
US 20190180469A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0180469 A1
Gu et al . (43) Pub . Date : Jun . 13 , 2019

(52) (54) SYSTEMS AND METHODS FOR DYNAMIC
FACIAL ANALYSIS USING A RECURRENT
NEURAL NETWORK

U . S . CI .
CPC G06T 7 / 73 (2017 . 01) ; G06N 3 / 08

(2013 . 01) ; G06T 2207 / 30201 (2013 . 01) ; G06T
13 / 40 (2013 . 01) ; G06T 2207 / 20084 (2013 . 01) ;

G06T 2207 / 20081 (2013 . 01) ; G06T
2207 / 10016 (2013 . 01)

(71) Applicant : NVIDIA Corporation , Santa Clara , CA
(US)

(57) ABSTRACT (72) Inventors : Jinwei Gu , San Jose , CA (US) ;
Xiaodong Yang , San Jose , CA (US) ;
Shalini De Mello , San Francisco , CA
(US) ; Jan Kautz , Lexington , MA (US)

(21) Appl . No . : 15 / 836 , 549
(22) Filed : Dec . 8 , 2017

A method , computer readable medium , and system are
disclosed for dynamic facial analysis . The method includes
the steps of receiving video data representing a sequence of
image frames including at least one head and extracting , by
a neural network , spatial features comprising pitch , yaw , and
roll angles of the at least one head from the video data . The
method also includes the step of processing , by a recurrent
neural network , the spatial features for two or more image
frames in the sequence of image frames to produce head
pose estimates for the at least one head .

Publication Classification
(51) Int . Ci .

G06T 7 / 73 (2006 . 01)
GOON 3 / 08 (2006 . 01)

100

Start

Receive video data representing a
sequence of image frames including at

least one head
110

Extract spatial features comprising
pitch , yaw , and roll angles of the at

least one head from the video data by
a neural network

120

Process , by a recurrent neural
network , the spatial features for two or
more image frames in the sequence of
image frames to produce head pose
estimates for the at least one head

130

End

Patent Application Publication Jun . 13 , 2019 Sheet 1 of 11 US 2019 / 0180469 A1

100
x

Start

Receive video data representing a
sequence of image frames including at

least one head
110

Extract spatial features comprising
pitch , yaw , and roll angles of the at

least one head from the video data by
a neural network

120

Process , by a recurrent neural
network , the spatial features for two or
more image frames in the sequence of
image frames to produce head pose
estimates for the at least one head

130

End

Fig . 1A

Patent Application Publication Jun . 13 , 2019 Sheet 2 of 11 US 2019 / 0180469 A1

105

Per - frame
estimates

116

Video input
106

Output Tracks
126 Neural Network

115
RNN
125

Fig . 1B

Neural Network
115

Output Tracks
126 Video

input
106

VGG16
135 140 RNN

125 -

-

-

-

-

-

- - - - - - - - - - - -

Fig . 1C

Patent Application Publication Jun . 13 , 2019 Sheet 3 of 11 US 2019 / 0180469 A1

- r - - - - -

Neural Network
115

Per - frame head
pose estimates Video

input ! 205 205 210 210 215 215 215 220 220 220 225 225 225 116
. .

. 106

.

Fig . 2A

- - - - - - - -

RNN
125

from t - 1

Per - frame head
pose estimate t

116 230
Output head

poset
226 240 245

Per - frame head
pose estimate t + 1

116

Output head
i pose t + 1

226 230 240 245

to t + 2
- -

Fig . 2B

Patent Application Publication Jun . 13 , 2019 Sheet 4 of 11 US 2019 / 0180469 A1

- - - - - - - - -

Neural Network
115

Video
input
106

205 205 210 210 215 215 215 220 220 220 225 225 225
Per - frame facial

landmark
estimates

116 -

-

-

- _ _ - _ 1

Fig . 2C

-

RNN
125

from t - 1
-

-

-

-

-

-

-

Per - frame facial
landmark estimate t

116 230 240 250
Output facial
landmarks t

246 -

-

-

-

-

-

-

-

Per - frame facial
landmark estimate t + 1 :

116

Output facial
landmarks t + 1

246 230 240 250
-

-

-

-

-

-

to t + 2
- - - - - - - -

Fig . 2D

Patent Application Publication Jun . 13 , 2019 Sheet 5 of 11 US 2019 / 0180469 A1

255 x 255
Start

Generate a large - scale synthetic
dataset
260

Pre - train a CNN using the
large - scale synthetic dataset

265

Train a neural network to
generate per - frame
estimates using the
large - scale synthetic

dataset
280

Convert the CNN into an RNN
270

Fine - tune the RNN using the
large - scale synthetic dataset

275

Deploy the system to perform
dynamic facial analysis

285

(End)

Fig . 2E

Patent Application Publication Jun . 13 , 2019 Sheet 6 of 11 US 2019 / 0180469 A1

203

- _ - _ - _ - _ - _ - _ - _ _ - _ - _ - _ - _ -

Per - frame
estimates

216

RNN
200

245 Output head
pose
226 Video

input
106

Neural Network
115 230 240

250
Output facial
landmarks

246

+ www . wwwwwwwwwwwwwwwwwwwwwwwww
- - -

Fig . 2F

Patent Application Publication Jun . 13 , 2019 Sheet 7 of 11 US 2019 / 0180469 A1

PPU 300
1 / O Unit
305

Host Interface Unit
310

Front End Unit
315

System Bus 302
Scheduler Unit

320 Hub
330

Work Distribution Unit
325

GPC
350 (X)

7 - - - - - - - - - - - - - - - - - - = = - - -

XBar 370
111

Memory
304 (0) Memory Partition Unit 380 (U)

- - - - - - - - - - - - - - - - -

Fig . 3

Patent Application Publication Jun . 13 , 2019 Sheet 8 of 11 US 2019 / 0180469 A1

To / From XBar 370

GPC 350
Pipeline Manager

410
PROP
415

_ MPC
430

_

_

- - - - - = = =
_

_

_ Primitive Engine
435 _ SM -

440 Raster Engine
425

_

- - -
_

Texture
445

_

_ TPC 420 (V)

WDX
480

MMU 490

To / From XBar 370 To / From XBar 370

Fig . 4A

Patent Application Publication Jun . 13 , 2019 Sheet 9 of 11 US 2019 / 0180469 A1

From XBar 370

Memory Partition Unit 380

ROP 450
ROP Manager

455

CROP
452

ZROP
454

To
XBar 370

L2 XBar 465

L2 460 TO
XBar 370

.

Memory Interface
470

To Memory 304

Fig . 4B

Patent Application Publication Jun . 13 , 2019 Sheet 10 of 11 US 2019 / 0180469 A1

SM 440

Instruction Cache 505

Scheduler Unit 510 (K)

Dispatch 515 Dispatch 515

-

Register File 520

Core
550 (L - 1)

SFU
552 (M - 1)

LSU
554 (N - 1)

- - - - - - - ' - - - - - - - ! - - - - - - - - -

Interconnect Network 580

Shared Memory / L1 Cache 570

Fig . 5

Patent Application Publication Jun . 13 , 2019 Sheet 11 of 11 US 2019 / 0180469 A1

600

CENTRAL
PROCESSOR

601

????AAR????? , MAIN MEMORY
604

BUS
602

INPUT DEVICES
612 ????? MAMAHA ??????????????????????????????????? SECONDARY

STORAGE
610

M

MITEM "
: ??? GRAPHICS

PROCESSOR ?

606
s :

??????
DISPLAY

608

Fig . 6

US 2019 / 0180469 A1 Jun . 13 , 2019

SYSTEMS AND METHODS FOR DYNAMIC
FACIAL ANALYSIS USING A RECURRENT

NEURAL NETWORK

FIELD OF THE INVENTION
[0001] The present invention relates to facial analysis , and
more particularly to facial analysis using neural networks .

[0012] FIG . 2F illustrates yet another block diagram of a
system for dynamic facial analysis of video data , in accor
dance with one embodiment ;
[0013] FIG . 3 illustrates a parallel processing unit , in
accordance with one embodiment ;
[0014] FIG . 4A illustrates a general processing cluster of
the parallel processing unit of FIG . 3 , in accordance with one
embodiment ;
[0015] FIG . 4B illustrates a partition unit of the parallel
processing unit of FIG . 3 , in accordance with one embodi
ment ;
[0016] FIG . 5 illustrates the streaming multi - processor of
FIG . 4A , in accordance with one embodiment ;
[0017] FIG . 6 illustrates an exemplary system in which the
various architecture and / or functionality of the various pre
vious embodiments may be implemented .

BACKGROUND

[0002] Facial analysis of video image data is used for
facial animation capture , human activity recognition , and
human - computer interaction . Facial analysis typically
includes head pose estimation and facial landmark localiza
tion . Facial analysis in videos is key for many applications
such as facial animation capture , driver assistance systems ,
and human - computer interaction . Conventional techniques
for facial analysis in videos estimate facial properties for
individual frames and then refine the estimates using tem
poral Bayesian filtering . The two inter - related tasks of visual
estimation and temporal tracking are isolated and careful
manual model designing and parameter tuning for the
Bayesian filtering is required . There is a need for addressing
these issues and / or other issues associated with the prior art .

DETAILED DESCRIPTION

SUMMARY
[0003] A method , computer readable medium , and system
are disclosed for performing dynamic facial analysis in
videos . The method includes the steps of receiving video
data representing a sequence of image frames including at
least one head and extracting , by a neural network , spatial
features comprising pitch , yaw , and roll angles of the at least
one head from the video data . The method also includes the
step of processing , by a recurrent neural network , the spatial
features for two or more image frames in the sequence of
image frames to produce head pose estimates for the at least
one head .

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] FIG . 1A illustrates a flowchart of a method for
performing dynamic facial analysis in videos , in accordance
with one embodiment ;
[0005] FIG . 1B illustrates a block diagram of a system for
dynamic facial analysis of video data , in accordance with
one embodiment ;
[0006] FIG . 1C illustrates another block diagram of the
system for dynamic facial analysis of video data shown in
FIG . 1B , in accordance with one embodiment ;
[0007] FIG . 2A illustrates a block diagram of a neural
network for generating per - frame head pose estimates , in
accordance with one embodiment ;
[0008] FIG . 2B illustrates a block diagram of a RNN for
generating per - frame head pose estimates , in accordance
with one embodiment ;
10009] FIG . 2C illustrates a block diagram of a neural
network for generating per - frame facial landmarks , in accor
dance with one embodiment ;
[0010] FIG . 2D illustrates a block diagram of a RNN for
generating per - frame facial landmarks , in accordance with
one embodiment ;
[0011] FIG . 2E illustrates another flowchart of a method
for training and deploying the dynamic facial analysis
systems shown in FIGS . 1B and 1C , in accordance with one
embodiment ;

[0018] The present disclosure describes a facial analysis
system including a neural network and recurrent neural
network (RNN) for dynamic estimation and tracking of
facial features in video image data . The facial analysis
system receives color data (e . g . , RGB component values) ,
without depth , as an input and is trained using a large - scale
synthetic dataset to estimate and track either head poses or
three - dimensional (3D) positions of facial landmarks . In
other words , the same facial analysis system may be trained
for estimating and tracking either head poses or 3D facial
landmarks . In the context of the following description a head
pose estimate is defined by a pitch , yaw , and roll angle . In
one embodiment , the neural network is a convolutional
neural network (CNN) . In one embodiment , the RNN is used
for both estimation and tracking of facial features in videos .
In contrast with conventional techniques for facial analysis
of videos , the required parameters for tracking are learned
automatically from training data . Additionally , the facial
analysis system provides a holistic solution for both visual
estimation and temporal tracking of various types of facial
features from consecutive frames of video .
[0019] FIG . 1 illustrates a flowchart of a method 100 for
dynamic facial analysis , in accordance with one embodi
ment . The method 100 may be performed by a program ,
custom circuitry , or by a combination of custom circuitry
and a program . For example , the method 100 may be
executed by a GPU (graphics processing unit) , CPU (central
processing unit) , neural network , or any processor capable
of executing the facial analysis framework . Furthermore ,
persons of ordinary skill in the art will understand that any
system that performs method 100 is within the scope and
spirit of embodiments of the present invention .
[0020] At step 110 , video data representing a sequence of
image frames including at least one head is received . In one
embodiment , the video data comprises color data , such as
red , green , and blue component values for each pixel in each
one of the image frames . In one embodiment , the video data
does not include depth data for each image frame . In one
embodiment , the video data are real - time images captured
by a camera . In one embodiment , the video data is included
in a training dataset . In one embodiment , the training dataset
is a synthetic training dataset that includes accurate labels
for both head pose and facial landmarks . In one embodi
ment , the synthetic training dataset includes over 500 , 000
frames of video data .

US 2019 / 0180469 A1 Jun . 13 , 2019

[0021] At step 120 , spatial features comprising pitch , yaw ,
and roll angles of the at least one head are extracted from the
video data by a neural network . In one embodiment , the
neural network is a convolutional neural network (CNN) . In
one embodiment , the CNN comprises a vision geometry
group (VGG16) neural network . In the context of the
following description the pitch , yaw , and roll angles define
an estimate of the head pose in the video data .
[0022] . At step 130 , the spatial features for two or more
image frames in the sequence of image frames are processed
by a recurrent neural network (RNN) to produce head pose
estimate for the at least one head . In one embodiment , the
RNN is a gated recurrent unit (GRU) neural network . In one
embodiment , the RNN is a long short - term memory (LSTM)
neural network . In one embodiment , the RNN is a fully
connected RNN (FC - RNN) . In one embodiment , the neural
network is trained separately from the RNN . In one embodi
ment , the neural network and the RNN are each trained to
estimate and track head poses in the video data . In one
embodiment , the neural network and the RNN are each
trained to estimate and track three - dimensional (3D) facial
landmarks in the video data . In the context of the following
description a facial landmark is a 3D position in space
corresponding to a location on a head .
[0023] More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may or may not be imple
mented , per the desires of the user . It should be strongly
noted that the following information is set forth for illus
trative purposes and should not be construed as limiting in
any manner . Any of the following features may be optionally
incorporated with or without the exclusion of other features
described
10024] FIG . 1B illustrates a block diagram of a system 105
for dynamic facial analysis of video data , in accordance with
one embodiment . The system 105 may be configured to
perform the method 100 of FIG . 1A . The system 105
includes a neural network 115 and a RNN 125 . The neural
network 115 and / or the RNN 125 may be implemented by a
graphics processor or any processor capable of performing
the necessary operations of the method 100 . The system 105
provides a generalized and integrated solution for estimation
and tracking of various facial features for dynamic facial
analysis .
[0025] The neural network 115 receives video input 106
that comprises video data representing a sequence of image
frames including at least one head . The neural network 115
extracts spatial features from the video input 106 and
produces per - frame estimates 116 . In one embodiment , the
per - frame estimates 116 are per - frame head pose estimates .
In another embodiment , the per - frame estimates 116 are
per - frame facial landmark estimates . The per - frame esti
mates 116 comprises pitch , yaw , and roll angles of the at
least one head for each frame of the video input 106 . The
RNN 125 processes the per - frame estimates 116 and pro
duces tracking data , specifically , output tracks 126 . In the
context of the following description , output tracks are sta
bilized and denoised estimates for each of the frames in the
entire sequence of image frames . In one embodiment , the
tracking data are head pose tracking data . In another
embodiment , the tracking data are facial landmark tracking
data .
[0026] In one embodiment , the video input 106 includes at
least a portion of a first training dataset when the neural

network 115 and the RNN 125 are trained , separately or
together , to estimate and track head poses in the video input
106 . In another embodiment , the video input 106 includes at
least a portion of a second training dataset when the neural
network 115 and the RNN 125 are trained , separately or
together , to estimate and track 3D facial landmarks in the
video input 106 . The first training dataset may correspond to
head poses and the second training dataset may correspond
to facial landmarks . In one embodiment , during training , the
3D facial landmarks are directly regressed in a single pass
through the neural network 115 and the RNN 125 . In
contrast , conventional techniques for training a facial land
mark tracking system require spatial recurrent learning to
progressively refine predictions in multiple passes through
the facial landmark tracking system . The single pass pro
vides a significant advantage in terms of computational cost
and performance compared with conventional techniques .
[0027] The frames of video data may be encoded as a
multi - dimensional tensor in dimensions of x and y (e . g . ,
frame size in pixels) , channels (e . g . , RGB) , and temporal
length (e . g . , frame number) . The neural network 115 may be
configured to perform convolution in the spatial and tem
poral domains and maximum pooling operations to process
the video data before using one or more fully connected
layers to produce the per - frame estimates 116 .
[0028] The RNN 125 provides a learning - based approach
for time series prediction . In one embodiment , the RNN 125
is implemented using a long short - term memory (LSTM) to
adaptively discover temporal dependencies at different time
scales . In one embodiment , the RNN 125 is implemented
using a gated recurrent unit (GRU) to adaptively discover
temporal dependencies at different time scales . The RNN
125 is a sequence - based model that captures temporal evo
lution , maintaining a recurrent hidden state for time step t ,
h , whose activation depends on that of the previous time
step t - 1 . In one embodiment , h , is computed as :

h = H (Whz - 1 + Wix + bn) (1)

where H is an activation function , Win is the hidden - to
hidden matrix , h , is the hidden state from the previous time
step , Win is the input - to - hidden matrix , x , is the input to the
current layer of the RNN 125 , and bnis a bias value . A target
output y , is given by y = Whoh , + b . Consider a linear acti
vation function H (x) = x and subsume the bias term b , into
the hidden state h , and Equation (1) can be simplified to :

hi = Wunhy - 1 + Wikt (2)

where , in one embodiment , Wnn and Win are fixed after the
RNN 125 is trained . In other words , the values of Win and
W ; , that are determined during training are not changed or
updated when the RNN 125 is deployed for classification .
[0029] The computation performed by the RNN 125
resembles Bayesian filters . However , in contrast with Bayes
ian filter implementations , the RNN 125 avoids tracker
engineering for computations performed on the per - frame
estimates 116 . The RNN 125 provides a unified approach to
learn the tracking features and parameters directly from data ,
and therefore does not require tracker - engineering . In con
trast , conventional facial analysis techniques rely on prob
lem - specific design and user tuning of tracking , i . e . , tracker
engineering . For example , tracking can be performed on
face bounding boxes , rigid transformation parameters of
heads , or facial features . Users are required to set the
parameters in Bayesian filters based on domain knowledge .

US 2019 / 0180469 A1 Jun . 13 , 2019

(0030) When a linear Kalman filter is used in a conven
tional implementation of a Bayesian filter , the optimal
estimator is :

(4) hi = Whi - 1 + K (Xi – Vht - 1) (3)

= (W – K , V) h - 1 + Kpx
= Winha - 1 + Wb ; X ;)

(5)

bi

where h , is the state , x , is a measurement at time t , K , is the
Kalman gain matrix that updates over time , W and V are the
matrices for the state transition and measurement models ,
Won = W - KV and Wb = K , are the two weight matrices that
relate hz - 1 and x , to ht . With the estimated state h , , the target
output can be estimated as y = Vh . The goal of Bayesian
filtering is to estimate the states h , (and optionally the target
output y .) . For the Kalman filter , h , 1h , and xlh , are each
assumed to have a Gaussian distribution and linear models
are used for state transitions and measurement (e . g . , matrices
W and V) .
[0031] Note the similarity between Equations (1) and (3) :
the optimal estimate of the state h , is a weighted linear
combination of the estimate of the previous state h , and the
current input xx . The two weight matrices for the Kalman
filter are Wat and W and the two matrices for the RNN
125 are Win and Win . One important difference between the
RNN 125 and Bayesian filters (e . g . , a Kalman filter or
particle filter) , is that the two weight matrices Wbh and W bit
change over time , indicating that the computation is an
adaptive estimator . In contrast , for the RNN 125 , the two
learned weight matrices , Wnn and Win , are usually fixed after
the RNN 125 is trained .
[0032] In practice , there are two other important differ
ences between the RNN 125 and Bayesian filters . Firstly , for
Bayesian filters , most effort goes into designing the state
transition and measurement models which is usually chal
lenging for complex tracking tasks (e . g . , non - rigid tracking
of faces) . The RNN 125 is more generally applicable to
almost any tracking task , since the optimal parameters , Wh
and Win , can be learned from the training data . Secondly ,
integrating Bayesian filters with the static estimators for
generic vision tasks is also challenging . In contrast , as
shown in FIG . 1B , the RNN 125 can be concatenated with
the neural network 115 , such as a CNN that performs
frame - wise feature extraction generating per - frame esti
mates 116 , to form the end - to - end system 105 for both
estimation and tracking . The RNN 125 maps a sequence of
per - frame estimates 116 to match the sequence of known
ground truth output training data . In one embodiment , the
neural network 115 is trained is trained for both estimation
and tracking separately from the RNN 125 . In another
embodiment , the neural network 115 is trained for both
estimation and tracking end - to - end with the RNN 125 .
[0033] FIG . 1C illustrates another block diagram of the
system 105 for dynamic facial analysis of video data shown
in FIG . 1B , in accordance with one embodiment . In one
embodiment , the neural network 115 is a VGG16 neural
network 135 and one additional fully - connected layer 140 .
In one embodiment , both Wh and Win are initialized to
random values and the RNN 125 is trained separately from
the neural network 115 . In one embodiment , the RNN 125

is pre - trained CNN with fully - connected layers that are
transformed into recurrent layers .
[0034] Suppose that a pre - trained fully - connected layer at
timestamp t has the structure :

f = H (WX + b)
where Wie is the pre - trained input - to - output matrix , x , is the
output of the previous feed - forward layer and be is the bias .
The RNN 125 transforms a pre - trained fully - connected layer
into a recurrent layer through :

f = H (W1X + Whit - 167)
The RNN 125 structure , initialized with a pre - trained fully
connected layer only introduces a single hidden - to - hidden
weight matrix Win that needs to be trained from scratch
while the other weight matrices are pre - trained and can be
merely fine - tuned .
[0035] FIG . 2A illustrates a block diagram of the neural
network 115 for generating the per - frame head pose esti
mates 116 , in accordance with one embodiment . In one
embodiment , the neural network 115 is implemented as a
CNN including 3x3 convolutional layers 205 that each
include 64 neurons followed by 3x3 convolutional layers
210 that each include 128 neurons followed by 3x3 convo
lutional layers 215 that each include 256 neurons followed
by 3x3 convolutional layers 220 that each include 512
neurons followed by 3x3 convolutional layers 225 that each
include 512 neurons . The last 3x3 convolutional layer 225
generates the per - frame head pose estimates 116 . In one
embodiment , each group of 3x3 convolutional layers is
followed by a pooling layer .
[0036] FIG . 2B illustrates a block diagram of the RNN 125
for generating a stream of output head poses 226 , in accor
dance with one embodiment . In one embodiment , the RNN
125 includes a fully - connected layer 230 that includes 4096
neurons followed by a fully - connected layer 240 that
includes 4096 neurons followed by a fully - connected layer
245 that generates three values defining the output head pose
226 . The three output values correspond to the pitch , yaw ,
and roll angles . The recurrent aspect of the RNN 125 is
shown by the vertical connections indicating that output
values for each of the fully connected layers 230 and 240 are
fed back into each of the fully connected layers , respectively ,
to compute one or more subsequent output values . In one
embodiment , the fully - connected layer 230 and / or 240 are a
pre - trained fully - connected CNN layer that is converted into
recurrent fully - connected layer using equation (5) .
[0037] FIG . 2C illustrates a block diagram of the neural
network 115 for generating per - frame facial landmarks , in
accordance with one embodiment . In one embodiment , the
neural network 115 is implemented as a CNN including 3x3
convolutional layers 205 that each include 64 neurons
followed by 3x3 convolutional layers 210 that each include
128 neurons followed by 3x3 convolutional layers 215 that
each include 256 neurons followed by 3x3 convolutional
layers 220 that each include 512 neurons followed by 3x3
convolutional layers 225 that each include 512 neurons . The
last 3x3 convolutional layer 225 generates the per - frame
facial landmark estimates 116 . In one embodiment , each
group of 3x3 convolutional layers is followed by a pooling
layer .
[0038] FIG . 2D illustrates a block diagram of the RNN
125 for generating per - frame facial landmarks , in accor
dance with one embodiment . In one embodiment , the RNN
125 includes a fully - connected layer 230 that includes 4096

US 2019 / 0180469 A1 Jun . 13 , 2019

neurons followed by a fully - connected layer 240 that
includes 4096 neurons followed by a fully - connected layer
250 that generates 136 values defining the output facial
landmarks 246 . The 136 output values correspond to the
different 3D positions on the head .
[0039] In one embodiment , the RNN 125 is trained using
a set of regularization techniques using a variational dropout
to repeat the same dropout mask with 0 . 25 rate at each time
step for both the feed - forward and recurrent connections . In
contrast , conventional techniques sample different dropout
masks at each time step for feed - forward connections only
and use no dropout for recurrent connections . In one
embodiment , soft gradient clipping is applied during train
ing to prevent gradients from exploding for layers of the
RNN 125 . For example , in on embodiment , a least square
errors (12) loss function is used during training , and if the
12 - norm of gradients | | g | | is larger than a threshold t = 10 , the
gradients are rescaled to gcgt / g | l .
[0040] In one embodiment , a large - scale synthetic head
pose dataset is generated to use for training the system 105
to generate output tracks 126 (i . e . , output head poses 226) .
In one embodiment , the large - scale synthetic head pose
dataset contains 10 subjects , 70 motion tracks , and 510 , 960
frames in total . Generation of the large - scale synthetic head
pose dataset is needed because while there are several
datasets available for head pose estimation from still images ,
there are currently very limited video - based datasets . Due to
various difficulties in ground truth collection , head pose
datasets usually have errors and noises in the ground truth
annotations . For example , a conventional dataset has , on an
average , 1 degree of error . In contrast , the large - scale
synthetic head pose dataset has accurate ground truth and
includes high resolutions video sequences .
[0041] When the neural network 115 and RNN 125 are
trained end - to - end the estimation error is reduced and , over
time , a smoother track is generated , indicating that the
system 105 learns the temporal variation of head poses in
videos . In contrast , Kalman filtering (and similarly particle
filtering) can only reduce the variability / noise in the per
frame estimates over time , but cannot reduce the estimation
errors .
[0042] The second application for dynamic facial analysis
is facial landmark localization in videos . In one embodi
ment , as a pre - processing step , a CNN is trained to perform
face detection on every frame . For each video , the central
positions of the detected facial regions are smoothed tem
porally with a Gaussian filter , and the maximum size of the
detected bounding boxes is used to extract a face - centered
sequence for use as a training dataset for the system 105 . The
pre - processing step stabilizes face detections over time and
interpolates face regions for the few frames with missed face
detection .
[0043] In one embodiment , several types of data augmen
tation are employed to generate the training dataset . Data
augmentation may include horizontal mirroring of the
images , playing the image sequences in reverse , and small
random scaling and translation of the face windows . In one
embodiment , an R2 loss function is used to train the RNN .
125 for facial landmark localization and head pose estima
tion . When the RNN 125 is trained for facial landmark
estimation , the output layer has 136 neurons corresponding
to locations of 68 facial landmarks compared with 3 neurons
corresponding to the pitch , yaw , and roll angles when the
RNN 125 is trained for head pose estimation .

[0044] FIG . 2E illustrates another flowchart of a method
255 for training and deploying the dynamic facial analysis
system 105 shown in FIGS . 13 and 1C , in accordance with
one embodiment . The method 255 may be performed by a
program , custom circuitry , or by a combination of custom
circuitry and a program . For example , the method 255 may
be executed by the system 105 , a GPU (graphics processing
unit) , CPU (central processing unit) , neural network , or any
processor capable of executing the facial analysis frame
work . Furthermore , persons of ordinary skill in the art will
understand that any system that performs method 255 is
within the scope and spirit of embodiments of the present
invention .
[0045] At step 260 a large - scale synthetic dataset is gen
erated for training a dynamic facial analysis system , such as
the system 105 . In one embodiment , the dataset includes a
first portion of training data for training the neural network
115 and a second portion of training data for training the
RNN 125 . In another embodiment , the training data in the
dataset is used to train both the neural network 115 and the
RNN 125 .
[0046] Step 280 may be completed in parallel with steps
265 , 270 , and 275 . In one embodiment , the large - scale
synthetic dataset is used to simultaneously train both the
neural network 115 and the RNN 125 . Alternatively , step
280 may be completed serially , before or after any of steps
265 , 270 , and 275 . At step 280 , a neural network , such as the
neural network 115 is trained to generate per - frame esti
mates 116 using the large - scale synthetic dataset . The per
frame estimates 116 may be either per - frame head pose
estimates or per - frame facial landmark estimates . During
training , the per - frame estimates 116 are compared with
ground truth training samples included in the large - scale
synthetic dataset to compute estimate errors . Given the
estimate errors , parameters in each layer of the neural
network 115 are updated in the direction of error reduction .
The training procedure may be repeated iteratively until a
target accuracy and convergence is achieved .
[0047] At step 265 , a CNN is pre - trained using the large
scale synthetic dataset . At step 270 , the CNN is converted
into an RNN , such as the RNN 125 . In one embodiment ,
equation (5) is used to transform the pre - trained CNN into
an RNN . At step 275 , the RNN 125 is fine - tuned using the
large - scale synthetic dataset to produce a trained RNN 125 .
At step 285 , the system 105 , including the trained neural
network 115 and the trained RNN 125 , is deployed to
perform dynamic facial analysis . Importantly , when the
system 105 is deployed to generate tracking data based on
sequences of image frames , the system 105 operates in a
single - pass manner . In other words , the tracking data that is
output by the system 105 for one image frame is not
provided as an input to produce the tracking data for a
subsequent image frame . The single - pass operation reduces
latency from when a video is input to when the tracking data
is generated . The large - scale synthetic dataset increases
performance , specifically accuracy of the system 105 . In one
embodiment , the system 105 is first trained to produce only
head pose estimates and is later trained to produce only
facial landmark estimates .
[0048] FIG . 2F illustrates yet another block diagram of a
system 203 for dynamic facial analysis of video data , in
accordance with one embodiment . The system 203 includes
the neural network 115 and an RNN 200 . The neural network
115 is trained to produce per - frame estimates 216 that may

US 2019 / 0180469 A1 Jun . 13 , 2019

include both head pose estimates and facial landmark esti -
mates . In one embodiment , the RNN 200 includes the
fully - connected layer 230 and the fully - connected layer 240 .
The output of the fully - connected layer 240 is provided to
both the fully - connected layer 245 and 250 . The fully
connected layers 230 and 240 may be trained to generate
stabilized and denoised feature vectors corresponding to the
image sequence in the video input 106 for both head poses
and facial landmarks .
[0049] The fully - connected layer 245 generates three val
ues defining the output head pose 226 and fully - connected
layer 250 that generates 136 values defining the output facial
landmarks 246 . The three output values correspond to the
pitch , yaw , and roll angles . The recurrent aspect of the RNN
200 is shown by the feedback connections indicating that
output values for each of the fully connected layers 230 and
240 are fed back into each of the fully connected layers ,
respectively , to compute one or more subsequent output
values . In one embodiment , the fully - connected layer 230
and / or 240 are a pre - trained fully - connected CNN layer that
is converted into recurrent fully - connected layer using equa
tion (5) . In one embodiment , the RNN 200 is trained
end - to - end with the neural network 115 using a single
training dataset . In another embodiment , the RNN 200 is
trained separately from the neural network , using a single
training dataset or separate training datasets .
[0050] Compared with traditional Bayesian filters , the
RNN - based system 105 learns to jointly estimate the per
frame estimates 116 (or measurements) and to temporally
track the per - frame estimates 116 with a single end - to - end
network provided by the neural network 115 and the RNN
125 . Moreover , the system 105 does not rely on complicated
and problem - specific tracker - engineering or feature - engi
neering , that are required in conventional techniques . Addi
tionally , the RNN - based system 105 provides a generic
approach that can be extended to other tasks of facial
analysis in videos .
[0051] The system 105 provides a generalized and inte
grated solution for estimation and tracking of various facial
features for dynamic facial analysis . In contrast with con
ventional techniques that are specifically designed only for
facial landmark tracking , the system 105 may be employed
to perform various feature tracking and facial analysis tasks
for video data , such as tracking head pose , facial landmarks ,
facial expression , and facial segmentation .

provided herein for illustrative purposes , it should be
strongly noted that such processor is set forth for illustrative
purposes only , and that any processor may be employed to
supplement and / or substitute for the same .
[0054] As shown in FIG . 3 , the PPU 300 includes an
Input / Output (I / O) unit 305 , a host interface unit 310 , a front
end unit 315 , a scheduler unit 320 , a work distribution unit
325 , a hub 330 , a crossbar (Xbar) 370 , one or more general
processing clusters (GPCs) 350 , and one or more partition
units 380 . The PPU 300 may be connected to a host
processor or other peripheral devices via a system bus 302 .
The PPU 300 may also be connected to a local memory
comprising a number of memory devices 304 . In one
embodiment , the local memory may comprise a number of
dynamic random access memory (DRAM) devices .
[0055) The 1 / 0 unit 305 is configured to transmit and
receive communications (i . e . , commands , data , etc .) from a
host processor (not shown) over the system bus 302 . The I / O
unit 305 may communicate with the host processor directly
via the system bus 302 or through one or more intermediate
devices such as a memory bridge . In one embodiment , the
1 / 0 unit 305 implements a Peripheral Component Intercon
nect Express (PCIe) interface for communications over a
PCIe bus . In alternative embodiments , the I / O unit 305 may
implement other types of well - known interfaces for com
municating with external devices .
10056] The I / O unit 305 is coupled to a host interface unit
310 that decodes packets received via the system bus 302 . In
one embodiment , the packets represent commands config
ured to cause the PPU 300 to perform various operations .
The host interface unit 310 transmits the decoded commands
to various other units of the PPU 300 as the commands may
specify . For example , some commands may be transmitted
to the front end unit 315 . Other commands may be trans
mitted to the hub 330 or other units of the PPU 300 such as
one or more copy engines , a video encoder , a video decoder ,
a power management unit , etc . (not explicitly shown) . In
other words , the host interface unit 310 is configured to route
communications between and among the various logical
units of the PPU 300 .
[0057] In one embodiment , a program executed by the
host processor encodes a command stream in a buffer that
provides workloads to the PPU 300 for processing . A
workload may comprise a number of instructions and data to
be processed by those instructions . The buffer is a region in
a memory that is accessible (i . e . , read / write) by both the host
processor and the PPU 300 . For example , the host interface
unit 310 may be configured to access the buffer in a system
memory connected to the system bus 302 via memory
requests transmitted over the system bus 302 by the I / O unit
305 . In one embodiment , the host processor writes the
command stream to the buffer and then transmits a pointer
to the start of the command stream to the PPU 300 . The host
interface unit 310 provides the front end unit 315 with
pointers to one or more command streams . The front end
unit 315 manages the one or more streams , reading com
mands from the streams and forwarding commands to the
various units of the PPU 300 .
10058] The front end unit 315 is coupled to a scheduler
unit 320 that configures the various GPCs 350 to process
tasks defined by the one or more streams . The scheduler unit
320 is configured to track state information related to the
various tasks managed by the scheduler unit 320 . The state
may indicate which GPC 350 a task is assigned to , whether

Parallel Processing Architecture
[0052] FIG . 3 illustrates a parallel processing unit (PPU)
300 , in accordance with one embodiment . The PPU 300 may
be configured to implement the system 105 .
[0053] In one embodiment , the PPU 300 is a multi
threaded processor that is implemented on one or more
integrated circuit devices . The PPU 300 is a latency hiding
architecture designed to process a large number of threads in
parallel . A thread (i . e . , a thread of execution) is an instan
tiation of a set of instructions configured to be executed by
the PPU 300 . In one embodiment , the PPU 300 is a graphics
processing unit (GPU) configured to implement a graphics
rendering pipeline for processing three - dimensional (3D)
graphics data in order to generate two - dimensional (2D)
image data for display on a display device such as a liquid
crystal display (LCD) device . In other embodiments , the
PPU 300 may be utilized for performing general - purpose
computations . While one exemplary parallel processor is

US 2019 / 0180469 A1 Jun . 13 , 2019

the task is active or inactive , a priority level associated with
the task , and so forth . The scheduler unit 320 manages the
execution of a plurality of tasks on the one or more GPCs
350 .

for processing tasks . In one embodiment , each GPC 350
includes a pipeline manager 410 , a pre - raster operations unit
(PROP) 415 , a raster engine 425 , a work distribution cross
bar (WDX) 480 , a memory management unit (MMU) 490 ,
and one or more Texture Processing Clusters (TPCs) 420 . It
will be appreciated that the GPC 350 of FIG . 4A may include
other hardware units in lieu of or in addition to the units
shown in FIG . 4A .
10064] In one embodiment , the operation of the GPC 350
is controlled by the pipeline manager 410 . The pipeline
manager 410 manages the configuration of the one or more
TPCs 420 for processing tasks allocated to the GPC 350 . In
one embodiment , the pipeline manager 410 may configure at
least one of the one or more TPCs 420 to implement at least
a portion of a graphics rendering pipeline . For example , a
TPC 420 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 440 . The pipeline manager 410 may also be configured
to route packets received from the work distribution unit 325
to the appropriate logical units within the GPC 350 . For
example , some packets may be routed to fixed function
hardware units in the PROP 415 and / or raster engine 425
while other packets may be routed to the TPCs 420 for
processing by the primitive engine 435 or the SM 440 .
[0065] The PROP unit 415 is configured to route data
generated by the raster engine 425 and the TPCs 420 to a
Raster Operations (ROP) unit in the partition unit 380 ,
described in more detail below . The PROP unit 415 may also
be configured to perform optimizations for color blending ,
organize pixel data , perform address translations , and the
like .

[0059] The scheduler unit 320 is coupled to a work
distribution unit 325 that is configured to dispatch tasks for
execution on the GPCs 350 . The work distribution unit 325
may track a number of scheduled tasks received from the
scheduler unit 320 . In one embodiment , the work distribu
tion unit 325 manages a pending task pool and an active task
pool for each of the GPCs 350 . The pending task pool may
comprise a number of slots (e . g . , 32 slots) that contain tasks
assigned to be processed by a particular GPC 350 . The active
task pool may comprise a number of slots (e . g . , 4 slots) for
tasks that are actively being processed by the GPCs 350 . As
a GPC 350 finishes the execution of a task , that task is
evicted from the active task pool for the GPC 350 and one
of the other tasks from the pending task pool is selected and
scheduled for execution on the GPC 350 . If an active task
has been idle on the GPC 350 , such as while waiting for a
data dependency to be resolved , then the active task may be
evicted from the GPC 350 and returned to the pending task
pool while another task in the pending task pool is selected
and scheduled for execution on the GPC 350 .
10060] The work distribution unit 325 communicates with
the one or more GPCs 350 via XBar 370 . The XBar 370 is
an interconnect network that couples many of the units of the
PPU 300 to other units of the PPU 300 . For example , the
XBar 370 may be configured to couple the work distribution
unit 325 to a particular GPC 350 . Although not shown
explicitly , one or more other units of the PPU 300 are
coupled to the host interface unit 310 . The other units may
also be connected to the XBar 370 via a hub 330 .
10061] The tasks are managed by the scheduler unit 320
and dispatched to a GPC 350 by the work distribution unit
325 . The GPC 350 is configured to process the task and
generate results . The results may be consumed by other tasks
within the GPC 350 , routed to a different GPC 350 via the
XBar 370 , or stored in the memory 304 . The results can be
written to the memory 304 via the partition units 380 , which
implement a memory interface for reading and writing data
to / from the memory 304 . In one embodiment , the PPU 300
includes a number U of partition units 380 that is equal to the
number of separate and distinct memory devices 304
coupled to the PPU 300 . A partition unit 380 will be
described in more detail below in conjunction with FIG . 4B .
[0062] In one embodiment , a host processor executes a
driver kernel that implements an application programming
interface (API) that enables one or more applications execut
ing on the host processor to schedule operations for execu
tion on the PPU 300 . An application may generate instruc
tions (i . e . , API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 300 . The driver
kernel outputs tasks to one or more streams being processed
by the PPU 300 . Each task may comprise one or more
groups of related threads , referred to herein as a warp . A
thread block may refer to a plurality of groups of threads
including instructions to perform the task . Threads in the
same group of threads may exchange data through shared
memory . In one embodiment , a group of threads comprises
32 related threads .
[0063] FIG . 4A illustrates a GPC 350 of the PPU 300 of
FIG . 3 , in accordance with one embodiment . As shown in
FIG . 4A , each GPC 350 includes a number of hardware units

[0066] The raster engine 425 includes a number of fixed
function hardware units configured to perform various raster
operations . In one embodiment , the raster engine 425
includes a setup engine , a course raster engine , a culling
engine , a clipping engine , a fine raster engine , and a tile
coalescing engine . The setup engine receives transformed
vertices and generates plane equations associated with the
geometric primitive defined by the vertices . The plane
equations are transmitted to the coarse raster engine to
generate coverage information (e . g . , an x , y coverage mask
for a tile) for the primitive . The output of the coarse raster
engine may transmitted to the culling engine where frag
ments associated with the primitive that fail a z - test are
culled , and transmitted to a clipping engine where fragments
lying outside a viewing frustum are clipped . Those frag
ments that survive clipping and culling may be passed to a
fine raster engine to generate attributes for the pixel frag
ments based on the plane equations generated by the setup
engine . The output of the raster engine 425 comprises
fragments to be processed , for example , by a fragment
shader implemented within a TPC 420 .
[0067] Each TPC 420 included in the GPC 350 includes an
M - Pipe Controller (MPC) 430 , a primitive engine 435 , one
or more SMS 440 , and one or more texture units 445 . The
MPC 430 controls the operation of the TPC 420 , routing
packets received from the pipeline manager 410 to the
appropriate units in the TPC 420 . For example , packets
associated with a vertex may be routed to the primitive
engine 435 , which is configured to fetch vertex attributes
associated with the vertex from the memory 304 . In contrast ,
packets associated with a shader program may be transmit
ted to the SM 440 .

US 2019 / 0180469 A1 Jun . 13 , 2019

[0068] In one embodiment , the texture units 445 are
configured to load texture maps (e . g . , a 2D array of texels)
from the memory 304 and sample the texture maps to
produce sampled texture values for use in shader programs
executed by the SM 440 . The texture units 445 implement
texture operations such as filtering operations using mip
maps (i . e . , texture maps of varying levels of detail) . The
texture unit 445 is also used as the Load / Store path for SM
440 to MMU 490 . In one embodiment , each TPC 420
includes two (2) texture units 445 .
[0069] The SM 440 comprises a programmable streaming
processor that is configured to process tasks represented by
a number of threads . Each SM 440 is multi - threaded and
configured to execute a plurality of threads (e . g . , 32 threads)
from a particular group of threads concurrently . In one
embodiment , the SM 440 implements a SIMD (Single
Instruction , Multiple - Data) architecture where each thread
in a group of threads (i . e . , a warp) is configured to process
a different set of data based on the same set of instructions .
All threads in the group of threads execute the same instruc
tions . In another embodiment , the SM 440 implements a
SIMT (Single - Instruction , Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions , but where individual threads in the group of
threads are allowed to diverge during execution . In other
words , when an instruction for the group of threads is
dispatched for execution , some threads in the group of
threads may be active , thereby executing the instruction ,
while other threads in the group of threads may be inactive ,
thereby performing a no - operation (NOP) instead of execut
ing the instruction . The SM 440 may be described in more
detail below in conjunction with FIG . 5 .
[0070] The MMU 490 provides an interface between the
GPC 350 and the partition unit 380 . The MMU 490 may
provide translation of virtual addresses into physical
addresses , memory protection , and arbitration of memory
requests . In one embodiment , the MMU 490 provides one or
more translation lookaside buffers (TLBs) for improving
translation of virtual addresses into physical addresses in the
memory 304 .
10071] FIG . 4B illustrates a memory partition unit 380 of
the PPU 300 of FIG . 3 , in accordance with one embodiment .
As shown in FIG . 4B , the memory partition unit 380
includes a Raster Operations (ROP) unit 450 , a level two
(L2) cache 460 , a memory interface 470 , and an L2 crossbar
(XBar) 465 . The memory interface 470 is coupled to the
memory 304 . Memory interface 470 may implement 16 , 32 ,
64 , 128 - bit data buses , or the like , for high - speed data
transfer . In one embodiment , the PPU 300 comprises U
memory interfaces 470 , one memory interface 470 per
partition unit 380 , where each partition unit 380 is connected
to a corresponding memory device 304 . For example , PPU
300 may be connected to up to U memory devices 304 , such
as graphics double - data - rate , version 5 , synchronous
dynamic random access memory (GDDR5 SDRAM) . In one
embodiment , the memory interface 470 implements a
DRAM interface and U is equal to 8 .
10072] In one embodiment , the PPU 300 implements a
multi - level memory hierarchy . The memory 304 is located
off - chip in SDRAM coupled to the PPU 300 . Data from the
memory 304 may be fetched and stored in the L2 cache 460 ,
which is located on - chip and is shared between the various
GPCs 350 . As shown , each partition unit 380 includes a

portion of the L2 cache 460 associated with a corresponding
memory device 304 . Lower level caches may then be
implemented in various units within the GPCs 350 . For
example , each of the SMS 440 may implement a level one
(L1) cache . The Ll cache is private memory that is dedicated
to a particular SM 440 . Data from the L2 cache 460 may be
fetched and stored in each of the L1 caches for processing
in the functional units of the SMS 440 . The L2 cache 460 is
coupled to the memory interface 470 and the XBar 370 .
[0073] The ROP unit 450 includes a ROP Manager 455 , a
Color ROP (CROP) unit 452 , and a Z ROP (ZROP) unit 454 .
The CROP unit 452 performs raster operations related to
pixel color , such as color compression , pixel blending , and
the like . The ZROP unit 454 implements depth testing in
conjunction with the raster engine 425 . The ZROP unit 454
receives a depth for a sample location associated with a pixel
fragment from the culling engine of the raster engine 425 .
The ZROP unit 454 tests the depth against a corresponding
depth in a depth buffer for a sample location associated with
the fragment . If the fragment passes the depth test for the
sample location , then the ZROP unit 454 updates the depth
buffer and transmits a result of the depth test to the raster
engine 425 . The ROP Manager 455 controls the operation of
the ROP unit 450 . It will be appreciated that the number of
partition units 380 may be different than the number of
GPCs 350 and , therefore , each ROP unit 450 may be
coupled to each of the GPCs 350 . Therefore , the ROP
Manager 455 tracks packets received from the different
GPCs 350 and determines which GPC 350 that a result
generated by the ROP unit 450 is routed to . The CROP unit
452 and the ZROP unit 454 are coupled to the L2 cache 460
via an L2 XBar 465 .
[0074] FIG . 5 illustrates the streaming multi - processor
440 of FIG . 4A , in accordance with one embodiment . As
shown in FIG . 5 , the SM 440 includes an instruction cache
505 , one or more scheduler units 510 , a register file 520 , one
or more processing cores 550 , one or more special function
units (SFUs) 552 , one or more load / store units (LSUS) 554 ,
an interconnect network 580 , a shared memory / L1 cache
570 .

[0075] As described above , the work distribution unit 325
dispatches tasks for execution on the GPCs 350 of the PPU
300 . The tasks are allocated to a particular TPC 420 within
a GPC 350 and , if the task is associated with a shader
program , the task may be allocated to an SM 440 . The
scheduler unit 510 receives the tasks from the work distri
bution unit 325 and manages instruction scheduling for one
or more groups of threads (i . e . , warps) assigned to the SM
440 . The scheduler unit 510 schedules threads for execution
in groups of parallel threads , where each group is called a
warp . In one embodiment , each warp includes 32 threads .
The scheduler unit 510 may manage a plurality of different
warps , scheduling the warps for execution and then dis
patching instructions from the plurality of different warps to
the various functional units (i . e . , cores 550 , SFUS 552 , and
LSUs 554) during each clock cycle .
[0076] In one embodiment , each scheduler unit 510
includes one or more instruction dispatch units 515 . Each
dispatch unit 515 is configured to transmit instructions to
one or more of the functional units . In the embodiment
shown in FIG . 5 , the scheduler unit 510 includes two
dispatch units 515 that enable two different instructions from
the same warp to be dispatched during each clock cycle . In

US 2019 / 0180469 A1 Jun . 13 , 2019

alternative embodiments , each scheduler unit 510 may
include a single dispatch unit 515 or additional dispatch
units 515 .
[0077] Each SM 440 includes a register file 520 that
provides a set of registers for the functional units of the SM
440 . In one embodiment , the register file 520 is divided
between each of the functional units such that each func
tional unit is allocated a dedicated portion of the register file
520 . In another embodiment , the register file 520 is divided
between the different warps being executed by the SM 440 .
The register file 520 provides temporary storage for oper
ands connected to the data paths of the functional units .
[0078] Each SM 440 comprises L processing cores 550 . In
one embodiment , the SM 440 includes a large number (e . g . ,
128 , etc .) of distinct processing cores 550 . Each core 550
may include a fully - pipelined , single - precision processing
unit that includes a floating point arithmetic logic unit and an
integer arithmetic logic unit . The core 550 may also include
a double - precision processing unit including a floating point
arithmetic logic unit . In one embodiment , the floating point
arithmetic logic units implement the IEEE 754 - 2008 stan
dard for floating point arithmetic . Each SM 440 also com
prises M SFUS 552 that perform special functions (e . g . ,
attribute evaluation , reciprocal square root , and the like) , and
N LSUS 554 that implement load and store operations
between the shared memory / L1 cache 570 and the register
file 520 . In one embodiment , the SM 440 includes 128 cores
550 , 32 SFUS 552 , and 32 LSUS 554 .
[0079] Each SM 440 includes an interconnect network 580
that connects each of the functional units to the register file
520 and the LSU 554 to the register file 520 , shared
memory / L1 cache 570 . In one embodiment , the interconnect
network 580 is a crossbar that can be configured to connect
any of the functional units to any of the registers in the
register file 520 and connect the LSUS 554 to the register file
and memory locations in shared memory / L1 cache 570 .
[0080] The shared memory / L1 cache 570 is an array of
on - chip memory that allows for data storage and commu
nication between the SM 440 and the primitive engine 435
and between threads in the SM 440 . In one embodiment , the
shared memory / L1 cache 570 comprises 64 KB of storage
capacity and is in the path from the SM 440 to the partition
unit 380 . The shared memory / L1 cache 570 can be used to
cache reads and writes .
[0081] The PPU 300 described above may be configured
to perform highly parallel computations much faster than
conventional CPUs . Parallel computing has advantages in
graphics processing , data compression , biometrics , stream
processing algorithms , and the like .
[0082] When configured for general purpose parallel com
putation , a simpler configuration can be used . In this model ,
as shown in FIG . 3 , fixed function graphics processing units
are bypassed , creating a much simpler programming model .
In this configuration , the work distribution unit 325 assigns
and distributes blocks of threads directly to the TPCs 420 .
The threads in a block execute the same program , using a
unique thread ID in the calculation to ensure each thread
generates unique results , using the SM 440 to execute the
program and perform calculations , shared memory / L1 cache
570 communicate between threads , and the LSU 554 to read
and write Global memory through partition shared memory /
L1 cache 570 and partition unit 380 .

[0083] When configured for general purpose parallel com
putation , the SM 440 can also write commands that sched
uler unit 320 can use to launch new work on the TPCs 420 .
[0084] In one embodiment , the PPU 300 comprises a
graphics processing unit (GPU) . The PPU 300 is configured
to receive commands that specify shader programs for
processing graphics data . Graphics data may be defined as a
set of primitives such as points , lines , triangles , quads ,
triangle strips , and the like . Typically , a primitive includes
data that specifies a number of vertices for the primitive
(e . g . , in a model - space coordinate system) as well as attri
butes associated with each vertex of the primitive . The PPU
300 can be configured to process the graphics primitives to
generate a frame buffer (i . e . , pixel data for each of the pixels
of the display) .
[0085] An application writes model data for a scene (i . e . ,
a collection of vertices and attributes) to a memory such as
a system memory or memory 304 . The model data defines
each of the objects that may be visible on a display . The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed . The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data . The commands may reference different shader
programs to be implemented on the SMs 440 of the PPU 300
including one or more of a vertex shader , hull shader ,
domain shader , geometry shader , and a pixel shader . For
example , one or more of the SMS 440 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data . In one embodiment , the
different SMS 440 may be configured to execute different
shader programs concurrently . For example , a first subset of
SMs 440 may be configured to execute a vertex shader
program while a second subset of SMS 440 may be config
ured to execute a pixel shader program . The first subset of
SMS 440 processes vertex data to produce processed vertex
data and writes the processed vertex data to the L2 cache 460
and / or the memory 304 . After the processed vertex data is
rasterized (i . e . , transformed from three - dimensional data
into two - dimensional data in screen space) to produce
fragment data , the second subset of SMS 440 executes a
pixel shader to produce processed fragment data , which is
then blended with other processed fragment data and written
to the frame buffer in memory 304 . The vertex shader
program and pixel shader program may execute concur
rently , processing different data from the same scene in a
pipelined fashion until all of the model data for the scene has
been rendered to the frame buffer . Then , the contents of the
frame buffer are transmitted to a display controller for
display on a display device .
[0086] The PPU 300 may be included in a desktop com
puter , a laptop computer , a tablet computer , a smart - phone
(e . g . , a wireless , hand - held device) , personal digital assistant
(PDA) , a digital camera , a hand - held electronic device , and
the like . In one embodiment , the PPU 300 is embodied on a
single semiconductor substrate . In another embodiment , the
PPU 300 is included in a system - on - a - chip (SOC) along with
one or more other logic units such as a reduced instruction
set computer (RISC) CPU , a memory management unit
(MMU) , a digital - to - analog converter (DAC) , and the like .
[0087] In one embodiment , the PPU 300 may be included
on a graphics card that includes one or more memory
devices 304 such as GDDR5 SDRAM . The graphics card
may be configured to interface with a PCIe slot on a

US 2019 / 0180469 A1 Jun . 13 , 2019

motherboard of a desktop computer that includes , e . g . , a
northbridge chipset and a southbridge chipset . In yet another
embodiment , the PPU 300 may be an integrated graphics
processing unit (iGPU) included in the chipset (i . e . , North
bridge) of the motherboard .
[0088] Various programs may be executed within the PPU
300 in order to implement the various layers of a neural
network . For example , the device driver may launch a kernel
on the PPU 300 to implement the neural network on one SM
440 (or multiple SMS 440) . The device driver (or the initial
kernel executed by the PPU 300) may also launch other
kernels on the PPU 300 to perform other layers of the neural
network . In addition , some of the layers of the neural
network may be implemented on fixed unit hardware imple
mented within the PPU 300 . It will be appreciated that
results from one kernel may be processed by one or more
intervening fixed function hardware units before being pro
cessed by a subsequent kernel on an SM 440 .

Exemplary System
[0089] FIG . 6 illustrates an exemplary system 600 in
which the various architecture and / or functionality of the
various previous embodiments may be implemented . The
exemplary system 600 may be used to implement the system
105 for dynamic facial analysis .
10090] As shown , a system 600 is provided including at
least one central processor 601 that is connected to a
communication bus 602 . The communication bus 602 may
be implemented using any suitable protocol , such as PCI
(Peripheral Component Interconnect) , PCI - Express , AGP
(Accelerated Graphics Port) , HyperTransport , or any other
bus or point - to - point communication protocol (s) . The sys
tem 600 also includes a main memory 604 . Control logic
(software) and data are stored in the main memory 604
which may take the form of random access memory (RAM) .
10091] The system 600 also includes input devices 612 , a
graphics processor 606 , and a display 608 , i . e . a conven
tional CRT (cathode ray tube) , LCD (liquid crystal display) ,
LED (light emitting diode) , plasma display or the like . User
input may be received from the input devices 612 , e . g . ,
keyboard , mouse , touchpad , microphone , and the like . In
one embodiment , the graphics processor 606 may include a
plurality of shader modules , a rasterization module , etc .
Each of the foregoing modules may even be situated on a
single semiconductor platform to form a graphics processing
unit (GPU) .
10092] In the present description , a single semiconductor
platform may refer to a sole unitary semiconductor - based
integrated circuit or chip . It should be noted that the term
single semiconductor platform may also refer to multi - chip
modules with increased connectivity which simulate on - chip
operation , and make substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple
mentation . Of course , the various modules may also be
situated separately or in various combinations of semicon
ductor platforms per the desires of the user .
[0093] The system 600 may also include a secondary
storage 610 . The secondary storage 610 includes , for
example , a hard disk drive and / or a removable storage drive ,
representing a floppy disk drive , a magnetic tape drive , a
compact disk drive , digital versatile disk (DVD) drive ,
recording device , universal serial bus (USB) flash memory .
The removable storage drive reads from and / or writes to a
removable storage unit in a well - known manner .

[0094) Computer programs , or computer control logic
algorithms , may be stored in the main memory 604 and / or
the secondary storage 610 . Such computer programs , when
executed , enable the system 600 to perform various func
tions . The memory 604 , the storage 610 , and / or any other
storage are possible examples of computer - readable media .
Data streams associated with gestures may be stored in the
main memory 604 and / or the secondary storage 610 .
10095] In one embodiment , the architecture and / or func
tionality of the various previous figures may be implemented
in the context of the central processor 601 , the graphics
processor 606 , an integrated circuit (not shown) that is
capable of at least a portion of the capabilities of both the
central processor 601 and the graphics processor 606 , a
chipset (i . e . , a group of integrated circuits designed to work
and sold as a unit for performing related functions , etc .) ,
and / or any other integrated circuit for that matter .
[0096] Still yet , the architecture and / or functionality of the
various previous figures may be implemented in the context
of a general computer system , a circuit board system , a game
console system dedicated for entertainment purposes , an
application - specific system , and / or any other desired sys
tem . For example , the system 600 may take the form of a
desktop computer , laptop computer , server , workstation ,
game consoles , embedded system , and / or any other type of
logic . Still yet , the system 600 may take the form of various
other devices including , but not limited to a personal digital
assistant (PDA) device , head - mounted display device , an
autonomous vehicle , a mobile phone device , a television ,
etc .
[0097] Further , while not shown , the system 600 may be
coupled to a network (e . g . , a telecommunications network ,
local area network (LAN) , wireless network , wide area
network (WAN) such as the Internet , peer - to - peer network ,
cable network , or the like) for communication purposes .
10098] . While various embodiments have been described
above , it should be understood that they have been presented
by way of example only , and not limitation . Thus , the
breadth and scope of a preferred embodiment should not be
limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following claims and their equivalents .

1 . A computer - implemented method for facial analysis ,
comprising :
transforming a fully - connected layer of a first neural

network into a recurrent layer to produce a recurrent
neural network (RNN) , wherein , during training , the
fully - connected layer learned a first weight matrix , and
the recurrent layer uses the first weight matrix to
process inputs to the recurrent layer and uses a second
weight matrix to process hidden state produced by the
recurrent layer for a previous time step ;

receiving video data representing a sequence of image
frames including at least one head ;

extracting spatial features comprising pitch , yaw , and roll
angles of the at least one head from the video data by
a second neural network ; and

processing , by the RNN , the spatial features for two or
more image frames in the sequence of image frames to
produce head pose estimates for the at least one head .

2 . The method of claim 1 , wherein the spatial features are
extracted for each image frame in the sequence of image
frames .

US 2019 / 0180469 A1 Jun . 13 , 2019

3 . The method of claim 1 , wherein the second neural
network is trained using a first training dataset and the RNN
is trained using a second training dataset .

4 . The method of claim 1 , wherein the second neural
network is a convolutional neural network (CNN) .

5 . The method of claim 1 , wherein the second neural
network and the RNN are simultaneously trained using one
training dataset .

6 . The method of claim 1 , wherein the sequence of image
frames includes facial landmarks associated with the at least
one head and ,

the neural network extracts additional spatial features
from the video data ; and

the RNN processes the additional spatial features for the
two or more image frames in the sequence of image
frames to produce facial landmark tracking data .

7 . The method of claim 6 , wherein the facial landmark
tracking data comprises three - dimensional positions .

8 . The method of claim 1 , wherein the RNN is a fully
connected RNN .

9 - 10 . (canceled)
11 . A facial analysis system , comprising :
a first neural network configured to :

receive video data representing a sequence of image
frames including at least one head ;

extract spatial features comprising pitch , yaw , and roll
angles of the at least one head from the video data ;
and

a recurrent neural network (RNN) that is coupled to the
neural network and configured to process the spatial
features for two or more image frames in the sequence
of image frames to produce head pose tracking data for
the at least one head , wherein a fully - connected layer of
a second neural network is transformed into a recurrent
layer to produce the RNN , the recurrent layer using a
first weight matrix to process inputs to the recurrent
layer and using a second weight matrix to process
hidden state produced by the recurrent layer for a
previous time step , and the first matrix is learned by the
fully - connected layer during training .

12 . The facial analysis system of claim 11 , wherein the
spatial features are extracted for each image frame in the
sequence of image frames .

13 . The facial analysis system of claim 11 , wherein the
first neural network is trained using a first training dataset
and the RNN is trained using a second training dataset .

14 . The facial analysis system of claim 11 , wherein the
first neural network is a convolutional neural network
(CNN) .

15 . The facial analysis system of claim 11 , wherein the
first neural network and the RNN are simultaneously trained
using one training dataset

16 . The facial analysis system of claim 11 , wherein the
sequence of image frames includes facial landmarks asso
ciated with the at least one head and

the first neural network is further configured to extract
additional spatial features from the video data ; and

the RNN is further configured to process the additional
spatial features for the two or more image frames in the
sequence of image frames to produce facial landmark
tracking data .

17 . The facial analysis system of claim 16 , wherein the
facial landmark tracking data comprises three - dimensional
positions .

18 . The facial analysis system of claim 11 , wherein the
RNN is a fully connected RNN .

19 . The facial analysis system of claim 11 , wherein the
video data comprises color values .

20 . A non - transitory computer - readable media storing
computer instructions for facial analysis that , when executed
by one or more processors , cause the one or more processors
to perform the steps of :

transforming a fully - connected layer of a first neural
network into a recurrent layer to produce a recurrent
neural network (RNN) , wherein , during training , the
fully - connected layer learned a first weight matrix , and
the recurrent layer uses the first weight matrix to
process inputs to the recurrent layer and uses a second
weight matrix to process hidden state produced by the
recurrent layer for a previous timestep ;

receiving video data representing a sequence of image
frames including at least one head ;

extracting spatial features comprising pitch , yaw , and roll
angles of the at least one head from the video data by
a second neural network ; and

processing , by the RNN , the spatial features for two or
more image frames in the sequence of image frames to
produce head pose estimates for the at least one head .

21 . The method of claim 1 , wherein , during additional
training , the second weight matrix is learned by the RNN .

22 . The method of claim 5 , wherein the training dataset
comprises a synthetic head pose dataset comprising video
images and ground truth annotations .

* * * *

