .
[0071] In one embodiment , the PPU 300 is a multi
threaded processor that is implemented on one or more
integrated circuit devices . The PPU 300 is a latency hiding
architecture designed to process a large number of threads in
parallel . A thread (i . e . , a thread of execution) is an instan
tiation of a set of instructions configured to be executed by
the PPU 300 . In one embodiment , the PPU 300 is a graphics
processing unit (GPU) configured to implement a graphics
rendering pipeline for processing three - dimensional (3D)
graphics data in order to generate two - dimensional (2D)
image data for display on a display device such as a liquid
crystal display (LCD) device . In other embodiments , the
PPU 300 may be utilized for performing general - purpose
computations . While one exemplary parallel processor is
provided herein for illustrative purposes , it should be
strongly noted that such processor is set forth for illustrative
purposes only , and that any processor may be employed to
supplement and / or substitute for the same .
[0072] As shown in FIG . 3 , the PPU 300 includes an
Input / Output (I / O) unit 305 , a host interface unit 310 , a front
end unit 315 , a scheduler unit 320 , a work distribution unit
325 , a hub 330 , a crossbar (Xbar) 370 , one or more general
processing clusters (GPCs) 350 , and one or more partition
units 380 . The PPU 300 may be connected to a host
processor or other peripheral devices via a system bus 302 .
The PPU 300 may also be connected to a local memory
comprising a number of memory devices 304 . In one
embodiment , the local memory may comprise a number of
dynamic random access memory (DRAM) devices .
[0073] The I / O unit 305 is configured to transmit and
receive communications (i . e . , commands , data , etc .) from a
host processor (not shown) over the system bus 302 . The I / O
unit 305 may communicate with the host processor directly
via the system bus 302 or through one or more intermediate
devices such as a memory bridge . In one embodiment , the
I / O unit 305 implements a Peripheral Component Intercon
nect Express (PCIe) interface for communications over a
PCIe bus . In alternative embodiments , the I / O unit 305 may
implement other types of well - known interfaces for com
municating with external devices .
[0074] The I / O unit 305 is coupled to a host interface unit
310 that decodes packets received via the system bus 302 . In
one embodiment , the packets represent commands config
ured to cause the PPU 300 to perform various operations .
The host interface unit 310 transmits the decoded commands
to various other units of the PPU 300 as the commands may
specify . For example , some commands may be transmitted
to the front end unit 315 . Other commands may be trans
mitted to the hub 330 or other units of the PPU 300 such as
one or more copy engines , a video encoder , a video decoder ,
a power management unit , etc . (not explicitly shown) . In
other words , the host interface unit 310 is configured to route
communications between and among the various logical
units of the PPU 300 .
[0075] In one embodiment , a program executed by the
host processor encodes a command stream in a buffer that
provides workloads to the PPU 300 for processing . A
workload may comprise a number of instructions and data to
be processed by those instructions . The buffer is a region in
a memory that is accessible (i . e . , read / write) by both the host
processor and the PPU 300 . For example , the host interface
unit 310 may be configured to access the buffer in a system

Traditional PreRNN PreRNN - SIH

1 layer 2 layers fc fc7fc6 / 7 fcb fc7fc6 / 7
VRNN
LSTM
GRU

0 . 704
0 . 718
0 . 722

0 . 716
0 . 671
0 . 698

0 . 757 0 . 742 0 . 763
0 . 769 0 . 754 0 . 746 0 . 743 0 . 746 0 . 719
0 . 772 0 . 755 0 . 761 0 . 768 0 . 748 0 . 762

10068] Transforming the fully connected layers (fc6 , fc7
or fc6 / 7) into PreRNN 175 layers significantly out - performs
the traditional RNNs for the three basic recurrent structures .
In one embodiment , apart from improving the accuracy ,
PreRNN - SIH reduces the recurrent parameters by up to
82 % . In comparison , among the three basic recurrent struc
tures , LSTM produce similar results to GRU , which both
outperform VRNN .
[0069] Replacing one or more non - recurrent layers of a
pre - trained convolutional neural network model with a
PreRNN layer 135 or 175 for visual sequence learning
directly transforms pre - trained feedforward layers into
recurrent layers . Replacing one or more non - recurrent layers
with a PreRNN layer 135 or 175 may be applied to all basic
recurrent structures and various architectures of neural net
works , particularly CNNs . Extensive experiments on three
applications find PreRNN and PreRNN - SIH to produce
consistently better results than traditional RNNs , in addition
to a significant reduction of recurrent parameters by
PreRNN - SIH .

Parallel Processing Architecture
[0070] FIG . 3 illustrates a parallel processing unit (PPU)
300 , in accordance with one embodiment . The PPU 300 may

US 2018 / 0373985 A1 Dec . 27 , 2018

memory connected to the system bus 302 via memory
requests transmitted over the system bus 302 by the I / O unit
305 . In one embodiment , the host processor writes the
command stream to the buffer and then transmits a pointer
to the start of the command stream to the PPU 300 . The host
interface unit 310 provides the front end unit 315 with
pointers to one or more command streams . The front end
unit 315 manages the one or more streams , reading com
mands from the streams and forwarding commands to the
various units of the PPU 300 .
[0076] The front end unit 315 is coupled to a scheduler
unit 320 that configures the various GPCs 350 to process
tasks defined by the one or more streams . The scheduler unit
320 is configured to track state information related to the
various tasks managed by the scheduler unit 320 . The state
may indicate which GPC 350 a task is assigned to , whether
the task is active or inactive , a priority level associated with
the task , and so forth . The scheduler unit 320 manages the
execution of a plurality of tasks on the one or more GPCs
350 .
[0077] The scheduler unit 320 is coupled to a work
distribution unit 325 that is configured to dispatch tasks for
execution on the GPCs 350 . The work distribution unit 325
may track a number of scheduled tasks received from the
scheduler unit 320 . In one embodiment , the work distribu
tion unit 325 manages a pending task pool and an active task
pool for each of the GPCs 350 . The pending task pool may
comprise a number of slots (e . g . , 32 slots) that contain tasks
assigned to be processed by a particular GPC 350 . The active
task pool may comprise a number of slots (e . g . , 4 slots) for
tasks that are actively being processed by the GPCs 350 . As
a GPC 350 finishes the execution of a task , that task is
evicted from the active task pool for the GPC 350 and one
of the other tasks from the pending task pool is selected and
scheduled for execution on the GPC 350 . If an active task
has been idle on the GPC 350 , such as while waiting for a
data dependency to be resolved , then the active task may be
evicted from the GPC 350 and returned to the pending task
pool while another task in the pending task pool is selected
and scheduled for execution on the GPC 350 .
[0078] The work distribution unit 325 communicates with
the one or more GPCs 350 via XBar 370 . The XBar 370 is
an interconnect network that couples many of the units of the
PPU 300 to other units of the PPU 300 . For example , the
XBar 370 may be configured to couple the work distribution
unit 325 to a particular GPC 350 . Although not shown
explicitly , one or more other units of the PPU 300 are
coupled to the host interface unit 310 . The other units may
also be connected to the XBar 370 via a hub 330 .
[0079] The tasks are managed by the scheduler unit 320
and dispatched to a GPC 350 by the work distribution unit
325 . The GPC 350 is configured to process the task and
generate results . The results may be consumed by other tasks
within the GPC 350 , routed to a different GPC 350 via the
XBar 370 , or stored in the memory 304 . The results can be
written to the memory 304 via the partition units 380 , which
implement a memory interface for reading and writing data
to / from the memory 304 . In one embodiment , the PPU 300
includes a number U of partition units 380 that is equal to the
number of separate and distinct memory devices 304
coupled to the PPU 300 . A partition unit 380 will be
described in more detail below in conjunction with FIG . 4B .
10080] In one embodiment , a host processor executes a
driver kernel that implements an application programming

interface (API) that enables one or more applications execut
ing on the host processor to schedule operations for execu
tion on the PPU 300 . An application may generate instruc
tions (i . e . , API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 300 . The driver
kernel outputs tasks to one or more streams being processed
by the PPU 300 . Each task may comprise one or more
groups of related threads , referred to herein as a warp . A
thread block may refer to a plurality of groups of threads
including instructions to perform the task . Threads in the
same group of threads may exchange data through shared
memory . In one embodiment , a group of threads comprises
32 related threads .
[0081] FIG . 4A illustrates a GPC 350 of the PPU 300 of
FIG . 3 , in accordance with one embodiment . As shown in
FIG . 4A , each GPC 350 includes a number of hardware units
for processing tasks . In one embodiment , each GPC 350
includes a pipeline manager 410 , a pre - raster operations unit
(PROP) 415 , a raster engine 425 , a work distribution cross
bar (WDX) 480 , a memory management unit (MMU) 490 ,
and one or more Texture Processing Clusters (TPCs) 420 . It
will be appreciated that the GPC 350 of FIG . 4A may include
other hardware units in lieu of or in addition to the units
shown in FIG . 4A .
[0082] In one embodiment , the operation of the GPC 350
is controlled by the pipeline manager 410 . The pipeline
manager 410 manages the configuration of the one or more
TPCs 420 for processing tasks allocated to the GPC 350 . In
one embodiment , the pipeline manager 410 may configure at
least one of the one or more TPCs 420 to implement at least
a portion of a graphics rendering pipeline . For example , a
TPC 420 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 440 . The pipeline manager 410 may also be configured
to route packets received from the work distribution unit 325
to the appropriate logical units within the GPC 350 . For
example , some packets may be routed to fixed function
hardware units in the PROP 415 and / or raster engine 425
while other packets may be routed to the TPCs 420 for
processing by the primitive engine 435 or the SM 440 .
[0083] The PROP unit 415 is configured to route data
generated by the raster engine 425 and the TPCs 420 to a
Raster Operations (ROP) unit in the partition unit 380 ,
described in more detail below . The PROP unit 415 may also
be configured to perform optimizations for color blending ,
organize pixel data , perform address translations , and the
like .
10084) The raster engine 425 includes a number of fixed
function hardware units configured to perform various raster
operations . In one embodiment , the raster engine 425
includes a setup engine , a course raster engine , a culling
engine , a clipping engine , a fine raster engine , and a tile
coalescing engine . The setup engine receives transformed
vertices and generates plane equations associated with the
geometric primitive defined by the vertices . The plane
equations are transmitted to the coarse raster engine to
generate coverage information (e . g . , an x , y coverage mask
for a tile) for the primitive . The output of the coarse raster
engine may transmitted to the culling engine where frag
ments associated with the primitive that fail a z - test are
culled , and transmitted to a clipping engine where fragments
lying outside a viewing frustum are clipped . Those frag
ments that survive clipping and culling may be passed to a
fine raster engine to generate attributes for the pixel frag

US 2018 / 0373985 A1 Dec . 27 , 2018

ments based on the plane equations generated by the setup
engine . The output of the raster engine 425 comprises
fragments to be processed , for example , by a fragment
shader implemented within a TPC 420 .
[0085] Each TPC 420 included in the GPC 350 includes an
M - Pipe Controller (MPC) 430 , a primitive engine 435 , one
or more SMS 440 , and one or more texture units 445 . The
MPC 430 controls the operation of the TPC 420 , routing
packets received from the pipeline manager 410 to the
appropriate units in the TPC 420 . For example , packets
associated with a vertex may be routed to the primitive
engine 435 , which is configured to fetch vertex attributes
associated with the vertex from the memory 304 . In contrast ,
packets associated with a shader program may be transmit
ted to the SM 440 .
[0086] . In one embodiment , the texture units 445 are
configured to load texture maps (e . g . , a 2D array of texels)
from the memory 304 and sample the texture maps to
produce sampled texture values for use in shader programs
executed by the SM 440 . The texture units 445 implement
texture operations such as filtering operations using mip
maps (i . e . , texture maps of varying levels of detail) . The
texture unit 445 is also used as the Load / Store path for SM
440 to MMU 490 . In one embodiment , each TPC 420
includes two (2) texture units 445 .
[0087] The SM 440 comprises a programmable streaming
processor that is configured to process tasks represented by
a number of threads . Each SM 440 is multi - threaded and
configured to execute a plurality of threads (e . g . , 32 threads)
from a particular group of threads concurrently . In one
embodiment , the SM 440 implements a SIMD (Single
Instruction , Multiple - Data) architecture where each thread
in a group of threads (i . e . , a warp) is configured to process
a different set of data based on the same set of instructions .
All threads in the group of threads execute the same instruc
tions . In another embodiment , the SM 440 implements a
SIMT (Single - Instruction , Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions , but where individual threads in the group of
threads are allowed to diverge during execution . In other
words , when an instruction for the group of threads is
dispatched for execution , some threads in the group of
threads may be active , thereby executing the instruction ,
while other threads in the group of threads may be inactive ,
thereby performing a no - operation (NOP) instead of execut
ing the instruction . The SM 440 may be described in more
detail below in conjunction with FIG . 5 .
[0088] The MMU 490 provides an interface between the
GPC 350 and the partition unit 380 . The MMU 490 may
provide translation of virtual addresses into physical
addresses , memory protection , and arbitration of memory
requests . In one embodiment , the MMU 490 provides one or
more translation lookaside buffers (TLBs) for improving
translation of virtual addresses into physical addresses in the
memory 304 .
10089] FIG . 4B illustrates a memory partition unit 380 of
the PPU 300 of FIG . 3 , in accordance with one embodiment .
As shown in FIG . 4B , the memory partition unit 380
includes a Raster Operations (ROP) unit 450 , a level two
(L2) cache 460 , a memory interface 470 , and an L2 crossbar
(XBar) 465 . The memory interface 470 is coupled to the
memory 304 . Memory interface 470 may implement 16 , 32 ,
64 , 128 - bit data buses , or the like , for high - speed data

transfer . In one embodiment , the PPU 300 comprises U
memory interfaces 470 , one memory interface 470 per
partition unit 380 , where each partition unit 380 is connected
to a corresponding memory device 304 . For example , PPU
300 may be connected to up to U memory devices 304 , such
as graphics double - data - rate , version 5 , synchronous
dynamic random access memory (GDDR5 SDRAM) . In one
embodiment , the memory interface 470 implements a
DRAM interface and U is equal to 8 .
0090] In one embodiment , the PPU 300 implements a

multi - level memory hierarchy . The memory 304 is located
off - chip in SDRAM coupled to the PPU 300 . Data from the
memory 304 may be fetched and stored in the L2 cache 460 ,
which is located on - chip and is shared between the various
GPCs 350 . As shown , each partition unit 380 includes a
portion of the L2 cache 460 associated with a corresponding
memory device 304 . Lower level caches may then be
implemented in various units within the GPCs 350 . For
example , each of the SMS 440 may implement a level one
(L1) cache . The L1 cache is private memory that is dedicated
to a particular SM 440 . Data from the L2 cache 460 may be
fetched and stored in each of the L1 caches for processing
in the functional units of the SMS 440 . The L2 cache 460 is
coupled to the memory interface 470 and the XBar 370 .
[0091] The ROP unit 450 includes a ROP Manager 455 , a
Color ROP (CROP) unit 452 , and a Z ROP (ZROP) unit 454 .
The CROP unit 452 performs raster operations related to
pixel color , such as color compression , pixel blending , and
the like . The ZROP unit 454 implements depth testing in
conjunction with the raster engine 425 . The ZROP unit 454
receives a depth for a sample location associated with a pixel
fragment from the culling engine of the raster engine 425 .
The ZROP unit 454 tests the depth against a corresponding
depth in a depth buffer for a sample location associated with
the fragment . If the fragment passes the depth test for the
sample location , then the ZROP unit 454 updates the depth
buffer and transmits a result of the depth test to the raster
engine 425 . The ROP Manager 455 controls the operation of
the ROP unit 450 . It will be appreciated that the number of
partition units 380 may be different than the number of
GPCs 350 and , therefore , each ROP unit 450 may be
coupled to each of the GPCs 350 . Therefore , the ROP
Manager 455 tracks packets received from the different
GPCs 350 and determines which GPC 350 that a result
generated by the ROP unit 450 is routed to . The CROP unit
452 and the ZROP unit 454 are coupled to the L2 cache 460
via an L2 XBar 465 .
[0092] FIG . 5 illustrates the streaming multi - processor
440 of FIG . 4A , in accordance with one embodiment . As
shown in FIG . 5 , the SM 440 includes an instruction cache
505 , one or more scheduler units 510 , a register file 520 , one
or more processing cores 550 , one or more special function
units (SFUS) 552 , one or more load / store units (LSUS) 554 ,
an interconnect network 580 , a shared memory / L1 cache
570 .
10093] As described above , the work distribution unit 325
dispatches tasks for execution on the GPCs 350 of the PPU
300 . The tasks are allocated to a particular TPC 420 within
a GPC 350 and , if the task is associated with a shader
program , the task may be allocated to an SM 440 . The
scheduler unit 510 receives the tasks from the work distri
bution unit 325 and manages instruction scheduling for one
or more groups of threads (i . e . , warps) assigned to the SM
440 . The scheduler unit 510 schedules threads for execution

US 2018 / 0373985 A1 Dec . 27 , 2018

in groups of parallel threads , where each group is called a
warp . In one embodiment , each warp includes 32 threads .
The scheduler unit 510 may manage a plurality of different
warps , scheduling the warps for execution and then dis
patching instructions from the plurality of different warps to
the various functional units (i . e . , cores 550 , SFUS 552 , and
LSUs 554) during each clock cycle .
[0094] In one embodiment , each scheduler unit 510
includes one or more instruction dispatch units 515 . Each
dispatch unit 515 is configured to transmit instructions to
one or more of the functional units . In the embodiment
shown in FIG . 5 , the scheduler unit 510 includes two
dispatch units 515 that enable two different instructions from
the same warp to be dispatched during each clock cycle . In
alternative embodiments , each scheduler unit 510 may
include a single dispatch unit 515 or additional dispatch
units 515 .
[0095] Each SM 440 includes a register file 520 that
provides a set of registers for the functional units of the SM
440 . In one embodiment , the register file 520 is divided
between each of the functional units such that each func
tional unit is allocated a dedicated portion of the register file
520 . In another embodiment , the register file 520 is divided
between the different warps being executed by the SM 440 .
The register file 520 provides temporary storage for oper
ands connected to the data paths of the functional units .
[0096] Each SM 440 comprises L processing cores 550 . In
one embodiment , the SM 440 includes a large number (e . g . ,
128 , etc .) of distinct processing cores 550 . Each core 550
may include a fully - pipelined , single - precision processing
unit that includes a floating point arithmetic logic unit and an
integer arithmetic logic unit . The core 550 may also include
a double - precision processing unit including a floating point
arithmetic logic unit . In one embodiment , the floating point
arithmetic logic units implement the IEEE 754 - 2008 stan
dard for floating point arithmetic . Each SM 440 also com
prises M SFUS 552 that perform special functions (e . g . ,
attribute evaluation , reciprocal square root , and the like) , and
N LSUS 554 that implement load and store operations
between the shared memory / L1 cache 570 and the register
file 520 . In one embodiment , the SM 440 includes 128 cores
550 , 32 SFUs 552 , and 32 LSUs 554 .
[0097] Each SM 440 includes an interconnect network 580
that connects each of the functional units to the register file
520 and the LSU 554 to the register file 520 , shared
memory / L1 cache 570 . In one embodiment , the interconnect
network 580 is a crossbar that can be configured to connect
any of the functional units to any of the registers in the
register file 520 and connect the LSUs 554 to the register file
and memory locations in shared memory / L1 cache 570 .
[0098] The shared memory / L1 cache 570 is an array of
on - chip memory that allows for data storage and commu
nication between the SM 440 and the primitive engine 435
and between threads in the SM 440 . In one embodiment , the
shared memory / L1 cache 570 comprises 64 KB of storage
capacity and is in the path from the SM 440 to the partition
unit 380 . The shared memory / L1 cache 570 can be used to
cache reads and writes .
[0099] The PPU 300 described above may be configured
to perform highly parallel computations much faster than
conventional CPUs . Parallel computing has advantages in
graphics processing , data compression , biometrics , stream
processing algorithms , and the like .

[0100] When configured for general purpose parallel com
putation , a simpler configuration can be used . In this model ,
as shown in FIG . 3 , fixed function graphics processing units
are bypassed , creating a much simpler programming model .
In this configuration , the work distribution unit 325 assigns
and distributes blocks of threads directly to the TPCs 420 .
The threads in a block execute the same program , using a
unique thread ID in the calculation to ensure each thread
generates unique results , using the SM 440 to execute the
program and perform calculations , shared memory / L1 cache
570 communicate between threads , and the LSU 554 to read
and write Global memory through partition shared memory /
L1 cache 570 and partition unit 380 .
[0101] When configured for general purpose parallel com
putation , the SM 440 can also write commands that sched
uler unit 320 can use to launch new work on the TPCs 420 .
In one embodiment , the PPU 300 comprises a graphics
processing unit (GPU) . The PPU 300 is configured to
receive commands that specify shader programs for process
ing graphics data . Graphics data may be defined as a set of
primitives such as points , lines , triangles , quads , triangle
strips , and the like . Typically , a primitive includes data that
specifies a number of vertices for the primitive (e . g . , in a
model - space coordinate system) as well as attributes asso
ciated with each vertex of the primitive . The PPU 300 can
be configured to process the graphics primitives to generate
a frame buffer (i . e . , pixel data for each of the pixels of the
display) .
[0102] An application writes model data for a scene (i . e . ,
a collection of vertices and attributes) to a memory such as
a system memory or memory 304 . The model data defines
each of the objects that may be visible on a display . The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed . The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data . The commands may reference different shader
programs to be implemented on the SMs 440 of the PPU 300
including one or more of a vertex shader , hull shader ,
domain shader , geometry shader , and a pixel shader . For
example , one or more of the SMS 440 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data . In one embodiment , the
different SMS 440 may be configured to execute different
shader programs concurrently . For example , a first subset of
SMS 440 may be configured to execute a vertex shader
program while a second subset of SMS 440 may be config
ured to execute a pixel shader program . The first subset of
SMS 440 processes vertex data to produce processed vertex
data and writes the processed vertex data to the L2 cache 460
and / or the memory 304 . After the processed vertex data is
rasterized (i . e . , transformed from three - dimensional data
into two - dimensional data in screen space) to produce
fragment data , the second subset of SMs 440 executes a
pixel shader to produce processed fragment data , which is
then blended with other processed fragment data and written
to the frame buffer in memory 304 . The vertex shader
program and pixel shader program may execute concur
rently , processing different data from the same scene in a
pipelined fashion until all of the model data for the scene has
been rendered to the frame buffer . Then , the contents of the
frame buffer are transmitted to a display controller for
display on a display device .

US 2018 / 0373985 A1 Dec . 27 , 2018

[0103] The PPU 300 may be included in a desktop com
puter , a laptop computer , a tablet computer , a smart - phone
(e . g . , a wireless , hand - held device) , personal digital assistant
(PDA) , a digital camera , a hand - held electronic device , and
the like . In one embodiment , the PPU 300 is embodied on a
single semiconductor substrate . In another embodiment , the
PPU 300 is included in a system - on - a - chip (SoC) along with
one or more other logic units such as a reduced instruction
set computer (RISC) CPU , a memory management unit
(MMU) , a digital - to - analog converter (DAC) , and the like .
[0104] In one embodiment , the PPU 300 may be included
on a graphics card that includes one or more memory
devices 304 such as GDDR5 SDRAM . The graphics card
may be configured to interface with a PCIe slot on a
motherboard of a desktop computer that includes , e . g . , a
northbridge chipset and a southbridge chipset . In yet another
embodiment , the PPU 300 may be an integrated graphics
processing unit (GPU) included in the chipset (i . e . , North
bridge) of the motherboard .
[0105] Various programs may be executed within the PPU
300 in order to implement the various CNN , FC 135 , and
RNN 235 layers of the video classification systems 115 , 145 ,
200 , 215 , and 245 . For example , the device driver may
launch a kernel on the PPU 300 to implement at least one 2D
or 3D CNN layer on one SM 440 (or multiple SMS 440) . The
device driver (or the initial kernel executed by the PPU 300)
may also launch other kernels on the PPU 300 to perform
other CNN layers , such as the FC 135 , RNN 235 and the
classifier 105 , 106 , or 206 . In addition , some of the CNN
layers may be implemented on fixed unit hardware imple
mented within the PPU 300 . It will be appreciated that
results from one kernel may be processed by one or more
intervening fixed function hardware units before being pro
cessed by a subsequent kernel on an SM 440 .

[0109] In the present description , a single semiconductor
platform may refer to a sole unitary semiconductor - based
integrated circuit or chip . It should be noted that the term
single semiconductor platform may also refer to multi - chip
modules with increased connectivity which simulate on - chip
operation , and make substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple
mentation . Of course , the various modules may also be
situated separately or in various combinations of semicon
ductor platforms per the desires of the user .
0110] The system 600 may also include a secondary
storage 610 . The secondary storage 610 includes , for
example , a hard disk drive and / or a removable storage drive ,
representing a floppy disk drive , a magnetic tape drive , a
compact disk drive , digital versatile disk (DVD) drive ,
recording device , universal serial bus (USB) flash memory .
The removable storage drive reads from and / or writes to a
removable storage unit in a well - known manner .
[0111] Computer programs , or computer control logic
algorithms , may be stored in the main memory 604 and / or
the secondary storage 610 . Such computer programs , when
executed , enable the system 600 to perform various func
tions . The memory 604 , the storage 610 , and / or any other
storage are possible examples of computer - readable media .
Data streams associated with gestures may be stored in the
main memory 604 and / or the secondary storage 610 .
[0112] In one embodiment , the architecture and / or func
tionality of the various previous figures may be implemented
in the context of the central processor 601 , the graphics
processor 606 , an integrated circuit (not shown) that is
capable of at least a portion of the capabilities of both the
central processor 601 and the graphics processor 606 , a
chipset (i . e . , a group of integrated circuits designed to work
and sold as a unit for performing related functions , etc .) ,
and / or any other integrated circuit for that matter .
[0113] Still yet , the architecture and / or functionality of the
various previous figures may be implemented in the context
of a general computer system , a circuit board system , a game
console system dedicated for entertainment purposes , an
application - specific system , and / or any other desired sys
tem . For example , the system 600 may take the form of a
desktop computer , laptop computer , server , workstation ,
game consoles , embedded system , and / or any other type of
logic . Still yet , the system 600 may take the form of various
other devices including , but not limited to a personal digital
assistant (PDA) device , a mobile phone device , head
mounted display , autonomous vehicle , a television , etc .
[0114] Further , while not shown , the system 600 may be
coupled to a network (e . g . , a telecommunications network ,
local area network (LAN) , wireless network , wide area
network (WAN) such as the Internet , peer - to - peer network ,
cable network , or the like) for communication purposes .
[0115] While various embodiments have been described
above , it should be understood that they have been presented
by way of example only , and not limitation . Thus , the
breadth and scope of a preferred embodiment should not be
limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following claims and their equivalents .
What is claimed is :
1 . A computer - implemented method , comprising :
replacing a non - recurrent layer within a trained neural

network model with a recurrent layer to produce a
visual sequence learning neural network model ;

Exemplary System
[0106] FIG . 6 illustrates an exemplary system 600 in
which the various architecture and / or functionality of the
various previous embodiments may be implemented . The
exemplary system 600 may be used to implement the visual
sequence learning neural network model 115 or 150 .
[0107] As shown , a system 600 is provided including at
least one central processor 601 that is connected to a
communication bus 602 . The communication bus 602 may
be implemented using any suitable protocol , such as PCI
(Peripheral Component Interconnect) , PCI - Express , AGP
(Accelerated Graphics Port) , HyperTransport , or any other
bus or point - to - point communication protocol (s) . The sys
tem 600 also includes a main memory 604 . Control logic
(software) and data are stored in the main memory 604
which may take the form of random access memory (RAM) .
[0108] The system 600 also includes input devices 612 , a
graphics processor 606 , and a display 608 , i . e . a conven
tional CRT (cathode ray tube) , LCD (liquid crystal display) ,
LED (light emitting diode) , plasma display or the like . User
input may be received from the input devices 612 , e . g . ,
keyboard , mouse , touchpad , microphone , camera , and the
like . In one embodiment , the visual sequence learning neural
network model may be used to recognize dynamic hand
gestures as user input . In one embodiment , the graphics
processor 606 may include a plurality of shader modules , a
rasterization module , etc . Each of the foregoing modules
may even be situated on a single semiconductor platform to
form a graphics processing unit (GPU) .

US 2018 / 0373985 A1 Dec . 27 , 2018

transforming feedforward weights for the non - recurrent
layer into input - to - hidden weights of the recurrent layer
to produce a transformed recurrent layer ;

setting hidden - to - hidden weights of the recurrent layer to
initial values ; and

processing video image data by the visual sequence
learning neural network model to generate classifica
tion or regression output data .

2 . The method of claim 1 , prior to processing the video
image data , further comprising :

processing input video image data included in a training
dataset by the visual sequence learning neural network
model to generate output data ;

comparing the output data to target output data included
in the training dataset to produce comparison results ;
and

adjusting the hidden - to - hidden weights based on the com
parison results .

3 . The method of claim 2 , further comprising adjusting the
input - to - hidden weights based on the comparison results .

4 . The method of claim 2 , wherein the training dataset is
configured for sequential face alignment and the video
image data is color data .

5 . The method of claim 2 , wherein the training dataset is
configured for dynamic hand gesture recognition and the
video image data is color data and depth data .

6 . The method of claim 2 , wherein the training dataset is
configured for action recognition and the video image data
is color data and optical flow data .

7 . The method of claim 1 , wherein the non - recurrent layer
is a fully - connected layer .

8 . The method of claim 1 , wherein the non - recurrent layer
is a convolutional layer .

9 . The method of claim 1 , wherein the transforming
comprises computing values of parameters for multiple
input - to - hidden state corresponding to multiple gating func
tions of the recurrent layer using the feedforward weights .

10 . The method of claim 1 , wherein the transforming
comprises computing values of parameters for a unified
input - to - hidden state corresponding to multiple gating func
tions of the recurrent layer using the feedforward weights .

11 . The method of claim 1 , wherein the replacing com
prises selecting the non - recurrent layer based on a distribu
tion of activation values for neurons in the transformed
recurrent layer .

12 . The method of claim 11 , wherein fewer activation
values for the neurons in the recurrent layer are distributed
between 0 . 1 and 0 . 9 than are distributed outside of 0 . 1 and
0 . 9 within a range 0 . 0 to 1 . 0 .

13 . A system , comprising :
a memory storing video image data ; and
a parallel processing unit that is coupled to the memory
and configured to :
replace a non - recurrent layer within a trained neural

network model with a recurrent layer to produce a
visual sequence learning neural network model ;

transform feedforward weights for the non - recurrent
layer into input - to - hidden weights of the recurrent
layer to produce a transformed recurrent layer ;

set hidden - to - hidden weights of the recurrent layer to
initial values ; and

process the video image data by the visual sequence
learning neural network model to generate classifi
cation or regression output data .

14 . The system of claim 13 , wherein the parallel process
ing unit is further configured , prior to processing the video
image data , to :

process input video image data included in a training
dataset by the visual sequence learning neural network
model to generate output data ;

compare the output data to target output data included in
the training dataset to produce comparison results ; and

adjust the hidden - to - hidden weights based on the com
parison results .

15 . The system of claim 14 , wherein the parallel process
ing unit is further configured to adjust the input - to - hidden
weights based on the comparison results .

16 . The system of claim 13 , wherein the parallel process
ing unit is further configured to compute values for multiple
input - to - hidden state corresponding to multiple gating func
tions of the recurrent layer using the feedforward weights .

17 . The system of claim 13 , wherein the parallel process
ing unit is further configured to compute values for a unified
input - to - hidden state corresponding to multiple gating func
tions of the recurrent layer using the feedforward weights .

18 . The system of claim 13 , wherein the parallel process
ing unit is further configured to select the non - recurrent
layer based on a distribution of activation values for neurons
in the transformed recurrent layer to transform the feedfor
ward weights .

19 . A non - transitory computer - readable media storing
computer instructions for visual sequence learning that ,
when executed by a processor , cause the processor to
perform the steps of :

replacing a non - recurrent layer within a trained neural
network model with a recurrent layer to produce a
visual sequence learning neural network model ;

transforming feedforward weights for the non - recurrent
layer into input - to - hidden weights of the recurrent layer
to produce a transformed recurrent layer ;

setting hidden - to - hidden weights of the recurrent layer to
initial values ; and

processing video image data by the visual sequence
learning neural network model to generate classifica
tion or regression output data .

20 . The non - transitory computer - readable media of claim
19 , wherein the replacing comprises selecting the non
recurrent layer based on a distribution of activation values
for neurons in the transformed recurrent layer .

