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SYSTEMS AND METHODS FOR DYNAMIC 
FACIAL ANALYSIS USING A RECURRENT 

NEURAL NETWORK 

FIELD OF THE INVENTION 
[ 0001 ] The present invention relates to facial analysis , and 
more particularly to facial analysis using neural networks . 

[ 0012 ] FIG . 2F illustrates yet another block diagram of a 
system for dynamic facial analysis of video data , in accor 
dance with one embodiment ; 
[ 0013 ] FIG . 3 illustrates a parallel processing unit , in 
accordance with one embodiment ; 
[ 0014 ] FIG . 4A illustrates a general processing cluster of 
the parallel processing unit of FIG . 3 , in accordance with one 
embodiment ; 
[ 0015 ] FIG . 4B illustrates a partition unit of the parallel 
processing unit of FIG . 3 , in accordance with one embodi 
ment ; 
[ 0016 ] FIG . 5 illustrates the streaming multi - processor of 
FIG . 4A , in accordance with one embodiment ; 
[ 0017 ] FIG . 6 illustrates an exemplary system in which the 
various architecture and / or functionality of the various pre 
vious embodiments may be implemented . 

BACKGROUND 

[ 0002 ] Facial analysis of video image data is used for 
facial animation capture , human activity recognition , and 
human - computer interaction . Facial analysis typically 
includes head pose estimation and facial landmark localiza 
tion . Facial analysis in videos is key for many applications 
such as facial animation capture , driver assistance systems , 
and human - computer interaction . Conventional techniques 
for facial analysis in videos estimate facial properties for 
individual frames and then refine the estimates using tem 
poral Bayesian filtering . The two inter - related tasks of visual 
estimation and temporal tracking are isolated and careful 
manual model designing and parameter tuning for the 
Bayesian filtering is required . There is a need for addressing 
these issues and / or other issues associated with the prior art . 

DETAILED DESCRIPTION 

SUMMARY 
[ 0003 ] A method , computer readable medium , and system 
are disclosed for performing dynamic facial analysis in 
videos . The method includes the steps of receiving video 
data representing a sequence of image frames including at 
least one head and extracting , by a neural network , spatial 
features comprising pitch , yaw , and roll angles of the at least 
one head from the video data . The method also includes the 
step of processing , by a recurrent neural network , the spatial 
features for two or more image frames in the sequence of 
image frames to produce head pose estimates for the at least 
one head . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0004 ] FIG . 1A illustrates a flowchart of a method for 
performing dynamic facial analysis in videos , in accordance 
with one embodiment ; 
[ 0005 ] FIG . 1B illustrates a block diagram of a system for 
dynamic facial analysis of video data , in accordance with 
one embodiment ; 
[ 0006 ] FIG . 1C illustrates another block diagram of the 
system for dynamic facial analysis of video data shown in 
FIG . 1B , in accordance with one embodiment ; 
[ 0007 ] FIG . 2A illustrates a block diagram of a neural 
network for generating per - frame head pose estimates , in 
accordance with one embodiment ; 
[ 0008 ] FIG . 2B illustrates a block diagram of a RNN for 
generating per - frame head pose estimates , in accordance 
with one embodiment ; 
10009 ] FIG . 2C illustrates a block diagram of a neural 
network for generating per - frame facial landmarks , in accor 
dance with one embodiment ; 
[ 0010 ] FIG . 2D illustrates a block diagram of a RNN for 
generating per - frame facial landmarks , in accordance with 
one embodiment ; 
[ 0011 ] FIG . 2E illustrates another flowchart of a method 
for training and deploying the dynamic facial analysis 
systems shown in FIGS . 1B and 1C , in accordance with one 
embodiment ; 

[ 0018 ] The present disclosure describes a facial analysis 
system including a neural network and recurrent neural 
network ( RNN ) for dynamic estimation and tracking of 
facial features in video image data . The facial analysis 
system receives color data ( e . g . , RGB component values ) , 
without depth , as an input and is trained using a large - scale 
synthetic dataset to estimate and track either head poses or 
three - dimensional ( 3D ) positions of facial landmarks . In 
other words , the same facial analysis system may be trained 
for estimating and tracking either head poses or 3D facial 
landmarks . In the context of the following description a head 
pose estimate is defined by a pitch , yaw , and roll angle . In 
one embodiment , the neural network is a convolutional 
neural network ( CNN ) . In one embodiment , the RNN is used 
for both estimation and tracking of facial features in videos . 
In contrast with conventional techniques for facial analysis 
of videos , the required parameters for tracking are learned 
automatically from training data . Additionally , the facial 
analysis system provides a holistic solution for both visual 
estimation and temporal tracking of various types of facial 
features from consecutive frames of video . 
[ 0019 ] FIG . 1 illustrates a flowchart of a method 100 for 
dynamic facial analysis , in accordance with one embodi 
ment . The method 100 may be performed by a program , 
custom circuitry , or by a combination of custom circuitry 
and a program . For example , the method 100 may be 
executed by a GPU ( graphics processing unit ) , CPU ( central 
processing unit ) , neural network , or any processor capable 
of executing the facial analysis framework . Furthermore , 
persons of ordinary skill in the art will understand that any 
system that performs method 100 is within the scope and 
spirit of embodiments of the present invention . 
[ 0020 ] At step 110 , video data representing a sequence of 
image frames including at least one head is received . In one 
embodiment , the video data comprises color data , such as 
red , green , and blue component values for each pixel in each 
one of the image frames . In one embodiment , the video data 
does not include depth data for each image frame . In one 
embodiment , the video data are real - time images captured 
by a camera . In one embodiment , the video data is included 
in a training dataset . In one embodiment , the training dataset 
is a synthetic training dataset that includes accurate labels 
for both head pose and facial landmarks . In one embodi 
ment , the synthetic training dataset includes over 500 , 000 
frames of video data . 
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[ 0021 ] At step 120 , spatial features comprising pitch , yaw , 
and roll angles of the at least one head are extracted from the 
video data by a neural network . In one embodiment , the 
neural network is a convolutional neural network ( CNN ) . In 
one embodiment , the CNN comprises a vision geometry 
group ( VGG16 ) neural network . In the context of the 
following description the pitch , yaw , and roll angles define 
an estimate of the head pose in the video data . 
[ 0022 ] . At step 130 , the spatial features for two or more 
image frames in the sequence of image frames are processed 
by a recurrent neural network ( RNN ) to produce head pose 
estimate for the at least one head . In one embodiment , the 
RNN is a gated recurrent unit ( GRU ) neural network . In one 
embodiment , the RNN is a long short - term memory ( LSTM ) 
neural network . In one embodiment , the RNN is a fully 
connected RNN ( FC - RNN ) . In one embodiment , the neural 
network is trained separately from the RNN . In one embodi 
ment , the neural network and the RNN are each trained to 
estimate and track head poses in the video data . In one 
embodiment , the neural network and the RNN are each 
trained to estimate and track three - dimensional ( 3D ) facial 
landmarks in the video data . In the context of the following 
description a facial landmark is a 3D position in space 
corresponding to a location on a head . 
[ 0023 ] More illustrative information will now be set forth 
regarding various optional architectures and features with 
which the foregoing framework may or may not be imple 
mented , per the desires of the user . It should be strongly 
noted that the following information is set forth for illus 
trative purposes and should not be construed as limiting in 
any manner . Any of the following features may be optionally 
incorporated with or without the exclusion of other features 
described 
10024 ] FIG . 1B illustrates a block diagram of a system 105 
for dynamic facial analysis of video data , in accordance with 
one embodiment . The system 105 may be configured to 
perform the method 100 of FIG . 1A . The system 105 
includes a neural network 115 and a RNN 125 . The neural 
network 115 and / or the RNN 125 may be implemented by a 
graphics processor or any processor capable of performing 
the necessary operations of the method 100 . The system 105 
provides a generalized and integrated solution for estimation 
and tracking of various facial features for dynamic facial 
analysis . 
[ 0025 ] The neural network 115 receives video input 106 
that comprises video data representing a sequence of image 
frames including at least one head . The neural network 115 
extracts spatial features from the video input 106 and 
produces per - frame estimates 116 . In one embodiment , the 
per - frame estimates 116 are per - frame head pose estimates . 
In another embodiment , the per - frame estimates 116 are 
per - frame facial landmark estimates . The per - frame esti 
mates 116 comprises pitch , yaw , and roll angles of the at 
least one head for each frame of the video input 106 . The 
RNN 125 processes the per - frame estimates 116 and pro 
duces tracking data , specifically , output tracks 126 . In the 
context of the following description , output tracks are sta 
bilized and denoised estimates for each of the frames in the 
entire sequence of image frames . In one embodiment , the 
tracking data are head pose tracking data . In another 
embodiment , the tracking data are facial landmark tracking 
data . 
[ 0026 ] In one embodiment , the video input 106 includes at 
least a portion of a first training dataset when the neural 

network 115 and the RNN 125 are trained , separately or 
together , to estimate and track head poses in the video input 
106 . In another embodiment , the video input 106 includes at 
least a portion of a second training dataset when the neural 
network 115 and the RNN 125 are trained , separately or 
together , to estimate and track 3D facial landmarks in the 
video input 106 . The first training dataset may correspond to 
head poses and the second training dataset may correspond 
to facial landmarks . In one embodiment , during training , the 
3D facial landmarks are directly regressed in a single pass 
through the neural network 115 and the RNN 125 . In 
contrast , conventional techniques for training a facial land 
mark tracking system require spatial recurrent learning to 
progressively refine predictions in multiple passes through 
the facial landmark tracking system . The single pass pro 
vides a significant advantage in terms of computational cost 
and performance compared with conventional techniques . 
[ 0027 ] The frames of video data may be encoded as a 
multi - dimensional tensor in dimensions of x and y ( e . g . , 
frame size in pixels ) , channels ( e . g . , RGB ) , and temporal 
length ( e . g . , frame number ) . The neural network 115 may be 
configured to perform convolution in the spatial and tem 
poral domains and maximum pooling operations to process 
the video data before using one or more fully connected 
layers to produce the per - frame estimates 116 . 
[ 0028 ] The RNN 125 provides a learning - based approach 
for time series prediction . In one embodiment , the RNN 125 
is implemented using a long short - term memory ( LSTM ) to 
adaptively discover temporal dependencies at different time 
scales . In one embodiment , the RNN 125 is implemented 
using a gated recurrent unit ( GRU ) to adaptively discover 
temporal dependencies at different time scales . The RNN 
125 is a sequence - based model that captures temporal evo 
lution , maintaining a recurrent hidden state for time step t , 
h , whose activation depends on that of the previous time 
step t - 1 . In one embodiment , h , is computed as : 

h = H ( Whz - 1 + Wix + bn ) ( 1 ) 

where H is an activation function , Win is the hidden - to 
hidden matrix , h , is the hidden state from the previous time 
step , Win is the input - to - hidden matrix , x , is the input to the 
current layer of the RNN 125 , and bnis a bias value . A target 
output y , is given by y = Whoh , + b . Consider a linear acti 
vation function H ( x ) = x and subsume the bias term b , into 
the hidden state h , and Equation ( 1 ) can be simplified to : 

hi = Wunhy - 1 + Wikt ( 2 ) 

where , in one embodiment , Wnn and Win are fixed after the 
RNN 125 is trained . In other words , the values of Win and 
W ; , that are determined during training are not changed or 
updated when the RNN 125 is deployed for classification . 
[ 0029 ] The computation performed by the RNN 125 
resembles Bayesian filters . However , in contrast with Bayes 
ian filter implementations , the RNN 125 avoids tracker 
engineering for computations performed on the per - frame 
estimates 116 . The RNN 125 provides a unified approach to 
learn the tracking features and parameters directly from data , 
and therefore does not require tracker - engineering . In con 
trast , conventional facial analysis techniques rely on prob 
lem - specific design and user tuning of tracking , i . e . , tracker 
engineering . For example , tracking can be performed on 
face bounding boxes , rigid transformation parameters of 
heads , or facial features . Users are required to set the 
parameters in Bayesian filters based on domain knowledge . 
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( 0030 ) When a linear Kalman filter is used in a conven 
tional implementation of a Bayesian filter , the optimal 
estimator is : 

( 4 ) hi = Whi - 1 + K ( Xi – Vht - 1 ) ( 3 ) 

= ( W – K , V ) h - 1 + Kpx 
= Winha - 1 + Wb ; X ; ) 

( 5 ) 

bi 

where h , is the state , x , is a measurement at time t , K , is the 
Kalman gain matrix that updates over time , W and V are the 
matrices for the state transition and measurement models , 
Won = W - KV and Wb = K , are the two weight matrices that 
relate hz - 1 and x , to ht . With the estimated state h , , the target 
output can be estimated as y = Vh . The goal of Bayesian 
filtering is to estimate the states h , ( and optionally the target 
output y . ) . For the Kalman filter , h , 1h , and xlh , are each 
assumed to have a Gaussian distribution and linear models 
are used for state transitions and measurement ( e . g . , matrices 
W and V ) . 
[ 0031 ] Note the similarity between Equations ( 1 ) and ( 3 ) : 
the optimal estimate of the state h , is a weighted linear 
combination of the estimate of the previous state h , and the 
current input xx . The two weight matrices for the Kalman 
filter are Wat and W and the two matrices for the RNN 
125 are Win and Win . One important difference between the 
RNN 125 and Bayesian filters ( e . g . , a Kalman filter or 
particle filter ) , is that the two weight matrices Wbh and W bit 
change over time , indicating that the computation is an 
adaptive estimator . In contrast , for the RNN 125 , the two 
learned weight matrices , Wnn and Win , are usually fixed after 
the RNN 125 is trained . 
[ 0032 ] In practice , there are two other important differ 
ences between the RNN 125 and Bayesian filters . Firstly , for 
Bayesian filters , most effort goes into designing the state 
transition and measurement models which is usually chal 
lenging for complex tracking tasks ( e . g . , non - rigid tracking 
of faces ) . The RNN 125 is more generally applicable to 
almost any tracking task , since the optimal parameters , Wh 
and Win , can be learned from the training data . Secondly , 
integrating Bayesian filters with the static estimators for 
generic vision tasks is also challenging . In contrast , as 
shown in FIG . 1B , the RNN 125 can be concatenated with 
the neural network 115 , such as a CNN that performs 
frame - wise feature extraction generating per - frame esti 
mates 116 , to form the end - to - end system 105 for both 
estimation and tracking . The RNN 125 maps a sequence of 
per - frame estimates 116 to match the sequence of known 
ground truth output training data . In one embodiment , the 
neural network 115 is trained is trained for both estimation 
and tracking separately from the RNN 125 . In another 
embodiment , the neural network 115 is trained for both 
estimation and tracking end - to - end with the RNN 125 . 
[ 0033 ] FIG . 1C illustrates another block diagram of the 
system 105 for dynamic facial analysis of video data shown 
in FIG . 1B , in accordance with one embodiment . In one 
embodiment , the neural network 115 is a VGG16 neural 
network 135 and one additional fully - connected layer 140 . 
In one embodiment , both Wh and Win are initialized to 
random values and the RNN 125 is trained separately from 
the neural network 115 . In one embodiment , the RNN 125 

is pre - trained CNN with fully - connected layers that are 
transformed into recurrent layers . 
[ 0034 ] Suppose that a pre - trained fully - connected layer at 
timestamp t has the structure : 

f = H ( WX + b ) 
where Wie is the pre - trained input - to - output matrix , x , is the 
output of the previous feed - forward layer and be is the bias . 
The RNN 125 transforms a pre - trained fully - connected layer 
into a recurrent layer through : 

f = H ( W1X + Whit - 167 ) 
The RNN 125 structure , initialized with a pre - trained fully 
connected layer only introduces a single hidden - to - hidden 
weight matrix Win that needs to be trained from scratch 
while the other weight matrices are pre - trained and can be 
merely fine - tuned . 
[ 0035 ] FIG . 2A illustrates a block diagram of the neural 
network 115 for generating the per - frame head pose esti 
mates 116 , in accordance with one embodiment . In one 
embodiment , the neural network 115 is implemented as a 
CNN including 3x3 convolutional layers 205 that each 
include 64 neurons followed by 3x3 convolutional layers 
210 that each include 128 neurons followed by 3x3 convo 
lutional layers 215 that each include 256 neurons followed 
by 3x3 convolutional layers 220 that each include 512 
neurons followed by 3x3 convolutional layers 225 that each 
include 512 neurons . The last 3x3 convolutional layer 225 
generates the per - frame head pose estimates 116 . In one 
embodiment , each group of 3x3 convolutional layers is 
followed by a pooling layer . 
[ 0036 ] FIG . 2B illustrates a block diagram of the RNN 125 
for generating a stream of output head poses 226 , in accor 
dance with one embodiment . In one embodiment , the RNN 
125 includes a fully - connected layer 230 that includes 4096 
neurons followed by a fully - connected layer 240 that 
includes 4096 neurons followed by a fully - connected layer 
245 that generates three values defining the output head pose 
226 . The three output values correspond to the pitch , yaw , 
and roll angles . The recurrent aspect of the RNN 125 is 
shown by the vertical connections indicating that output 
values for each of the fully connected layers 230 and 240 are 
fed back into each of the fully connected layers , respectively , 
to compute one or more subsequent output values . In one 
embodiment , the fully - connected layer 230 and / or 240 are a 
pre - trained fully - connected CNN layer that is converted into 
recurrent fully - connected layer using equation ( 5 ) . 
[ 0037 ] FIG . 2C illustrates a block diagram of the neural 
network 115 for generating per - frame facial landmarks , in 
accordance with one embodiment . In one embodiment , the 
neural network 115 is implemented as a CNN including 3x3 
convolutional layers 205 that each include 64 neurons 
followed by 3x3 convolutional layers 210 that each include 
128 neurons followed by 3x3 convolutional layers 215 that 
each include 256 neurons followed by 3x3 convolutional 
layers 220 that each include 512 neurons followed by 3x3 
convolutional layers 225 that each include 512 neurons . The 
last 3x3 convolutional layer 225 generates the per - frame 
facial landmark estimates 116 . In one embodiment , each 
group of 3x3 convolutional layers is followed by a pooling 
layer . 
[ 0038 ] FIG . 2D illustrates a block diagram of the RNN 
125 for generating per - frame facial landmarks , in accor 
dance with one embodiment . In one embodiment , the RNN 
125 includes a fully - connected layer 230 that includes 4096 
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neurons followed by a fully - connected layer 240 that 
includes 4096 neurons followed by a fully - connected layer 
250 that generates 136 values defining the output facial 
landmarks 246 . The 136 output values correspond to the 
different 3D positions on the head . 
[ 0039 ] In one embodiment , the RNN 125 is trained using 
a set of regularization techniques using a variational dropout 
to repeat the same dropout mask with 0 . 25 rate at each time 
step for both the feed - forward and recurrent connections . In 
contrast , conventional techniques sample different dropout 
masks at each time step for feed - forward connections only 
and use no dropout for recurrent connections . In one 
embodiment , soft gradient clipping is applied during train 
ing to prevent gradients from exploding for layers of the 
RNN 125 . For example , in on embodiment , a least square 
errors ( 12 ) loss function is used during training , and if the 
12 - norm of gradients | | g | | is larger than a threshold t = 10 , the 
gradients are rescaled to gcgt / g | l . 
[ 0040 ] In one embodiment , a large - scale synthetic head 
pose dataset is generated to use for training the system 105 
to generate output tracks 126 ( i . e . , output head poses 226 ) . 
In one embodiment , the large - scale synthetic head pose 
dataset contains 10 subjects , 70 motion tracks , and 510 , 960 
frames in total . Generation of the large - scale synthetic head 
pose dataset is needed because while there are several 
datasets available for head pose estimation from still images , 
there are currently very limited video - based datasets . Due to 
various difficulties in ground truth collection , head pose 
datasets usually have errors and noises in the ground truth 
annotations . For example , a conventional dataset has , on an 
average , 1 degree of error . In contrast , the large - scale 
synthetic head pose dataset has accurate ground truth and 
includes high resolutions video sequences . 
[ 0041 ] When the neural network 115 and RNN 125 are 
trained end - to - end the estimation error is reduced and , over 
time , a smoother track is generated , indicating that the 
system 105 learns the temporal variation of head poses in 
videos . In contrast , Kalman filtering ( and similarly particle 
filtering ) can only reduce the variability / noise in the per 
frame estimates over time , but cannot reduce the estimation 
errors . 
[ 0042 ] The second application for dynamic facial analysis 
is facial landmark localization in videos . In one embodi 
ment , as a pre - processing step , a CNN is trained to perform 
face detection on every frame . For each video , the central 
positions of the detected facial regions are smoothed tem 
porally with a Gaussian filter , and the maximum size of the 
detected bounding boxes is used to extract a face - centered 
sequence for use as a training dataset for the system 105 . The 
pre - processing step stabilizes face detections over time and 
interpolates face regions for the few frames with missed face 
detection . 
[ 0043 ] In one embodiment , several types of data augmen 
tation are employed to generate the training dataset . Data 
augmentation may include horizontal mirroring of the 
images , playing the image sequences in reverse , and small 
random scaling and translation of the face windows . In one 
embodiment , an R2 loss function is used to train the RNN . 
125 for facial landmark localization and head pose estima 
tion . When the RNN 125 is trained for facial landmark 
estimation , the output layer has 136 neurons corresponding 
to locations of 68 facial landmarks compared with 3 neurons 
corresponding to the pitch , yaw , and roll angles when the 
RNN 125 is trained for head pose estimation . 

[ 0044 ] FIG . 2E illustrates another flowchart of a method 
255 for training and deploying the dynamic facial analysis 
system 105 shown in FIGS . 13 and 1C , in accordance with 
one embodiment . The method 255 may be performed by a 
program , custom circuitry , or by a combination of custom 
circuitry and a program . For example , the method 255 may 
be executed by the system 105 , a GPU ( graphics processing 
unit ) , CPU ( central processing unit ) , neural network , or any 
processor capable of executing the facial analysis frame 
work . Furthermore , persons of ordinary skill in the art will 
understand that any system that performs method 255 is 
within the scope and spirit of embodiments of the present 
invention . 
[ 0045 ] At step 260 a large - scale synthetic dataset is gen 
erated for training a dynamic facial analysis system , such as 
the system 105 . In one embodiment , the dataset includes a 
first portion of training data for training the neural network 
115 and a second portion of training data for training the 
RNN 125 . In another embodiment , the training data in the 
dataset is used to train both the neural network 115 and the 
RNN 125 . 
[ 0046 ] Step 280 may be completed in parallel with steps 
265 , 270 , and 275 . In one embodiment , the large - scale 
synthetic dataset is used to simultaneously train both the 
neural network 115 and the RNN 125 . Alternatively , step 
280 may be completed serially , before or after any of steps 
265 , 270 , and 275 . At step 280 , a neural network , such as the 
neural network 115 is trained to generate per - frame esti 
mates 116 using the large - scale synthetic dataset . The per 
frame estimates 116 may be either per - frame head pose 
estimates or per - frame facial landmark estimates . During 
training , the per - frame estimates 116 are compared with 
ground truth training samples included in the large - scale 
synthetic dataset to compute estimate errors . Given the 
estimate errors , parameters in each layer of the neural 
network 115 are updated in the direction of error reduction . 
The training procedure may be repeated iteratively until a 
target accuracy and convergence is achieved . 
[ 0047 ] At step 265 , a CNN is pre - trained using the large 
scale synthetic dataset . At step 270 , the CNN is converted 
into an RNN , such as the RNN 125 . In one embodiment , 
equation ( 5 ) is used to transform the pre - trained CNN into 
an RNN . At step 275 , the RNN 125 is fine - tuned using the 
large - scale synthetic dataset to produce a trained RNN 125 . 
At step 285 , the system 105 , including the trained neural 
network 115 and the trained RNN 125 , is deployed to 
perform dynamic facial analysis . Importantly , when the 
system 105 is deployed to generate tracking data based on 
sequences of image frames , the system 105 operates in a 
single - pass manner . In other words , the tracking data that is 
output by the system 105 for one image frame is not 
provided as an input to produce the tracking data for a 
subsequent image frame . The single - pass operation reduces 
latency from when a video is input to when the tracking data 
is generated . The large - scale synthetic dataset increases 
performance , specifically accuracy of the system 105 . In one 
embodiment , the system 105 is first trained to produce only 
head pose estimates and is later trained to produce only 
facial landmark estimates . 
[ 0048 ] FIG . 2F illustrates yet another block diagram of a 
system 203 for dynamic facial analysis of video data , in 
accordance with one embodiment . The system 203 includes 
the neural network 115 and an RNN 200 . The neural network 
115 is trained to produce per - frame estimates 216 that may 
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include both head pose estimates and facial landmark esti - 
mates . In one embodiment , the RNN 200 includes the 
fully - connected layer 230 and the fully - connected layer 240 . 
The output of the fully - connected layer 240 is provided to 
both the fully - connected layer 245 and 250 . The fully 
connected layers 230 and 240 may be trained to generate 
stabilized and denoised feature vectors corresponding to the 
image sequence in the video input 106 for both head poses 
and facial landmarks . 
[ 0049 ] The fully - connected layer 245 generates three val 
ues defining the output head pose 226 and fully - connected 
layer 250 that generates 136 values defining the output facial 
landmarks 246 . The three output values correspond to the 
pitch , yaw , and roll angles . The recurrent aspect of the RNN 
200 is shown by the feedback connections indicating that 
output values for each of the fully connected layers 230 and 
240 are fed back into each of the fully connected layers , 
respectively , to compute one or more subsequent output 
values . In one embodiment , the fully - connected layer 230 
and / or 240 are a pre - trained fully - connected CNN layer that 
is converted into recurrent fully - connected layer using equa 
tion ( 5 ) . In one embodiment , the RNN 200 is trained 
end - to - end with the neural network 115 using a single 
training dataset . In another embodiment , the RNN 200 is 
trained separately from the neural network , using a single 
training dataset or separate training datasets . 
[ 0050 ] Compared with traditional Bayesian filters , the 
RNN - based system 105 learns to jointly estimate the per 
frame estimates 116 ( or measurements ) and to temporally 
track the per - frame estimates 116 with a single end - to - end 
network provided by the neural network 115 and the RNN 
125 . Moreover , the system 105 does not rely on complicated 
and problem - specific tracker - engineering or feature - engi 
neering , that are required in conventional techniques . Addi 
tionally , the RNN - based system 105 provides a generic 
approach that can be extended to other tasks of facial 
analysis in videos . 
[ 0051 ] The system 105 provides a generalized and inte 
grated solution for estimation and tracking of various facial 
features for dynamic facial analysis . In contrast with con 
ventional techniques that are specifically designed only for 
facial landmark tracking , the system 105 may be employed 
to perform various feature tracking and facial analysis tasks 
for video data , such as tracking head pose , facial landmarks , 
facial expression , and facial segmentation . 

provided herein for illustrative purposes , it should be 
strongly noted that such processor is set forth for illustrative 
purposes only , and that any processor may be employed to 
supplement and / or substitute for the same . 
[ 0054 ] As shown in FIG . 3 , the PPU 300 includes an 
Input / Output ( I / O ) unit 305 , a host interface unit 310 , a front 
end unit 315 , a scheduler unit 320 , a work distribution unit 
325 , a hub 330 , a crossbar ( Xbar ) 370 , one or more general 
processing clusters ( GPCs ) 350 , and one or more partition 
units 380 . The PPU 300 may be connected to a host 
processor or other peripheral devices via a system bus 302 . 
The PPU 300 may also be connected to a local memory 
comprising a number of memory devices 304 . In one 
embodiment , the local memory may comprise a number of 
dynamic random access memory ( DRAM ) devices . 
[ 0055 ) The 1 / 0 unit 305 is configured to transmit and 
receive communications ( i . e . , commands , data , etc . ) from a 
host processor ( not shown ) over the system bus 302 . The I / O 
unit 305 may communicate with the host processor directly 
via the system bus 302 or through one or more intermediate 
devices such as a memory bridge . In one embodiment , the 
1 / 0 unit 305 implements a Peripheral Component Intercon 
nect Express ( PCIe ) interface for communications over a 
PCIe bus . In alternative embodiments , the I / O unit 305 may 
implement other types of well - known interfaces for com 
municating with external devices . 
10056 ] The I / O unit 305 is coupled to a host interface unit 
310 that decodes packets received via the system bus 302 . In 
one embodiment , the packets represent commands config 
ured to cause the PPU 300 to perform various operations . 
The host interface unit 310 transmits the decoded commands 
to various other units of the PPU 300 as the commands may 
specify . For example , some commands may be transmitted 
to the front end unit 315 . Other commands may be trans 
mitted to the hub 330 or other units of the PPU 300 such as 
one or more copy engines , a video encoder , a video decoder , 
a power management unit , etc . ( not explicitly shown ) . In 
other words , the host interface unit 310 is configured to route 
communications between and among the various logical 
units of the PPU 300 . 
[ 0057 ] In one embodiment , a program executed by the 
host processor encodes a command stream in a buffer that 
provides workloads to the PPU 300 for processing . A 
workload may comprise a number of instructions and data to 
be processed by those instructions . The buffer is a region in 
a memory that is accessible ( i . e . , read / write ) by both the host 
processor and the PPU 300 . For example , the host interface 
unit 310 may be configured to access the buffer in a system 
memory connected to the system bus 302 via memory 
requests transmitted over the system bus 302 by the I / O unit 
305 . In one embodiment , the host processor writes the 
command stream to the buffer and then transmits a pointer 
to the start of the command stream to the PPU 300 . The host 
interface unit 310 provides the front end unit 315 with 
pointers to one or more command streams . The front end 
unit 315 manages the one or more streams , reading com 
mands from the streams and forwarding commands to the 
various units of the PPU 300 . 
10058 ] The front end unit 315 is coupled to a scheduler 
unit 320 that configures the various GPCs 350 to process 
tasks defined by the one or more streams . The scheduler unit 
320 is configured to track state information related to the 
various tasks managed by the scheduler unit 320 . The state 
may indicate which GPC 350 a task is assigned to , whether 

Parallel Processing Architecture 
[ 0052 ] FIG . 3 illustrates a parallel processing unit ( PPU ) 
300 , in accordance with one embodiment . The PPU 300 may 
be configured to implement the system 105 . 
[ 0053 ] In one embodiment , the PPU 300 is a multi 
threaded processor that is implemented on one or more 
integrated circuit devices . The PPU 300 is a latency hiding 
architecture designed to process a large number of threads in 
parallel . A thread ( i . e . , a thread of execution ) is an instan 
tiation of a set of instructions configured to be executed by 
the PPU 300 . In one embodiment , the PPU 300 is a graphics 
processing unit ( GPU ) configured to implement a graphics 
rendering pipeline for processing three - dimensional ( 3D ) 
graphics data in order to generate two - dimensional ( 2D ) 
image data for display on a display device such as a liquid 
crystal display ( LCD ) device . In other embodiments , the 
PPU 300 may be utilized for performing general - purpose 
computations . While one exemplary parallel processor is 
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the task is active or inactive , a priority level associated with 
the task , and so forth . The scheduler unit 320 manages the 
execution of a plurality of tasks on the one or more GPCs 
350 . 

for processing tasks . In one embodiment , each GPC 350 
includes a pipeline manager 410 , a pre - raster operations unit 
( PROP ) 415 , a raster engine 425 , a work distribution cross 
bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 
and one or more Texture Processing Clusters ( TPCs ) 420 . It 
will be appreciated that the GPC 350 of FIG . 4A may include 
other hardware units in lieu of or in addition to the units 
shown in FIG . 4A . 
10064 ] In one embodiment , the operation of the GPC 350 
is controlled by the pipeline manager 410 . The pipeline 
manager 410 manages the configuration of the one or more 
TPCs 420 for processing tasks allocated to the GPC 350 . In 
one embodiment , the pipeline manager 410 may configure at 
least one of the one or more TPCs 420 to implement at least 
a portion of a graphics rendering pipeline . For example , a 
TPC 420 may be configured to execute a vertex shader 
program on the programmable streaming multiprocessor 
( SM ) 440 . The pipeline manager 410 may also be configured 
to route packets received from the work distribution unit 325 
to the appropriate logical units within the GPC 350 . For 
example , some packets may be routed to fixed function 
hardware units in the PROP 415 and / or raster engine 425 
while other packets may be routed to the TPCs 420 for 
processing by the primitive engine 435 or the SM 440 . 
[ 0065 ] The PROP unit 415 is configured to route data 
generated by the raster engine 425 and the TPCs 420 to a 
Raster Operations ( ROP ) unit in the partition unit 380 , 
described in more detail below . The PROP unit 415 may also 
be configured to perform optimizations for color blending , 
organize pixel data , perform address translations , and the 
like . 

[ 0059 ] The scheduler unit 320 is coupled to a work 
distribution unit 325 that is configured to dispatch tasks for 
execution on the GPCs 350 . The work distribution unit 325 
may track a number of scheduled tasks received from the 
scheduler unit 320 . In one embodiment , the work distribu 
tion unit 325 manages a pending task pool and an active task 
pool for each of the GPCs 350 . The pending task pool may 
comprise a number of slots ( e . g . , 32 slots ) that contain tasks 
assigned to be processed by a particular GPC 350 . The active 
task pool may comprise a number of slots ( e . g . , 4 slots ) for 
tasks that are actively being processed by the GPCs 350 . As 
a GPC 350 finishes the execution of a task , that task is 
evicted from the active task pool for the GPC 350 and one 
of the other tasks from the pending task pool is selected and 
scheduled for execution on the GPC 350 . If an active task 
has been idle on the GPC 350 , such as while waiting for a 
data dependency to be resolved , then the active task may be 
evicted from the GPC 350 and returned to the pending task 
pool while another task in the pending task pool is selected 
and scheduled for execution on the GPC 350 . 
10060 ] The work distribution unit 325 communicates with 
the one or more GPCs 350 via XBar 370 . The XBar 370 is 
an interconnect network that couples many of the units of the 
PPU 300 to other units of the PPU 300 . For example , the 
XBar 370 may be configured to couple the work distribution 
unit 325 to a particular GPC 350 . Although not shown 
explicitly , one or more other units of the PPU 300 are 
coupled to the host interface unit 310 . The other units may 
also be connected to the XBar 370 via a hub 330 . 
10061 ] The tasks are managed by the scheduler unit 320 
and dispatched to a GPC 350 by the work distribution unit 
325 . The GPC 350 is configured to process the task and 
generate results . The results may be consumed by other tasks 
within the GPC 350 , routed to a different GPC 350 via the 
XBar 370 , or stored in the memory 304 . The results can be 
written to the memory 304 via the partition units 380 , which 
implement a memory interface for reading and writing data 
to / from the memory 304 . In one embodiment , the PPU 300 
includes a number U of partition units 380 that is equal to the 
number of separate and distinct memory devices 304 
coupled to the PPU 300 . A partition unit 380 will be 
described in more detail below in conjunction with FIG . 4B . 
[ 0062 ] In one embodiment , a host processor executes a 
driver kernel that implements an application programming 
interface ( API ) that enables one or more applications execut 
ing on the host processor to schedule operations for execu 
tion on the PPU 300 . An application may generate instruc 
tions ( i . e . , API calls ) that cause the driver kernel to generate 
one or more tasks for execution by the PPU 300 . The driver 
kernel outputs tasks to one or more streams being processed 
by the PPU 300 . Each task may comprise one or more 
groups of related threads , referred to herein as a warp . A 
thread block may refer to a plurality of groups of threads 
including instructions to perform the task . Threads in the 
same group of threads may exchange data through shared 
memory . In one embodiment , a group of threads comprises 
32 related threads . 
[ 0063 ] FIG . 4A illustrates a GPC 350 of the PPU 300 of 
FIG . 3 , in accordance with one embodiment . As shown in 
FIG . 4A , each GPC 350 includes a number of hardware units 

[ 0066 ] The raster engine 425 includes a number of fixed 
function hardware units configured to perform various raster 
operations . In one embodiment , the raster engine 425 
includes a setup engine , a course raster engine , a culling 
engine , a clipping engine , a fine raster engine , and a tile 
coalescing engine . The setup engine receives transformed 
vertices and generates plane equations associated with the 
geometric primitive defined by the vertices . The plane 
equations are transmitted to the coarse raster engine to 
generate coverage information ( e . g . , an x , y coverage mask 
for a tile ) for the primitive . The output of the coarse raster 
engine may transmitted to the culling engine where frag 
ments associated with the primitive that fail a z - test are 
culled , and transmitted to a clipping engine where fragments 
lying outside a viewing frustum are clipped . Those frag 
ments that survive clipping and culling may be passed to a 
fine raster engine to generate attributes for the pixel frag 
ments based on the plane equations generated by the setup 
engine . The output of the raster engine 425 comprises 
fragments to be processed , for example , by a fragment 
shader implemented within a TPC 420 . 
[ 0067 ] Each TPC 420 included in the GPC 350 includes an 
M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , one 
or more SMS 440 , and one or more texture units 445 . The 
MPC 430 controls the operation of the TPC 420 , routing 
packets received from the pipeline manager 410 to the 
appropriate units in the TPC 420 . For example , packets 
associated with a vertex may be routed to the primitive 
engine 435 , which is configured to fetch vertex attributes 
associated with the vertex from the memory 304 . In contrast , 
packets associated with a shader program may be transmit 
ted to the SM 440 . 
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[ 0068 ] In one embodiment , the texture units 445 are 
configured to load texture maps ( e . g . , a 2D array of texels ) 
from the memory 304 and sample the texture maps to 
produce sampled texture values for use in shader programs 
executed by the SM 440 . The texture units 445 implement 
texture operations such as filtering operations using mip 
maps ( i . e . , texture maps of varying levels of detail ) . The 
texture unit 445 is also used as the Load / Store path for SM 
440 to MMU 490 . In one embodiment , each TPC 420 
includes two ( 2 ) texture units 445 . 
[ 0069 ] The SM 440 comprises a programmable streaming 
processor that is configured to process tasks represented by 
a number of threads . Each SM 440 is multi - threaded and 
configured to execute a plurality of threads ( e . g . , 32 threads ) 
from a particular group of threads concurrently . In one 
embodiment , the SM 440 implements a SIMD ( Single 
Instruction , Multiple - Data ) architecture where each thread 
in a group of threads ( i . e . , a warp ) is configured to process 
a different set of data based on the same set of instructions . 
All threads in the group of threads execute the same instruc 
tions . In another embodiment , the SM 440 implements a 
SIMT ( Single - Instruction , Multiple Thread ) architecture 
where each thread in a group of threads is configured to 
process a different set of data based on the same set of 
instructions , but where individual threads in the group of 
threads are allowed to diverge during execution . In other 
words , when an instruction for the group of threads is 
dispatched for execution , some threads in the group of 
threads may be active , thereby executing the instruction , 
while other threads in the group of threads may be inactive , 
thereby performing a no - operation ( NOP ) instead of execut 
ing the instruction . The SM 440 may be described in more 
detail below in conjunction with FIG . 5 . 
[ 0070 ] The MMU 490 provides an interface between the 
GPC 350 and the partition unit 380 . The MMU 490 may 
provide translation of virtual addresses into physical 
addresses , memory protection , and arbitration of memory 
requests . In one embodiment , the MMU 490 provides one or 
more translation lookaside buffers ( TLBs ) for improving 
translation of virtual addresses into physical addresses in the 
memory 304 . 
10071 ] FIG . 4B illustrates a memory partition unit 380 of 
the PPU 300 of FIG . 3 , in accordance with one embodiment . 
As shown in FIG . 4B , the memory partition unit 380 
includes a Raster Operations ( ROP ) unit 450 , a level two 
( L2 ) cache 460 , a memory interface 470 , and an L2 crossbar 
( XBar ) 465 . The memory interface 470 is coupled to the 
memory 304 . Memory interface 470 may implement 16 , 32 , 
64 , 128 - bit data buses , or the like , for high - speed data 
transfer . In one embodiment , the PPU 300 comprises U 
memory interfaces 470 , one memory interface 470 per 
partition unit 380 , where each partition unit 380 is connected 
to a corresponding memory device 304 . For example , PPU 
300 may be connected to up to U memory devices 304 , such 
as graphics double - data - rate , version 5 , synchronous 
dynamic random access memory ( GDDR5 SDRAM ) . In one 
embodiment , the memory interface 470 implements a 
DRAM interface and U is equal to 8 . 
10072 ] In one embodiment , the PPU 300 implements a 
multi - level memory hierarchy . The memory 304 is located 
off - chip in SDRAM coupled to the PPU 300 . Data from the 
memory 304 may be fetched and stored in the L2 cache 460 , 
which is located on - chip and is shared between the various 
GPCs 350 . As shown , each partition unit 380 includes a 

portion of the L2 cache 460 associated with a corresponding 
memory device 304 . Lower level caches may then be 
implemented in various units within the GPCs 350 . For 
example , each of the SMS 440 may implement a level one 
( L1 ) cache . The Ll cache is private memory that is dedicated 
to a particular SM 440 . Data from the L2 cache 460 may be 
fetched and stored in each of the L1 caches for processing 
in the functional units of the SMS 440 . The L2 cache 460 is 
coupled to the memory interface 470 and the XBar 370 . 
[ 0073 ] The ROP unit 450 includes a ROP Manager 455 , a 
Color ROP ( CROP ) unit 452 , and a Z ROP ( ZROP ) unit 454 . 
The CROP unit 452 performs raster operations related to 
pixel color , such as color compression , pixel blending , and 
the like . The ZROP unit 454 implements depth testing in 
conjunction with the raster engine 425 . The ZROP unit 454 
receives a depth for a sample location associated with a pixel 
fragment from the culling engine of the raster engine 425 . 
The ZROP unit 454 tests the depth against a corresponding 
depth in a depth buffer for a sample location associated with 
the fragment . If the fragment passes the depth test for the 
sample location , then the ZROP unit 454 updates the depth 
buffer and transmits a result of the depth test to the raster 
engine 425 . The ROP Manager 455 controls the operation of 
the ROP unit 450 . It will be appreciated that the number of 
partition units 380 may be different than the number of 
GPCs 350 and , therefore , each ROP unit 450 may be 
coupled to each of the GPCs 350 . Therefore , the ROP 
Manager 455 tracks packets received from the different 
GPCs 350 and determines which GPC 350 that a result 
generated by the ROP unit 450 is routed to . The CROP unit 
452 and the ZROP unit 454 are coupled to the L2 cache 460 
via an L2 XBar 465 . 
[ 0074 ] FIG . 5 illustrates the streaming multi - processor 
440 of FIG . 4A , in accordance with one embodiment . As 
shown in FIG . 5 , the SM 440 includes an instruction cache 
505 , one or more scheduler units 510 , a register file 520 , one 
or more processing cores 550 , one or more special function 
units ( SFUs ) 552 , one or more load / store units ( LSUS ) 554 , 
an interconnect network 580 , a shared memory / L1 cache 
570 . 

[ 0075 ] As described above , the work distribution unit 325 
dispatches tasks for execution on the GPCs 350 of the PPU 
300 . The tasks are allocated to a particular TPC 420 within 
a GPC 350 and , if the task is associated with a shader 
program , the task may be allocated to an SM 440 . The 
scheduler unit 510 receives the tasks from the work distri 
bution unit 325 and manages instruction scheduling for one 
or more groups of threads ( i . e . , warps ) assigned to the SM 
440 . The scheduler unit 510 schedules threads for execution 
in groups of parallel threads , where each group is called a 
warp . In one embodiment , each warp includes 32 threads . 
The scheduler unit 510 may manage a plurality of different 
warps , scheduling the warps for execution and then dis 
patching instructions from the plurality of different warps to 
the various functional units ( i . e . , cores 550 , SFUS 552 , and 
LSUs 554 ) during each clock cycle . 
[ 0076 ] In one embodiment , each scheduler unit 510 
includes one or more instruction dispatch units 515 . Each 
dispatch unit 515 is configured to transmit instructions to 
one or more of the functional units . In the embodiment 
shown in FIG . 5 , the scheduler unit 510 includes two 
dispatch units 515 that enable two different instructions from 
the same warp to be dispatched during each clock cycle . In 
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alternative embodiments , each scheduler unit 510 may 
include a single dispatch unit 515 or additional dispatch 
units 515 . 
[ 0077 ] Each SM 440 includes a register file 520 that 
provides a set of registers for the functional units of the SM 
440 . In one embodiment , the register file 520 is divided 
between each of the functional units such that each func 
tional unit is allocated a dedicated portion of the register file 
520 . In another embodiment , the register file 520 is divided 
between the different warps being executed by the SM 440 . 
The register file 520 provides temporary storage for oper 
ands connected to the data paths of the functional units . 
[ 0078 ] Each SM 440 comprises L processing cores 550 . In 
one embodiment , the SM 440 includes a large number ( e . g . , 
128 , etc . ) of distinct processing cores 550 . Each core 550 
may include a fully - pipelined , single - precision processing 
unit that includes a floating point arithmetic logic unit and an 
integer arithmetic logic unit . The core 550 may also include 
a double - precision processing unit including a floating point 
arithmetic logic unit . In one embodiment , the floating point 
arithmetic logic units implement the IEEE 754 - 2008 stan 
dard for floating point arithmetic . Each SM 440 also com 
prises M SFUS 552 that perform special functions ( e . g . , 
attribute evaluation , reciprocal square root , and the like ) , and 
N LSUS 554 that implement load and store operations 
between the shared memory / L1 cache 570 and the register 
file 520 . In one embodiment , the SM 440 includes 128 cores 
550 , 32 SFUS 552 , and 32 LSUS 554 . 
[ 0079 ] Each SM 440 includes an interconnect network 580 
that connects each of the functional units to the register file 
520 and the LSU 554 to the register file 520 , shared 
memory / L1 cache 570 . In one embodiment , the interconnect 
network 580 is a crossbar that can be configured to connect 
any of the functional units to any of the registers in the 
register file 520 and connect the LSUS 554 to the register file 
and memory locations in shared memory / L1 cache 570 . 
[ 0080 ] The shared memory / L1 cache 570 is an array of 
on - chip memory that allows for data storage and commu 
nication between the SM 440 and the primitive engine 435 
and between threads in the SM 440 . In one embodiment , the 
shared memory / L1 cache 570 comprises 64 KB of storage 
capacity and is in the path from the SM 440 to the partition 
unit 380 . The shared memory / L1 cache 570 can be used to 
cache reads and writes . 
[ 0081 ] The PPU 300 described above may be configured 
to perform highly parallel computations much faster than 
conventional CPUs . Parallel computing has advantages in 
graphics processing , data compression , biometrics , stream 
processing algorithms , and the like . 
[ 0082 ] When configured for general purpose parallel com 
putation , a simpler configuration can be used . In this model , 
as shown in FIG . 3 , fixed function graphics processing units 
are bypassed , creating a much simpler programming model . 
In this configuration , the work distribution unit 325 assigns 
and distributes blocks of threads directly to the TPCs 420 . 
The threads in a block execute the same program , using a 
unique thread ID in the calculation to ensure each thread 
generates unique results , using the SM 440 to execute the 
program and perform calculations , shared memory / L1 cache 
570 communicate between threads , and the LSU 554 to read 
and write Global memory through partition shared memory / 
L1 cache 570 and partition unit 380 . 

[ 0083 ] When configured for general purpose parallel com 
putation , the SM 440 can also write commands that sched 
uler unit 320 can use to launch new work on the TPCs 420 . 
[ 0084 ] In one embodiment , the PPU 300 comprises a 
graphics processing unit ( GPU ) . The PPU 300 is configured 
to receive commands that specify shader programs for 
processing graphics data . Graphics data may be defined as a 
set of primitives such as points , lines , triangles , quads , 
triangle strips , and the like . Typically , a primitive includes 
data that specifies a number of vertices for the primitive 
( e . g . , in a model - space coordinate system ) as well as attri 
butes associated with each vertex of the primitive . The PPU 
300 can be configured to process the graphics primitives to 
generate a frame buffer ( i . e . , pixel data for each of the pixels 
of the display ) . 
[ 0085 ] An application writes model data for a scene ( i . e . , 
a collection of vertices and attributes ) to a memory such as 
a system memory or memory 304 . The model data defines 
each of the objects that may be visible on a display . The 
application then makes an API call to the driver kernel that 
requests the model data to be rendered and displayed . The 
driver kernel reads the model data and writes commands to 
the one or more streams to perform operations to process the 
model data . The commands may reference different shader 
programs to be implemented on the SMs 440 of the PPU 300 
including one or more of a vertex shader , hull shader , 
domain shader , geometry shader , and a pixel shader . For 
example , one or more of the SMS 440 may be configured to 
execute a vertex shader program that processes a number of 
vertices defined by the model data . In one embodiment , the 
different SMS 440 may be configured to execute different 
shader programs concurrently . For example , a first subset of 
SMs 440 may be configured to execute a vertex shader 
program while a second subset of SMS 440 may be config 
ured to execute a pixel shader program . The first subset of 
SMS 440 processes vertex data to produce processed vertex 
data and writes the processed vertex data to the L2 cache 460 
and / or the memory 304 . After the processed vertex data is 
rasterized ( i . e . , transformed from three - dimensional data 
into two - dimensional data in screen space ) to produce 
fragment data , the second subset of SMS 440 executes a 
pixel shader to produce processed fragment data , which is 
then blended with other processed fragment data and written 
to the frame buffer in memory 304 . The vertex shader 
program and pixel shader program may execute concur 
rently , processing different data from the same scene in a 
pipelined fashion until all of the model data for the scene has 
been rendered to the frame buffer . Then , the contents of the 
frame buffer are transmitted to a display controller for 
display on a display device . 
[ 0086 ] The PPU 300 may be included in a desktop com 
puter , a laptop computer , a tablet computer , a smart - phone 
( e . g . , a wireless , hand - held device ) , personal digital assistant 
( PDA ) , a digital camera , a hand - held electronic device , and 
the like . In one embodiment , the PPU 300 is embodied on a 
single semiconductor substrate . In another embodiment , the 
PPU 300 is included in a system - on - a - chip ( SOC ) along with 
one or more other logic units such as a reduced instruction 
set computer ( RISC ) CPU , a memory management unit 
( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
[ 0087 ] In one embodiment , the PPU 300 may be included 
on a graphics card that includes one or more memory 
devices 304 such as GDDR5 SDRAM . The graphics card 
may be configured to interface with a PCIe slot on a 
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motherboard of a desktop computer that includes , e . g . , a 
northbridge chipset and a southbridge chipset . In yet another 
embodiment , the PPU 300 may be an integrated graphics 
processing unit ( iGPU ) included in the chipset ( i . e . , North 
bridge ) of the motherboard . 
[ 0088 ] Various programs may be executed within the PPU 
300 in order to implement the various layers of a neural 
network . For example , the device driver may launch a kernel 
on the PPU 300 to implement the neural network on one SM 
440 ( or multiple SMS 440 ) . The device driver ( or the initial 
kernel executed by the PPU 300 ) may also launch other 
kernels on the PPU 300 to perform other layers of the neural 
network . In addition , some of the layers of the neural 
network may be implemented on fixed unit hardware imple 
mented within the PPU 300 . It will be appreciated that 
results from one kernel may be processed by one or more 
intervening fixed function hardware units before being pro 
cessed by a subsequent kernel on an SM 440 . 

Exemplary System 
[ 0089 ] FIG . 6 illustrates an exemplary system 600 in 
which the various architecture and / or functionality of the 
various previous embodiments may be implemented . The 
exemplary system 600 may be used to implement the system 
105 for dynamic facial analysis . 
10090 ] As shown , a system 600 is provided including at 
least one central processor 601 that is connected to a 
communication bus 602 . The communication bus 602 may 
be implemented using any suitable protocol , such as PCI 
( Peripheral Component Interconnect ) , PCI - Express , AGP 
( Accelerated Graphics Port ) , HyperTransport , or any other 
bus or point - to - point communication protocol ( s ) . The sys 
tem 600 also includes a main memory 604 . Control logic 
( software ) and data are stored in the main memory 604 
which may take the form of random access memory ( RAM ) . 
10091 ] The system 600 also includes input devices 612 , a 
graphics processor 606 , and a display 608 , i . e . a conven 
tional CRT ( cathode ray tube ) , LCD ( liquid crystal display ) , 
LED ( light emitting diode ) , plasma display or the like . User 
input may be received from the input devices 612 , e . g . , 
keyboard , mouse , touchpad , microphone , and the like . In 
one embodiment , the graphics processor 606 may include a 
plurality of shader modules , a rasterization module , etc . 
Each of the foregoing modules may even be situated on a 
single semiconductor platform to form a graphics processing 
unit ( GPU ) . 
10092 ] In the present description , a single semiconductor 
platform may refer to a sole unitary semiconductor - based 
integrated circuit or chip . It should be noted that the term 
single semiconductor platform may also refer to multi - chip 
modules with increased connectivity which simulate on - chip 
operation , and make substantial improvements over utilizing 
a conventional central processing unit ( CPU ) and bus imple 
mentation . Of course , the various modules may also be 
situated separately or in various combinations of semicon 
ductor platforms per the desires of the user . 
[ 0093 ] The system 600 may also include a secondary 
storage 610 . The secondary storage 610 includes , for 
example , a hard disk drive and / or a removable storage drive , 
representing a floppy disk drive , a magnetic tape drive , a 
compact disk drive , digital versatile disk ( DVD ) drive , 
recording device , universal serial bus ( USB ) flash memory . 
The removable storage drive reads from and / or writes to a 
removable storage unit in a well - known manner . 

[ 0094 ) Computer programs , or computer control logic 
algorithms , may be stored in the main memory 604 and / or 
the secondary storage 610 . Such computer programs , when 
executed , enable the system 600 to perform various func 
tions . The memory 604 , the storage 610 , and / or any other 
storage are possible examples of computer - readable media . 
Data streams associated with gestures may be stored in the 
main memory 604 and / or the secondary storage 610 . 
10095 ] In one embodiment , the architecture and / or func 
tionality of the various previous figures may be implemented 
in the context of the central processor 601 , the graphics 
processor 606 , an integrated circuit ( not shown ) that is 
capable of at least a portion of the capabilities of both the 
central processor 601 and the graphics processor 606 , a 
chipset ( i . e . , a group of integrated circuits designed to work 
and sold as a unit for performing related functions , etc . ) , 
and / or any other integrated circuit for that matter . 
[ 0096 ] Still yet , the architecture and / or functionality of the 
various previous figures may be implemented in the context 
of a general computer system , a circuit board system , a game 
console system dedicated for entertainment purposes , an 
application - specific system , and / or any other desired sys 
tem . For example , the system 600 may take the form of a 
desktop computer , laptop computer , server , workstation , 
game consoles , embedded system , and / or any other type of 
logic . Still yet , the system 600 may take the form of various 
other devices including , but not limited to a personal digital 
assistant ( PDA ) device , head - mounted display device , an 
autonomous vehicle , a mobile phone device , a television , 
etc . 
[ 0097 ] Further , while not shown , the system 600 may be 
coupled to a network ( e . g . , a telecommunications network , 
local area network ( LAN ) , wireless network , wide area 
network ( WAN ) such as the Internet , peer - to - peer network , 
cable network , or the like ) for communication purposes . 
10098 ] . While various embodiments have been described 
above , it should be understood that they have been presented 
by way of example only , and not limitation . Thus , the 
breadth and scope of a preferred embodiment should not be 
limited by any of the above - described exemplary embodi 
ments , but should be defined only in accordance with the 
following claims and their equivalents . 

1 . A computer - implemented method for facial analysis , 
comprising : 
transforming a fully - connected layer of a first neural 

network into a recurrent layer to produce a recurrent 
neural network ( RNN ) , wherein , during training , the 
fully - connected layer learned a first weight matrix , and 
the recurrent layer uses the first weight matrix to 
process inputs to the recurrent layer and uses a second 
weight matrix to process hidden state produced by the 
recurrent layer for a previous time step ; 

receiving video data representing a sequence of image 
frames including at least one head ; 

extracting spatial features comprising pitch , yaw , and roll 
angles of the at least one head from the video data by 
a second neural network ; and 

processing , by the RNN , the spatial features for two or 
more image frames in the sequence of image frames to 
produce head pose estimates for the at least one head . 

2 . The method of claim 1 , wherein the spatial features are 
extracted for each image frame in the sequence of image 
frames . 
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3 . The method of claim 1 , wherein the second neural 
network is trained using a first training dataset and the RNN 
is trained using a second training dataset . 

4 . The method of claim 1 , wherein the second neural 
network is a convolutional neural network ( CNN ) . 

5 . The method of claim 1 , wherein the second neural 
network and the RNN are simultaneously trained using one 
training dataset . 

6 . The method of claim 1 , wherein the sequence of image 
frames includes facial landmarks associated with the at least 
one head and , 

the neural network extracts additional spatial features 
from the video data ; and 

the RNN processes the additional spatial features for the 
two or more image frames in the sequence of image 
frames to produce facial landmark tracking data . 

7 . The method of claim 6 , wherein the facial landmark 
tracking data comprises three - dimensional positions . 

8 . The method of claim 1 , wherein the RNN is a fully 
connected RNN . 

9 - 10 . ( canceled ) 
11 . A facial analysis system , comprising : 
a first neural network configured to : 

receive video data representing a sequence of image 
frames including at least one head ; 

extract spatial features comprising pitch , yaw , and roll 
angles of the at least one head from the video data ; 
and 

a recurrent neural network ( RNN ) that is coupled to the 
neural network and configured to process the spatial 
features for two or more image frames in the sequence 
of image frames to produce head pose tracking data for 
the at least one head , wherein a fully - connected layer of 
a second neural network is transformed into a recurrent 
layer to produce the RNN , the recurrent layer using a 
first weight matrix to process inputs to the recurrent 
layer and using a second weight matrix to process 
hidden state produced by the recurrent layer for a 
previous time step , and the first matrix is learned by the 
fully - connected layer during training . 

12 . The facial analysis system of claim 11 , wherein the 
spatial features are extracted for each image frame in the 
sequence of image frames . 

13 . The facial analysis system of claim 11 , wherein the 
first neural network is trained using a first training dataset 
and the RNN is trained using a second training dataset . 

14 . The facial analysis system of claim 11 , wherein the 
first neural network is a convolutional neural network 
( CNN ) . 

15 . The facial analysis system of claim 11 , wherein the 
first neural network and the RNN are simultaneously trained 
using one training dataset 

16 . The facial analysis system of claim 11 , wherein the 
sequence of image frames includes facial landmarks asso 
ciated with the at least one head and 

the first neural network is further configured to extract 
additional spatial features from the video data ; and 

the RNN is further configured to process the additional 
spatial features for the two or more image frames in the 
sequence of image frames to produce facial landmark 
tracking data . 

17 . The facial analysis system of claim 16 , wherein the 
facial landmark tracking data comprises three - dimensional 
positions . 

18 . The facial analysis system of claim 11 , wherein the 
RNN is a fully connected RNN . 

19 . The facial analysis system of claim 11 , wherein the 
video data comprises color values . 

20 . A non - transitory computer - readable media storing 
computer instructions for facial analysis that , when executed 
by one or more processors , cause the one or more processors 
to perform the steps of : 

transforming a fully - connected layer of a first neural 
network into a recurrent layer to produce a recurrent 
neural network ( RNN ) , wherein , during training , the 
fully - connected layer learned a first weight matrix , and 
the recurrent layer uses the first weight matrix to 
process inputs to the recurrent layer and uses a second 
weight matrix to process hidden state produced by the 
recurrent layer for a previous timestep ; 

receiving video data representing a sequence of image 
frames including at least one head ; 

extracting spatial features comprising pitch , yaw , and roll 
angles of the at least one head from the video data by 
a second neural network ; and 

processing , by the RNN , the spatial features for two or 
more image frames in the sequence of image frames to 
produce head pose estimates for the at least one head . 

21 . The method of claim 1 , wherein , during additional 
training , the second weight matrix is learned by the RNN . 

22 . The method of claim 5 , wherein the training dataset 
comprises a synthetic head pose dataset comprising video 
images and ground truth annotations . 

* * * * 


