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TRANSFORMING CONVOLUTIONAL fication or regression output data . In one embodiment , the 
NEURAL NETWORKS FOR VISUAL trained neural network model is a convolutional neural 

SEQUENCE LEARNING network ( CNN ) . 

CLAIM OF PRIORITY 5 BRIEF DESCRIPTION OF THE DRAWINGS 

10 

This application claims the benefit of U.S. Provisional FIG . 1A illustrates a flowchart of a method for visual 
Application No. 62 / 524,359 titled “ FUSING RECURRENT sequence learning using neural networks , in accordance with 
AND CONVOLUTIONAL NEURAL NETWORKS FOR one embodiment ; 
VISUAL SEQUENCE LEARNING , ” filed Jun . 23 , 2017 , FIG . 1B illustrates a block diagram of a system for visual 
the entire contents of which is incorporated herein by sequence learning , in accordance with one embodiment ; 

FIG . 1C illustrates a block diagram of a prior art system reference . for visual sequence learning ; 
FIG . 1D illustrates another block diagram of a prior art FIELD OF THE INVENTION 15 system for visual sequence learning ; 
FIG . 1E illustrates another block diagram of a video The present invention relates to visual sequence learning , 

and more particularly to visual sequence learning using sequence learning system , in accordance with one embodi 
ment ; neural networks . FIG . 1F illustrates another flowchart of a method for 

20 visual sequence learning using neural networks , in accor BACKGROUND dance with one embodiment ; 
FIG . 2A illustrates a saturation plot of the fraction of Recurrent neural networks ( RNNs ) have achieved excel times that a forget gate unit is left or right saturated , in lent performance on a variety of sequential learning prob accordance with one embodiment ; lems including language modeling , handwriting recognition , 25 FIG . 2B illustrates an activation histogram over 10 bins machine translation , speech recognition , polyphonic music for a first layer , in accordance with one embodiment ; 

modeling , and intelligent video analytics . A vanilla recurrent FIG . 2C illustrates an activation histogram over 10 bins 
neural network ( VRNN ) extends the conventional feedfor- for a second layer , in accordance with one embodiment ; 
ward network to handle a variable - length sequence by FIG . 2D illustrates another flowchart of a method for 
accumulating the context of previous inputs in its internal 30 visual sequence learning using neural networks , in accor 
state to influence proceeding outputs . While an abundance of dance with one embodiment ; 
work exists to understand and improve RNNs in the context FIG . 3 illustrates a parallel processing unit , in accordance 
of language and audio signals , relatively little attention has with one embodiment ; 
been paid to analyze or modify RNNs for visual sequences , FIG . 4A illustrates a general processing cluster of the 
which by nature have distinct properties . 35 parallel processing unit of FIG . 3 , in accordance with one 

In contrast to language and speech , the processing unit of embodiment ; 
a visual sequence is in a more structured format such as an FIG . 4B illustrates a partition unit of the parallel process 
image or a short video snippet . Therefore , convolutional ing unit of FIG . 3 , in accordance with one embodiment ; 

FIG . 5 illustrates the streaming multi - processor of FIG . neural networks ( CNNs ) usually serve as the backbone 40 4A , in accordance with one embodiment ; and networks to extract semantic features , and RNNs are then FIG . 6 illustrates an exemplary system in which the built on top of a pre - trained CNN . A key advantage of the various architecture and / or functionality of the various pre feature extraction for visual sequences is to exploit the vious embodiments may be implemented . extremely expressive CNN models that are pre - trained on 
large - scale image and video datasets . However , it remains an 45 DETAILED DESCRIPTION 
open question how to construct RNNs to better leverage the 
representational power and generalization ability of these One or more non - recurrent layers of a pre - trained ( i.e. , 
pre - trained CNNs . In addition , visual sequences typically trained ) convolutional neural network model are each trans 
exhibit large redundancy and have diverse temporal depen- formed into a recurrent layer to produce a neural network 
dencies on different applications . There is a need for 50 model for visual sequence learning . Feedforward weights of 
addressing these issues and / or other issues associated with a trained non - recurrent layer of the pre - trained convolutional 
the prior art . neural network model that is transformed into a recurrent 

layer are used as initial values for the input - to - hidden 
SUMMARY weights of the recurrent layer . During subsequent training , 

55 the input - to - hidden weights of the recurrent layer are fine 
A method , computer readable medium , and system are tuned and hidden - to - hidden weights that are initialized to 

disclosed for visual sequence learning using neural net- untrained values are learned . In one embodiment , accuracy 
works . The method includes the steps of replacing a non- of the resulting neural network model is improved compared 
recurrent layer within a trained neural network model with with using conventional techniques and number of param 
a recurrent layer to produce a visual sequence learning 60 eters of the resulting neural network is reduced . The trans 
neural network model and transforming feedforward formation technique may implement any recurrent structure 
weights for the non - recurrent layer into input - to - hidden and is relevant for many visual sequence learning applica 
weights of the recurrent layer to produce a transformed tions , including , but not limited to sequential face alignment , 
recurrent layer . The method also includes the steps of setting dynamic hand gesture recognition , and action recognition . 
hidden - to - hidden weights of the recurrent layer to initial 65 FIG . 1A illustrates a flowchart of a method for classifying 
values and processing video image data by the visual video image data using deep neural networks , in accordance 
sequence learning neural network model to generate classi- with one embodiment . The method 100 is described in the 
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context of a neural network model , and the method 100 may values based on the feedforward weights . Alternatively , 
also be performed by a program , custom circuitry , or by a values of all of the multiple input - to - hidden states may be 
combination of custom circuitry and a program . For initialized to uniform values using the feedforward weights . 
example , the method 100 may be executed by a GPU , CPU , Sharing the uniform values for multiple gating functions 
or any processor capable of performing the necessary pro- 5 reduces the number of recurrent parameters that are main 
cessing operations . Furthermore , persons of ordinary skill in tained ( i.e. , stored and updated ) . 
the art will understand that any system that performs method At step 130 , hidden - to - hidden weights of the recurrent 
100 is within the scope and spirit of embodiments of the layer are set to initial values . In one embodiment , initial 
present invention . values for the hidden - to - hidden weights are random values . 

At step 110 , a non - recurrent layer within a trained con- 10 At step 140 , video image data is processed by the visual 
volutional neural network model is replaced with a recurrent sequence learning neural network model to generate classi 
layer to produce a visual sequence learning neural network fication or regression output data . In the context of the 
model . In one embodiment , the trained convolutional neural following description , classification output data ( i.e. , pre 
network model is a two - dimensional ( 2D ) CNN and the dictions ) are class labels generated by the neural network 
training video image data corresponds to a single image or 15 model for at least one image of video input data . In one 
a single video frame . In one embodiment , the trained con- embodiment , the regression output data is the two - dimen 
volutional neural network model is a three - dimensional ( 3D ) sional locations of facial landmarks in the sequential face 
CNN and the training video image data corresponds to a alignment application . In one embodiment , a class label is a 
snippet , clip , or sequence of video frames . class - conditional probability vector associated with the 

In one embodiment , the transformed neural network 20 training video image data . During training , classification 
model is configured to process training video image data of accuracy data is computed by comparing the classification 
at least one modality such as spatial ( color ) , depth , or optical output data with a target classification output ( provided in a 
flow . For example , neural network model may be trained to training dataset ) and adjusting the weights to reduce differ 
perform sequential face alignment using color data . The ences between the classification output data with a target 
neural network model may be trained to perform hand 25 classification output . 
gesture recognition using color and depth data . The neural More illustrative information will now be set forth regard 
network model may be trained to perform action recognition ing various optional architectures and features with which 
using color and flow data . Optical flow data may be com- the foregoing framework may or may not be implemented , 
puted from video image data . In one embodiment , the per the desires of the user . It should be strongly noted that 
optical flow data is represented by three color channels , at 30 the following information is set forth for illustrative pur 
least one layer is replaced with a recurrent layer . Optical poses and should not be construed as limiting in any manner . 
flow explicitly captures dynamic motions and therefore Any of the following features may be optionally incorpo 
provides clues to recognize actions and conveys rough shape rated with or without the exclusion of other features 
cues of moving objects , e.g. , the skier and ski poles in skiing described . 
videos . RNNs have been well studied for decades in sequence 

After the convolutional neural network model is trained , learning , for language modeling , machine translation , and 
one or more non - recurrent ( e.g. , fully connected and / or speech recognition . A vanilla RNN ( VRNN ) contains a 
convolutional ) layers of the trained convolutional neural recurrent or self - connected hidden state h , whose activation 
network model may be transformed into respective recurrent depends on that of the previous time step : 
layers . A selection criterion based on a distribution of 40 h - H ( Wy + Www - 1 ) ( 1 ) 
activation values for each recurrent layer may be used to 
select the one or more non - recurrent layers to be trans where H is an activation function , Win is the input - to 
formed . In one embodiment , the non - recurrent layer ( s ) to be hidden matrix , Wnn is the hidden - to - hidden matrix , y , is the 
replaced with recurrent layers are selected based on a input to the recurrent layer . A bias vector ( not shown ) may 
saturation characteristic , where activation values for neurons 45 also be included . In order to enhance the capability to use 
in a transformed recurrent layer are distributed between 0.0 contextual information , significant efforts have been made to 
and 1.0 . The distribution of activation values is considered mitigate the gradient vanishing problem for VRNN . Among 
saturated when more activation values are distributed near the most successful variants are LSTM and GRU , which 
the minimum and maximum activation values than near the incorporate gating functions into the state dynamics . At each 
center ( the center is between 0.1 and 0.9 ) . time step , LSTM maintains a memory cell c , and a hidden 
At step 120 , ( pre - trained ) feedforward weights for the state h , that are carefully regulated by gates : 

non - recurrent layer are transformed into input - to - hidden i = sig m ( Wixy + Whiha - 1 ) , 
weights of the recurrent layer to produce a transformed 
recurrent layer . In a conventional recurrent neural network fi = sig m ( Wiq + Whihz - 1 ) , 
system , a recurrent layer is typically added to a CNN after 55 
the last layer of the CNN and the parameters of the recurrent 0 = sig m ( WiqYi + Whohz - 1 ) , 
layer ( input - to - hidden weights and hidden - to - hidden 
weights ) are initialized to untrained values . In contrast with ?istan h ( WiY + Whchx - 1 ) , 
the conventional neural network system , the feedforward 
weights of a pre - trained non - recurrent layer of the convo- 60 CE = f40c_1 + 1 , O?e , 
lutional neural network model that is transformed into a 

h? = o , tan h?c , ) . ( 2 ) recurrent layer are used as initial values for the input - to 
hidden weights of the recurrent layer . Similar to equation ( 1 ) , W. are the input - to - hidden matri 

In one embodiment , for recurrent layers such as a long ces and Wh . are the hidden - to - hidden matrices . Here i , f . 
short term memory ( LSTM ) or gated recurrent unit ( GRU ) , 65 and 0 , are the input , forget and output gates , respectively . ?e 
values for the multiple input - to - hidden states corresponding is the new memory state , and O is the element - wise product . 
to multiple gating functions may be initialized to individual GRU simplifies LSTM primarily by merging the hidden 

35 

50 
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state and memory cell and combining the forget and input FIG . 1C illustrates a block diagram of a prior art system 
gates into a single update gate : 145 for visual sequence learning . The prior art system 145 

includes two convolutional layers 125 , a fully connected riesig m ( Wiry : + WWht - 1 ) , layer 160 , and a RNN layer 165. A first convolutional layer 
5 125 receives input data and the RNN layer 165 generates z zsig m ( WiY + Whhz - 1 ) , output data . In accordance with different backbone CNN 

architectures , the RNN layer 165 is stacked on top of the last = tan h ( Win + Wnn ( r0h4-1 ) ) , layer 160 of the pre - trained convolutional neural network 
including the convolutional layers 125 and the fully con h = ( 1-2 . ) Oh - , + z , oh , ( 3 ) 10 nected layer 160 . 

where re and Zy are the reset and update gates , and h , is the The Wxy weights that are associated with the fully con 
candidate hidden state . Note that for the above three basic nected layer 160 are pre - trained weights . However , the W ; 
recurrent structures in Equations ( 1 ) , ( 2 ) , and ( 3 ) , multiple weights associated with the RNN layer 165 are not pre 
recurrent layers can be stacked on top of each other to trained . The Wnn and Who weights are randomly initialized 
perform deep and hierarchical recurrent processing . 15 weights introduced by the RNN layer 165. In contrast with 

Conventionally , RNNs are attached following the last the visual sequence learning neural network model 115 , 
layer of pre - trained CNNs for visual sequence learning where the weights associated with the PreRNN layer 135 are 
tasks , to harness the strong representational ability of the pre - trained , the weights associated with the RNN layer 165 
pre - trained CNN models and capture the long - term temporal of the prior art system 145 are not pre - trained . 
contexts . In contrast with conventional techniques , a more 20 FIG . 1D illustrates a block diagram of another prior art 
effective and generalized approach is described that directly system 155 for visual sequence learning . The prior art 
converts one or more layers of the pre - trained CNNs into system 155 includes a convolutional layer 145 , a convolu 
recurrent layer ( s ) . tional layer 125 , a convolutional layer 170 , an average 

pooling layer 165 , and a RNN layer 165. The first convo 
A Neural Network Architecture for Visual 25 lutional layer 145 receives input data and the RNN layer 165 

Sequence Learning generates output data . The RNN layer 165 is stacked on top 
of the average pooling layer 165 of the pre - trained convo 

RNNs coupled with pre - trained CNNs are powerful tools lutional neural network including the convolutional layer 
to exploit the important temporal connections in visual 145 , the convolutional layer 125 , the convolutional layer 
sequence learning tasks . CNN models , pre - trained on large- 30 170 , and the average pooling layer 165. Compared with the 
scale image or video datasets , retain strong semantic and prior art system 145 , the prior art system 155 includes a 
generality properties . When one or more recurrent layers are residual ( or skip ) connection from the convolutional layer 
added following a pre - trained CNN , as in done convention- 145 the convolutional layer 170 . 
ally , the recurrent layers must be trained from scratch , even The Wxv weights that associated with the convolutional 
though a pre - trained CNN is used for feature extraction . In 35 layer 170 are pre - trained weights . However , the Win weights 
contrast with conventional techniques , a pre - trained layer of associated with the RNN layer 165 are not pre - trained . The 
a neural network model is directly transformed into a W. , and We weights are randomly initialized weights 
recurrent layer in order to maximize the representational introduced by the RNN layer 165. In contrast with the visual 
power and generalizing capacity of pre - trained convolu- sequence learning neural network model 115 , where the 
tional neural networks . In one embodiment , one or more 40 weights associated with the PreRNN layer 135 are pre 
layers that are transformed are pre - trained convolutional trained , the weights associated with the RNN layer 165 of 
layers or fully connected layers . The difficulty of training the prior art system 155 are not pre - trained . 
one or more RNNs is mitigated , because components of a FIG . 1E illustrates another block diagram of a visual 
pre - trained convolutional neural network model are used as sequence learning neural network model 150 , in accordance 
a partially pre - trained RNN . Therefore , the generalization 45 with one embodiment . The visual sequence learning neural 
ability of a pre - trained convolutional neural network is network model 150 includes a convolutional layer 145 , a 
inherited by the RNN , improving the overall performance . convolutional layer 125 , and a PreRNN layer 175. The 
FIG . 1B illustrates a block diagram of a visual sequence PreRNN layer 175 is a recurrent layer that replaced a 

learning neural network model 115 , in accordance with one non - recurrent layer . A first convolutional layer 125 receives 
embodiment . The visual sequence learning neural network 50 input data and the PreRNN layer 135 generates output data . 
model 115 includes two convolutional layers 125 and a In one embodiment , the PreRNN layer 135 replaces a last 
PreRNN layer 135. The PreRNN layer 135 is a recurrent convolutional layer 170 and an averaged pooling layer 165 . 
layer that replaced a non - recurrent layer . A first convolu- Compared with the visual sequence learning neural network 
tional layer 125 receives input data and the PreRNN layer model 115 , the visual sequence learning neural network 
135 that replaced a last convolutional layer 125 generates 55 model 150 includes a residual ( or skip ) connection from the 
output data . Input video image data may be presented in the convolutional layer 145 to the PreRNN layer 175 . 
form of single frames to the visual sequence learning neural The Wxy weights that associated with the PreRNN layer 
network model 115 . 165 are pre - trained weights ( i.e. , weights of the pre - trained 

The Wxv weights that are associated with the PreRNN non - recurrently layer ) . The pre - trained Wxv , weights are used 
layer 135 are pre - trained weights ( i.e. , weights of the pre- 60 in place of the input - to - hidden weight inputs to the PreRNN 
trained non - recurrently layer ) . The Wnh and Who weights are layer 165. The W. , and W weights are randomly initial 
randomly initialized weights introduced by the PreRNN ized weights introduced by the PreRNN layer 135. Other 
layer 135. Other embodiments of the visual sequence learn- embodiments of the visual sequence learning neural network 
ing neural network model 115 may include fewer or more model 115 may include fewer or more convolutional layers 
convolutional layers 125. Although only a single PreRNN 65 125. Although only a single PreRNN layer 135 is shown in 
layer 135 is shown in FIG . 1B , more than one convolutional FIG . 1E , more than one convolutional layer 145 , 125 , and / or 
layer 125 may be replaced with a PreRNN layer 135 . 170 may be replaced with a PreRNN layer 135 . 

ho 



y = H ( Wxox ) , 
xy 
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Replacing one or more layers of a pre - trained convolu- described in the context of a neural network model , and the 
tional neural network model with PreRNN layer ( s ) 135 or method 112 may also be performed by a program , custom 
175 is a generic approach that can be applied to various circuitry , or by a combination of custom circuitry and a 
architectures of pre - trained 2D and 3D neural networks , program . For example , the method 112 may be executed by 
particularly CNNs . As illustrated FIGS . 1B and 1E , a layer 5 a GPU , CPU , or any processor capable of performing the 
of CNNs such as VGG and C3D with fully connected layers necessary processing operations . Furthermore , persons of 
at the end of the convolutional networks can be replaced ordinary skill in the art will understand that any system that 
with a PreRNN layer 135 or 175. Similarly , a layer of CNNs performs method 112 is within the scope and spirit of 
such as ResNet and DenseNet with convolutional and global embodiments of the present invention . 
average pooling layers at the end , as depicted in FIG . ID can 10 Steps 110 , 120 , and 130 , are completed as previously 
also be replaced with a PreRNN layer 135 or 175 to produce described in conjunction with FIG . 1A . At step 132 , the 
the visual sequence learning neural network model 150 . visual sequence learning neural network model is trained to 
Replacing a pre - trained non - recurrent layer with a PreRNN learn the hidden - to - hidden weights input to the PreRNN 
layer 135 or 175 is also able to adapt to all three basic layer 135 or 175. In one embodiment , input video image data 
recurrent structures including VRNN , LSTM and GRU . 15 included in a training dataset by the visual sequence learning 
Additionally , an alternative , PreRNN - SIH can be used to neural network model 115 or 150 to generate output data . 
simplify gating functions and reduce recurrent parameters . A The output data is compared to target output data included 
benefit of replacing a pre - trained non - recurrent layer with a in the training dataset to produce comparison results and the 
PreRNN layer 135 or 175 is that accuracy may be improved hidden - to - hidden weights are adjusted based on the com 
and training of the weights for the non - recurrent layer is 20 parison results . During training , the input - to - hidden weights 
leveraged . Any PreRNN layer 135 or 175 may use the input to the PreRNN layer 135 or 175 are also adjusted ( i.e. , 
PreRNN - SIH gating function technique . fine - tuned ) to reduce differences between the output data 

The last fully connected layer or convolutional layer of a and the target output data . In one embodiment , the training 
pre - trained CNN is assumed to have the structure : data set is configured for sequential face alignment and the 

( 4 ) 25 video image data is color data . Sequential face alignment is 
fundamental to many applications such as face recognition , where H is an activation function , W are the pre - trained expression analysis , facial animation capturing , etc. In one feedforward weights , x and y are the input and output of the embodiment , the training dataset is configured for dynamic layer , and o indicates matrix multiplication for the fully hand gesture recognition and the video image data is color connected layer or a convolution operation for the convo 30 data and depth data . In one embodiment , the training dataset lutional layer . In order to take advantage of the pre - trained is configured for action recognition and the video image data non - recurrent layer , the feedforward layer is reformulated as is color data and optical flow data . a PreRNN layer 135 or 175 using the pre - trained feedfor In comparison with the VRNN , a prominent feature ward weights as the input - to - hidden weights for the PreRNN shared by LSTM and GRU is the additive nature in updating layer 135 or 175. The fully connected layer ( such as the fully 35 the hidden state from t to t + 1 , i.e. , keep the existing state and connected layer 160 ) may be replaced by the PreRNN layer add changes on top of the existing state through the use of 135 through : gating functions . Incrementally updating the hidden state 

H ( WxX + Whit - 1 ) , ( 5 ) helps each hidden state unit to remember the existence of a 
where x , and y , are reformed to be the input and hidden state specific feature for a long series of steps , and more impor 
of the recurrent layer at time t . The convolutional layer ( such 40 tantly , to create shortcut paths to allow the error to be 
as the convolutional layer 125 ) may be transformed into the back - propagated easily through multiple steps without van 
PreRNN layer 135 or 175 by : ishing too quickly . The gating functions of LSTM and GRU 

y - H ( H ( BW . , * x . ) + Y . ) + W.X : -1 ) , may also be accommodated when a non - recurrent layer is ( 6 ) replaced with a PreRNN layer 135 or 175. Each gating 
where * is the convolution operation , B represents the batch 45 function may be split into two components and the pre 
normalization with the pre - computed mini - batch statistics , Yt trained feedforward ( non - recurrent ) layer may be fused into 
indicates an optional residual ( or skip ) connection in the components . 
residual networks , and H is the global average pooling . 

Replacing a non - recurrent layer with a PreRNN layer Gate - Dependent Input - to - Hidden State 
essentially transforms the feedforward weights Wxy and 50 Transformation 
output y in Equation ( 4 ) as the input - to - hidden weights Wa 
and hidden state y , in Equations ( 5 ) and ( 6 ) . In comparison A pre - trained feedforward layer of a CNN may be con 
to Equation ( 1 ) for the traditional VRNN , which includes verted into a recurrent layer for LSTM or GRU , in a similar 
two randomly initialized weight matrices ( input - to - hidden manner as for a VRNN . In Equations ( 2 ) and ( 3 ) each gate 
weight matrix Win and hidden - to - hidden weight matrix 55 is composed of two components , namely , the input - to 
Won ) , the PreRNN in Equations ( 5 ) and ( 6 ) only brings in a hidden state and the hidden - to - hidden state . For notational 
single hidden - to - hidden weight matrix W to be trained simplicity , LSTM's new memory state is called ? , and 
from scratch , while the input - to - hidden weights Wx , inher GRU's candidate hidden state h , a gate . The gate - dependent 
ited from Equation ( 4 ) have been pre - trained and can be just input - to - hidden state for the PreRNN layer is defined as : 
fine - tuned with additional training . As a result , the neural 60 
network model including the PreRNN 135 or 175 can fully 
make use of the robust generalization of a pre - trained neural W X a fully connected layer , ( 7 ) 
network model and preserve the architecture to the greatest U ( 8 ) = P ( B ( Wº * Xp ) + 1 a convolutional layer , 
extent . 
FIG . 1F illustrates another flowchart of a method for 65 

classifying video image data using deep neural networks , in where g is a gate index , g = { i , f , o , c } for LSTM and g = { r , 
accordance with one embodiment . The method 112 is z , h } for GRU , u ( g ) is the input - to - hidden state of gate g at 

yo 
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time t and Wig is the pre - trained input - to - hidden weights of state for all the gates . Therefore , the gating functions of 
gate g . The feedforward weights Wig may be used to LSTM in Equation ( 2 ) are changed to : 
compute gate - specific values ( e.g. , u , ( i ) , u , ( f ) , u , ( 0 ) , and u , ( c ) 
for LSTM or u , ( r ) , u , ( z ) , and u ( h ) f or GRU ) for multiple iq = sig m ( Vx + Whih - 1 ) , 
input - to - hidden states corresponding to multiple gating 5 

fi = sig m ( v : + White - 1 ) , functions of the PreRNN layer 135 or 175 . 
Concretely , the pre - trained feedforward weights Win 

0 , = sig m ( Vi + Whohz - 1 ) Equation ( 4 ) are converted into the input - to - hidden weights 
for one gate and the pre - trained values are used to initialize ? = tanhtv + Whh , -1 ) , ( 11 ) the input - to - hidden weights for other gates . Therefore , the 10 
gating functions of LSTM in Equation ( 2 ) may be redefined where all the gates are computed based on the same input 

to - hidden state Vz . In the same way , the gating functions of 
GRU in Equation ( 3 ) are reformulated as : iq = sig m ( ur ( i ) + Whih - 1 ) , 

resig m ( Vi + WWh - 1 ) , 
fi = sig m ( uz ) + Whjhx - 1 ) , 

z = sig m ( Vi + WWhi - 1 ) , 
0 : = sig m ( u / ( 0 ) + Whcht - 1 ) , 

h = tan h ( v , + W ( r , Oh , - ) ) ) , ( 12 ) 
?iztan h ( u ( c ) + Whehz - 1 ) , ( 8 ) Hence , PreRNN - SIH in Equations ( 11 ) and ( 12 ) only 

where only the hidden - to - hidden weights Wh . are randomly introduces the hidden - to - hidden weights Wh , that need to be 
initialized , and the same updating functions in Equation ( 2 ) trained from scratch . In addition , because the pre - trained 
are followed to renew the memory cell c , and hidden state h . feedforward layer is set to be the joint input - to - hidden state 
Equations ( 7 ) and ( 8 ) may be used to transform the feed- for all the gating functions of LSTM and GRU , the number 
forward weights into the input - to - hidden weights of the 25 of recurrent parameters for the PreRNN layer 135 or 175 is 
PreRNN 135 or 175 during step 120 of the method 100 or reduced , and consequently the computational cost is also 
112 when the visual sequence learning neural network reduced compared with computing gate - specific input - to 
model 115 or 150 , respectively , is an LSTM . hidden states ( e.g. , u , ( i ) , u , ( f ) , u , ( 0 ) , and u , ( c ) , or u , ( r ) , u , ( z ) , 

Correspondingly , the gating functions of GRU in Equa- and u , ( h ) ) . In sum , when a non - recurrent layer is transformed 
tion ( 3 ) can be redefined as : 30 into a PreRNN layer 135 or 175 using SIH , the feedforward 

weights Wxy may be used to compute values for a unified 
riesig m ( u / ( r ) + WWht - 1 ) , input - to - hidden state corresponding to multiple gating func 

tions of the PreRNN layer 135 or 175 . 
z = sig m ( u / ( z ) + WWh - 1 ) , As previously described , one or more non - recurrent layers 

35 may be selected to be replaced by PreRNN layer ( s ) 135 or 
= tan h ( u , ( h ) + Wan ( r : Oh4-1 ) ) , 175. In one embodiment , distributions of gate activations are 

and the hidden state h , is updated in the same manner as in used to select the one or more non - recurrent layers of a 
Equation ( 3 ) . By fusing the pre - trained feedforward layer trained neural network model . A gate unit may be defined as 
into the input - to - hidden state of each gate , a PreRNN layer left or right saturated if the gate activations are less than 0.1 
introduces fewer input - to - hidden parameters and only the 40 or more than 0.9 , otherwise , the gate unit is defined as 
hidden - to - hidden weights need to be trained from scratch . unsaturated . 
Equations ( 7 ) and ( 9 ) may be used to transform the feed- FIG . 2A illustrates a saturation plot 200 of the fraction of 
forward weights into the input - to - hidden weights of the times that a forget gate unit is left or right saturated , in 
PreRNN 135 or 175 during step 120 of the method 100 or accordance with one embodiment . A first layer of an LSTM 
112 when the visual sequence learning neural network 45 is constructed by a PreRNN layer 135 or 175 to produce a 
model 115 or 150 , respectively , is an GRU . first layer of the visual sequence learning neural network 

model 115 or 150. Separately , a second layer of the LSTM 
Single Input - to - Hidden State Transformation is constructed by a PreRNN layer 135 or 175 to produce a 

( PreRNN - SIH ) second layer of the visual sequence learning neural network 
50 model 115 or 150. The graph illustrates the distribution of 

In the aforementioned transformation scheme , each gate activation values for forget gate neurons for the first 
learns gate - specific input - to - hidden weights Wit , though PreRNN layer ( PreLSTM Layer 1 ) and for the second 
each gate starts from the same initial state W. In order to PreRNN layer ( PreLSTM Layer 2 ) individually . The graph 
simplify the gating functions and fully utilize the pre - trained also illustrates the distribution of activation values for forget 
feedforward layer , all gates may be bound to the same 55 gate neurons each of a first layer and a second layer of or a 
input - to - hidden state : traditional LSTM ( TraLSTM ) . 

The activations in the first layer of PreLSTM ( PreLSTM 
Layer 1 ) lie in the more saturated region ( i.e. , closer to the 

a fully connected layer , ( 10 ) saturation line ) compared with the activations of either the 
P ( B ( Wxy * X + ) + Yt a convolutional layer , 60 first or the second layer of the TraLSTM . The implication of 

the distribution of the first layer is that PreLSTM is more 
capable to utilize the temporal context , e.g. , the multiple 

where v , is the single input - to - hidden ( SIH ) state that are frequently right saturated forget gate units ( bottom right of 
adopted by all the gates for the PreRNN layer 135 or 175 . the forget gate saturation plot 200 ) correspond to the 
Compared to the gate - dependent input - to - hidden state in 65 memory cells that remember their values for long durations . 
Equation . ( 7 ) , the SIH technique directly converts the pre- Conversely , the activations of TraLSTM , particularly the 
trained feedforward layer to be the unified input - to - hidden TraLSTM Layer 1 , are dispersed in the more unsaturated 

xy " 

Wxy Xt 
V = { PB6W 
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region of the saturation plot 200 , indicating that the inte- bution of activation values for neurons in the transformed 
grated temporal information decays rapidly . second layer are neither right nor left saturated for the 

Note that the activations in the second layer of both second layer , the second layer of the GRU should not be 
TraLSTM and PreLSTM concentrate near the origin in the selected to be transformed into a PreRNN layer 135 or 175 . 
saturation plot 200 , where the gate units are rarely left or 5 Therefore , for the visual sequence learning neural network 
right saturated . It is likely that the second recurrent layer model 115 or 150 , the first non - recurrent layer of the GRU ( PreLSTM Layer 2 ) virtually functions in a feedforward is constructed by a PreRNN layer 135 or 175 and the second fashion and the preceding hidden state is barely used . Based non - recurrent layer of the GRU is not transformed . on the saturation plot 200 , the first layer of the LSTM should 
be selected to be constructed with a PreRNN layer 135 or 10 FIG . 2D illustrates another flowchart of a method 225 for 
175. Specifically , a distribution of activation values for visual sequence learning using neural networks , in accor 
neurons in the transformed first layer is left and right dance with one embodiment . The method 225 is described in 
saturated indicating that the first layer benefits by being the context of a neural network model , and the method 225 constructed with a PreRNN layer 135 or 175 . In contrast , because the distribution of activation values 15 may also be performed by a program , custom circuitry , or by 
for neurons in the transformed second layer are neither right a combination of custom circuitry and a program . For 
nor left saturated for the second layer , the second layer of the example , the method 225 may be executed by a GPU , CPU , 
LSTM should not be selected to be constructed by a PreRNN 
layer 135 or 175. Therefore , for the visual sequence learning or any processor capable of performing the necessary pro 
neural network model 115 or 150 , the first non - recurrent 20 cessing operations . Furthermore , persons of ordinary skill in 
layer of the LSTM is built by a PreRNN layer 135 or 175 and the art will understand that any system that performs method 
the second non - recurrent layer of the LSTM is not trans- 225 is within the scope and spirit of embodiments of the 
formed . In one embodiment , fewer activation values for the present invention . neurons in the PreRNN layer 135 or 175 are distributed 
between 0.1 and 0.9 than are distributed outside of 0.1 and 25 At step 210 , at least one non - recurrent layer within a 
0.9 within a range 0.0 to 1.0 . When the activation values for trained convolutional neural network model is replaced with 
a PreRNN layer are not saturated , the PreRNN layer 135 or a respective PreRNN layer 135 or 175 to produce a visual 
175 may revert back to the non - recurrent layer , so that the sequence learning neural network model 115 or 150. Mul 
non - recurrent layer is not replaced to produce the visual tiple steps 210 may be performed in parallel to replace 
sequence learning neural network model 115 or 150. The 30 different combinations of at least one non - recurrent layer . 
gating mechanism may be inferred through saturation plots 
for LSTM or by activation histograms for GRU . At step 212 , one or more of the non - recurrent layers that 
FIG . 2B illustrates an activation histogram 205 over 10 were replaced in one of the combinations during steps 210 

bins for a first layer , in accordance with one embodiment . A are selected based on distribution ( s ) of activation values for 
first layer of a GRU is constructed by a PreRNN layer 135 35 neurons in the transformed recurrent layer ( s ) . In one 
or 175 to produce a first layer of a visual sequence learning embodiment , non - recurrent layers having activation values 
neural network model 115 or 150. The bar graph illustrates with a left and / or right saturation distribution are selected . In 
the activation histogram for reset and update gate neurons one embodiment , the non - recurrent layer ( s ) that are selected 
for the first PreRNN layer ( PreGRU reset gate and update are a combination of at least one convolutional layer or at 
gate ) . The bar graph also illustrates the activation histogram 40 least one fully connected layer . 
for reset and update gate neurons for a first layer of a Step 120 is performed as previously described in con traditional GRU ( TraGRU reset gate and update gate ) . junction with FIG . 1A . At step 230 , hidden - to - hidden For the first layer of PreGRU the left saturated ( 0.0-0.1 ) weights of the recurrent layer ( s ) are set to initial values . and right saturated ( 0.9-1.0 ) bins dominate the distribution of both the reset gate and update gate , whereas the activa- 45 Steps 132 and 140 are performed as previously described in 
tions of TraGRU gates gather in the unsaturated bins in the conjunction with FIGS . 1A and 1F to complete the training . 
center of the distribution . Based on the saturation plot 205 , In one embodiment , replacing one or more non - recurrent 
the first layer of the GRU should be selected to be con layers with PreRNN layer ( s ) 135 or 175 improves classifi 
structed by a PreRNN layer 135 or 175. Specifically , a cation accuracy and the resulting visual sequence learning 
distribution of activation values for neurons in the trans- 50 neural network model 115 or 150 converges faster during 
formed first layer is left and right saturated indicating that training compared with a traditional RNN . The faster con 
the first layer benefits by being constructed by a PreRNN vergence may be a result of fusing the pre - trained feedfor 
layer 135 or 175 . ward layers into recurrent layers so that the PreRNN layers 
FIG . 2C illustrates an activation histogram 215 over 10 135 or 175 are partially pre - trained and therefore can accel 

bins for a second layer , in accordance with one embodiment . 55 erate convergence . 
A second layer of the GRU is constructed by a PreRNN layer In one embodiment , one or two fully - connected layers of 
135 or 175 to produce a second layer of a visual sequence a pre - trained VGG16 are transformed into a PreRNN layer 
learning neural network model 115 or 150. The bar graph 175 with unified parameters . As defined in Equations ( 6 ) , 
illustrates the activation histogram for reset and update gate ( 7 ) , and ( 10 ) the pre - trained weights are fused into the 
neurons for the second PreRNN layer ( PreGRU reset gate 60 PreRNN layers 175. As a comparison , traditional RNNs 
and update gate ) . The bar graph also illustrates the activation build corresponding recurrent layers on top of a fully 
histogram for reset and update gate neurons for a second connected seventh layer in VGG16 . TABLE 1 shown below 
layer of a traditional GRU ( TraGRU reset gate and update demonstrates that PreRNN and PreRNN - SIH both outper 
gate ) . form traditional RNNs because an area under the curve 

For the second layer of PreGRU the distribution of both 65 ( AUC ) is greater , where the cumulative error distribution 
the reset gate and update gate gather in the unsaturated curve represents the normalized point - to - point error for 68 
region in the center of the distribution . Because the distri- facial landmarks . 



Traditional PreRNN PreRNN - SIH 

fc6 fc7 fc6 / 7 fc6 fc7 fc6 / 7 

VRNN 
LSTM 
GRU 

0.718 
0.722 

0.716 
0.671 
0.698 

0.757 0.742 0.763 
0.769 0.754 0.746 0.743 0.746 0.719 
0.772 0.755 0.761 0.768 0.748 0.762 
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TABLE 1 embodiment , the local memory may comprise a number of 
dynamic random access memory ( DRAM ) devices . 

Facial landmark detection accuracy ( in AUC ) of the The I / O unit 305 is configured to transmit and receive 
traditional RNNs and the PreRNN and PreRNN - SIH communications ( i.e. , commands , data , etc. ) from a host 

5 processor ( not shown ) over the system bus 302. The I / O unit 
305 may communicate with the host processor directly via 

1 layer 2 layers the system bus 302 or through one or more intermediate 
0.704 devices such as a memory bridge . In one embodiment , the 

I / O unit 305 implements a Peripheral Component Intercon 
10 nect Express ( PCIe ) interface for communications over a 

PCIe bus . In alternative embodiments , the I / O unit 305 may 
Transforming the fully connected layers ( fc6 , fc7 or fc6 / 7 ) implement other types of well - known interfaces for com 

into PreRNN 175 layers significantly out - performs the tra municating with external devices . 
ditional RNNs for the three basic recurrent structures . In one The I / O unit 305 is coupled to a host interface unit 310 
embodiment , apart from improving the 15 that decodes packets received via the system bus 302. In one accuracy , PreRNN embodiment , the packets represent commands configured to SIH reduces the recurrent parameters by up to 82 % . In cause the PPU 300 to perform various operations . The host comparison , among the three basic recurrent structures , interface unit 310 transmits the decoded commands to 
LSTM produce similar results to GRU , which both outper- various other units of the PPU 300 as the commands may 
form VRNN . 20 specify . For example , some commands may be transmitted 

Replacing one or more non - recurrent layers of a pre- to the front end unit 315. Other commands may be trans 
trained convolutional neural network model with a PreRNN mitted to the hub 330 or other units of the PPU 300 such as 
layer 135 or 175 for visual sequence learning directly one or more copy engines , a video encoder , a video decoder , 
transforms pre - trained feedforward layers into recurrent a power management unit , etc. ( not explicitly shown ) . In 
layers . Replacing one or more non - recurrent layers with a 25 other words , the host interface unit 310 is configured to route 
PreRNN layer 135 or 175 may be applied to all basic communications between and among the various logical 
recurrent structures and various architectures of neural net- units of the PPU 300 . 
works , particularly CNNs . Extensive experiments on three In one embodiment , a program executed by the host 
applications find PreRNN and PreRNN - SIH to produce processor encodes a command stream in a buffer that pro 
consistently better results than traditional RNNs , in addition 30 vides workloads to the PPU 300 for processing . A workload 
to a significant reduction of recurrent parameters by may comprise a number of instructions and data to be 
PreRNN - SIH . processed by those instructions . The buffer is a region in a 

memory that is accessible ( i.e. , read / write ) by both the host 
Parallel Processing Architecture processor and the PPU 300. For example , the host interface 

35 unit 310 may be configured to access the buffer in a system 
FIG . 3 illustrates a parallel processing unit ( PPU ) 300 , in memory connected to the system bus 302 via memory 

accordance with one embodiment . The PPU 300 may be requests transmitted over the system bus 302 by the I / O unit 
305. In one embodiment , the host processor writes the configured to implement the visual sequence learning neural 

network model 115 or 150 . command stream to the buffer and then transmits a pointer 
40 to the start of the command stream to the PPU 300. The host In one embodiment , the PPU 300 is a multi - threaded interface unit 310 provides the front end unit 315 with processor that is implemented on one or more integrated pointers to one or more command streams . The front end circuit devices . The PPU 300 is a latency hiding architecture unit 315 manages the one or more streams , reading com designed to process a large number of threads in parallel . A mands from the streams and forwarding commands to the 

thread ( i.e. , a thread of execution ) is an instantiation of a set 45 various units of the PPU 300 . 
of instructions configured to be executed by the PPU 300. In The front end unit 315 is coupled to a scheduler unit 320 
one embodiment , the PPU 300 is a graphics processing unit that configures the various GPCs 350 to process tasks 
( GPU ) configured to implement a graphics rendering pipe- defined by the one or more streams . The scheduler unit 320 
line for processing three - dimensional ( 3D ) graphics data in is configured to track state information related to the various 
order to generate two - dimensional ( 2D ) image data for 50 tasks managed by the scheduler unit 320. The state may 
display on a display device such as a liquid crystal display indicate which GPC 350 a task is assigned to , whether the 
( LCD ) device . In other embodiments , the PPU 300 may be task is active or inactive , a priority level associated with the 
utilized for performing general - purpose computations . task , and so forth . The scheduler unit 320 manages the 
While one exemplary parallel processor is provided herein execution of a plurality of tasks on the one or more GPCs 
for illustrative purposes , it should be strongly noted that 55 350 . 
such processor is set forth for illustrative purposes only , and The scheduler unit 320 is coupled to a work distribution 
that any processor may be employed to supplement and / or unit 325 that is configured to dispatch tasks for execution on 
substitute for the same . the GPCs 350. The work distribution unit 325 may track a 
As shown in FIG . 3 , the PPU 300 includes an Input / number of scheduled tasks received from the scheduler unit 

Output ( I / O ) unit 305 , a host interface unit 310 , a front end 60 320. In one embodiment , the work distribution unit 325 
unit 315 , a scheduler unit 320 , a work distribution unit 325 , manages a pending task pool and an active task pool for each 
a hub 330 , a crossbar ( Xbar ) 370 , one or more general of the GPCs 350. The pending task pool may comprise a 
processing clusters ( GPCs ) 350 , and one or more partition number of slots ( e.g. , 32 slots ) that contain tasks assigned to 
units 380. The PPU 300 may be connected to a host be processed by a particular GPC 350. The active task pool 
processor or other peripheral devices via a system bus 302. 65 may comprise a number of slots ( e.g. , 4 slots ) for tasks that 
The PPU 300 may also be connected to a local memory are actively being processed by the GPCs 350. As a GPC 350 
comprising a number of memory devices 304. In one finishes the execution of a task , that task is evicted from the 
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active task pool for the GPC 350 and one of the other tasks to the appropriate logical units within the GPC 350. For 
from the pending task pool is selected and scheduled for example , some packets may be routed to fixed function 
execution on the GPC 350. If an active task has been idle on hardware units in the PROP 415 and / or raster engine 425 
the GPC 350 , such as while waiting for a data dependency while other packets may be routed to the TPCs 420 for 
to be resolved , then the active task may be evicted from the 5 processing by the primitive engine 435 or the SM 440 . 
GPC 350 and returned to the pending task pool while The PROP unit 415 is configured to route data generated 
another task in the pending task pool is selected and sched- by the raster engine 425 and the TPCs 420 to a Raster 
uled for execution on the GPC 350 . Operations ( ROP ) unit in the partition unit 380 , described in 

The work distribution unit 325 communicates with the more detail below . The PROP unit 415 may also be config 
one or more GPCs 350 via XBar 370. The XBar 370 is an 10 ured to perform optimizations for color blending , organize 
interconnect network that couples many of the units of the pixel data , perform address translations , and the like . 
PPU 300 to other units of the PPU 300. For example , the The raster engine 425 includes a number of fixed function 
XBar 370 may be configured to couple the work distribution hardware units configured to perform various raster opera 
unit 325 to a particular GPC 350. Although not shown tions . In one embodiment , the raster engine 425 includes a 
explicitly , one or more other units of the PPU 300 are 15 setup engine , a course raster engine , a culling engine , a 
coupled to the host interface unit 310. The other units may clipping engine , a fine raster engine , and a tile coalescing 
also be connected to the XBar 370 via a hub 330 . engine . The setup engine receives transformed vertices and 

The tasks are managed by the scheduler unit 320 and generates plane equations associated with the geometric 
dispatched to a GPC 350 by the work distribution unit 325 . primitive defined by the vertices . The plane equations are 
The GPC 350 is configured to process the task and generate 20 transmitted to the coarse raster engine to generate coverage 
results . The results may be consumed by other tasks within information ( e.g. , an x , y coverage mask for a tile ) for the 
the GPC 350 , routed to a different GPC 350 via the XBar primitive . The output of the coarse raster engine may 
370 , or stored in the memory 304. The results can be written transmitted to the culling engine where fragments associated 
to the memory 304 via the partition units 380 , which with the primitive that fail a z - test are culled , and transmitted 
implement a memory interface for reading and writing data 25 to a clipping engine where fragments lying outside a view 
to / from the memory 304. In one embodiment , the PPU 300 ing frustum are clipped . Those fragments that survive clip 
includes a number U of partition units 380 that is equal to the ping and culling may be passed to a fine raster engine to 
number of separate and distinct memory devices 304 generate attributes for the pixel fragments based on the plane 
coupled to the PPU 300. A partition unit 380 will be equations generated by the setup engine . The output of the 
described in more detail below in conjunction with FIG . 4B . 30 raster engine 425 comprises fragments to be processed , for 

In one embodiment , a host processor executes a driver example , by a fragment shader implemented within a TPC 
kernel that implements an application programming inter- 420 . 
face ( API ) that enables one or more applications executing Each TPC 420 included in the GPC 350 includes an 
on the host processor to schedule operations for execution M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , one 
on the PPU 300. An application may generate instructions 35 or more SMS 440 , and one or more texture units 445. The 
( i.e. , API calls ) that cause the driver kernel to generate one MPC 430 controls the operation of the TPC 420 , routing 
or more tasks for execution by the PPU 300. The driver packets received from the pipeline manager 410 to the 
kernel outputs tasks to one or more streams being processed appropriate units in the TPC 420. For example , packets 
by the PPU 300. Each task may comprise one or more associated with a vertex may be routed to the primitive 
groups of related threads , referred to herein as a warp . A 40 engine 435 , which is configured to fetch vertex attributes 
thread block may refer to a plurality of groups of threads associated with the vertex from the memory 304. In contrast , 
including instructions to perform the task . Threads in the packets associated with a shader program may be transmit 
same group of threads may exchange data through shared ted to the SM 440 . 
memory . In one embodiment , a group of threads comprises In one embodiment , the texture units 445 are configured 
32 related threads . 45 to load texture maps ( e.g. , a 2D array of texels ) from the 
FIG . 4A illustrates a GPC 350 of the PPU 300 of FIG . 3 , memory 304 and sample the texture maps to produce 

in accordance with one embodiment . As shown in FIG . 4A , sampled texture values for use in shader programs executed 
each GPC 350 includes a number of hardware units for by the SM 440. The texture units 445 implement texture 
processing tasks . In one embodiment , each GPC 350 operations such as filtering operations using mip - maps ( i.e. , 
includes a pipeline manager 410 , a pre - raster operations unit 50 texture maps of varying levels of detail ) . The texture unit 
( PROP ) 415 , a raster engine 425 , a work distribution cross- 445 is also used as the Load / Store path for SM 440 to MMU 
bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 490. In one embodiment , each TPC 420 includes two ( 2 ) 
and one or more Texture Processing Clusters ( TPCs ) 420. It texture units 445 . 
will be appreciated that the GPC 350 of FIG . 4A may include The SM 440 comprises a programmable streaming pro 
other hardware units in lieu of or in addition to the units 55 cessor that is configured to process tasks represented by a 
shown in FIG . 4A . number of threads . Each SM 440 is multi - threaded and 

In one embodiment , the operation of the GPC 350 is configured to execute a plurality of threads ( e.g. , 32 threads ) 
controlled by the pipeline manager 410. The pipeline man- from a particular group of threads concurrently . In one 
ager 410 manages the configuration of the one or more TPCs embodiment , the SM 440 implements a SIMD ( Single 
420 for processing tasks allocated to the GPC 350. In one 60 Instruction , Multiple - Data ) architecture where each thread 
embodiment , the pipeline manager 410 may configure at in a group of threads ( i.e. , a warp ) is configured to process 
least one of the one or more TPCs 420 to implement at least a different set of data based on the same set of instructions . 
a portion of a graphics rendering pipeline . For example , a All threads in the group of threads execute the same instruc 
TPC 420 may be configured to execute a vertex shader tions . In another embodiment , the SM 440 implements a 
program on the programmable streaming multiprocessor 65 SIMT ( Single - Instruction , Multiple Thread ) architecture 
( SM ) 440 . The pipeline manager 410 may also be configured where each thread in a group of threads is configured to 
to route packets received from the work distribution unit 325 process a different set of data based on the same set of 
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instructions , but where individual threads in the group of Manager 455 tracks packets received from the different 
threads are allowed to diverge during execution . In other GPCs 350 and determines which GPC 350 that a result 
words , when an instruction for the group of threads is generated by the ROP unit 450 is routed to . The CROP unit 
dispatched for execution , some threads in the group of 452 and the ZROP unit 454 are coupled to the L2 cache 460 
threads may be active , thereby executing the instruction , 5 via an L2 XBar 465 . 
while other threads in the group of threads may be inactive , FIG . 5 illustrates the streaming multi - processor 440 of 
thereby performing a no - operation ( NOP ) instead of execut- FIG . 4A , in accordance with one embodiment . As shown in 
ing the instruction . The SM 440 may be described in more FIG . 5 , the SM 440 includes an instruction cache 505 , one 
detail below in conjunction with FIG . 5 . or more scheduler units 510 , a register file 520 , one or more 

The MMU 490 provides an interface between the GPC 10 processing cores 550 , one or more special function units 
350 and the partition unit 380. The MMU 490 may provide ( SFUs ) 552 , one or more load / store units ( LSUS ) 554 , an 
translation of virtual addresses into physical addresses , interconnect network 580 , a shared memory / L1 cache 570 . 
memory protection , and arbitration of memory requests . In As described above , the work distribution unit 325 dis 
one embodiment , the MMU 490 provides one or more patches tasks for execution on the GPCs 350 of the PPU 300 . 
translation lookaside buffers ( TLBs ) for improving transla- 15 The tasks are allocated to a particular TPC 420 within a GPC 
tion of virtual addresses into physical addresses in the 350 and , if the task is associated with a shader program , the 
memory 304 . task may be allocated to an SM 440. The scheduler unit 510 

FIG . 4B illustrates a memory partition unit 380 of the receives the tasks from the work distribution unit 325 and 
PPU 300 of FIG . 3 , in accordance with one embodiment . As manages instruction scheduling for one or more groups of 
shown in FIG . 4B , the memory partition unit 380 includes a 20 threads ( i.e. , warps ) assigned to the SM 440. The scheduler 
Raster Operations ( ROP ) unit 450 , a level two ( L2 ) cache unit 510 schedules threads for execution in groups of 
460 , a memory interface 470 , and an L2 crossbar ( XBar ) parallel threads , where each group is called a warp . In one 
465. The memory interface 470 is coupled to the memory embodiment , each warp includes 32 threads . The scheduler 
304. Memory interface 470 may implement 16 , 32 , 64 , unit 510 may manage a plurality of different warps , sched 
128 - bit data buses , or the like , for high - speed data transfer . 25 uling the warps for execution and then dispatching instruc 
In one embodiment , the PPU 300 comprises U memory tions from the plurality of different warps to the various 
interfaces 470 , one memory interface 470 per partition unit functional units ( i.e. , cores 550 , SFUS 552 , and LSUs 554 ) 
380 , where each partition unit 380 is connected to a corre- during each clock cycle . 
sponding memory device 304. For example , PPU 300 may In one embodiment , each scheduler unit 510 includes one 
be connected to up to U memory devices 304 , such as 30 or more instruction dispatch units 515. Each dispatch unit 
graphics double - data - rate , version 5 , synchronous dynamic 515 is configured to transmit instructions to one or more of 
random access memory ( GDDR5 SDRAM ) . In one embodi- the functional units . In the embodiment shown in FIG . 5 , the 
ment , the memory interface 470 implements a DRAM scheduler unit 510 includes two dispatch units 515 that 
interface and U is equal to 8 . enable two different instructions from the same warp to be 

In one embodiment , the PPU 300 implements a multi- 35 dispatched during each clock cycle . In alternative embodi 
level memory hierarchy . The memory 304 is located off - chip ments , each scheduler unit 510 may include a single dispatch 
in SDRAM coupled to the PPU 300. Data from the memory unit 515 or additional dispatch units 515 . 
304 may be fetched and stored in the L2 cache 460 , which Each SM 440 includes a register file 520 that provides a 
is located on - chip and is shared between the various GPCs set of registers for the functional units of the SM 440. In one 
350. As shown , each partition unit 380 includes a portion of 40 embodiment , the register file 520 is divided between each of 
the L2 cache 460 associated with a corresponding memory the functional units such that each functional unit is allo 
device 304. Lower level caches may then be implemented in cated a dedicated portion of the register file 520. In another 
various units within the GPCs 350. For example , each of the embodiment , the register file 520 is divided between the 
SMs 440 may implement a level one ( L1 ) cache . The Li different warps being executed by the SM 440. The register 
cache is private memory that is dedicated to a particular SM 45 file 520 provides temporary storage for operands connected 
440. Data from the L2 cache 460 may be fetched and stored to the data paths of the functional units . 
in each of the L1 caches for processing in the functional Each SM 440 comprises L processing cores 550. In one 
units of the SMs 440. The L2 cache 460 is coupled to the embodiment , the SM 440 includes a large number ( e.g. , 128 , 
memory interface 470 and the XBar 370 . etc. ) of distinct processing cores 550. Each core 550 may 

The ROP unit 450 includes a ROP Manager 455 , a Color 50 include a fully - pipelined , single - precision processing unit 
ROP ( CROP ) unit 452 , and a Z ROP ( ZROP ) unit 454. The that includes a floating point arithmetic logic unit and an 
CROP unit 452 performs raster operations related to pixel integer arithmetic logic unit . The core 550 may also include 
color , such as color compression , pixel blending , and the a double - precision processing unit including a floating point 
like . The ZROP unit 454 implements depth testing in con- arithmetic logic unit . In one embodiment , the floating point 
junction with the raster engine 425. The ZROP unit 454 55 arithmetic logic units implement the IEEE 754-2008 stan 
receives a depth for a sample location associated with a pixel dard for floating point arithmetic . Each SM 440 also com 
fragment from the culling engine of the raster engine 425 . prises M SFUS 552 that perform special functions ( e.g. , 
The ZROP unit 454 tests the depth against a corresponding attribute evaluation , reciprocal square root , and the like ) , and 
depth in a depth buffer for a sample location associated with N LSUs 554 that implement load and store operations 
the fragment . If the fragment passes the depth test for the 60 between the shared memory / L1 cache 570 and the register 
sample location , then the ZROP unit 454 updates the depth file 520. In one embodiment , the SM 440 includes 128 cores 
buffer and transmits a result of the depth test to the raster 550 , 32 SFUS 552 , and 32 LSUS 554 . 
engine 425. The ROP Manager 455 controls the operation of Each SM 440 includes an interconnect network 580 that 
the ROP unit 450. It will be appreciated that the number of connects each of the functional units to the register file 520 
partition units 380 may be different than the number of 65 and the LSU 554 to the register file 520 , shared memory / L1 
GPCs 350 and , therefore , each ROP unit 450 may be cache 570. In one embodiment , the interconnect network 
coupled to each of the GPCs 350. Therefore , the ROP 580 is a crossbar that can be configured to connect any of the 
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functional units to any of the registers in the register file 520 into two - dimensional data in screen space ) to produce 
and connect the LSUs 554 to the register file and memory fragment data , the second subset of SMS 440 executes a 
locations in shared memory / L1 cache 570 . pixel shader to produce processed fragment data , which is 

The shared memory / L1 cache 570 is an array of on - chip then blended with other processed fragment data and written 
memory that allows for data storage and communication 5 to the frame buffer in memory 304. The vertex shader 
between the SM 440 and the primitive engine 435 and program and pixel shader program may execute concur 
between threads in the SM 440. In one embodiment , the rently , processing different data from the same scene in a 
shared memory / L1 cache 570 comprises 64 KB of storage pipelined fashion until all of the model data for the scene has 
capacity and is in the path from the SM 440 to the partition been rendered to the frame buffer . Then , the contents of the 
unit 380. The shared memory / L1 cache 570 can be used to 10 frame buffer are transmitted to a display controller for 
cache reads and writes . display on a display device . 

The PPU 300 described above may be configured to The PPU 300 may be included in a desktop computer , a 
perform highly parallel computations much faster than con- laptop computer , a tablet computer , a smart - phone ( e.g. , a 
ventional CPUs . Parallel computing has advantages in wireless , hand - held device ) , personal digital assistant 
graphics processing , data compression , biometrics , stream 15 ( PDA ) , a digital camera , a hand - held electronic device , and 
processing algorithms , and the like . the like . In one embodiment , the PPU 300 is embodied on a 
When configured for general purpose parallel computa- single semiconductor substrate . In another embodiment , the 

tion , a simpler configuration can be used . In this model , as PPU 300 is included in a system - on - a - chip ( SoC ) along with 
shown in FIG . 3 , fixed function graphics processing units are one or more other logic units such as a reduced instruction 
bypassed , creating a much simpler programming model . In 20 set computer ( RISC ) CPU , a memory management unit 
this configuration , the work distribution unit 325 assigns and ( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
distributes blocks of threads directly to the TPCs 420. The In one embodiment , the PPU 300 may be included on a 
threads in a block execute the same program , using a unique graphics card that includes one or more memory devices 304 
thread ID in the calculation to ensure each thread generates such as GDDR5 SDRAM . The graphics card may be con 
unique results , using the SM 440 to execute the program and 25 figured to interface with a PCIe slot on a motherboard of a 
perform calculations , shared memory / L1 cache 570 com- desktop computer that includes , e.g. , a northbridge chipset 
municate between threads , and the LSU 554 to read and and a southbridge chipset . In yet another embodiment , the 
write Global memory through partition shared memory / L1 PPU 300 may be an integrated graphics processing unit 
cache 570 and partition unit 380 . ( iGPU ) included in the chipset ( i.e. , Northbridge ) of the 
When configured for general purpose parallel computa- 30 motherboard . 

tion , the SM 440 can also write commands that scheduler Various programs may be executed within the PPU 300 in 
unit 320 can use to launch new work on the TPCs 420. In one order to implement the various CNN , FC 135 , and RNN 235 
embodiment , the PPU 300 comprises a graphics processing layers of the video classification systems 115 , 145 , 200 , 215 , 
unit ( GPU ) . The PPU 300 is configured to receive com- and 245. For example , the device driver may launch a kernel 
mands that specify shader programs for processing graphics 35 on the PPU 300 to implement at least one 2D or 3D CNN 
data . Graphics data may be defined as a set of primitives layer on one SM 440 ( or multiple SMS 440 ) . The device 
such as points , lines , triangles , quads , triangle strips , and the driver ( or the initial kernel executed by the PPU 300 ) may 
like . Typically , a primitive includes data that specifies a also launch other kernels on the PPU 300 to perform other 
number of vertices for the primitive ( e.g. , in a model - space CNN layers , such as the FC 135 , RNN 235 and the classifier 
coordinate system ) as well as attributes associated with each 40 105 , 106 , or 206. In addition , some of the CNN layers may 
vertex of the primitive . The PPU 300 can be configured to be implemented on fixed unit hardware implemented within 
process the graphics primitives to generate a frame buffer the PPU 300. It will be appreciated that results from one 
( i.e. , pixel data for each of the pixels of the display ) . kernel may be processed by one or more intervening fixed 
An application writes model data for a scene ( i.e. , a function hardware units before being processed by a subse 

collection of vertices and attributes ) to a memory such as a 45 quent kernel on an SM 440 . 
system memory or memory 304. The model data defines 
each of the objects that may be visible on a display . The Exemplary System 
application then makes an API call to the driver kernel that 
requests the model data to be rendered and displayed . The FIG . 6 illustrates an exemplary system 600 in which the 
driver kernel reads the model data and writes commands to 50 various architecture and / or functionality of the various pre 
the one or more streams to perform operations to process the vious embodiments may be implemented . The exemplary 
model data . The commands may reference different shader system 600 may be used to implement the visual sequence 
programs to be implemented on the SMs 440 of the PPU 300 learning neural network model 115 or 150 . 
including one or more of a vertex shader , hull shader , As shown , a system 600 is provided including at least one 
domain shader , geometry shader , and a pixel shader . For 55 central processor 601 that is connected to a communication 
example , one or more of the SMs 440 may be configured to bus 602. The communication bus 602 may be implemented 
execute a vertex shader program that processes a number of using any suitable protocol , such as PCI ( Peripheral Com 
vertices defined by the model data . In one embodiment , the ponent Interconnect ) , PCI - Express , AGP ( Accelerated 
different SMS 440 may be configured to execute different Graphics Port ) , HyperTransport , or any other bus or point 
shader programs concurrently . For example , a first subset of 60 to - point communication protocol ( s ) . The system 600 also 
SMS 440 may be configured to execute a vertex shader includes a main memory 604. Control logic ( software ) and 
program while a second subset of SMS 440 may be config- data are stored in the main memory 604 which may take the 
ured to execute a pixel shader program . The first subset of form of random access memory ( RAM ) . 
SMS 440 processes vertex data to produce processed vertex The system 600 also includes input devices 612 , a graph 
data and writes the processed vertex data to the L2 cache 460 65 ics processor 606 , and a display 608 , i.e. a conventional CRT 
and / or the memory 304. After the processed vertex data is ( cathode ray tube ) , LCD ( liquid crystal display ) , LED ( light 
rasterized ( i.e. , transformed from three - dimensional data emitting diode ) , plasma display or the like . User input may 
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be received from the input devices 612 , e.g. , keyboard , by any of the above - described exemplary embodiments , but 
mouse , touchpad , microphone , camera , and the like . In one should be defined only in accordance with the following 
embodiment , the visual sequence learning neural network claims and their equivalents . 
model may be used to recognize dynamic hand gestures as What is claimed is : 
user input . In one embodiment , the graphics processor 606 5 1. A computer - implemented method , comprising : 
may include a plurality of shader modules , a rasterization replacing a non - recurrent layer within a trained neural 
module , etc. Each of the foregoing modules may even be network model with a recurrent layer to produce a 
situated on a single semiconductor platform to form a visual sequence learning neural network model ; 
graphics processing unit ( GPU ) . transforming feedforward weights for the non - recurrent 

layer into input - to - hidden weights of the recurrent layer In the present description , a single semiconductor plat to produce a transformed recurrent layer ; form may refer to a sole unitary semiconductor - based inte setting hidden - to - hidden weights of the recurrent layer to grated circuit or chip . It should be noted that the term single initial values ; and semiconductor platform may also refer to multi - chip mod processing video image data by the visual sequence ules with increased connectivity which simulate on - chip learning neural network model to generate classifica operation , and make substantial improvements over utilizing tion or regression output data . 
a conventional central processing unit ( CPU ) and bus imple- 2. The method of claim 1 , prior to processing the video 
mentation . Of course , the various modules may also be image data , further comprising : 
situated separately or in various combinations of semicon processing input video image data included in a training 
ductor platforms per the desires of the user . dataset by the visual sequence learning neural network 

The system 600 may also include a secondary storage model to generate output data ; 
610. The secondary storage 610 includes , for example , a comparing the output data to target output data included 
hard disk drive and / or a removable storage drive , represent- in the training dataset to produce comparison results ; 
ing a floppy disk drive , a magnetic tape drive , a compact and 
disk drive , digital versatile disk ( DVD ) drive , recording 25 adjusting the hidden - to - hidden weights based on the com 
device , universal serial bus ( USB ) flash memory . The parison results . 
removable storage drive reads from and / or writes to a 3. The method of claim 2 , further comprising adjusting the 
removable storage unit in a well - known manner . input - to - hidden weights based on the comparison results . 

Computer programs , or computer control logic algo 4. The method of claim 2 , wherein the training dataset is 
rithms , may be stored in the main memory 604 and / or the 30 configured for sequential face alignment and the video 

image data is color data . secondary storage 610. Such computer programs , when 5. The method of claim 2 , wherein the training dataset is executed , enable the system 600 to perform various func configured for dynamic hand gesture recognition and the tions . The memory 604 , the storage 610 , and / or any other video image data is color data and depth data . storage are possible examples of computer - readable media . 6. The method of claim 2 , wherein the training dataset is Data streams associated with gestures may be stored in the configured for action recognition and the video image data main memory 604 and / or the secondary storage 610 . is color data and optical flow data . 
In one embodiment , the architecture and / or functionality 7. The method of claim 1 , wherein the non - recurrent layer 

of the various previous figures may be implemented in the is a fully - connected layer . 
context of the central processor 601 , the graphics processor 40 8. The method of claim 1 , wherein the non - recurrent layer 
606 , an integrated circuit ( not shown ) that is capable of at is a convolutional layer . 
least a portion of the capabilities of both the central proces- 9. The method of claim 1 , wherein the transforming 
sor 601 and the graphics processor 606 , a chipset ( i.e. , a comprises computing values of parameters for multiple 
group of integrated circuits designed to work and sold as a input - to - hidden state corresponding to multiple gating func 
unit for performing related functions , etc. ) , and / or any other 45 tions of the recurrent layer using the feedforward weights . 
integrated circuit for that matter . 10. The method of claim 1 , wherein the transforming 

Still yet , the architecture and / or functionality of the vari- comprises computing values of parameters for a unified 
ous previous figures may be implemented in the context of input - to - hidden state corresponding to multiple gating func 
a general computer system , a circuit board system , a game tions of the recurrent layer using the feedforward weights . 
console system dedicated for entertainment purposes , an 50 11. The method of claim 1 , wherein the replacing com 
application - specific system , and / or any other desired sys- prises selecting the non - recurrent layer based on a distribu 
tem . For example , the system 600 may take the form of a tion of activation values for neurons in the transformed 
desktop computer , laptop computer , server , workstation , recurrent layer . 
game consoles , embedded system , and / or any other type of 12. The method of claim 11 , wherein fewer activation 
logic . Still yet , the system 600 may take the form of various 55 values for the neurons in the recurrent layer are distributed 
other devices including , but not limited to a personal digital between 0.1 and 0.9 than are distributed outside of 0.1 and 
assistant ( PDA ) device , a mobile phone device , head- 0.9 within a range 0.0 to 1.0 . 
mounted display , autonomous vehicle , a television , etc. 13. A system , comprising : 

Further , while not shown , the system 600 may be coupled a memory storing video image data ; and 
to a network ( e.g. , a telecommunications network , local area 60 a parallel processing unit that is coupled to the memory 
network ( LAN ) , wireless network , wide area network and configured to : 
( WAN ) such as the Internet , peer - to - peer network , cable replace a non - recurrent layer within a trained neural 
network , or the like ) for communication purposes . network model with a recurrent layer to produce a 

While various embodiments have been described above , visual sequence learning neural network model ; 
it should be understood that they have been presented by 65 transform feedforward weights for the non - recurrent 
way of example only , and not limitation . Thus , the breadth layer into input - to - hidden weights of the recurrent 
and scope of a preferred embodiment should not be limited layer to produce a transformed recurrent layer ; 
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set hidden - to - hidden weights of the recurrent layer to 18. The system of claim 13 , wherein the parallel process 
initial values ; and ing unit is further configured to select the non - recurrent 

process the video image data by the visual sequence layer based on a distribution of activation values for neurons 
learning neural network model to generate classifi in the transformed recurrent layer to transform the feedfor cation or regression output data . 5 ward weights . 

14. The system of claim 13 , wherein the parallel process 19. A non - transitory computer - readable media storing ing unit is further configured , prior to processing the video computer instructions for visual sequence learning that , image data , to : when executed by a processor , cause the processor to process input video image data included in a training perform the steps of : dataset by the visual sequence learning neural network 10 
model to generate output data ; replacing a non - recurrent layer within a trained neural 

network model with a recurrent layer to produce a compare the output data to target output data included in 
the training dataset to produce comparison results ; and visual sequence learning neural network model ; 

adjust the hidden - to - hidden weights based on the com transforming feedforward weights for the non - recurrent 
parison results . layer into input - to - hidden weights of the recurrent layer 

15. The system of claim 14 , wherein the parallel process to produce a transformed recurrent layer ; 
ing unit is further configured to adjust the input - to - hidden setting hidden - to - hidden weights of the recurrent layer to 

initial values ; and weights based on the comparison results . 
16. The system of claim 13 , wherein the parallel process processing video image data by the visual sequence 

ing unit is further configured to compute values for multiple 20 learning neural network model to generate classifica 
input - to - hidden state corresponding to multiple gating func tion or regression output data . 
tions of the recurrent layer using the feedforward weights . 20. The non - transitory computer - readable media of claim 

17. The system of claim 13 , wherein the parallel process 19 , wherein the replacing comprises selecting the non 
ing unit is further configured to compute values for a unified recurrent layer based on a distribution of activation values 
input - to - hidden state corresponding to multiple gating func for neurons in the transformed recurrent layer . 
tions of the recurrent layer using the feedforward weights . 
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