
US010860859B2

(12) United States Patent
Yang et al .

(10) Patent No .: US 10,860,859 B2
(45) Date of Patent : Dec. 8 , 2020

(54) (56) References Cited BUDGET - AWARE METHOD FOR
DETECTING ACTIVITY IN VIDEO

U.S. PATENT DOCUMENTS
(71) Applicant : NVIDIA Corporation , Santa Clara , CA

(US) 9,830,516 B1 * 11/2017 Biswas
10,467,274 B1 * 11/2019 Ren

(Continued)

G06K 9/00765
G06K 9/4604

(72) Inventors : Xiaodong Yang , San Jose , CA (US) ;
Pavlo Molchanov , San Jose , CA (US) ;
Jan Kautz , Lexington , MA (US) ;
Behrooz Mahasseni , Los Altos , CA
(US)

OTHER PUBLICATIONS

(73) Assignee : NVIDIA Corporation , Santa Clara , CA
(US)

Shou et al . , " CDC : Convolutional - De - Convolutional Networks for
Precise Temporal Action Localization in Untrimmed Videos , ” IEEE
Conference on Computer Vision and Pattern Recognition , 2017 , 10
pages . Retrieved from https://arxiv.org/abs/1703.01515 .

(Continued)
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U.S.C. 154 (b) by 90 days . Primary Examiner Cindy Trandai

(74) Attorney , Agent , or Firm — Leydig , Voit & Mayer ,
Ltd. (21) Appl . No .: 16 / 202,703

(22) Filed : Nov. 28 , 2018 (57) ABSTRACT

(65) Prior Publication Data
US 2019/0163978 A1 May 30 , 2019

Related U.S. Application Data
(60) Provisional application No. 62 / 592,990 , filed on Nov.

30 , 2017 .

(51)

Detection of activity in video content , and more particularly
detecting in video start and end frames inclusive of an
activity and a classification for the activity , is fundamental
for video analytics including categorizing , searching , index
ing , segmentation , and retrieval of videos . Existing activity
detection processes rely on a large set of features and
classifiers that exhaustively run over every time step of a
video at multiple temporal scales , or as a small improvement
computationally propose segments of the video on which to
perform classification . These existing activity detection pro
cesses , however , are computationally expensive , particularly
when trying to achieve activity detection accuracy , and
moreover are not configurable for any particular time or
computation budget . The present disclosure provides a time
and / or computation budget - aware method for detecting
activity in video that relies on a recurrent neural network
implementing a learned policy .

Int . Cl .
G06T 7/194 (2017.01)
G06K 9700 (2006.01)
G06K 9/62 (2006.01)
U.S. CI .
CPC G06K 9/00718 (2013.01) ; G06K 9/00744

(2013.01) ; G06K 9/00765 (2013.01) ;
(Continued)

Field of Classification Search
CPC G06T 7/194
See application file for complete search history .

(52)

(58)

21 Claims , 11 Drawing Sheets

100

Start

learning , through a reinforcement learning algorithm , a policy to
sequentially select a subset of frames of a video and classify
activity within the subset of frames according to a plurality of

predefined activity classifications
102

using , by a recurrent neural network , the policy to detect and
classify activity in the video over a sequence of steps determined

according to a given time and / or computation budget
104

End

US 10,860,859 B2
Page 2

(52) U.S. Cl .
CPC G06K 9/628 (2013.01) ; G06K 9/6227

(2013.01) ; G06K 9/6262 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

10,521,715 B1 * 12/2019 Ioffe GOON 3/08
2004/0151374 A1 * 8/2004 Lipton G08B 31/00

382/181
2007/0183661 A1 * 8/2007 El - Maleh G06T 7/194

382/173
2011/0293180 A1 * 12/2011 Criminisi G06T 7/11

382/173
2016/0125621 A1 * 5/2016 Saitwal G06K 9/38

382/165
2016/0189388 Al * 6/2016 Gupta G06T 7/187

382/180
2017/0083764 A1 3/2017 Risinger G06T 7/251
2017/0124400 A1 * 5/2017 Yehezkel Rohekar G06K 9/52
2017/0169314 A1 * 6/2017 Dijkman G06K 9/6261
2018/0068463 A1 * 3/2018 Risser G06T 7/45
2018/0075306 A1 * 3/2018 Mehrseresht G06K 9/00348
2019/0180107 A1 * 6/2019 Pham G06K 9/34

Computer Vision and Pattern Recognition , 2016 , 10 pages . Retrieved
from https://arxiv.org/pdf/1511.06984.pdf .
Oneata et al . , “ The LEAR submission at Thumos 2014 , ” Thumos
Challenge 2014 , 7 pages . Retrieved from http://crcv.ucf.edu/
THUMOS14 / papers / INRIA % 20LEAR.pdf .
Wang et al . , “ Action Recognition and Detection by Combining
Motion and Appearance Features , ” Thumos Challenge , 2014 , 6
pages . Retrieved from http://crev.ucf.edu/THUMOS 14 / papers / CUHK
& SIAT.pdf .
Yuan et al . , “ Temporal Action Localization with Pyramid of Score
Distribution Features , ” IEEE Conference on Computer Vision and
Pattern Recognition , 2016 , 10 pages . Retrieved from https : // www .
cv-foundation.org/openaccess/content_cvpr_2016/papers/Yuan_
Temporal_Action_Localization_CVPR_2016_paper.pdf .
Xu et al . , “ R - C3D : Region Convolutional 3D Network for Temporal
Activity Detection , ” Proceedings of the International Conference on
Computer Vision , 2017 , 10 pages . Retrieved from http : // openaccess .
thecvf.com/content_ICCV_2017/papers/Xu_R-C3D_Region_
Convolutional_ICCV_2017_paper.pdf .
Gomez et al . , “ Temporal Activity Detection in Untrimmed Videos
with Recurrent Neural Networks , ” 1st NIPS Workshop on Large
Scale Computer Vision Systems , 2016 , 56 pages .
Shou et al . , “ Temporal Action Localization in Untrimmed Videos
via Multi - stage CNNs , ” IEEE Conference on Computer Vision and
Pattern Recognition , 2016 , 10 pages . Retrieved from https : // www .
cv-foundation.org/openaccess/content_cvpr_2016/papers/Shou_
Temporal_Action_Localization_CVPR_2016_paper.pdf .
Singh et al . , “ Untrimmed Video Classification for Activity Detec
tion : submission to ActivityNet Challenge , ” ActivityNet Large
Scale Activity Recognition Challenge workshop at CVPR , 2016 , 4
pages . Retrieved from https://arxiv.org/pdf/1607.01979.pdf .
Richard et al . , “ Temporal Action Detection using a Statistical
Language Model , ” IEEE Conference on Computer Vision and
Pattern Recognition , 2016 , 10 pages . Retrieved from https : // www .
cv-foundation.org/openaccess/content_cvpr_2016/papers/Richard_
Temporal_Action_Detection_CVPR_2016_paper.pdf .

OTHER PUBLICATIONS

Escorcia et al . , “ DAPs : Deep Action Proposals for Action Under
standing , ” European Conference on Computer Vision , 2016 , 17
pages . Retrieved from https://pdfs.semanticscholar.org/5ef4/
9174ca2b54c1bb54df828acc52075cf1634b.pdf .
Heilbron et al . , “ Fast Temporal Activity Proposals for Efficient
Detection of Human Actions in Untrimmed Videos , ” IEEE Confer
ence on Computer Vision and Pattern Recognition , 2016 , 10 pages .
Retrieved from http://openaccess.thecvf.com/content_cvpr_2016/
papers / Heilbron_Fast_Temporal_Activity_CVPR_2016_paper.pdf .
Yeung et al . , “ End - to - end Learning of Action Detection from Frame
Glimpses in Videos , ” Proceedings of the IEEE Conference on * cited by examiner

U.S. Patent Dec. 8 , 2020 Sheet 1 of 11 US 10,860,859 B2 2

100

Start

learning , through a reinforcement learning algorithm , a policy to
sequentially select a subset of frames of a video and classify
activity within the subset of frames according to a plurality of

predefined activity classifications
102

using , by a recurrent neural network , the policy to detect and
classify activity in the video over a sequence of steps determined

according to a given time and / or computation budget
104

End

Fig . 1

U.S. Patent Dec. 8 , 2020 Sheet 2 of 11 US 10,860,859 B2 2

200

frame to observe
history of prior

observed frames

POLICY

temporal
location of
segment

classification (s)
for the detected

activity
Next frame to

observe

Fig . 2A

210

{ ?

Background / Frame

Neighborhood
Foreground Activity Frame

U.S. Patent

1 1

1-1 Ct - 1

?

h

Eitt

HT

& T + 1

1

LTSM

LTSM

LTSM

Dec. 8 , 2020

MT

OT

{ 1 } } I

Sheet 3 of 11

1 1

En

?

? & frames

frames

frames

Vtttt

Policy step t - 1

Policy step t

} 1

Policy step T

US 10,860,859 B2

Fig . 2B

220

U.S. Patent

Step 5 Background : 0.42 Segment : 741-1017

Step 2 Activity 1 : 0.51 Segment : 3329-4418

Step 1

Step 3

Background : 0.76

Activity 1 : 0.58

Segment : 2454-3052

Segment : 4027-4163

Step 6 Background : 0.66 Segment : 769-983

Step 4 Background : 0.35 Segment : 4263-4994
Video Sequence

Dec. 8 , 2020

3

}
}
}
}

1

Sheet 4 of 11

+

Observing Sequence

US 10,860,859 B2

Fig . 2C

U.S. Patent Dec. 8 , 2020 Sheet 5 of 11 US 10,860,859 B2

302 PPU 300

1/0 Unit
305

Front End Unit
315

Scheduler Unit
320

NVLink 310 Hub
330

Work Distribution Unit
325

GPC
350 (X)

XBar 370

Memory
30409) Memory Partition Unit 380 (0) I

Jenenge nanaman
BAN

Fig . 3

U.S. Patent Dec. 8 , 2020 Sheet 6 of 11 US 10,860,859 B2 2

To / From XBar 370

GPC 350

Pipeline Manager
410

PROP
415

MPC
430

Primitive
Engine
435 Raster Engine

425 NUUUUUUU

SM
440

DPC 420 (1)

WDX
480

MMU 490

To / From XBar 370 To / From XBar 370

Fig . 4A

U.S. Patent Dec. 8 , 2020 Sheet 7 of 11 US 10,860,859 B2 2

To / From
XBar 370

Memory Partition Unit
380

ROP 450

L2 Cache 460 To / From
XBar 370

Memory Interface
470

To / From
Memory 304

Fig . 4B

U.S. Patent Dec. 8 , 2020 Sheet 8 of 11 US 10,860,859 B2 9

SM 440

Instruction Cache 505

Scheduler Unit 510 (K)

Dispatch 515

Register File 520

Core
550 (L - 1)

SFU
552 (M - 1)

LSU
554 (N - 1)

Interconnect Network 580

Shared Memory / L1 Cache 570

To / from MMU 490

Fig . 54

U.S. Patent Dec. 8 , 2020 Sheet 9 of 11 US 10,860,859 B2 2

500

CPU 530

302

Switch 510

304 PPU 300 PPU 300 304
NVLink
310

304 PPU 300 PPU 300 304

525

Fig . 5B

U.S. Patent Dec. 8 , 2020 Sheet 10 of 11 US 10,860,859 B2 2

565 Main
Memory
540

Network
Interface
535

Display
Devices
545

Input
Devices
560 CPU 530

A A 302
575

Switch 510

304 PPU 300 PPU 300 304
NVLink
310

304 PPU 300 PPU 300 304

525

Fig . 50

U.S. Patent Dec. 8 , 2020 Sheet 11 of 11 US 10,860,859 B2

600

Input Data
601

Data Assembly
610

Vertex Shading
620

Primitive Assembly
630

Geometry Shading
640

Viewport SCC
650

Rasterization
660

Fragment Shading
670

Raster Operations
680

Output Data
602

Fig . 6

5

10

US 10,860,859 B2
1 2

BUDGET - AWARE METHOD FOR one or more of the plurality of predefined activity classifi
DETECTING ACTIVITY IN VIDEO cations associated with the segment , and a next subset of

frames to select for a next step of the plurality of steps .
CLAIM OF PRIORITY

BRIEF DESCRIPTION OF THE DRAWINGS
This application claims the benefit of U.S. Provisional

Application No. 62 / 592,990 titled “ BUDGET - AWARE FIG . 1 illustrates a flowchart of a budget - aware method
ACTIVITY DETECTION WITH A RECURRENT for detecting activity in video , in accordance with an
POLICY NETWORK , " filed Nov. 30 , 2017 , the entire embodiment .
contents of which is incorporated herein by reference . FIG . 2A illustrates a block diagram of the inputs and

outputs for a policy usable by a recurrent neural network to
TECHNICAL FIELD detect activity in a video according to a given time and / or

computational budget , in accordance with an embodiment .
The present disclosure relates to detecting activity in FIG . 2B illustrates a block diagram of a sequence of steps

video . 15 taken by a recurrent neural network to detect activity in a
video according to a given time budget , in accordance with

BACKGROUND an embodiment .
FIG . 2C illustrates an exemplary flow of activity detection

Detection of activity in video content , and more particu- for a video using a budget - aware method , in accordance with
larly detecting in video content start and end frames inclu- 20 an embodiment .
sive of an activity and a classification for the activity , is FIG . 3 illustrates a parallel processing unit , in accordance
fundamental for video analytics including categorizing , with an embodiment .
searching , indexing , segmentation , and retrieval of videos . FIG . 4A illustrates a general processing cluster within the
For example , video - based content platforms , such as You- parallel processing unit of FIG . 3 , in accordance with an
Tube which hosts a wide variety of video content created by 25 embodiment .
a very large user base , rely on activity detection processes to FIG . 4B illustrates a memory partition unit of the parallel
allow for searching , categorizing , etc. of the videos processing unit of FIG . 3 , in accordance with an embodi
uploaded by its users . Recent improvements to activity ment .
detection processes have specifically focused on advancing FIG . 5A illustrates the streaming multi - processor of FIG .
activity detection accuracy . However , improved accuracy 30 4A , in accordance with an embodiment .
has been provided at the expense of processing time and FIG . 5B is a conceptual diagram of a processing system
computer resources (e.g. memory , processor , etc. consump- implemented using the PPU of FIG . 3 , in accordance with an
tion) . embodiment .

For example , some existing activity detection processes FIG . 5C illustrates an exemplary system in which the
rely on a large set of features and classifiers that exhaus- 35 various architecture and / or functionality of the various pre
tively run over every time step at multiple temporal scales . vious embodiments may be implemented .
This sliding window approach is computationally expensive FIG . 6 is a conceptual diagram of a graphics processing
since it requires classification at every time step of a video . pipeline implemented by the PPU of FIG . 3 , in accordance
Some improvements have been made to these existing with an embodiment .
activity detection processes in order to avoid such exhaus- 40
tive evaluations , where temporal segments of a video that DETAILED DESCRIPTION
are likely to contain a certain action are proposed , and then
a separate classifier is applied to each of the proposed Detection of activity in video content , and more particu
temporal segments for classification purposes . However , larly detecting in video start and end frames inclusive of an
these improved activity detection processes are suboptimal 45 activity and a classification for the activity , is fundamental
for numerous reasons , including that they divide activity for video analytics including categorizing , searching , index
detection into two disjointed steps : proposal and classifica- ing , segmentation , and retrieval of videos . Existing activity
tion , and also that they generally propose a large number of detection processes rely on a large set of features and
temporal segments which is still computationally expensive . classifiers that exhaustively run over every time step of a

There is a need for addressing these issues and / or other 50 video at multiple temporal scales , or as a small improvement
issues associated with the prior art . computationally propose segments of the video on which to

perform classification . These existing activity detection pro
SUMMARY cesses , however , are computationally expensive , particularly

when trying to achieve activity detection accuracy , and
A budget - aware method , computer readable medium , and 55 moreover are not configurable for any particular time or

system are disclosed for detecting activity in video . In use , computation budget .
a reinforcement learning algorithm is used to learn a policy The present disclosure provides a budget - aware method
to sequentially select a subset of frames of a video and for detecting activity in video . In particular , the activity
classify activity within the subset of frames according to a detection method learns to optimally select a subset of video
plurality of predefined activity classifications . Additionally , 60 frames to process based on a given time or computation
a recurrent neural network uses the policy to detect and budget . Accordingly , the activity detection process can be
classify activity in the video over a sequence of steps optimized for the given time or computation budget .
determined according to a given time or computation bud- FIG . 1 illustrates a flowchart of a budget - aware method
get . For each step of the plurality of steps , the detection for detecting activity in video , in accordance with an
includes selecting a subset of frames of the video , and 65 embodiment . In the context of the present description , the
predicting a segment from the selected subset of frames video includes any type or format of video content that is
including a temporal location of the segment in the video , comprised of a sequence of displayable frames . The video

US 10,860,859 B2
3 4

may be short or long , depending on the number of frames cations associated with the segment , and a next subset of
included therein , and in any case is stored in computer frames to select for a next step of the plurality of steps .
memory . The activity detection method 100 is budget - aware As noted above , the policy may receive as input a location
in that it is dynamically adjusted according to a given (i.e. of a frame to observe and a history of any prior observed
specified) time or computational budget . In other words , the 5 frames , and from that input the policy may then predict the
activity detection method 100 is self - adjusting to detect aforementioned segment in the video . Specifically , the
activity within (i.e. without exceeding) a particular time policy produces three outputs , including : (1) the temporal
given and / or a particular computational budget (i.e. band- location (start and end) of the segment in the video having
width) given . a detected activity , (2) one or more of the plurality of

The method 100 may be performed by a processing unit , 10 predefined activity classifications associated with the seg
a program , custom circuitry , or by a combination thereof . ment , and (3) a next frame for a next step of the sequential
For example , the method 100 may be executed by a GPU decision making process . The policy produces the output
(graphics processing unit) , CPU (central processing unit) , or based on local information of a neighborhood of frames
any processor such as those described below . Furthermore , centered on the frame to observe and the history of the prior
persons of ordinary skill in the art will understand that any 15 observed frames .
system that performs method 100 is within the scope and To this end , the recurrent neural network may use the
spirit of embodiments of the present disclosure . learned policy to detect and classify activity in the video

In operation 102 , a reinforcement learning algorithm is over a sequence of steps that is determined according to a
used to learn a policy to sequentially select a subset of given time and / or computation budget . Moreover , use of the
frames of a video and classify activity within the subset of 20 policy allows the activity detection accuracy to be maxi
frames according to a plurality of predefined activity clas- mized for the given time and / or computation budget .
sifications . Thus , the policy , when used , implements a More illustrative information will now be set forth regard
sequential decision making process where each step is a ing various optional architectures and features with which
decision that determines the subset of frames in the video to the foregoing framework may be implemented , per the
select for activity detection purposes . In particular , at each 25 desires of the user . It should be strongly noted that the
sequential step , the policy receives as input a location of a following information is set forth for illustrative purposes
frame to observe and a history of any prior observed frames , and should not be construed as limiting in any manner . Any
and then produces three outputs , including : (1) a temporal of the following features may be optionally incorporated
location (start and end) of a segment in the video having a with or without the exclusion of other features described .
detected activity , (2) one or more of the plurality of pre- 30 Given a video v and a set of activity labels L , the goal is
defined activity classifications associated with the segment , to predict for each frame a single label from L. Each
and (3) a next frame for a next step of the sequential decision temporal extent consisting of consecutive frames with the
making process . same label is called a semantic temporal segment . Given a

The policy is parameterized by 0 , and the goal of the limited time budget , it is infeasible to process every single
policy learning is to optimize the parameters of the policy by 35 frame in a video . So we aim to detect and classify the
minimizing the loss incurred over the sequential steps , foreground segments by only observing a small subset of
where loss refers to classification loss , localization loss , video frames x CV .
and / or retrieval loss . Since any estimated temporal segments Assuming limited access to the frames of v , finding the
(i.e. consecutive frames with a same activity classification) optimal frame subset x is inherently a sequential decision
for a video will be computed through the sequence of steps , 40 making task . Accordingly , we draw on ideas from reinforce
the objective function of the policy becomes non - decom- ment learning an area that focuses on learning for sequen
posable and non - differentiable . Thus , in one embodiment , tial decision making problems . Our aim is to learn a policy
the policy is learned using a partially observable Markov IT , parameterized by 0 , to sequentially select the frames from
decision process (POMDP) , and as a further option the v and form the subset x . Alongside the selection process , it
approximation of gradients for the objective function using 45 outputs the current belief about the foreground segment and
a recurrent policy gradient approach . This allows the policy , the associated class label . This sequential decision making
and in particular its parameters , to be learned with stochastic process intuitively resembles how humans search activities
gradient descent , in one embodiment . in a video , i.e. , iteratively refine our estimated temporal

Moreover , the reinforcement learning algorithm , which as boundaries by sequentially choosing a few frames to
noted above is used to learn the policy , may reward the 50 observe .
policy as a function of a change in error . For example , the Let G denote the ground truth segments in v , and my be
policy may earn a reward for (e.g. equal to) any decrease in the set of estimated semantic temporal segments from the temporal segmentation error achieved by selecting a observing x . We define the deterministic indicator lm , & to particular frame , and may pay a penalty when the temporal
segmentation error increases . identify whether an estimated segment mEm is assigned

Additionally , in operation 104 , a recurrent neural network to a ground truth segment gEG :
uses the policy to detect and classify activity in the video
over a sequence of steps determined according to a given
time and / or computation budget . Thus , the time (e.g. in 1 g = argil a (m , g ') subject to a > 0 (Equation 1)
seconds , etc.) and / or computation (e.g. in number of com- 60 0 otherwise
putations , etc.) budget may limit the number of sequential
steps performed to detect and classify the activity in the
video . For each step of the plurality of steps , the detection where a is the intersection over union (IU) . Let cm and
includes selecting a subset of frames of the video , and ce indicate the probability distribution and the one - hot rep
predicting a segment from the selected subset of frames 65 resentation of class label for segments m and g . For a subset
including a temporal location of the segment in the video , of selected frames x and a set of predicted segments M , our
one or more of the plurality of predefined activity classifi- loss is defined as :

55

{ d m , g

10

15

25

US 10,860,859 B2
5 6

activity in a video according to a given time and / or com
Lo = (Equation 2) putational budget . The recurrent neural network uses the

£ Cg x policy it to make a sequence of decisions , or predictions , [1cAcis (Cm , C3) +1 Abcllm , lg)] + 1 , Aret (MG) based on the local information from the most recent
5 observed frame , as described in more detail below with

where Acis is the multi - class classification error , Aloc is the respect to FIG . 2B . At each step , the policy produces three
localization error with Im and 1 , identifying the locations of outputs including the estimate of the start frame and end
segments m and g , and Aret is the segment retrieval error . The frame of the current potential temporal segment , the predic
most important property of Ares is that while it encourages tion of the classification (s) associated with the segment , and
the model to detect all foreground segments , it also discour the next frame to observe . Unlike binary classification

the model from producing many false positives . models , this approach uses a multi - class classifier , which ages
We now explain how to formulate each individual error means only the single policy a needs to be trained rather

defined in Equation 2. In contrast to using a binary classi than training multiple different policies for each different
fication loss , we employ a multi - class cross - entropy loss classification . This approach avoids a binary prediction
Acis - c , log om . Unlike penalizing the localization based on indicator signal , since it can directly discard those segments
the absolute error , this loss should also depend on the predicted with the background classification .
duration of a segment , i.e. , the same amount of absolute Due to the local observation at each step , the policy has
error should be treated differently for short and long inter no access to the global state (i.e. , the entire video) . This
vals . This means that if the policy makes a small error for a 20 resembles the partially observable Markov decision process
short segment this error should be considered relatively (POMDP) , which assumes that despite the existence of a
large , otherwise the algorithm would ignore the small seg global state , for practical reasons an agent does not have a
ments . With this intention , we define full observation of the global state . A recurrent policy

gradient approach is used to maintain an approximate belief
of the current state s , by Long Short - Term Memory (LSTM) .

Particularly , suppose at step t the current frame is i , the Alocalm , lg) = $ (8) * || (ms , me) , (& s , & e) || policy a makes a decision based on (1) the local information
of a neighborhood Ni centered around i and (2) the history

where Ç (g) is a scaling factor which depends on the length of previous observations . The local information is captured
of segment g , || - || is the distance between two segments , m , 30 through an observation feature 0 , - [4 (N ;) , 9 (N ;) , & t] , where
and me are the start and end of segment m , similar for W (N ;) is an indicator vector that identifies whether each

frame in N , has been previously selected , Q (N) is the segment g . To define the segment retrieval loss Areal M , G) , average of per - class confidence predicted in N ;, and EtE [0,1] we use the mAP criteria , where mean is over different class is the normalized location of the current frame at step t . The labels , and AP for each individual class is defined as APC inclusion of Et is helpful in encouraging the policy to cover
m * , G) = ?; Prec (M (i) , G) XARecall , where m (i) is the broader video content . Excluding & t may result in a consid
subset of my until the ith segment ranked by the overlap erable number of over - selection of frames . Note that for ,
with ground truth , Prec () is the precision of detection , and the averaged confidence of estimated segments is computed ,
Arecall is the change of recall from previous subset . Given a which share the frames in Ni . As for the history of the
training set of N videos { V1 , ... , Vx } , our goal is to find 0 40 decision makings , the hidden state hz - 1 of LSTM is used to
that minimizes : maintain the context of previous observations up to step t .

To summarize , the global state at step t is approximated by
the internal state h , of LSTM , which depends on the current

(Equation 3) observation 0 , and the previous state h , -1 . Given h , the
argmin (L.) LM.G 45 outputs of the policy it are v [1 ,, Ct , $ + 1] : (1) the location 1 ,

of an estimated temporal segment , (2) the probability dis
tribution over activity class labels cz , and (3) the location of

Unfortunately , the standard back - propagation is not appli the next observation $ t + 1 . This formulation allows the policy
cable to learn the parameters in Equation 3 , as the objective to perform both forward and backward frame selections . In
function in Equation 2 contains the non - differentiable com- 50 order to further improve the exploration at training phase ,
ponents . This is mainly due to the non - decomposable AP , as instead of directly using $: + 1 , the next selected location may
well as the sequential decision making process in selecting be sampled from a Gausssian distribution with a mean equal
video frames . In order to solve this difficulty , we reformulate to $ + 1 and a fixed variance .
our problem as a reinforcement learning problem , as The goal of policy learning is to jointly optimize the
described with reference to FIG . 2A below , which allows us 55 parameters of ot by minimizing the loss of a sequence of
to define an equivalent reward function to the original policy actions as defined in Equation 2. These actions are
objective function . taken from the initial state so , when no frames are selected ,

FIG . 2A illustrates a block diagram 200 of the inputs and until the final state s? , where T is the number of steps
outputs for a policy usable by a recurrent neural network to specified according to a time and / or computation budget .
detect activity in a video according to a given time and / or 60 The main difficulty in policy learning is that the estimated
computational budget , in accordance with an embodiment . temporal segments My for a video are computed through a
For example , the policy described with respect to FIG . 2A sequence of policy decisions , resulting in a non - decompos
may be one embodiment of the policy learned and used in able and non - differentiable objective function . Moreover , a
the manner described above with reference to the method decision that the policy makes at any step depends on the
100 of FIG . 1 . 65 history of decisions that the policy has made in previous

In the present embodiment , policy it with parameters o is steps , and also impacts the decisions available to the policy
learned for use by a recurrent neural network to detect in the future . A recurrent policy gradient approach is used for

35

5

?

US 10,860,859 B2
7 8

addressing this POMDP problem , which provides better where the first term is a sum over the log of p (h / h4-1) , a
theoretical bounds on the learning objective to approximate constant with respect to 0. This therefore results in the
the gradients of the non - decomposable and non - differen- following gradient :
tiable objective function , so that the policy can be efficiently
learned with stochastic gradient descent .

To follow the general reinforcement learning formulation ,
let r be the immediate reward associated with a state sc . Since Velogp (H | 0) = Volog7 (v ; | hx - 1 , 0 ;) .
sæh , in the policy , r is defined as r (h .) = L (M - 1 , G) -Lo (
M , G) , where Lo is the loss associated with a set of 10 It is common to use the Monte - Carlo integration to
estimated temporal segments as defined in Equation 2 . approximate the integration over the probability of observ
Intuitively , r (h .) states that the policy earns an immediate ing a sequence of hidden states . Specifically , the approxi
reward equal to the decrease in the segmentation mate gradient is computed by running the current policy on
error achieved by selecting an observed frame , or pays a N training videos to generate N trajectories . Combining
penalty if the temporal segmentation error increases . Let aforementioned derivations and Equation 5 , the approximate
R (H) be the discounted accumulated reward starting from gradient is obtained as :
the state s , and continuing the policy up to the final state :

15

(Equation 6)
20 T

? ?

Vol 7 N
} = 1 t = 1

[Velogr (v) | b - 1,0 %) R $ (})] St : R (H) = { _- ' r (hu)

Since the policy gradient methods usually suffer from the where H? { h ,, ... , ht } represents the history of hidden states in LSTM , and tE (0,1) is the discount factor . H , can be 25 high variance of gradient estimates , a bias is subtracted from the expected reward R. However , rather than taking a interpreted as the trajectory of observations for a sample run constant bias , the bias value is set to be the reward obtained of the policy from the initial state . For notational simplicity , from a random selection policy . we use H for H , in the description below . The goal of policy FIG . 2B illustrates a block diagram 210 of a sequence of learning is transformed to find the parameters * to maxi
mize J (0) which is defined as : 30 steps taken by a recurrent neural network to detect activity

in a video according to a given time budget , in accordance
with an embodiment . For example , the recurrent neural
network described with respect to FIG . 2B may be one (Equation 4) J10) = E [RCH) = SP p (HO) Re (H) dH) H embodiment of the recurrent neural network described

35 above with reference to the method 100 of FIG . 1 .
As shown , a plurality of time step T are determined based

where p (H10) is the probability of observing a sequence of on a given time or computation budget . During each time
hidden states H , given a policy i defined by the parameters step , the global state is approximated by the internal state of
0. It can be shown that maximizing J (0) implicitly mini- LSTM , which depends on the current observation (i.e. for a
mizes Lo along the trajectory of policy executions . The 40 selected frame and its neighboring frames) and the previous
gradient needs to be computed with respect to the policy state . For example , the global state at step t is approximated
parameters VoJ , which is given by : by the internal state h , of LSTM , which depends on the

current observation 04 (i.e. of a neighborhood centered
around the current selected frame and the previous state he - 1 .

(Equation 5) 45 Vod = [176 pcHlo) R $ (H) + p [H16) , R $ (H)] dH For each step , the policy predicts a segment m , and
produces three outputs : the temporal location lt (i.e. , start
and end) of the segment , the estimated class ct associated

Note that given the sequence of hidden states H , which with the segment , and the next frame to observe at & t + 1 .
determines the history of selected frames , the reward func According to a specified time budget , the policy runs for T
tion does not depend on the policy parameters , yielding 50 steps then completes the detection process .
V R. (H) 0. To further simplify Equation 5 , Vop (HO) is For each step , given the internal state of LSTM , the policy
defined . First , p (HO) is factorized as : predicts a segment m , and produces three outputs : (1) the

temporal location 1 (i.e. start and end frame) of the segment ,
(2) the estimated class c associated with the segment (e.g.

55 the probability distribution over activity class labels c) , and
P (H | 0) = p (ho) || p (ht | h2–1) 7 (v : | h2–1 , 01) (3) the next frame to observe $ (e.g. the location of the next

observation) . In the example shown at step t , the outputs of
the policy are v- [1 ,, Co $ t + 1] : (1) the location 1 , of an estimated temporal segment , (2) the probability distribution where the same notation u is used to denote the output of 60 over activity class labels c? , and (3) the location of the next the policy . Based on this we have : observation Ex + 1 This formulation allows the policy to
perform both forward and backward frame selections . This
formulation allows the policy to perform both forward and

logp (H | O) = const + log (vi | ht - 1 , 01) backward frame selections . As an option , instead of directly
65 using $ t + 1 , the next selected location may be sampled from

a Gausssian distribution with a mean equal to $ x + 1 and a fixed
variance .

T

1 = 1

????? t = 1

US 10,860,859 B2
9 10

Activity detection for the video , including determining One or more PPUs 300 may be configured to accelerate
the start and end frames for an activity as well as a thousands of High Performance Computing (HPC) , data
classification for the activity , can be determined from the center , and machine learning applications . The PPU 300
contents of the LSTM after the final time step . may be configured to accelerate numerous deep learning

The budget - aware method described above achieves com- 5 systems and applications including autonomous vehicle
petitive detection accuracy under various Intersection over platforms , deep learning , high - accuracy speech , image , and
Union (IoU) thresholds for activity detection , and further text recognition systems , intelligent video analytics ,
performs activity detection in only 0.35 seconds for each molecular simulations , drug discovery , disease diagnosis ,
untrimmed long video . This is orders of magnitude faster weather forecasting , big data analytics , astronomy , molecu
than most other competing algorithms relying on sliding 10 lar dynamics simulation , financial modeling , robotics , fac
windows or segment proposals . tory automation , real - time language translation , online

search optimizations , and personalized user recommenda FIG . 2C illustrates an exemplary flow 220 of activity tions , and the like . detection for a video using a budget - aware method , in As shown in FIG . 3 , the PPU 300 includes an Input / accordance with an embodiment . It should be noted that the 15 Output (I / O) unit 305 , a front end unit 315 , a scheduler unit
activity detection shown in FIG . 2C is set forth for illustra 320 , a work distribution unit 325 , a hub 330 , a crossbar tive purposes only and a use - case of the budget - aware (Xbar) 370 , one or more general processing clusters (GPCs) activity detection described above with reference to FIG . 350 , and one or more memory partition units 380. The PPU
2B . 300 may be connected to a host processor or other PPUS 300
As shown , given a time or computation budget that allows 20 via one or more high - speed NVLink 310 interconnect . The

for 6 time steps , the recurrent neural network uses a policy PPU 300 may be connected to a host processor or other
(e.g. learned as described with respect to FIG . 2A) to detect peripheral devices via an interconnect 302. The PPU 300
activity in a video . At Step 1 , the policy predicts activity for may also be connected to a local memory comprising a
a given frame and its neighboring frames and outputs (1) the number of memory devices 304. In an embodiment , the local
temporal location of the predicted segment for the activity as 25 memory may comprise a number of dynamic random access
starting at frame 2454 and ending at frame 3052 , (2) the memory (DRAM) devices . The DRAM devices may be
estimated class (category) associated with the segment as configured as a high - bandwidth memory (HBM) subsystem ,
being Background as well as the probability distribution for with multiple DRAM dies stacked within each device .
Background as 0.76) , and (3) the next frame to observe (not The NVLink 310 interconnect enables systems to scale
shown) . At Step 2 , the policy predicts activity for (3) output 30 and include one or more PPUs 300 combined with one or
by the prior time step and its neighboring frames and outputs more CPUs , supports cache coherence between the PPUS
(1) the temporal location of the predicted segment for the 300 and CPUs , and CPU mastering . Data and / or commands
activity as starting at frame 3329 and ending at frame 4418 , may be transmitted by the NVLink 310 through the hub 330
(2) the estimated class (category) associated with the seg to / from other units of the PPU 300 such as one or more copy
ment as being Activity 1 as well as the probability distri- 35 engines , a video encoder , a video decoder , a power man
bution for Activity 1 as 0.51) , and (3) the next frame to agement unit , etc. (not explicitly shown) . The NVLink 310
observe (not shown) . is described in more detail in conjunction with FIG . 5B .

For each subsequent time step the recurrent neural net- The I / O unit 305 is configured to transmit and receive
work continues to use the policy to predict activity in the communications (e.g. , commands , data , etc.) from a host
manner shown . In one embodiment , the recurrent neural 40 processor (not shown) over the interconnect 302. The I / O
network may directly discard the segments that are predicted unit 305 may communicate with the host processor directly
as Background . Based on the history of the policy outputs via the interconnect 302 or through one or more intermediate
over the 6 time steps , the recurrent neural network deter- devices such as a memory bridge . In an embodiment , the I / O
mines activities , their associated classifications , as well as unit 305 may communicate with one or more other proces
their temporal locations for the video . 45 sors , such as one or more the PPUs 300 via the interconnect

302. In an embodiment , the 1/0 unit 305 implements a
Parallel Processing Architecture Peripheral Component Interconnect Express (PCIe) inter

face for communications over a PCIe bus and the intercon
FIG . 3 illustrates a parallel processing unit (PPU) 300 , in nect 302 is a PCIe bus . In alternative embodiments , the I / O

accordance with an embodiment . In an embodiment , the 50 unit 305 may implement other types of well - known inter
PPU 300 is a multi - threaded processor that is implemented faces for communicating with external devices .
on one or more integrated circuit devices . The PPU 300 is a The I / O unit 305 decodes packets received via the inter
latency hiding architecture designed to process many threads connect 302. In an embodiment , the packets represent com
in parallel . A thread (e.g. , a thread of execution) is an mands configured to cause the PPU 300 to perform various
instantiation of a set of instructions configured to be 55 operations . The I / O unit 305 transmits the decoded com
executed by the PPU 300. In an embodiment , the PPU 300 mands to various other units of the PPU 300 as the com
is a graphics processing unit (GPU) configured to implement mands may specify . For example , some commands may be
a graphics rendering pipeline for processing three - dimen- transmitted to the front end unit 315. Other commands may
sional (3D) graphics data in order to generate two - dimen- be transmitted to the hub 330 or other units of the PPU 300
sional (2D) image data for display on a display device such 60 such as one or more copy engines , a video encoder , a video
as a liquid crystal display (LCD) device . In other embodi- decoder , a power management unit , etc. (not explicitly
ments , the PPU 300 may be utilized for performing general- shown) . In other words , the I / O unit 305 is configured to
purpose computations . While one exemplary parallel pro- route communications between and among the various logi
cessor is provided herein for illustrative purposes , it should cal units of the PPU 300 .
be strongly noted that such processor is set forth for illus- 65 In an embodiment , a program executed by the host
trative purposes only , and that any processor may be processor encodes a command stream in a buffer that pro
employed to supplement and / or substitute for the same . vides workloads to the PPU 300 for processing . A workload

5

US 10,860,859 B2
11 12

may comprise several instructions and data to be processed In an embodiment , a host processor executes a driver
by those instructions . The buffer is a region in a memory that kernel that implements an application programming inter
is accessible (e.g. , read / write) by both the host processor and face (API) that enables one or more applications executing
the PPU 300. For example , the I / O unit 305 may be on the host processor to schedule operations for execution
configured to access the buffer in a system memory con- on the PPU 300. In an embodiment , multiple compute
nected to the interconnect 302 via memory requests trans- applications are simultaneously executed by the PPU 300
mitted over the interconnect 302. In an embodiment , the host and the PPU 300 provides isolation , quality of service
processor writes the command stream to the buffer and then (QoS) , and independent address spaces for the multiple
transmits a pointer to the start of the command stream to the compute applications . An application may generate instruc
PPU 300. The front end unit 315 receives pointers to one or 10 tions (e.g. , API calls) that cause the driver kernel to generate
more command streams . The front end unit 315 manages the one or more tasks for execution by the PPU 300. The driver
one or more streams , reading commands from the streams kernel outputs tasks to one or more streams being processed
and forwarding commands to the various units of the PPU by the PPU 300. Each task may comprise one or more
300 . groups of related threads , referred to herein as a warp . In an

The front end unit 315 is coupled to a scheduler unit 320 15 embodiment , a warp comprises 32 related threads that may
that configures the various GPCs 350 to process tasks be executed in parallel . Cooperating threads may refer to a
defined by the one or more streams . The scheduler unit 320 plurality of threads including instructions to perform the task
is configured to track state information related to the various and that may exchange data through shared memory .
tasks managed by the scheduler unit 320. The state may Threads and cooperating threads are described in more detail
indicate which GPC 350 a task is assigned to , whether the 20 in conjunction with FIG . 5A .
task is active or inactive , a priority level associated with the FIG . 4A illustrates a GPC 350 of the PPU 300 of FIG . 3 ,
task , and so forth . The scheduler unit 320 manages the in accordance with an embodiment . As shown in FIG . 4A ,
execution of a plurality of tasks on the one or more GPCs each GPC 350 includes a number of hardware units for
350 . processing tasks . In an embodiment , each GPC 350 includes

The scheduler unit 320 is coupled to a work distribution 25 a pipeline manager 410 , a pre - raster operations unit (PROP)
unit 325 that is configured to dispatch tasks for execution on 415 , a raster engine 425 , a work distribution crossbar
the GPCs 350. The work distribution unit 325 may track a (WDX) 480 , a memory management unit (MMU) 490 , and
number of scheduled tasks received from the scheduler unit one or more Data Processing Clusters (DPCs) 420. It will be
320. In an embodiment , the work distribution unit 325 appreciated that the GPC 350 of FIG . 4A may include other
manages a pending task pool and an active task pool for each 30 hardware units in lieu of or in addition to the units shown in
of the GPCs 350. The pending task pool may comprise a FIG . 4A .
number of slots (e.g. , 32 slots) that contain tasks assigned to In an embodiment , the operation of the GPC 350 is
be processed by a particular GPC 350. The active task pool controlled by the pipeline manager 410. The pipeline man
may comprise a number of slots (e.g. , 4 slots) for tasks that ager 410 manages the configuration of the one or more DPCs
are actively being processed by the GPCs 350. As a GPC 350 35 420 for processing tasks allocated to the GPC 350. In an
finishes the execution of a task , that task is evicted from the embodiment , the pipeline manager 410 may configure at
active task pool for the GPC 350 and one of the other tasks least one of the one or more DPCs 420 to implement at least
from the pending task pool is selected and scheduled for a portion of a graphics rendering pipeline . For example , a
execution on the GPC 350. If an active task has been idle on DPC 420 may be configured to execute a vertex shader
the GPC 350 , such as while waiting for a data dependency 40 program on the programmable streaming multiprocessor
to be resolved , then the active task may be evicted from the (SM) 440. The pipeline manager 410 may also be configured
GPC 350 and returned to the pending task pool while to route packets received from the work distribution unit 325
another task in the pending task pool is selected and sched- to the appropriate logical units within the GPC 350. For
uled for execution on the GPC 350 . example , some packets may be routed to fixed function

The work distribution unit 325 communicates with the 45 hardware units in the PROP 415 and / or raster engine 425
one or more GPCs 350 via XBar 370. The XBar 370 is an while other packets may be routed to the DPCs 420 for
interconnect network that couples many of the units of the processing by the primitive engine 435 or the SM 440. In an
PPU 300 to other units of the PPU 300. For example , the embodiment , the pipeline manager 410 may configure at
XBar 370 may be configured to couple the work distribution least one of the one or more DPCs 420 to implement a neural
unit 325 to a particular GPC 350. Although not shown 50 network model and / or a computing pipeline .
explicitly , one or more other units of the PPU 300 may also The PROP unit 415 is configured to route data generated
be connected to the XBar 370 via the hub 330 . by the raster engine 425 and the DPCs 420 to a Raster

The tasks are managed by the scheduler unit 320 and Operations (ROP) unit , described in more detail in conjunc
dispatched to a GPC 350 by the work distribution unit 325 . tion with FIG . 4B . The PROP unit 415 may also be config
The GPC 350 is configured to process the task and generate 55 ured to perform optimizations for color blending , organize
results . The results may be consumed by other tasks within pixel data , perform address translations , and the like .
the GPC 350 , routed to a different GPC 350 via the XBar The raster engine 425 includes a number of fixed function
370 , or stored in the memory 304. The results can be written hardware units configured to perform various raster opera
to the memory 304 via the memory partition units 380 , tions . In an embodiment , the raster engine 425 includes a
which implement a memory interface for reading and writ- 60 setup engine , a coarse raster engine , a culling engine , a
ing data to / from the memory 304. The results can be clipping engine , a fine raster engine , and tile coalescing
transmitted to another PPU 304 or CPU via the NVLink 310 . engine . The setup engine receives transformed vertices and
In an embodiment , the PPU 300 includes a number U of generates plane equations associated with the geometric
memory partition units 380 that is equal to the number of primitive defined by the vertices . The plane equations are
separate and distinct memory devices 304 coupled to the 65 transmitted to the coarse raster engine to generate coverage
PPU 300. A memory partition unit 380 will be described in information (e.g. , an x , y coverage mask for a tile) for the
more detail below in conjunction with FIG . 4B . primitive . The output of the coarse raster engine is trans

US 10,860,859 B2
13 14

mitted to the culling engine where fragments associated with sponding memory device 304. For example , PPU 300 may
the primitive that fail a z - test are culled , and transmitted to be connected to up to Y memory devices 304 , such as high
a clipping engine where fragments lying outside a viewing bandwidth memory stacks or graphics double - data - rate ,
frustum are clipped . Those fragments that survive clipping version 5 , synchronous dynamic random access memory , or
and culling may be passed to the fine raster engine to 5 other types of persistent storage .
generate attributes for the pixel fragments based on the plane In an embodiment , the memory interface 470 implements
equations generated by the setup engine . The output of the an HBM2 memory interface and Y equals half U. In an
raster engine 425 comprises fragments to be processed , for embodiment , the HBM2 memory stacks are located on the
example , by a fragment shader implemented within a DPC same physical package as the PPU 300 , providing substan
420 . 10 tial power and area savings compared with conventional

Each DPC 420 included in the GPC 350 includes an GDDR5 SDRAM systems . In an embodiment , each HBM2
M - Pipe Controller (MPC) 430 , a primitive engine 435 , and stack includes four memory dies and Y equals 4 , with HBM2
one or more SMs 440. The MPC 430 controls the operation stack including two 128 - bit channels per die for a total of 8
of the DPC 420 , routing packets received from the pipeline channels and a data bus width of 1024 bits .
manager 410 to the appropriate units in the DPC 420. For 15 In an embodiment , the memory 304 supports Single - Error
example , packets associated with a vertex may be routed to Correcting Double - Error Detecting (SECDED) Error Cor
the primitive engine 435 , which is configured to fetch vertex rection Code (ECC) to protect data . ECC provides higher
attributes associated with the vertex from the memory 304 . reliability for compute applications that are sensitive to data
In contrast , packets associated with a shader program may corruption . Reliability is especially important in large - scale
be transmitted to the SM 440 . 20 cluster computing environments where PPUs 300 process

The SM 440 comprises a programmable streaming pro- very large datasets and / or run applications for extended
cessor that is configured to process tasks represented by a periods .
number of threads . Each SM 440 is multi - threaded and In an embodiment , the PPU 300 implements a multi - level
configured to execute a plurality of threads (e.g. , 32 threads) memory hierarchy . In an embodiment , the memory partition
from a particular group of threads concurrently . In an 25 unit 380 supports a unified memory to provide a single
embodiment , the SM 440 implements a SIMD (Single- unified virtual address space for CPU and PPU 300 memory ,
Instruction , Multiple - Data) architecture where each thread enabling data sharing between virtual memory systems . In
in a group of threads (e.g. , a warp) is configured to process an embodiment the frequency of accesses by a PPU 300 to
a different set of data based on the same set of instructions . memory located on other processors is traced to ensure that
All threads in the group of threads execute the same instruc- 30 memory pages are moved to the physical memory of the
tions . In another embodiment , the SM 440 implements a PPU 300 that is accessing the pages more frequently . In an
SIMT (Single - Instruction , Multiple Thread) architecture embodiment , the NVLink 310 supports address translation
where each thread in a group of threads is configured to services allowing the PPU 300 to directly access a CPU's
process a different set of data based on the same set of page tables and providing full access to CPU memory by the
instructions , but where individual threads in the group of 35 PPU 300 .
threads are allowed to diverge during execution . In an In an embodiment , copy engines transfer data between
embodiment , a program counter , call stack , and execution multiple PPUS 300 or between PPUs 300 and CPUs . The
state is maintained for each warp , enabling concurrency copy engines can generate page faults for addresses that are
between warps and serial execution within warps when not mapped into the page tables . The memory partition unit
threads within the warp diverge . In another embodiment , a 40 380 can then service the page faults , mapping the addresses
program counter , call stack , and execution state is main- into the page table , after which the copy engine can perform
tained for each individual thread , enabling equal concur- the transfer . In a conventional system , memory is pinned
rency between all threads , within and between warps . When (e.g. , non - pageable) for multiple copy engine operations
execution state is maintained for each individual thread , between multiple processors , substantially reducing the
threads executing the same instructions may be converged 45 available memory . With hardware page faulting , addresses
and executed in parallel for maximum efficiency . The SM can be passed to the copy engines without worrying if the
440 will be described in more detail below in conjunction memory pages are resident , and the copy process is trans
with FIG . 5A . parent .

The MMU 490 provides an interface between the GPC Data from the memory 304 or other system memory may
350 and the memory partition unit 380. The MMU 490 may 50 be fetched by the memory partition unit 380 and stored in the
provide translation of virtual addresses into physical L2 cache 460 , which is located on - chip and is shared
addresses , memory protection , and arbitration of memory between the various GPCs 350. As shown , each memory
requests . In an embodiment , the MMU 490 provides one or partition unit 380 includes a portion of the L2 cache 460
more translation lookaside buffers (TLBs) for performing associated with a corresponding memory device 304. Lower
translation of virtual addresses into physical addresses in the 55 level caches may then be implemented in various units
memory 304 . within the GPCs 350. For example , each of the SMS 440

FIG . 4B illustrates a memory partition unit 380 of the may implement a level one (L1) cache . The L1 cache is
PPU 300 of FIG . 3 , in accordance with an embodiment . As private memory that is dedicated to a particular SM 440 .
shown in FIG . 4B , the memory partition unit 380 includes a Data from the L2 cache 460 may be fetched and stored in
Raster Operations (ROP) unit 450 , a level two (L2) cache 60 each of the L1 caches for processing in the functional units
460 , and a memory interface 470. The memory interface 470 of the SMs 440. The L2 cache 460 is coupled to the memory
is coupled to the memory 304. Memory interface 470 may interface 470 and the XBar 370 .
implement 32 , 64 , 128 , 1024 - bit data buses , or the like , for The ROP unit 450 performs graphics raster operations
high - speed data transfer . In an embodiment , the PPU 300 related to pixel color , such as color compression , pixel
incorporates U memory interfaces 470 , one memory inter- 65 blending , and the like . The ROP unit 450 also implements
face 470 per pair of memory partition units 380 , where each depth testing in conjunction with the raster engine 425 ,
pair of memory partition units 380 is connected to a corre- receiving a depth for a sample location associated with a

10

US 10,860,859 B2
15 16

pixel fragment from the culling engine of the raster engine sumer parallelism , opportunistic parallelism , and global
425. The depth is tested against a corresponding depth in a synchronization across an entire grid of thread blocks .
depth buffer for a sample location associated with the A dispatch unit 515 is configured to transmit instructions
fragment . If the fragment passes the depth test for the sample to one or more of the functional units . In the embodiment ,
location , then the ROP unit 450 updates the depth buffer and 5 the scheduler unit 510 includes two dispatch units 515 that
transmits a result of the depth test to the raster engine 425 . enable two different instructions from the same warp to be
It will be appreciated that the number of memory partition dispatched during each clock cycle . In alternative embodi
units 380 may be different than the number of GPCs 350 ments , each scheduler unit 510 may include a single dispatch
and , therefore , each ROP unit 450 may be coupled to each unit 515 or additional dispatch units 515 .
of the GPCs 350. The ROP unit 450 tracks packets received Each SM 440 includes a register file 520 that provides a

set of registers for the functional units of the SM 440. In an from the different GPCs 350 and determines which GPC 350 embodiment , the register file 520 is divided between each of that a result generated by the ROP unit 450 is routed to the functional units such that each functional unit is allo through the Xbar 370. Although the ROP unit 450 is cated a dedicated portion of the register file 520. In another
included within the memory partition unit 380 in FIG . 4B , 15 embodiment , the register file 520 is divided between the
in other embodiment , the ROP unit 450 may be outside of different warps being executed by the SM 440. The register the memory partition unit 380. For example , the ROP unit file 520 provides temporary storage for operands connected
450 may reside in the GPC 350 or another unit . to the data paths of the functional units .
FIG . 5A illustrates the streaming multi - processor 440 of Each SM 440 comprises L processing cores 550. In an

FIG . 4A , in accordance with an embodiment . As shown in 20 embodiment , the SM 440 includes a large number (e.g. , 128 ,
FIG . 5A , the SM 440 includes an instruction cache 505 , one etc.) of distinct processing cores 550. Each core 550 may
or more scheduler units 510 , a register file 520 , one or more include a fully - pipelined , single - precision , double - precision ,
processing cores 550 , one or more special function units and / or mixed precision processing unit that includes a
(SFUS) 552 , one or more load / store units (LSUS) 554 , an floating point arithmetic logic unit and an integer arithmetic
interconnect network 580 , a shared memory / L1 cache 570. 25 logic unit . In an embodiment , the floating point arithmetic
As described above , the work distribution unit 325 dis- logic units implement the IEEE 754-2008 standard for

patches tasks for execution on the GPCs 350 of the PPU 300 . floating point arithmetic . In an embodiment , the cores 550
The tasks are allocated to a particular DPC 420 within a include 64 single - precision (32 - bit) floating point cores , 64
GPC 350 and , if the task is associated with a shader integer cores , 32 double - precision (64 - bit) floating point
program , the task may be allocated to an SM 440. The 30 cores , and 8 tensor cores .
scheduler unit 510 receives the tasks from the work distri- Tensor cores configured to perform matrix operations ,
bution unit 325 and manages instruction scheduling for one and , in an embodiment , one or more tensor cores are
or more thread blocks assigned to the SM 440. The scheduler included in the cores 550. In particular , the tensor cores are
unit 510 schedules thread blocks for execution as warps of configured to perform deep learning matrix arithmetic , such
parallel threads , where each thread block is allocated at least 35 as convolution operations for neural network training and
one warp . In an embodiment , each warp executes 32 threads . inferencing . In an embodiment , each tensor core operates on
The scheduler unit 510 may manage a plurality of different a 4x4 matrix and performs a matrix multiply and accumulate
thread blocks , allocating the warps to the different thread operation D = AxB + C , where A , B , C , and D are 4x4 matri
blocks and then dispatching instructions from the plurality
of different cooperative groups to the various functional 40 In an embodiment , the matrix multiply inputs A and B are
units (e.g. , cores 550 , SFUs 552 , and LSUs 554) during each 16 - bit floating point matrices , while the accumulation matri
clock cycle . ces C and D may be 16 - bit floating point or 32 - bit floating

Cooperative Groups is a programming model for orga- point matrices . Tensor Cores operate on 16 - bit floating point
nizing groups of communicating threads that allows devel- input data with 32 - bit floating point accumulation . The
opers to express the granularity at which threads are com- 45 16 - bit floating point multiply requires 64 operations and
municating , enabling the expression of richer , more efficient results in a full precision product that is then accumulated
parallel decompositions . Cooperative launch APIs support using 32 - bit floating point addition with the other interme
synchronization amongst thread blocks for the execution of diate products for a 4x4x4 matrix multiply . In practice ,
parallel algorithms . Conventional programming models pro- Tensor Cores are used to perform much larger two - dimen
vide a single , simple construct for synchronizing cooperat- 50 sional or higher dimensional matrix operations , built up
ing threads : a barrier across all threads of a thread block from these smaller elements . An API , such as CUDA 9 C ++
(e.g. , the syncthreads () function) . However , programmers API , exposes specialized matrix load , matrix multiply and
would often like to define groups of threads at smaller than accumulate , and matrix store operations to efficiently use
thread block granularities and synchronize within the Tensor Cores from a CUDA - C ++ program . At the CUDA
defined groups to enable greater performance , design flex- 55 level , the warp - level interface assumes 16x16 size matrices
ibility , and software reuse in the form of collective group- spanning all 32 threads of the warp .
wide function interfaces . Each SM 440 also comprises M SFUS 552 that perform

Cooperative Groups enables programmers to define special functions (e.g. , attribute evaluation , reciprocal
groups of threads explicitly at sub - block (e.g. , as small as a square root , and the like) . In an embodiment , the SFUs 552
single thread) and multi - block granularities , and to perform 60 may include a tree traversal unit configured to traverse a
collective operations such as synchronization on the threads hierarchical tree data structure . In an embodiment , the SFUS
in a cooperative group . The programming model supports 552 may include texture unit configured to perform texture
clean composition across software boundaries , so that librar- map filtering operations . In an embodiment , the texture units
ies and utility functions can synchronize safely within their are configured to load texture maps (e.g. , a 2D array of
local context without having to make assumptions about 65 texels) from the memory 304 and sample the texture maps
convergence . Cooperative Groups primitives enable new to produce sampled texture values for use in shader pro
patterns of cooperative parallelism , including producer - con- grams executed by the SM 440. In an embodiment , the

ces .

US 10,860,859 B2
17 18

texture maps are stored in the shared memory / L1 cache 470 . In an embodiment , the PPU 300 may be included on a
The texture units implement texture operations such as graphics card that includes one or more memory devices
filtering operations using mip - maps (e.g. , texture maps of 304. The graphics card may be configured to interface with
varying levels of detail) . In an embodiment , each SM 340 a PCIe slot on a motherboard of a desktop computer . In yet
includes two texture units . 5 another embodiment , the PPU 300 may be an integrated Each SM 440 also comprises N LSUs 554 that implement graphics processing unit (GPU) or parallel processor
load and store operations between the shared memory / L1 included in the chipset of the motherboard .
cache 570 and the register file 520. Each SM 440 includes
an interconnect network 580 that connects each of the Exemplary Computing System
functional units to the register file 520 and the LSU 554 to 10
the register file 520 , shared memory / L1 cache 570. In an Systems with multiple GPUs and CPUs are used in a
embodiment , the interconnect network 580 is a crossbar that variety of industries as developers expose and leverage more
can be configured to connect any of the functional units to parallelism in applications such as artificial intelligence
any of the registers in the register file 520 and connect the computing . High - performance GPU - accelerated systems
LSUs 554 to the register file and memory locations in shared 15 with tens to many thousands of compute nodes are deployed
memory / L1 cache 570 . in data centers , research facilities , and supercomputers to

The shared memory / L1 cache 570 is an array of on - chip solve ever larger problems . As the number of processing
memory that allows for data storage and communication devices within the high - performance systems increases , the
between the SM 440 and the primitive engine 435 and communication and data transfer mechanisms need to scale
between threads in the SM 440. In an embodiment , the 20 to support the increased bandwidth .
shared memory / L1 cache 570 comprises 128 KB of storage FIG . 5B is a conceptual diagram of a processing system
capacity and is in the path from the SM 440 to the memory 500 implemented using the PPU 300 of FIG . 3 , in accor
partition unit 380. The shared memory / L1 cache 570 can be dance with an embodiment . The exemplary system 565 may
used to cache reads and writes . One or more of the shared be configured to implement the method 100 shown in FIG .
memory / L1 cache 570 , L2 cache 460 , and memory 304 are 25 1. The processing system 500 includes a CPU 530 , switch
backing stores . 510 , and multiple PPUs 300 each and respective memories

Combining data cache and shared memory functionality 304. The NVLink 310 provides high - speed communication
into a single memory block provides the best overall per- links between each of the PPUS 300. Although a particular
formance for both types of memory accesses . The capacity number of NVLink 310 and interconnect 302 connections
is usable as a cache by programs that do not use shared 30 are illustrated in FIG . 5B , the number of connections to each
memory . For example , if shared memory is configured to use PPU 300 and the CPU 530 may vary . The switch 510
half of the capacity , texture and load / store operations can use interfaces between the interconnect 302 and the CPU 530 .
the remaining capacity . Integration within the shared The PPUs 300 , memories 304 , and NVLinks 310 may be
memory / L1 cache 570 enables the shared memory / L1 cache situated on a single semiconductor platform to form a
570 to function as a high - throughput conduit for streaming 35 parallel processing module 525. In an embodiment , the
data while simultaneously providing high - bandwidth and switch 510 supports two or more protocols to interface
low - latency access to frequently reused data . between various different connections and / or links .
When configured for general purpose parallel computa- In another embodiment (not shown) , the NVLink 310

tion , a simpler configuration can be used compared with provides one or more high - speed communication links
graphics processing . Specifically , the fixed function graphics 40 between each of the PPUs 300 and the CPU 530 and the
processing units shown in FIG . 3 , are bypassed , creating a switch 510 interfaces between the interconnect 302 and each
much simpler programming model . In the general purpose of the PPUS 300. The PPUS 300 , memories 304 , and
parallel computation configuration , the work distribution interconnect 302 may be situated on a single semiconductor
unit 325 assigns and distributes blocks of threads directly to platform to form a parallel processing module 525. In yet
the DPCs 420. The threads in a block execute the same 45 another embodiment (not shown) , the interconnect 302
program , using a unique thread ID in the calculation to provides one or more communication links between each of
ensure each thread generates unique results , using the SM the PPUS 300 and the CPU 530 and the switch 510 interfaces
440 to execute the program and perform calculations , shared between each of the PPUS 300 using the NVLink 310 to
memory / L1 cache 570 to communicate between threads , and provide one or more high - speed communication links
the LSU 554 to read and write global memory through the 50 between the PPUS 300. In another embodiment (not shown) ,
shared memory / L1 cache 570 and the memory partition unit the NVLink 310 provides one or more high - speed commu
380. When configured for general purpose parallel compu- nication links between the PPUS 300 and the CPU 530
tation , the SM 440 can also write commands that the through the switch 510. In yet another embodiment (not
scheduler unit 320 can use to launch new work on the DPCs shown) , the interconnect 302 provides one or more commu
420 . 55 nication links between each of the PPUS 300 directly . One

The PPU 300 may be included in a desktop computer , a or more of the NVLink 310 high - speed communication links
laptop computer , a tablet computer , servers , supercomputers , may be implemented as a physical NVLink interconnect or
a smart - phone (e.g. , a wireless , hand - held device) , personal either an on - chip or on - die interconnect using the same
digital assistant (PDA) , a digital camera , a vehicle , a head protocol as the NVLink 310 .
mounted display , a hand - held electronic device , and the like . 60 In the context of the present description , a single semi
In an embodiment , the PPU 300 is embodied on a single conductor platform may refer to a sole unitary semiconduc
semiconductor substrate . In another embodiment , the PPU tor - based integrated circuit fabricated on a die or chip . It
300 is included in a system - on - a - chip (SOC) along with one should be noted that the term single semiconductor platform
or more other devices such as additional PPUs 300 , the may also refer to multi - chip modules with increased con
memory 204 , a reduced instruction set computer (RISC) 65 nectivity which simulate on - chip operation and make sub
CPU , a memory management unit (MMU) , a digital - to- stantial improvements over utilizing a conventional bus
analog converter (DAC) , and the like . implementation . Of course , the various circuits or devices

30

US 10,860,859 B2
19 20

may also be situated separately or in various combinations device , universal serial bus (USB) flash memory . The
of semiconductor platforms per the desires of the user . removable storage drive reads from and / or writes to a
Alternately , the parallel processing module 525 may be removable storage unit in a well - known manner .
implemented as a circuit board substrate and each of the Computer programs , or computer control logic algo
PPUs 300 and / or memories 304 may be packaged devices . 5 rithms , may be stored in the main memory 540 and / or the
In an embodiment , the CPU 530 , switch 510 , and the parallel secondary storage . Such computer programs , when
processing module 525 are situated on a single semiconduc- executed , enable the system 565 to perform various func
tor platform . tions . The memory 540 , the storage , and / or any other storage

In an embodiment , the signaling rate of each NVLink 310 are possible examples of computer - readable media .
is 20 to 25 Gigabits / second and each PPU 300 includes six 10 The architecture and / or functionality of the various pre
NVLink 310 interfaces (as shown in FIG . 5B , five NVLink vious figures may be implemented in the context of a general
310 interfaces are included for each PPU 300) . Each computer system , a circuit board system , a game console
NVLink 310 provides a data transfer rate of 25 Gigabytes / system dedicated for entertainment purposes , an application
second in each direction , with six links providing 300 specific system , and / or any other desired system . For
Gigabytes / second . The NVLinks 310 can be used exclu- 15 example , the system 565 may take the form of a desktop
sively for PPU - to - PPU communication as shown in FIG . 5B , computer , a laptop computer , a tablet computer , servers ,
or some combination of PPU - to - PPU and PPU - to - CPU , supercomputers , a smart - phone (e.g. , a wireless , hand - held
when the CPU 530 also includes one or more NVLink 310 device) , personal digital assistant (PDA) , a digital camera , a
interfaces . vehicle , a head mounted display , a hand - held electronic

In an embodiment , the NVLink 310 allows direct load / 20 device , a mobile phone device , a television , workstation ,
store / atomic access from the CPU 530 to each PPU's 300 game consoles , embedded system , and / or any other type of
memory 304. In an embodiment , the NVLink 310 supports logic .
coherency operations , allowing data read from the memories While various embodiments have been described above ,
304 to be stored in the cache hierarchy of the CPU 530 , it should be understood that they have been presented by
reducing cache access latency for the CPU 530. In an 25 way of example only , and not limitation . Thus , the breadth
embodiment , the NVLink 310 includes support for Address and scope of a preferred embodiment should not be limited
Translation Services (ATS) , allowing the PPU 300 to by any of the above - described exemplary embodiments , but
directly access page tables within the CPU 530. One or more should be defined only in accordance with the following
of the NVLinks 310 may also be configured to operate in a claims and their equivalents .
low - power mode .
FIG . 5C illustrates an exemplary system 565 in which the Graphics Processing Pipeline

various architecture and / or functionality of the various pre
vious embodiments may be implemented . The exemplary In an embodiment , the PPU 300 comprises a graphics
system 565 may be configured to implement the method 100 processing unit (GPU) . The PPU 300 is configured to
shown in FIG . 1 . 35 receive commands that specify shader programs for process
As shown , a system 565 is provided including at least one ing graphics data . Graphics data may be defined as a set of

central processing unit 530 that is connected to a commu- primitives such as points , lines , triangles , quads , triangle
nication bus 575. The communication bus 575 may be strips , and the like . Typically , a primitive includes data that
implemented using any suitable protocol , such as PCI (Pe- specifies a number of vertices for the primitive (e.g. , in a
ripheral Component Interconnect) , PCI - Express , AGP (AC- 40 model - space coordinate system) as well as attributes asso
celerated Graphics Port) , HyperTransport , or any other bus ciated with each vertex of the primitive . The PPU 300 can
or point - to - point communication protocol (s) . The system be configured to process the graphics primitives to generate
565 also includes a main memory 540. Control logic (soft- a frame buffer (e.g. , pixel data for each of the pixels of the
ware) and data are stored in the main memory 540 which display)
may take the form of random access memory (RAM) . An application writes model data for a scene (e.g. , a

The system 565 also includes input devices 560 , the collection of vertices and attributes) to a memory such as a
parallel processing system 525 , and display devices 545 , e.g. system memory or memory 304. The model data defines
a conventional CRT (cathode ray tube) , LCD (liquid crystal each of the objects that may be visible on a display . The
display) , LED (light emitting diode) , plasma display or the application then makes an API call to the driver kernel that
like . User input may be received from the input devices 560 , 50 requests the model data to be rendered and displayed . The
e.g. , keyboard , mouse , touchpad , microphone , and the like . driver kernel reads the model data and writes commands to
Each of the foregoing modules and / or devices may even be the one or more streams to perform operations to process the
situated on a single semiconductor platform to form the model data . The commands may reference different shader
system 565. Alternately , the various modules may also be programs to be implemented on the SMS 440 of the PPU 300
situated separately or in various combinations of semicon- 55 including one or more of a vertex shader , hull shader ,
ductor platforms per the desires of the user . domain shader , geometry shader , and a pixel shader . For

Further , the system 565 may be coupled to a network example , one or more of the SMs 440 may be configured to
(e.g. , a telecommunications network , local area network execute a vertex shader program that processes a number of
(LAN) , wireless network , wide area network (WAN) such as vertices defined by the model data . In an embodiment , the
the Internet , peer - to - peer network , cable network , or the 60 different SMS 440 may be configured to execute different
like) through a network interface 535 for communication shader programs concurrently . For example , a first subset of
purposes . SMs 440 may be configured to execute a vertex shader

The system 565 may also include a secondary storage (not program while a second subset of SMs 440 may be config
shown) . The secondary storage 610 includes , for example , a ured to execute a pixel shader program . The first subset of
hard disk drive and / or a removable storage drive , represent- 65 SMs 440 processes vertex data to produce processed vertex
ing a floppy disk drive , a magnetic tape drive , a compact data and writes the processed vertex data to the L2 cache 460
disk drive , digital versatile disk (DVD) drive , recording and / or the memory 304. After the processed vertex data is

45

US 10,860,859 B2
21 22

rasterized (e.g. , transformed from three - dimensional data specified using coordinates in an object - coordinate space ,
into two - dimensional data in screen space) to produce which are transformed by multiplying the coordinates by a
fragment data , the second subset of SMs 440 executes a matrix that translates the coordinates from the object - coor
pixel shader to produce processed fragment data , which is dinate space into a world space or a normalized - device
then blended with other processed fragment data and written 5 coordinate (NCD) space . The vertex shading stage 620
to the frame buffer in memory 304. The vertex shader generates transformed vertex data that is transmitted to the
program and pixel shader program may execute concur- primitive assembly stage 630 .
rently , processing different data from the same scene in a The primitive assembly stage 630 collects vertices output
pipelined fashion until all of the model data for the scene has by the vertex shading stage 620 and groups the vertices into
been rendered to the frame buffer . Then , the contents of the 10 geometric primitives for processing by the geometry shading
frame buffer are transmitted to a display controller for stage 640. For example , the primitive assembly stage 630
display on a display device . may be configured to group every three consecutive vertices
FIG . 6 is a conceptual diagram of a graphics processing as a geometric primitive (e.g. , a triangle) for transmission to

pipeline 600 implemented by the PPU 300 of FIG . 3 , in the geometry shading stage 640. In some embodiments ,
accordance with an embodiment . The graphics processing 15 specific vertices may be reused for consecutive geometric
pipeline 600 is an abstract flow diagram of the processing primitives (e.g. , two consecutive triangles in a triangle strip
steps implemented to generate 2D computer - generated may share two vertices) . The primitive assembly stage 630
images from 3D geometry data . As is well - known , pipeline transmits geometric primitives (e.g. , a collection of associ
architectures may perform long latency operations more ated vertices) to the geometry shading stage 640 .
efficiently by splitting up the operation into a plurality of 20 The geometry shading stage 640 processes geometric
stages , where the output of each stage is coupled to the input primitives by performing a set of operations (e.g. , a geom
of the next successive stage . Thus , the graphics processing etry shader or program) on the geometric primitives . Tes
pipeline 600 receives input data 601 that is transmitted from sellation operations may generate one or more geometric
one stage to the next stage of the graphics processing primitives from each geometric primitive . In other words ,
pipeline 600 to generate output data 602. In an embodiment , 25 the geometry shading stage 640 may subdivide each geo
the graphics processing pipeline 600 may represent a graph- metric primitive into a finer mesh of two or more geometric
ics processing pipeline defined by the OpenGL® API . As an primitives for processing by the rest of the graphics pro
option , the graphics processing pipeline 600 may be imple- cessing pipeline 600. The geometry shading stage 640
mented in the context of the functionality and architecture of transmits geometric primitives to the viewport SCC stage
the previous Figures and / or any subsequent Figure (s) . 30 650 .
As shown in FIG . 6 , the graphics processing pipeline 600 In an embodiment , the graphics processing pipeline 600

comprises a pipeline architecture that includes a number of may operate within a streaming multiprocessor and the
stages . The stages include , but are not limited to , a data vertex shading stage 620 , the primitive assembly stage 630 ,
assembly stage 610 , a vertex shading stage 620 , a primitive the geometry shading stage 640 , the fragment shading stage
assembly stage 630 , a geometry shading stage 640 , a view- 35 670 , and / or hardware / software associated therewith , may
port scale , cull , and clip (VSCC) stage 650 , a rasterization sequentially perform processing operations . Once the
stage 660 , a fragment shading stage 670 , and a raster sequential processing operations are complete , in an
operations stage 680. In an embodiment , the input data 601 embodiment , the viewport SCC stage 650 may utilize the
comprises commands that configure the processing units to data . In an embodiment , primitive data processed by one or
implement the stages of the graphics processing pipeline 600 40 more of the stages in the graphics processing pipeline 600
and geometric primitives (e.g. , points , lines , triangles , may be written to a cache (e.g. Ll cache , a vertex cache ,
quads , triangle strips or fans , etc.) to be processed by the etc.) . In this case , in an embodiment , the viewport SCC stage
stages . The output data 602 may comprise pixel data (e.g. , 650 may access the data in the cache . In an embodiment , the
color data) that is copied into a frame buffer or other type of viewport SCC stage 650 and the rasterization stage 660 are
surface data structure in a memory . 45 implemented as fixed function circuitry .

The data assembly stage 610 receives the input data 601 The viewport SCC stage 650 performs viewport scaling ,
that specifies vertex data for high - order surfaces , primitives , culling , and clipping of the geometric primitives . Each
or the like . The data assembly stage 610 collects the vertex surface being rendered to is associated with an abstract
data in a temporary storage or queue , such as by receiving camera position . The camera position represents a location
a command from the host processor that includes a pointer 50 of a viewer looking at the scene and defines a viewing
to a buffer in memory and reading the vertex data from the frustum that encloses the objects of the scene . The viewing
buffer . The vertex data is then transmitted to the vertex frustum may include a viewing plane , a rear plane , and four
shading stage 620 for processing . clipping planes . Any geometric primitive entirely outside of
The vertex shading stage 620 processes vertex data by the viewing frustum may be culled (e.g. , discarded) because

performing a set of operations (e.g. , a vertex shader or a 55 the geometric primitive will not contribute to the final
program) once for each of the vertices . Vertices may be , e.g. , rendered scene . Any geometric primitive that is partially
specified as a 4 - coordinate vector (e.g. , < X , Y , Z , w >) inside the viewing frustum and partially outside the viewing
associated with one or more vertex attributes (e.g. , color , frustum may be clipped (e.g. , transformed into a new
texture coordinates , surface normal , etc.) . The vertex shad- geometric primitive that is enclosed within the viewing
ing stage 620 may manipulate individual vertex attributes 60 frustum . Furthermore , geometric primitives may each be
such as position , color , texture coordinates , and the like . In scaled based on a depth of the viewing frustum . All poten
other words , the vertex shading stage 620 performs opera- tially visible geometric primitives are then transmitted to the
tions on the vertex coordinates or other vertex attributes rasterization stage 660 .
associated with a vertex . Such operations commonly includ- The rasterization stage 660 converts the 3D geometric
ing lighting operations (e.g. , modifying color attributes for 65 primitives into 2D fragments (e.g. capable of being utilized
a vertex) and transformation operations (e.g. , modifying the for display , etc.) . The rasterization stage 660 may be con
coordinate space for a vertex) . For example , vertices may be figured to utilize the vertices of the geometric primitives to

20

US 10,860,859 B2
23 24

setup a set of plane equations from which various attributes Various programs may be executed within the PPU 300 in
can be interpolated . The rasterization stage 660 may also order to implement the various stages of the graphics
compute a coverage mask for a plurality of pixels that processing pipeline 600. For example , the device driver may
indicates whether one or more sample locations for the pixel launch a kernel on the PPU 300 to perform the vertex
intercept the geometric primitive . In an embodiment , Z - test- 5 shading stage 620 on one SM 440 (or multiple SMs 440) .
ing may also be performed to determine if the geometric The device driver (or the initial kernel executed by the PPU
primitive is occluded by other geometric primitives that 400) may also launch other kernels on the PPU 400 to
have already been rasterized . The rasterization stage 660 perform other stages of the graphics processing pipeline
generates fragment data (e.g. , interpolated vertex attributes 600 , such as the geometry shading stage 640 and the
associated with a particular sample location for each covered 10 fragment shading stage 670. In addition , some of the stages
pixel) that are transmitted to the fragment shading stage 670 . of the graphics processing pipeline 600 may be implemented

The fragment shading stage 670 processes fragment data on fixed unit hardware such as a rasterizer or a data
by performing a set of operations (e.g. , a fragment shader or assembler implemented within the PPU 400. It will be
a program) on each of the fragments . The fragment shading appreciated that results from one kernel may be processed
stage 670 may generate pixel data (e.g. , color values) for the 15 by one or more intervening fixed function hardware units
fragment such as by performing lighting operations or before being processed by a subsequent kernel on an SM
sampling texture maps using interpolated texture coordi- 440 .
nates for the fragment . The fragment shading stage 670
generates pixel data that is transmitted to the raster opera Machine Learning
tions stage 680 .

The raster operations stage 680 may perform various Deep neural networks (DNNs) developed on processors ,
operations on the pixel data such as performing alpha tests , such as the PPU 300 have been used for diverse use cases ,
stencil tests , and blending the pixel data with other pixel data from self - driving cars to faster drug development , from
corresponding to other fragments associated with the pixel . automatic image captioning in online image databases to
When the raster operations stage 680 has finished processing 25 smart real - time language translation in video chat applica
the pixel data (e.g. , the output data 602) , the pixel data may tions . Deep learning is a technique that models the neural
be written to a render target such as a frame buffer , a color learning process of the human brain , continually learning ,
buffer , or the like . continually getting smarter , and delivering more accurate

It will be appreciated that one or more additional stages results more quickly over time . A child is initially taught by
may be included in the graphics processing pipeline 600 in 30 an adult to correctly identify and classify various shapes ,
addition to or in lieu of one or more of the stages described eventually being able to identify shapes without any coach
above . Various implementations of the abstract graphics ing . Similarly , a deep learning or neural learning system
processing pipeline may implement different stages . Fur- needs to be trained in object recognition and classification
thermore , one or more of the stages described above may be for it get smarter and more efficient at identifying basic
excluded from the graphics processing pipeline in some 35 objects , occluded objects , etc. , while also assigning context
embodiments (such as the geometry shading stage 640 . to objects .
Other types of graphics processing pipelines are contem- At the simplest level , neurons in the human brain look at
plated as being within the scope of the present disclosure . various inputs that are received , importance levels are
Furthermore , any of the stages of the graphics processing assigned to each of these inputs , and output is passed on to
pipeline 600 may be implemented by one or more dedicated 40 other neurons to act upon . An artificial neuron or perceptron
hardware units within a graphics processor such as PPU 300 . is the most basic model of a neural network . In one example ,
Other stages of the graphics processing pipeline 600 may be a perceptron may receive one or more inputs that represent
implemented by programmable hardware units such as the various features of an object that the perceptron is being
SM 440 of the PPU 300 . trained to recognize and classify , and each of these features
The graphics processing pipeline 600 may be imple- 45 is assigned a certain weight based on the importance of that

mented via an application executed by a host processor , such feature in defining the shape of an object .
as a CPU . In an embodiment , a device driver may implement A deep neural network (DNN) model includes multiple
an application programming interface (API) that defines layers of many connected nodes (e.g. , perceptrons , Boltz
various functions that can be utilized by an application in mann machines , radial basis functions , convolutional layers ,
order to generate graphical data for display . The device 50 etc.) that can be trained with enormous amounts of input
driver is a software program that includes a plurality of data to quickly solve complex problems with high accuracy .
instructions that control the operation of the PPU 300. The In one example , a first layer of the DNN model breaks down
API provides an abstraction for a programmer that lets a an input image of an automobile into various sections and
programmer utilize specialized graphics hardware , such as looks for basic patterns such as lines and angles . The second
the PPU 300 , to generate the graphical data without requir- 55 layer assembles the lines to look for higher level patterns
ing the programmer to utilize the specific instruction set for such as wheels , windshields , and mirrors . The next layer
the PPU 300. The application may include an API call that identifies the type of vehicle , and the final few layers
is routed to the device driver for the PPU 300. The device generate a label for the input image , identifying the model
driver interprets the API call and performs various opera- of a specific automobile brand .
tions to respond to the API call . In some instances , the 6 Once the DNN is trained , the DNN can be deployed and
device driver may perform operations by executing instruc- used to identify and classify objects or patterns in a process
tions on the CPU In other instances , the device driver may known as inference . Examples of inference (the process
perform operations , at least in part , by launching operations through which a DNN extracts useful information from a
on the PPU 300 utilizing an input / output interface between given input) include identifying handwritten numbers on
the CPU and the PPU 300. In an embodiment , the device 65 checks deposited into ATM machines , identifying images of
driver is configured to implement the graphics processing friends in photos , delivering movie recommendations to
pipeline 600 utilizing the hardware of the PPU 300 . over fifty million users , identifying and classifying different

US 10,860,859 B2
25 26

types of automobiles , pedestrians , and road hazards in 8. The method of claim 7 , wherein the policy earns a
driverless cars , or translating human speech in real - time . reward equal to any decrease in a temporal segmentation

During training , data flows through the DNN in a forward error achieved by selecting a particular frame , and pays a propagation phase until a prediction is produced that indi penalty when the temporal segmentation error increases .
cates a label corresponding to the input . If the neural 5 9. The method of claim 1 , wherein the plurality of
network does not correctly label the input , then errors predefined activity classifications includes : between the correct label and the predicted label are ana a first set of activity classifications for different fore lyzed , and the weights are adjusted for each feature during ground activities , and a backward propagation phase until the DNN correctly a second activity classification for background activity . labels the input and other inputs in a training dataset . 10 10. The system of claim 2 , wherein the loss refers to at Training complex neural networks requires massive
amounts of parallel computing performance , including float least one of a classification loss , a localization loss , and a

retrieval loss . ing - point multiplications and additions that are supported by
the PPU 300. Inferencing is less compute - intensive than 11. A system for detecting activity in video , comprising :
training , being a latency - sensitive process where a trained 15 a computer processor executing a reinforcement learning
neural network is applied to new inputs it has not seen before algorithm to learn a policy to sequentially select frames
to classify images , translate speech , and generally infer new of a video and classify activity within the video accord
information . ing to a plurality of predefined activity classifications ;

Neural networks rely heavily on matrix math operations , and
and complex multi - layered networks require tremendous 20 a recurrent neural network that uses the policy to detect
amounts of floating - point performance and bandwidth for and classify activity in the video over a sequence of
both efficiency and speed . With thousands of processing steps , wherein a number of steps in the sequence of
cores , optimized for matrix math operations , and delivering steps is determined according to a given time and / or
tens to hundreds of TFLOPS of performance , the PPU 300 computation budget , and wherein the policy , at each
is a computing platform capable of delivering performance 25 step in the sequence of steps , is configured to :
required for deep neural network - based artificial intelligence receive a location of a frame to observe during the step ,
and machine learning applications . select a subset of frames of the video within the neigh
What is claimed is : borhood of the location of the frame , and
1. A method for detecting activity in video , comprising : predict , based on the subset of frames and a history of any
learning , through a reinforcement learning algorithm , a 30 prior observed frames , a temporal location of a segment

policy to sequentially select frames of a video and in the video associated with an activity , one or more of
classify activity within the video according to a plu the plurality of predefined activity classifications asso
rality of predefined activity classifications ; ciated with the segment , and a next location for a

using , by a recurrent neural network , the policy to detect different frame in the video to select for a next step in
and classify activity in the video over a sequence of 35 the sequence of steps .
steps , wherein a number of steps in the sequence of 12. The system of claim 11 , wherein the policy is param
steps is determined according to a given time and / or eterized by 6 , and the goal of the policy learning is to
computation budget , and wherein the policy , at each optimize 0 by minimizing a loss associated with a set of
step in the sequence of steps , is configured to : estimated segments in the video .
receive a location of a frame to observe during the step , 40 13. The system of claim 11 , wherein the policy is learned
select a subset of frames of the video within a neigh- using a partially observable Markov decision process
borhood of the location of the frame , and (POMDP) .

predict , based on the subset of frames and a history of 14. The system of claim 13 , wherein the policy is learned
any prior observed frames , a temporal location of a using approximation of gradients for an objective function
segment in the video associated with an activity , one 45 using a recurrent policy gradient approach .
or more of the plurality of predefined activity clas- 15. The system of claim 14 , wherein parameters of the
sifications associated with the segment , and a next policy are learned with stochastic gradient descent .
location for a different frame in the video to select for 16. The system of claim 11 , wherein the reinforcement
a next step in the sequence of steps . learning algorithm rewards the policy as a function of a

2. The method of claim 1 , wherein the policy is param- 50 change in error .
eterized by 0 , and the learning is to optimize 0 by minimiz- 17. The system of claim 16 , wherein the policy earns a
ing a loss associated with a set of estimated segments in the reward equal to any decrease in a temporal segmentation
video . error achieved by selecting a particular frame , and pays a

3. The method of claim 2 , wherein the loss refers to at penalty when the temporal segmentation error increases .
least one of a classification loss , a localization loss , and a 55 18. The system of claim 11 , wherein the plurality of
retrieval loss . predefined activity classifications includes :

4. The method of claim 1 , wherein the policy is learned a first set of activity classifications for different fore
using a partially observable Markov decision process ground activities , and
(POMDP) . a second activity classification for background activity .

5. The method of claim 4 , wherein the policy is learned 60 19. A non - transitory computer - readable media storing
using approximation of gradients for an objective function computer instructions for detecting activity in video that ,
using a recurrent policy gradient approach . when executed by one or more processors , cause the one or

6. The method of claim 5 , wherein parameters of the more processors to perform the method comprising :
policy are learned with stochastic gradient descent . learning , through a reinforcement learning algorithm , a

7. The method of claim 1 , wherein the reinforcement 65 policy to sequentially select frames of a video and
learning algorithm rewards the policy as a function of a classify activity within the video according to plu
change in error . rality of predefined activity classifications ;

28
US 10,860,859 B2

27
using , by a recurrent neural network , the policy to detect

and classify activity in the video over a sequence of
steps , wherein a number of steps in the sequence of
steps is determined according to a given time and / or
computation budget , and wherein the policy , at each 5
step in the sequence of steps , is configured to :

receive a location of a frame to observe during the step ,
select a subset of frames of the video within a neighbor
hood of the location of the frame , and

predict , based on the subset of frames and a history of any 10
prior observed frames , a temporal location of a segment
in the video associated with an activity , one or more of
the plurality of predefined activity classifications asso
ciated with the segment , and a next location for a
different frame in the video to select for a next step in 15
the sequence of steps .

20. The non - transitory computer - readable media of claim
19 , wherein the policy is parameterized by 0 , and the goal
of the policy learning is to optimize 0 by minimizing a loss
associated with a set of estimated segments in the video .

21. The non - transitory computer - readable media of claim
19 , wherein the plurality of predefined activity classifica
tions includes :

a first set of activity classifications for different fore
ground activities , and

a second activity classification for background activity .

20

25

