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1
SYSTEM AND METHOD FOR CONTENT
AND MOTION CONTROLLED ACTION
VIDEO GENERATION

CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional
Application No. 62/480,094 titled “Content and Motion
Controlled Action Video Generation,” filed Mar. 31, 2017,
the entire contents of which is incorporated herein by
reference.

FIELD OF THE INVENTION

The present invention relates to video generation, and
more particularly to content and motion controlled action
video generation.

BACKGROUND

Deep generative models have recently received an
increasing amount of attention, not only because deep gen-
erative models provide a means to learn deep feature rep-
resentations in an unsupervised manner that can potentially
leverage all the unlabeled images on Internet for training,
but also because they can be used to generate novel images
useful for various vision applications. As steady progress
toward better image generation is made, it is also important
to study the video generation problem. However, the exten-
sion from generating images to generating videos turns out
to be a highly challenging task, although the generated data
has just one more dimension—the time dimension.

The video generation problem may be a much harder
problem for the following reasons. First, since a video is a
spatio-temporal recording of visual information of objects
performing various actions, a generative model needs to
learn the plausible physical motion models of objects in
addition to learning appearance models for the objects. If the
learned object motion model is incorrect, the generated
video may contain objects performing physically impossible
motion. Second, the time dimension brings in a huge amount
of variations. Consider the speed variations that a person can
have as performing a squat movement. Each speed pattern
results in a different video, although the appearances of the
human in the videos are the same. Third, as human beings
have evolved to be rather sensitive to motion, motion
artifacts are particularly perceptible.

There is a need for addressing these issues and/or other
issues associated with the prior art.

SUMMARY

A method, computer readable medium, and system are
disclosed for generating a video clip. A recurrent neural
network generates a sequence of motion vectors from a first
set of random variables and a generator neural network
receives the sequence of motion vectors and a content vector
sample. The sequence of motion vectors and the content
vector sample are processed by the generator neural network
to produce a video clip.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a conceptual diagram illustrating an image
latent space divided into a content subspace and a motion
subspace, in accordance with one embodiment.
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FIG. 1B illustrates video clips generated using different
points in the content subspace and a single motion trajectory
in the motion subspace, in accordance with one embodi-
ment.

FIG. 1C illustrates video clips generated using the differ-
ent points in the content subspace shown in FIG. 1B and a
second motion trajectory in the motion subspace, in accor-
dance with one embodiment.

FIG. 1D illustrates video clips generated using different
points in a second content subspace and a single motion
trajectory in a second motion subspace, in accordance with
one embodiment.

FIG. 1E illustrates video clips generated using the differ-
ent points in the second content subspace shown in FIG. 1D
and a second motion trajectory in the second motion sub-
space, in accordance with one embodiment.

FIG. 1F illustrates a flowchart of a method for generating
a video clip, in accordance with one embodiment.

FIG. 2A illustrates a block diagram of a video generation
system, in accordance with one embodiment.

FIG. 2B illustrates a flowchart of a method for training the
video generation system, in accordance with one embodi-
ment.

FIG. 2C illustrates another flowchart of a method for
generating a video clip, in accordance with one embodiment.

FIG. 2D illustrates another flowchart of a method for
generating a video clip, in accordance with one embodiment.

FIG. 2E illustrates another block diagram of a video
generation system, in accordance with one embodiment.

FIG. 3 illustrates a parallel processing unit, in accordance
with one embodiment.

FIG. 4A illustrates a general processing cluster within the
parallel processing unit of FIG. 3, in accordance with one
embodiment.

FIG. 4B illustrates a memory partition unit of the parallel
processing unit of FIG. 3, in accordance with one embodi-
ment.

FIG. 5A illustrates the streaming multi-processor of FIG.
4A, in accordance with one embodiment.

FIG. 5B is a conceptual diagram of a processing system
implemented using the PPU of FIG. 3, in accordance with
one embodiment.

FIG. 5C illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

DETAILED DESCRIPTION

A video clip may be considered to be a point in a latent
space and a generative adversarial network framework may
be used to learn a mapping from the latent space to video
clips. However, assuming a video clip is a point in the latent
space unnecessarily increases the complexity of the video
generation problem because videos of the same action with
different execution speed are represented by different points
in the latent space. Moreover, assuming a video clip is a
point in the latent space forces every generated video clip to
have the same length, while the length of real-world video
clips varies. An alternative approach assumes a latent space
of images and considers that a video clip is generated by
traversing the points in the latent space. Video clips of
different lengths correspond to latent space trajectories of
different lengths.

In addition, as videos are about objects (content) perform-
ing actions (motion), the latent space of images should be
further decomposed into two subspaces, where the deviation
of a point in the first subspace (the content subspace) leads
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content changes in a video clip and the deviation in the
second subspace (the motion subspace) results in temporal
motions. Through this modeling, videos of the same action
executed with different speeds can be generated by travers-
ing the same trajectory in the motion space with different
speeds.

FIG. 1A is a conceptual diagram illustrating an image
latent space divided into a content subspace and a motion
subspace, in accordance with one embodiment. A first con-
tent vector sample 101 and a second content vector sample
102 may be used to generate two different video clips using
a single motion trajectory defined by a sequence of motion
vectors. A first motion trajectory 103 and a second motion
trajectory 104 are each sampled in the motion subspace to
produce two different sequences of motion vectors. A single
content vector sample may be used to generate two different
video clips using each of the motion trajectories 103 and
104.

Decomposing motion and content allows a more con-
trolled video generation process. By changing the content
representation while fixing the motion trajectory, video clips
may be generated of different objects performing the same
motion. By sampling different points in the content subspace
and the same motion trajectory in the motion subspace,
video clips may be generated of different objects performing
the same motion.

FIG. 1B illustrates video clips generated using different
points in the content subspace and a single motion trajectory
in the motion subspace, in accordance with one embodi-
ment. Images in the upper row of FIG. 1B are generated
using the second content vector sample 102 and the first
motion trajectory 103. In one embodiment, as shown in FIG.
1B, the first motion trajectory 103 corresponds to an expres-
sion of fear. Images in the lower row of FIG. 1B are
generated using the first content vector sample 101 and the
first motion trajectory 103.

FIG. 1C illustrates video clips generated using the differ-
ent points in the content subspace shown in FIG. 1B and a
second motion trajectory in the motion subspace, in accor-
dance with one embodiment. As shown in FIGS. 1B and 1C,
different video clips may be generated of the same object
performing different motion by applying a different trajec-
tory in the motion subspace to the same content vector
sample 101 or 102. In one embodiment, as shown in FIG.
1C, the first motion trajectory 104 corresponds to an expres-
sion of disgust. Images in the upper row of FIG. 1C are
generated using the second content vector sample 102 and
the second motion trajectory 104. Images in the lower row
of FIG. 1C are generated using the first content vector
sample 101 and the second motion trajectory 104. By
changing motion trajectories while fixing the content rep-
resentation, videos may be generated of the same object
performing different motion.

FIG. 1D illustrates video clips generated using different
points in a second content subspace and a single motion
trajectory in a second motion subspace, in accordance with
one embodiment. In one embodiment, as shown in FIG. 1D,
a third motion trajectory 107 corresponds to a motion of
waving one hand. Images in the upper row of FIG. 1D are
generated using a third content vector sample 105 and the
third motion trajectory 107. Images in the lower row of FI1G.
1D are generated using the fourth content vector sample 106
and the third motion trajectory 107. Video clips may be
generated of different objects performing the same motion
by applying the same motion trajectory in the motion
subspace to different sampled points in the content subspace.
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FIG. 1E illustrates video clips generated using the differ-
ent points in the second content subspace shown in FIG. 1D
and a fourth motion trajectory in the second motion sub-
space, in accordance with one embodiment. As shown in
FIGS. 1D and 1E, different video clips may be generated of
the same object performing different motion by applying a
different trajectory in the second motion subspace to the
same content vector sample 105 or 106. In one embodiment,
as shown in FIG. 1E, the fourth motion trajectory 108
corresponds to waving two hands. Images in the upper row
of FIG. 1E are generated using the third content vector
sample 105 and the fourth motion trajectory 108. Images in
the lower row of FIG. 1E are generated using the fourth
content vector sample 106 and the fourth motion trajectory
108.

A video generation framework, such as Motion and Con-
tent decomposed Generative Adversarial Network (MoCo-
GAN) framework, may be used for video generation using
a motion and content decomposed representation of the
image latent space, where each latent code represents an
image. In one embodiment, the video generation framework
generates a video clip by sequentially generating video
frames. At each time step (e.g., frame), an image generative
network maps a random vector to an image. The random
vector consists of two parts where the first is sampled from
the content subspace and the second is sampled from the
motion subspace. The content component represents the
objects present in the video clip and the motion component
represents the object dynamics.

FIG. 1F illustrates a flowchart of a method 100 for
generating a video clip, in accordance with one embodiment.
Although method 100 is described in the context of a video
generation system, the method 100 may also be performed
by a program, custom circuitry, or by a combination of
custom circuitry and a program. For example, the method
100 may be executed by a GPU (graphics processing unit),
CPU (central processing unit), or any processor capable of
implementing a recurrent neural network (RNN) and a
generator neural network. Furthermore, persons of ordinary
skill in the art will understand that any system that performs
method 100 is within the scope and spirit of embodiments of
the present invention.

At step 110, an RNN included in the video generation
system generates a sequence of motion vectors from a first
set of random variables. In one embodiment, network
parameters used by the RNN to sample the motion subspace
and produce the sequence of motion vectors are learned
during training. Despite lacking supervision regarding the
decomposition of motion and content in natural videos, in
one embodiment, the video generation system can learn to
disentangle these two components using an adversarial
training scheme. In one embodiment, the adversarial training
scheme includes both image and video discriminators and is
used to train the RNN and a generator neural network. The
combination of the generator neural network and discrimi-
nators forms a generative adversarial network (GAN).

At step 120, the generator neural network included in the
video generation system receives the sequence of motion
vectors and a content vector sample. Because content in a
short video clip usually remains the same, in one embodi-
ment, the content subspace is modeled using a Gaussian
distribution and the same realization may be used to gener-
ate each frame in the video clip. In one embodiment, an
encoder generates the content vector sample based on iden-
tified content. In other words, a content vector sample for a
particular animal, adult or child, man or women, etc., may
be selected by the encoder.
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At step 130, the sequence of motion vectors and the
content vector sample are processed by the generator neural
network to produce a video clip. The objective of the
generator neural network is to generate images resembling
real images. In one embodiment, the video generation sys-
tem also includes at least one of an image and video
discriminator that distinguishes real images from generated
ones. The discriminator(s) is used to train the generator
neural network to generate images that appear to be real. In
one embodiment, the generator neural network and discrimi-
nator(s) in the GAN may each be implemented as convolu-
tional neural networks (CNNs). After being trained, the
RNN and generator neural network may be deployed to
generate realistic video clips with controlled content and
motion and varying numbers of frames.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may or may not be implemented,
per the desires of the user. It should be strongly noted that
the following information is set forth for illustrative pur-
poses and should not be construed as limiting in any manner.
Any of the following features may be optionally incorpo-
rated with or without the exclusion of other features
described.

A latent space of images Z,= R where each point zeZ,
represents an image, and a video of K frames is represented
by a path of length K in the latent space, [z", . . ., z%]. The
value of K can vary to control the length of the video clip
that is generated. Therefore, videos of different lengths can
be generated by paths of different lengths. Moreover, videos
of the same action executed with different speeds can be
generated by traversing the same path in the latent space
with different speeds.

As previously described in conjunction with FIG. 1A, Z,
may be decomposed into the content Z ., and motion Z,,
subspaces: Z,~=Z.xZ,, where Z =R %, 7, =R % and d=d+
d,, The content subspace models motion-independent
appearance in videos, while the motion subspace models
motion-dependent appearance in videos. For example, in a
video of a person smiling, content represents the identity of
the person, while motion represents the changes of facial
muscle configurations of the person. A combination of the
person’s identity and the facial muscle configuration repre-
sents a face image of the person. A sequence of combina-
tions represents a video clip of the person smiling. By
swapping the look of the person with the look of another
person, a video of a different person smiling is represented.

In one embodiment, the content subspace is modeled
using a Gaussian distribution: z~p; =N (210, [ ; ) where [;_
is an identity matrix of size dxd.. Based on the observation
that the content remains largely the same in a short video
clip, the same realization, z, is used for generating different
frames in a video clip. Motion in the video clip is modeled
by a trajectory (i.e., path) in the motion subspace Z,,. The
sequence of vectors for generating a video is represented by

zc (69)

Zc
P A
@l

where z €7, and z,,°€7,, for all k’s. Since not all paths
in Z,, correspond to physically plausible motion, the RNN
should learn to generate valid paths.

FIG. 2A illustrates a block diagram of a video generation
system 200, in accordance with one embodiment. The video
generation system 200 includes an RNN 210, a generator
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neural network 220, samplers 205 and 215, image discrimi-
nator 225, and video discriminator 230.

The content subspace may be sampled once to produce a
fixed content vector sample (zZ.) while a series of random
variables [e, . . ., €®] is sampled and mapped to a
sequence of motion vectors (represented as a series of
motion codes [z,,", . . ., 2,,’]) by the RNN(R,,) 210. The
hidden state of the RNN 210 is h‘®. In one embodiment, at
each time step, the RNN 210 samples a random motion
vector from a Gaussian distribution €®~p =N (el0, I ap) of
the random variables and outputs a vector in Z,,, which is
used as the motion representation. Let R, (k) be the output
of the recurrent neural network at time k. Then, z,,*°=R,,
(k). Intuitively, the function of the RNN 210 is to map a
sequence of independent and identically distributed (i.i.d.)
random variables [¢', . . ., €] to a sequence of correlated
random variables [R,/(1), . . . , R,/(1)] representing the
dynamics in a video. Injecting noise at every iteration
models uncertainty of the future motion at each timestep. In
one embodiment the RNN 210 is implemented using a
one-layer gated recurrent (GRU) neural network.

The generator neural network (G;) 220 produces a video
clip (¥) using the sequence of motion vectors and the content
vector sample, where the video clip includes frames %,
where K is the number of frames. The vectors in Z, are
mapped to images by the generator neural network 220,
from a sequence of vectors

ot L]

to a sequence of images, V=[x

zc
= Gl([ D

(k)

i

and z,,%s are from the RNN 210.

During training, parameters (e.g., weights) of the RNN
210 and generator neural network 220 are updated to
improve accuracy of the video generation system 200
(where accuracy means generated video clips are judged by
the discriminators to be real). The sampler (S;) 205, is a
function that samples a single frame from a video clip and
the sampler S, 215 is a function that samples T consecutive
frames of a video clip. The generated video clip and a real
video clip (v from a training dataset) are sampled by the
image sampler 205 and a video sampler 215. The image
sampler samples individual images from the generated video
clip and the real video clip. The video sampler samples
sequences of consecutive frames from the generated video
clip and the real video clip to produce sets of sequential
frames (i.e., shorter video clips). An image discriminator
(D)) distinguishes real images from generated images. A
video discriminator (D) distinguishes real video clips from
generated video clips. D; is the image discriminator 225 and
D, is the video discriminator 230. The image discriminator
225 is an image discriminative neural network that is trained
using real and fake images and the video discriminator 230
is a video discriminative neural network that is trained using
real and fake (e.g., synthesized) videos. The image discrimi-
nator 225 and the video discriminator 230 each generate a
true/false output (i.e., real/not real).

W, %], where
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The generator neural network 220 can be trained to
synthesize an image that resembles an image x drawn from
a distribution p, of real images from a content component of
a random vector input z, where Z,= R %. The generator neural
network 220 receives z as an input and outputs an image,
X=G/z), that has the same support as X, where the distribu-
tion of G(z) is ps, The image discriminator 225 estimates
the probability that an input image is drawn from p,. Ideally,
D,(x)=1 if x~py and DyX)==0 if X~ps,. Training of the
image discriminator 225 (D;) and the video discriminator
230 (D) is achieved by solving a minimax problem given

by

@

inF;(D;, G
r%?m.ﬁnf’( 1 Gr)

where the functional F, is given by

F 0y Gp=E _, I-log DI+ E ., [-log(1-DA(G;
@l ®
In practice, equation (2) is solved by alternating gradient
update.

Given enough capacity to D; and G;and sufficient training
iterations, the distribution p; converges to px- As a result,
from a random vector input z, the generator neural network
220 (G,) can synthesize an image that resembles one drawn
from the true distribution, py-.

FIG. 2B illustrates a flowchart of a method 240 for
training the video generation system 200, in accordance with
one embodiment. Although method 240 is described in the
context of a video generation system, the method 240 may
also be performed by a program, custom circuitry, or by a
combination of custom circuitry and a program. For
example, the method 100 may be executed by a GPU, CPU,
or any processor capable of implementing the RNN 210, the
generator neural network 220, the image discriminator 225,
and the video discriminator 230. Furthermore, persons of
ordinary skill in the art will understand that any system that
performs method 240 is within the scope and spirit of
embodiments of the present invention.

The steps 110, 120, and 130 are performed as previously
described in conjunction with FIG. 1F. Real videos are
provided during the training phase of the video generation
system 200. At step 242, the image sampler 205 samples a
real video to produce real images. At step 245, the image
sampler 205 samples the generated video clip to produce
image frames. At step 243, the video sampler 215 samples
the real video to produce real video clips. At step 250, the
video sampler 215 samples the generated video clip to
produce sets of sequential frames.

At step 260, the image discriminator 225 processes the
real images and the image frames to generate updated
parameters for the generator neural network 220. The image
discriminator 225 processes the image frames to distinguish
the real images from generated image frames and generate
the updated parameters to reduce differences between the
real images and the image frames produced by the generator
neural network 220. At step 262, the video discriminator 230
processes the real video clips and the sets of sequential
frames to generate updated parameters for the RNN 210 and
the generator neural network 220. The video discriminator
230 processes the image frames to distinguish the real
images from generated image frames and generate the
updated parameters to reduce differences between the real
images and the image frames produced by the generator
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neural network 220. Once training is completed the video
generating system 200 may be deployed to generate video
clips.

Both the image discriminator 225 and the video discrimi-
nator 230 play the role of judge, providing criticisms to the
RNN 210 and the generator neural network 220. The image
discriminator 225 is specialized in criticizing the generator
neural network 220 based on individual images. The image
discriminator 225 is trained to determine if a frame is
sampled from a real video clip, v, or from a generated video
clip ¥. On the other hand, the video discriminator 230
provides criticisms to the generator neural network 220
based on the generated video clip. The video discriminator
230 takes a fixed length video clip, of T frames, and decides
if a video clip was sampled from a real video or from ¥. In
contrast with the image discriminator 225, which is based on
a CNN architecture, the video discriminator 230 is based on
a spatio-temporal CNN architecture. In one embodiment, the
video clip length T is a hyperparameter that is set to 16. T
can be smaller than the generated video length K. A video
clip of length K can be divided into K-T+1 clips in a
sliding-window fashion, and each of the T length sequences
can be input to the video discriminator 230.

The video discriminator 230 also evaluates the generated
motion. Since the generator neural network 220 has no
concept of motion, the criticisms on the motion part go
directly to the RNN 210. In order to generate a video with
realistic dynamics that fools the video discriminator 230, the
RNN 210 has to learn to generate a sequence of motion
codes [z,,", . . ., 2,,%] from a sequence of i.i.d. noise
inputs [, . . ., €] in a way such that the generator neural
network 220 can map z“=[z., z,,%] to consecutive frames
in a video.

Ideally, the video discriminator 230 alone should be
sufficient for training the generator neural network 220 and
the RNN 210, because the video discriminator 230 provides
feedback on both static image appearance and video dynam-
ics. However, in one embodiment, using image discrimina-
tor 225 significantly improves the convergence of the adver-
sarial training. This may be because training the image
discriminator 225 is simpler, as it only needs to focus on
static appearances.

Let py- be the distribution of video clips of variable
lengths. Let k be a discrete random variable denoting the
length of a video clip sampled from p,. (In practice, the
distribution of k, termed p,, can be estimated by computing
a histogram of video clip length from training data). To
generate a video, a content vector, z., and a length,  are
sampled. The RNN 210 is then operated for K steps and, at
each time step, the RNN 210 takes a random variable € as
the input. A generated video is then given by

Zc Zc

= [G’([RM(UD’ a G'([ R ) m

Recall that image discriminator 225 and the video dis-
criminator 230 take one frame and T consecutive frames in
a video as input, respectively. In order to represent the
sampling mechanisms, two random access functions, the
image sampler 205 and the video sampler 215 and are
introduced. The image sampler 205 takes a video clip (either
v~p;- or V~py) and outputs a random frame from the clip,
while the video sampler 215 takes a video clip and randomly
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returns T consecutive frames from the clip. With this nota-
tion, the video generation system learning problem is:

max min Fy(Dy, Dy, Gy, Ry)
G Ry DRy

®

Where the objective function F (D, D;, G, R,,) is
E [-log Dys,0)1+ E s[-log(1-DAS (9))]+

E [-log Dysz)+ E S[-log(1-Dy(Sz(7)]. ©
Where E , is a shorthand for E,_, and E; for E; . In
equation (6), the first and second terms encourage image
discriminator 225 to output 1 for a video frame from a real
video clip v and 0 for a video frame from a generated one
v. Similarly, the third and fourth terms encourage l)y to
output 1 for T consecutive frames in a real video clip v and
0 for T consecutive frames in a generated one ¥. The second
and fourth terms encourage the image generator and the
recurrent neural network to produce realistic images and
video sequences of T-consecutive frames, such that no
discriminator can distinguish them from real images and
videos.

In one embodiment, the video generation system 200 is
trained using the alternating gradient update algorithm.
Specifically, in one step, the image discriminator 225 and the
video discriminator 230 are updated while fixing the gen-
erator neural network 220 and the RNN 210. In the alter-
nating step, the generator neural network 220 and the RNN
210 are updated while fixing the image discriminator 225
and the video discriminator 230.

FIG. 2C illustrates another flowchart of a method 265 for
generating a video clip, in accordance with one embodiment.
Although method 265 is described in the context of a video
generation system, the method 265 may also be performed
by a program, custom circuitry, or by a combination of
custom circuitry and a program. For example, the method
265 may be executed by a GPU, CPU, or any processor
capable of implementing the RNN 210 and the generator
neural network 220. Furthermore, persons of ordinary skill
in the art will understand that any system that performs
method 265 is within the scope and spirit of embodiments of
the present invention.

The steps 110, 120, and 130 are performed as previously
described in conjunction with FIG. 1F. At step 270, the RNN
210 generates an additional sequence of motion vectors from
a second set of random variables. The second set of random
variables encodes a second path in the motion subspace. For
example, the second set of random variables may define the
motion trajectory 104 while, at step 110, the first set of
random variables defines the motion trajectory 103. At step
275, the generator neural network 220 processes the addi-
tional sequence of motion vectors and the content vector to
produce an additional video clip. For example, the content
vector may be the content sample vector 102 and the video
clip and the additional video clip may be the top rows of
FIGS. 1B and 1C, respectively. In another example, the
content vector may be the content sample vector 101 and the
video clip and the additional video clip may be the bottom
rows of FIGS. 1B and 1C, respectively.

FIG. 2D illustrates another flowchart of a method 280 for
generating a video clip, in accordance with one embodiment.
Although method 280 is described in the context of a video
generation system, the method 280 may also be performed
by a program, custom circuitry, or by a combination of
custom circuitry and a program. For example, the method
280 may be executed by a GPU, CPU, or any processor
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capable of implementing the RNN 210 and the generator
neural network 220. Furthermore, persons of ordinary skill
in the art will understand that any system that performs
method 280 is within the scope and spirit of embodiments of
the present invention.

The steps 110, 120, and 130 are performed as previously
described in conjunction with FIG. 1F. At step 285, the
generator neural network 220 receives an additional content
vector sample. In one embodiment, the additional content
vector sample is different than the content vector samples
received at step 120. For example, the content vector sample
may correspond to the third content vector sample 105 while
the additional content vector sample corresponds to the
fourth content vector sample 106 shown in FIGS. 1D and
1E. At step 290, the generator neural network 220 processes
the first sequence of motion vectors and the additional
content sample vector to produce an additional video clip.
For example, the content vector sample and the additional
content vector sample may be the third content vector
sample 105 and the fourth content vector sample 106 that are
both processed with the motion trajectory vector 107 or 108
to produce the video clips shown in FIGS. 1D and 1E,
respectively. In another example, the content vector may be
the content sample vector 101 and the video clip and the
additional video clip may be the bottom rows of FIGS. 1B
and 1C, respectively.

FIG. 2E illustrates a block diagram of a video generation
system 255, in accordance with one embodiment. The video
generation system 255 includes the RNN 212 and the
generator neural network 220. During training, the video
generation system 255 also includes the samplers 205 and
215, image discriminator 225, and video discriminator 230.

Dynamics in videos are often categorical (e.g., discrete
action categories: walking, running, jumping, etc.).
Examples of an action categories are facial expressions or
motion directions. In one embodiment, the input to the RNN
210 is augmented with a categorical random variable, z,. In
one embodiment, z, is a one-hot vector. For example, when
six different facial expressions are available the one-hot
vector for the facial expression category comprises 6 bits,
one bit for each label. In one embodiment, z, is fixed since
the action category in a short video remains the constant.
The input to the RNN 210 is then given by

A @)

[

To relate z, to the true action category, the objective function
in equation (6) may be augmented to F (D, D,, G,
Ry)+ALAG,, Q) where L, is a lower bound of the mutual
information between the generated video clip and z,, A is a
hyperparameter, and the auxiliary distribution Q (which
approximates the distribution of the action category variable
conditioning on the video clip) is implemented by adding a
softmax layer to the last feature layer of the video discrimi-
nator 230. In one embodiment, A=1. Note that when the
labeled training data are available, Q can be trained to output
the category label for a real input video clip to further
improve the performance.

In one embodiment, the generator neural network 220 in
the video generation system 200 is replaced with an encoder-
decoder architecture, where the encoder produces the con-
tent code Z,. and the initial motion code z,,”. Subsequent
motion codes are produced by the RNN 210 and concat-
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enated with the content code to generate each frame. In other
words, the input is an image and the output is a video clip.

Given sufficient video training data, the video generation
system 200 automatically learns to disentangle motion from
content in an unsupervised manner. For instance, given
videos of people performing different facial expressions, the
video generation system 200 learns to separate a person’s
identity from their expression, thus allowing synthesis of a
new video clip of a person performing different expressions,
or fixing the expression and generating various identities.
The video clip generation is enabled by a generative adver-
sarial network, which generates a video clip by sequentially
generating video frames. Fach video frame is generated
from a random vector, which consists of two parts, one
signifying content and one signifying motion. The content
subspace is modeled with a Gaussian distribution, whereas
the motion subspace is modeled with the RNN 210. The
content subspace and motion subspace are sampled in order
to synthesize each video frame.

Parallel Processing Architecture

FIG. 3 illustrates a parallel processing unit (PPU) 300, in
accordance with one embodiment. In one embodiment, the
PPU 300 is a multi-threaded processor that is implemented
on one or more integrated circuit devices. The PPU 300 is a
latency hiding architecture designed to process many threads
in parallel. A thread (i.e., a thread of execution) is an
instantiation of a set of instructions configured to be
executed by the PPU 300. In one embodiment, the PPU 300
is a graphics processing unit (GPU) configured to implement
a graphics rendering pipeline for processing three-dimen-
sional (3D) graphics data in order to generate two-dimen-
sional (2D) image data for display on a display device such
as a liquid crystal display (LCD) device. In other embodi-
ments, the PPU 300 may be utilized for performing general-
purpose computations. While one exemplary parallel pro-
cessor is provided herein for illustrative purposes, it should
be strongly noted that such processor is set forth for illus-
trative purposes only, and that any processor may be
employed to supplement and/or substitute for the same

One or more PPUs 300 may be configured to accelerate
thousands of High Performance Computing (HPC), data
center, and machine learning applications. The PPU 300
may be configured to accelerate numerous deep learning
systems and applications including autonomous vehicle
platforms, deep learning, high-accuracy speech, image, and
text recognition systems, intelligent video analytics,
molecular simulations, drug discovery, disease diagnosis,
weather forecasting, big data analytics, astronomy, molecu-
lar dynamics simulation, financial modeling, robotics, fac-
tory automation, real-time language translation, online
search optimizations, and personalized user recommenda-
tions, and the like.

As shown in FIG. 3, the PPU 300 includes an Input/
Output (I/O) unit 305, a front end unit 315, a scheduler unit
320, a work distribution unit 325, a hub 330, a crossbar
(Xbar) 370, one or more general processing clusters (GPCs)
350, and one or more partition units 380. The PPU 300 may
be connected to a host processor or other PPUs 300 via one
or more high-speed NVLink 310 interconnect. The PPU 300
may be connected to a host processor or other peripheral
devices via an interconnect 302. The PPU 300 may also be
connected to a local memory comprising a number of
memory devices 304. In one embodiment, the local memory
may comprise a number of dynamic random access memory
(DRAM) devices. The DRAM devices may be configured as
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a high-bandwidth memory (HBM) subsystem, with multiple
DRAM dies stacked within each device.

The NVLink 310 interconnect enables systems to scale
and include one or more PPUs 300 combined with one or
more CPUs, supports cache coherence between the PPUs
300 and CPUs, and CPU mastering. Data and/or commands
may be transmitted by the NVLink 310 through the hub 330
to/from other units of the PPU 300 such as one or more copy
engines, a video encoder, a video decoder, a power man-
agement unit, etc. (not explicitly shown). The NVLink 310
is described in more detail in conjunction with FIG. 5A.

The 1/O unit 305 is configured to transmit and receive
communications (i.e., commands, data, etc.) from a host
processor (not shown) over the interconnect 302. The I/O
unit 305 may communicate with the host processor directly
via the interconnect 302 or through one or more intermediate
devices such as a memory bridge. In one embodiment, the
/O unit 305 may communicate with one or more other
processors, such as one or more the PPUs 300 via the
interconnect 302. In one embodiment, the I/O unit 305
implements a Peripheral Component Interconnect Express
(PCle) interface for communications over a PCle bus and
the interconnect 302 is a PCle bus. In alternative embodi-
ments, the /O unit 305 may implement other types of
well-known interfaces for communicating with external
devices.

The 1/0 unit 305 decodes packets received via the inter-
connect 302. In one embodiment, the packets represent
commands configured to cause the PPU 300 to perform
various operations. The I/O unit 305 transmits the decoded
commands to various other units of the PPU 300 as the
commands may specify. For example, some commands may
be transmitted to the front end unit 315. Other commands
may be transmitted to the hub 330 or other units of the PPU
300 such as one or more copy engines, a video encoder, a
video decoder, a power management unit, etc. (not explicitly
shown). In other words, the I/O unit 305 is configured to
route communications between and among the various logi-
cal units of the PPU 300.

In one embodiment, a program executed by the host
processor encodes a command stream in a buffer that pro-
vides workloads to the PPU 300 for processing. A workload
may comprise several instructions and data to be processed
by those instructions. The buffer is a region in a memory that
is accessible (i.e., read/write) by both the host processor and
the PPU 300. For example, the host interface unit 310 may
be configured to access the buffer in a system memory
connected to the interconnect 302 via memory requests
transmitted over the interconnect 302 by the I/O unit 305. In
one embodiment, the host processor writes the command
stream to the buffer and then transmits a pointer to the start
of the command stream to the PPU 300. The front end unit
315 receives pointers to one or more command streams. The
front end unit 315 manages the one or more streams, reading
commands from the streams and forwarding commands to
the various units of the PPU 300.

The front end unit 315 is coupled to a scheduler unit 320
that configures the various GPCs 350 to process tasks
defined by the one or more streams. The scheduler unit 320
is configured to track state information related to the various
tasks managed by the scheduler unit 320. The state may
indicate which GPC 350 a task is assigned to, whether the
task is active or inactive, a priority level associated with the
task, and so forth. The scheduler unit 320 manages the
execution of a plurality of tasks on the one or more GPCs
350.
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The scheduler unit 320 is coupled to a work distribution
unit 325 that is configured to dispatch tasks for execution on
the GPCs 350. The work distribution unit 325 may track a
number of scheduled tasks received from the scheduler unit
320. In one embodiment, the work distribution unit 325
manages a pending task pool and an active task pool for each
of the GPCs 350. The pending task pool may comprise a
number of slots (e.g., 32 slots) that contain tasks assigned to
be processed by a particular GPC 350. The active task pool
may comprise a number of slots (e.g., 4 slots) for tasks that
are actively being processed by the GPCs 350. As a GPC 350
finishes the execution of a task, that task is evicted from the
active task pool for the GPC 350 and one of the other tasks
from the pending task pool is selected and scheduled for
execution on the GPC 350. If an active task has been idle on
the GPC 350, such as while waiting for a data dependency
to be resolved, then the active task may be evicted from the
GPC 350 and returned to the pending task pool while
another task in the pending task pool is selected and sched-
uled for execution on the GPC 350.

The work distribution unit 325 communicates with the
one or more GPCs 350 via XBar 370. The XBar 370 is an
interconnect network that couples many of the units of the
PPU 300 to other units of the PPU 300. For example, the
XBar 370 may be configured to couple the work distribution
unit 325 to a particular GPC 350. Although not shown
explicitly, one or more other units of the PPU 300 may also
be connected to the XBar 370 via the hub 330.

The tasks are managed by the scheduler unit 320 and
dispatched to a GPC 350 by the work distribution unit 325.
The GPC 350 is configured to process the task and generate
results. The results may be consumed by other tasks within
the GPC 350, routed to a different GPC 350 via the XBar
370, or stored in the memory 304. The results can be written
to the memory 304 via the partition units 380, which
implement a memory interface for reading and writing data
to/from the memory 304. The results can be transmitted to
another PPU 304 or CPU via the NVLink 310. In one
embodiment, the PPU 300 includes a number U of partition
units 380 that is equal to the number of separate and distinct
memory devices 304 coupled to the PPU 300. A partition
unit 380 will be described in more detail below in conjunc-
tion with FIG. 4B.

In one embodiment, a host processor executes a driver
kernel that implements an application programming inter-
face (API) that enables one or more applications executing
on the host processor to schedule operations for execution
on the PPU 300. In one embodiment, multiple compute
applications are simultaneously executed by the PPU 300
and the PPU 300 provides isolation, quality of service
(QoS), and independent address spaces for the multiple
compute applications. An application may generate instruc-
tions (i.e., API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 300. The driver
kernel outputs tasks to one or more streams being processed
by the PPU 300. Each task may comprise one or more
groups of related threads, referred to herein as a warp. In one
embodiment, a warp comprises 32 related threads that may
be executed in parallel. Cooperating threads may refer to a
plurality of threads including instructions to perform the task
and that may exchange data through shared memory.
Threads and cooperating threads are described in more detail
in conjunction with FIG. 5A.

FIG. 4A illustrates a GPC 350 of the PPU 300 of FIG. 3,
in accordance with one embodiment. As shown in FIG. 4A,
each GPC 350 includes a number of hardware units for
processing tasks. In one embodiment, each GPC 350
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includes a pipeline manager 410, a pre-raster operations unit
(PROP) 415, a raster engine 425, a work distribution cross-
bar (WDX) 480, a memory management unit (MMU) 490,
and one or more Data Processing Clusters (DPCs) 420. It
will be appreciated that the GPC 350 of FIG. 4A may include
other hardware units in lieu of or in addition to the units
shown in FIG. 4A.

In one embodiment, the operation of the GPC 350 is
controlled by the pipeline manager 410. The pipeline man-
ager 410 manages the configuration of the one or more DPCs
420 for processing tasks allocated to the GPC 350. In one
embodiment, the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement at least
a portion of a graphics rendering pipeline. For example, a
DPC 420 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 440. The pipeline manager 410 may also be configured
to route packets received from the work distribution unit 325
to the appropriate logical units within the GPC 350. For
example, some packets may be routed to fixed function
hardware units in the PROP 415 and/or raster engine 425
while other packets may be routed to the DPCs 420 for
processing by the primitive engine 435 or the SM 440. In
one embodiment, the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement a neural
network model and/or a computing pipeline.

The PROP unit 415 is configured to route data generated
by the raster engine 425 and the DPCs 420 to a Raster
Operations (ROP) unit in the partition unit 380, described in
more detail in conjunction with FIG. 4B. The PROP unit 415
may also be configured to perform optimizations for color
blending, organize pixel data, perform address translations,
and the like.

The raster engine 425 includes a number of fixed function
hardware units configured to perform various raster opera-
tions. In one embodiment, the raster engine 425 includes a
setup engine, a coarse raster engine, a culling engine, a
clipping engine, a fine raster engine, and a tile coalescing
engine. The setup engine receives transformed vertices and
generates plane equations associated with the geometric
primitive defined by the vertices. The plane equations are
transmitted to the coarse raster engine to generate coverage
information (e.g., an X,y coverage mask for a tile) for the
primitive. The output of the coarse raster engine is trans-
mitted to the culling engine where fragments associated with
the primitive that fail a z-test are culled, and transmitted to
a clipping engine where fragments lying outside a viewing
frustum are clipped. Those fragments that survive clipping
and culling may be passed to the fine raster engine to
generate attributes for the pixel fragments based on the plane
equations generated by the setup engine. The output of the
raster engine 425 comprises fragments to be processed, for
example, by a fragment shader implemented within a DPC
420.

Each DPC 420 included in the GPC 350 includes an
M-Pipe Controller (MPC) 430, a primitive engine 435, and
one or more SMs 440. The MPC 430 controls the operation
of the DPC 420, routing packets received from the pipeline
manager 410 to the appropriate units in the DPC 420. For
example, packets associated with a vertex may be routed to
the primitive engine 435, which is configured to fetch vertex
attributes associated with the vertex from the memory 304.
In contrast, packets associated with a shader program may
be transmitted to the SM 440.

The SM 440 comprises a programmable streaming pro-
cessor that is configured to process tasks represented by a
number of threads. Each SM 440 is multi-threaded and
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configured to execute a plurality of threads (e.g., 32 threads)
from a particular group of threads concurrently. In one
embodiment, the SM 440 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
in a group of threads (i.e., a warp) is configured to process
a different set of data based on the same set of instructions.
All threads in the group of threads execute the same instruc-
tions. In another embodiment, the SM 440 implements a
SIMT (Single-Instruction, Multiple Thread) architecture
where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions, but where individual threads in the group of
threads are allowed to diverge during execution. In one
embodiment, a program counter, call stack, and execution
state is maintained for each warp, enabling concurrency
between warps and serial execution within warps when
threads within the warp diverge. In another embodiment, a
program counter, call stack, and execution state is main-
tained for each individual thread, enabling equal concur-
rency between all threads, within and between warps. When
execution state is maintained for each individual thread,
threads executing the same instructions may be converged
and executed in parallel for maximum efficiency. The SM
440 will be described in more detail below in conjunction
with FIG. 5A.

The MMU 490 provides an interface between the GPC
350 and the partition unit 380. The MMU 490 may provide
translation of virtual addresses into physical addresses,
memory protection, and arbitration of memory requests. In
one embodiment, the MMU 490 provides one or more
translation lookaside buffers (TLBs) for performing trans-
lation of virtual addresses into physical addresses in the
memory 304.

FIG. 4B illustrates a memory partition unit 380 of the
PPU 300 of FIG. 3, in accordance with one embodiment. As
shown in FIG. 4B, the memory partition unit 380 includes a
Raster Operations (ROP) unit 450, a level two (L2) cache
460, and a memory interface 470. The memory interface 470
is coupled to the memory 304. Memory interface 470 may
implement 32, 64, 128, 1024-bit data buses, or the like, for
high-speed data transfer. In one embodiment, the PPU 300
incorporates U memory interfaces 470, one memory inter-
face 470 per pair of partition units 380, where each pair of
partition units 380 is connected to a corresponding memory
device 304. For example, PPU 300 may be connected to up
to Y memory devices 304, such as high bandwidth memory
stacks or graphics double-data-rate, version 5, synchronous
dynamic random access memory (GDDRS SDRAM).

In one embodiment, the memory interface 470 imple-
ments an HBM2 memory interface and Y equals half U. In
one embodiment, the HBM2 memory stacks are located on
the same physical package as the PPU 300, providing
substantial power and area savings compared with conven-
tional GDDRS SDRAM systems. In one embodiment, each
HBM2 stack includes four memory dies and Y equals 4, with
HBM2 stack including two 128-bit channels per die for a
total of 8 channels and a data bus width of 1024 bits.

In one embodiment, the memory 304 supports Single-
Error Correcting Double-Error Detecting (SECDED) Error
Correction Code (ECC) to protect data. ECC provides
higher reliability for compute applications that are sensitive
to data corruption. Reliability is especially important in
large-scale cluster computing environments where PPUs
300 process very large datasets and/or run applications for
extended periods.

In one embodiment, the PPU 300 implements a multi-
level memory hierarchy. In one embodiment, the memory
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partition unit 380 supports a unified memory to provide a
single unified virtual address space for CPU and PPU 300
memory, enabling data sharing between virtual memory
systems. In one embodiment the frequency of accesses by a
PPU 300 to memory located on other processors is traced to
ensure that memory pages are moved to the physical
memory of the PPU 300 that is accessing the pages more
frequently. In one embodiment, the NVLink 310 supports
address translation services allowing the PPU 300 to directly
access a CPU’s page tables and providing full access to CPU
memory by the PPU 300.

In one embodiment, copy engines transter data between
multiple PPUs 300 or between PPUs 300 and CPUs. The
copy engines can generate page faults for addresses that are
not mapped into the page tables. The memory partition unit
380 can then service the page faults, mapping the addresses
into the page table, after which the copy engine can perform
the transfer. In a conventional system, memory is pinned
(i.e., non-pageable) for multiple copy engine operations
between multiple processors, substantially reducing the
available memory. With hardware page faulting, addresses
can be passed to the copy engines without worrying if the
memory pages are resident, and the copy process is trans-
parent.

Data from the memory 304 or other system memory may
be fetched by the memory partition unit 380 and stored in the
L2 cache 460, which is located on-chip and is shared
between the various GPCs 350. As shown, each memory
partition unit 380 includes a portion of the 1.2 cache 460
associated with a corresponding memory device 304. Lower
level caches may then be implemented in various units
within the GPCs 350. For example, each of the SMs 440
may implement a level one (L) cache. The L1 cache is
private memory that is dedicated to a particular SM 440.
Data from the L2 cache 460 may be fetched and stored in
each of the L1 caches for processing in the functional units
of'the SMs 440. The L2 cache 460 is coupled to the memory
interface 470 and the XBar 370.

The ROP unit 450 performs graphics raster operations
related to pixel color, such as color compression, pixel
blending, and the like. The ROP unit 450 also implements
depth testing in conjunction with the raster engine 425,
receiving a depth for a sample location associated with a
pixel fragment from the culling engine of the raster engine
425. The depth is tested against a corresponding depth in a
depth buffer for a sample location associated with the
fragment. If the fragment passes the depth test for the sample
location, then the ROP unit 450 updates the depth buffer and
transmits a result of the depth test to the raster engine 425.
It will be appreciated that the number of partition units 380
may be different than the number of GPCs 350 and, there-
fore, each ROP unit 450 may be coupled to each of the GPCs
350. The ROP unit 450 tracks packets received from the
different GPCs 350 and determines which GPC 350 that a
result generated by the ROP unit 450 is routed to through the
Xbar 370.

FIG. 5A illustrates the streaming multi-processor 440 of
FIG. 4A, in accordance with one embodiment. As shown in
FIG. 5A, the SM 440 includes an instruction cache 505, one
or more scheduler units 510, a register file 520, one or more
processing cores 550, one or more special function units
(SFUs) 552, one or more load/store units (LSUs) 554, an
interconnect network 580, a shared memory/L.1 cache 570.

As described above, the work distribution unit 325 dis-
patches tasks for execution on the GPCs 350 of the PPU 300.
The tasks are allocated to a particular DPC 420 within a
GPC 350 and, if the task is associated with a shader
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program, the task may be allocated to an SM 440. The
scheduler unit 510 receives the tasks from the work distri-
bution unit 325 and manages instruction scheduling for one
or more thread blocks assigned to the SM 440. The scheduler
unit 510 schedules thread blocks for execution as warps of
parallel threads, where each thread block is allocated at least
one warp. In one embodiment, each warp executes 32
threads. The scheduler unit 510 may manage a plurality of
different thread blocks, allocating the warps to the different
thread blocks and then dispatching instructions from the
plurality of different cooperative groups to the various
functional units (i.e., cores 550, SFUs 552, and LSUs 554)
during each clock cycle.

Cooperative Groups is a programming model for orga-
nizing groups of communicating threads that allows devel-
opers to express the granularity at which threads are com-
municating, enabling the expression of richer, more efficient
parallel decompositions. Cooperative launch APIs support
synchronization amongst thread blocks for the execution of
parallel algorithms. Conventional programming models pro-
vide a single, simple construct for synchronizing cooperat-
ing threads: a barrier across all threads of a thread block (i.e.,
the syncthreads( ) function). However, programmers would
often like to define groups of threads at smaller than thread
block granularities and synchronize within the defined
groups to enable greater performance, design flexibility, and
software reuse in the form of collective group-wide function
interfaces.

Cooperative Groups enables programmers to define
groups of threads explicitly at sub-block (i.e., as small as a
single thread) and multi-block granularities, and to perform
collective operations such as synchronization on the threads
in a cooperative group. The programming model supports
clean composition across software boundaries, so that librar-
ies and utility functions can synchronize safely within their
local context without having to make assumptions about
convergence. Cooperative Groups primitives enable new
patterns of cooperative parallelism, including producer-con-
sumer parallelism, opportunistic parallelism, and global
synchronization across an entire grid of thread blocks.

A dispatch unit 515 is configured to transmit instructions
to one or more of the functional units. In the embodiment,
the scheduler unit 510 includes two dispatch units 515 that
enable two different instructions from the same warp to be
dispatched during each clock cycle. In alternative embodi-
ments, each scheduler unit 510 may include a single dispatch
unit 515 or additional dispatch units 515.

Each SM 440 includes a register file 520 that provides a
set of registers for the functional units of the SM 440. In one
embodiment, the register file 520 is divided between each of
the functional units such that each functional unit is allo-
cated a dedicated portion of the register file 520. In another
embodiment, the register file 520 is divided between the
different warps being executed by the SM 440. The register
file 520 provides temporary storage for operands connected
to the data paths of the functional units.

Each SM 440 comprises L processing cores 550. In one
embodiment, the SM 440 includes a large number (e.g., 128,
etc.) of distinct processing cores 550. Each core 550 may
include a fully-pipelined, single-precision, double-precision,
and/or mixed precision processing unit that includes a
floating point arithmetic logic unit and an integer arithmetic
logic unit. In one embodiment, the floating point arithmetic
logic units implement the IEEE 754-2008 standard for
floating point arithmetic. In one embodiment, the cores 550
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include 64 single-precision (32-bit) floating point cores, 64
integer cores, 32 double-precision (64-bit) floating point
cores, and 8 tensor cores.

Tensor cores configured to perform matrix operations,
and, in one embodiment, one or more tensor cores are
included in the cores 550. In particular, the tensor cores are
configured to perform deep learning matrix arithmetic, such
as convolution operations for neural network training and
inferencing. In one embodiment, each tensor core operates
on a 4x4 matrix and performs a matrix multiply and accu-
mulate operation D=AxB+C, where A, B, C, and D are 4x4
matrices.

In one embodiment, the matrix multiply inputs A and B
are 16-bit floating point matrices, while the accumulation
matrices C and D may be 16-bit floating point or 32-bit
floating point matrices. Tensor Cores operate on 16-bit
floating point input data with 32-bit floating point accumu-
lation. The 16-bit floating point multiply requires 64 opera-
tions and results in a full precision product that is then
accumulated using 32-bit floating point addition with the
other intermediate products for a 4x4x4 matrix multiply. In
practice, Tensor Cores are used to perform much larger
two-dimensional or higher dimensional matrix operations,
built up from these smaller elements. An API, such as
CUDA 9 C++ API, exposes specialized matrix load, matrix
multiply and accumulate, and matrix store operations to
efficiently use Tensor Cores from a CUDA-C++ program. At
the CUDA level, the warp-level interface assumes 16x16
size matrices spanning all 32 threads of the warp.

Each SM 440 also comprises M SFUs 552 that perform
special functions (e.g., attribute evaluation, reciprocal
square root, and the like). In one embodiment, the SFUs 552
may include a tree traversal unit configured to traverse a
hierarchical tree data structure. In one embodiment, the
SFUs 552 may include texture unit configured to perform
texture map filtering operations. In one embodiment, the
texture units are configured to load texture maps (e.g., a 2D
array of texels) from the memory 304 and sample the texture
maps to produce sampled texture values for use in shader
programs executed by the SM 440. In one embodiment, the
texture maps are stored in the shared memory/LL1 cache 470.
The texture units implement texture operations such as
filtering operations using mip-maps (i.e., texture maps of
varying levels of detail). In one embodiment, each SM 340
includes two texture units.

Each SM 440 also comprises N LSUs 554 that implement
load and store operations between the shared memory/L.1
cache 570 and the register file 520. Each SM 440 includes
an interconnect network 580 that connects each of the
functional units to the register file 520 and the LSU 554 to
the register file 520, shared memory/L.1 cache 570. In one
embodiment, the interconnect network 580 is a crossbar that
can be configured to connect any of the functional units to
any of the registers in the register file 520 and connect the
LSUs 554 to the register file and memory locations in shared
memory/L.1 cache 570.

The shared memory/L.1 cache 570 is an array of on-chip
memory that allows for data storage and communication
between the SM 440 and the primitive engine 435 and
between threads in the SM 440. In one embodiment, the
shared memory/[L1 cache 570 comprises 128 KB of storage
capacity and is in the path from the SM 440 to the partition
unit 380. The shared memory/L[.1 cache 570 can be used to
cache reads and writes. One or more of the shared memory/
L1 cache 570, .2 cache 460, and memory 304 are backing
stores.
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Combining data cache and shared memory functionality
into a single memory block provides the best overall per-
formance for both types of memory accesses. The capacity
is usable as a cache by programs that do not use shared
memory. For example, if shared memory is configured to use
half of the capacity, texture and load/store operations can use
the remaining capacity. Integration within the shared
memory/L.1 cache 570 enables the shared memory/L.1 cache
570 to function as a high-throughput conduit for streaming
data while simultaneously providing high-bandwidth and
low-latency access to frequently reused data.

When configured for general purpose parallel computa-
tion, a simpler configuration can be used compared with
graphics processing. Specifically, the fixed function graphics
processing units shown in FIG. 3, are bypassed, creating a
much simpler programming model. In the general purpose
parallel computation configuration, the work distribution
unit 325 assigns and distributes blocks of threads directly to
the DPCs 420. The threads in a block execute the same
program, using a unique thread ID in the calculation to
ensure each thread generates unique results, using the SM
440 to execute the program and perform calculations, shared
memory/L.1 cache 570 to communicate between threads, and
the LLSU 554 to read and write global memory through the
shared memory/L.1 cache 570 and the memory partition unit
380. When configured for general purpose parallel compu-
tation, the SM 440 can also write commands that the
scheduler unit 320 can use to launch new work on the DPCs
420.

The PPU 300 may be included in a desktop computer, a
laptop computer, a tablet computer, servers, supercomputers,
a smart-phone (e.g., a wireless, hand-held device), personal
digital assistant (PDA), a digital camera, a vehicle, a head
mounted display, a hand-held electronic device, and the like.
In one embodiment, the PPU 300 is embodied on a single
semiconductor substrate. In another embodiment, the PPU
300 is included in a system-on-a-chip (SoC) along with one
or more other devices such as additional PPUs 300, the
memory 204, a reduced instruction set computer (RISC)
CPU, a memory management unit (MMU), a digital-to-
analog converter (DAC), and the like.

In one embodiment, the PPU 300 may be included on a
graphics card that includes one or more memory devices
304. The graphics card may be configured to interface with
a PCle slot on a motherboard of a desktop computer. In yet
another embodiment, the PPU 300 may be an integrated
graphics processing unit (iGPU) or parallel processor
included in the chipset of the motherboard.

Machine Learning

Deep neural networks (DNNs) developed on processors,
such as the PPU 300 have been used for diverse use cases,
from self-driving cars to faster drug development, from
automatic image captioning in online image databases to
smart real-time language translation in video chat applica-
tions. The PPU 300 may be configured to implement the
video generation system 200 during training and for deploy-
ment. Deep learning is a technique that models the neural
learning process of the human brain, continually learning,
continually getting smarter, and delivering more accurate
results more quickly over time. A child is initially taught by
an adult to correctly identify and classify various shapes,
eventually being able to identify shapes without any coach-
ing. Similarly, a deep learning or neural learning system
needs to be trained in object recognition and classification
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for it get smarter and more efficient at identifying basic
objects, occluded objects, etc., while also assigning context
to objects.

At the simplest level, neurons in the human brain look at
various inputs that are received, importance levels are
assigned to each of these inputs, and output is passed on to
other neurons to act upon. An artificial neuron or perceptron
is the most basic model of a neural network. In one example,
a perceptron may receive one or more inputs that represent
various features of an object that the perceptron is being
trained to recognize and classify, and each of these features
is assigned a certain weight based on the importance of that
feature in defining the shape of an object.

A deep neural network (DNN) model includes multiple
layers of many connected perceptrons (e.g., nodes) that can
be trained with enormous amounts of input data to quickly
solve complex problems with high accuracy. In one
example, a first layer of the DLL model breaks down an
input image of an automobile into various sections and looks
for basic patterns such as lines and angles. The second layer
assembles the lines to look for higher level patterns such as
wheels, windshields, and mirrors. The next layer identifies
the type of vehicle, and the final few layers generate a label
for the input image, identifying the model of a specific
automobile brand.

Once the DNN is trained, the DNN can be deployed and
used to identify and classify objects or patterns in a process
known as inference. Examples of inference (the process
through which a DNN extracts useful information from a
given input) include identifying handwritten numbers on
checks deposited into ATM machines, identifying images of
friends in photos, delivering movie recommendations to
over fifty million users, identifying and classifying different
types of automobiles, pedestrians, and road hazards in
driverless cars, or translating human speech in real-time.

During training, data flows through the DNN in a forward
propagation phase until a prediction is produced that indi-
cates a label corresponding to the input. If the neural
network does not correctly label the input, then errors
between the correct label and the predicted label are ana-
lyzed, and the weights are adjusted for each feature during
a backward propagation phase until the DNN correctly
labels the input and other inputs in a training dataset.
Training complex neural networks requires massive
amounts of parallel computing performance, including float-
ing-point multiplications and additions that are supported by
the PPU 300. Inferencing is less compute-intensive than
training, being a latency-sensitive process where a trained
neural network is applied to new inputs it has not seen before
to classify images, translate speech, and generally infer new
information.

Neural networks rely heavily on matrix math operations,
and complex multi-layered networks require tremendous
amounts of floating-point performance and bandwidth for
both efficiency and speed. With thousands of processing
cores, optimized for matrix math operations, and delivering
tens to hundreds of TFLOPS of performance, the PPU 300
is a computing platform capable of delivering performance
required for deep neural network-based artificial intelligence
and machine learning applications.

Exemplary Computing System

Systems with multiple GPUs and CPUs are used in a
variety of industries as developers expose and leverage more
parallelism in applications such as artificial intelligence
computing. High-performance GPU-accelerated systems
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with tens to many thousands of compute nodes are deployed
in data centers, research facilities, and supercomputers to
solve ever larger problems. As the number of processing
devices within the high-performance systems increases, the
communication and data transfer mechanisms need to scale
to support the increased

FIG. 5B is a conceptual diagram of a processing system
500 implemented using the PPU 300 of FIG. 3, in accor-
dance with one embodiment. The exemplary system 565
may be configured to implement the methods or system
shown in FIGS. 1F, 2B, 2C, and 2D. The processing system
500 includes a CPU 530, switch 510, and multiple PPUs 300
each and respective memories 304. The NVLink 310 pro-
vides a high-speed communication links between each of the
PPUs 300. The switch 510 interfaces between the intercon-
nect 302 and the CPU 530. The PPUs 300, memories 304,
and NVLinks 310 may be situated on a single semiconductor
platform to form a parallel processing module 525.

In the context of the present description, a single semi-
conductor platform may refer to a sole unitary semiconduc-
tor-based integrated circuit fabricated on a die or chip. It
should be noted that the term single semiconductor platform
may also refer to multi-chip modules with increased con-
nectivity which simulate on-chip operation and make sub-
stantial improvements over utilizing a conventional bus
implementation. Of course, the various circuits or devices
may also be situated separately or in various combinations
of semiconductor platforms per the desires of the user.
Alternately, the parallel processing module 525 may be
implemented as a circuit board substrate and each of the
PPUs 300 and/or memories 304 may be packaged devices.
In one embodiment, the CPU 530, switch 510, and the
parallel processing module 525 are situated on a single
semiconductor platform.

In one embodiment, the signaling rate of each NVLink
310 is 20 to 25 Gigabits/second and each PPU 300 includes
six NVLink 310 interfaces (as shown in FIG. 5B, five
NVLink 310 interfaces are included for each PPU 300).
Each NVLink 310 provides a data transfer rate of 25
Gigabytes/second in each direction, with six links providing
300 Gigabytes/second. The NVLinks 310 can be used exclu-
sively for PPU-to-PPU communication as shown in FIG. 5B,
or some combination of PPU-to-PPU and PPU-to-CPU,
when the CPU 530 also includes one or more NVLink 310
interfaces.

In one embodiment, the NVLink 310 allows direct load/
store/atomic access from the CPU 530 to each PPU’s 300
memory 304. In one embodiment, the NVLink 310 supports
coherency operations, allowing data read from the memories
304 to be stored in the cache hierarchy of the CPU 530,
reducing cache access latency for the CPU 530. In one
embodiment, the NVLink 310 includes support for Address
Translation Services (ATS), allowing the PPU 300 to
directly access page tables within the CPU 530. One or more
of the NVLinks 310 may also be configured to operate in a
low-power mode.

FIG. 5C illustrates an exemplary system 565 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. The exemplary
system 565 may be configured to implement the methods or
system shown in FIGS. 1F, 2A, 2B, 2C, and 2D.

As shown, a system 565 is provided including at least one
central processing unit 530 that is connected to a commu-
nication bus 575. The communication bus 575 may be
implemented using any suitable protocol, such as PCI (Pe-
ripheral Component Interconnect), PCI-Express, AGP (Ac-
celerated Graphics Port), HyperTransport, or any other bus
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or point-to-point communication protocol(s). The system
565 also includes a main memory 540. Control logic (soft-
ware) and data are stored in the main memory 540 which
may take the form of random access memory (RAM).

The system 565 also includes input devices 560, the
parallel processing system 525, and display devices 545, i.e.
a conventional CRT (cathode ray tube), LCD (liquid crystal
display), LED (light emitting diode), plasma display or the
like. User input may be received from the input devices 560,
e.g., keyboard, mouse, touchpad, microphone, and the like.
Each of the foregoing modules and/or devices may even be
situated on a single semiconductor platform to form the
system 565. Alternately, the various modules may also be
situated separately or in various combinations of semicon-
ductor platforms per the desires of the user.

Further, the system 565 may be coupled to a network
(e.g., a telecommunications network, local area network
(LAN), wireless network, wide area network (WAN) such as
the Internet, peer-to-peer network, cable network, or the
like) through a network interface 535 for communication
purposes.

The system 565 may also include a secondary storage (not
shown). The secondary storage 610 includes, for example, a
hard disk drive and/or a removable storage drive, represent-
ing a floppy disk drive, a magnetic tape drive, a compact
disk drive, digital versatile disk (DVD) drive, recording
device, universal serial bus (USB) flash memory. The
removable storage drive reads from and/or writes to a
removable storage unit in a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored in the main memory 540 and/or the
secondary storage. Such computer programs, when
executed, enable the system 565 to perform various func-
tions. The memory 540, the storage, and/or any other storage
are possible examples of computer-readable media.

The architecture and/or functionality of the various pre-
vious figures may be implemented in the context of a general
computer system, a circuit board system, a game console
system dedicated for entertainment purposes, an application-
specific system, and/or any other desired system. For
example, the system 565 may take the form of a desktop
computer, a laptop computer, a tablet computer, servers,
supercomputers, a smart-phone (e.g., a wireless, hand-held
device), personal digital assistant (PDA), a digital camera, a
vehicle, a head mounted display, a hand-held electronic
device, a mobile phone device, a television, workstation,
game consoles, embedded system, and/or any other type of
logic.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

What is claimed is:

1. A computer-implemented method, comprising:
generating, by a recurrent neural network, a sequence of
motion vectors from a first set of random variables;
receiving, by a generator neural network, the sequence of
motion vectors and a content vector sample; and

processing the sequence of motion vectors and the content
vector sample by the generator neural network to
produce a video clip.
2. The computer-implemented method of claim 1, further
comprising:
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generating, by the recurrent neural network, an additional
sequence of motion vectors from a second set of
random variables; and

processing the additional sequence of motion vectors and
the content vector sample by the generator neural
network to produce an additional video clip.

3. The computer-implemented method of claim 2,
wherein a number of frames in the video clip differs from a
number of frames in the additional video clip.

4. The computer-implemented method of claim 1, further
comprising:

receiving, by the generator neural network, an additional
content vector sample; and

processing the first sequence of motion vectors and the
additional content vector sample by the generator neu-
ral network to produce an additional video clip.

5. The computer-implemented method of claim 1, further
comprising generating, by an encoder, the content vector
sample based on identified content.

6. The computer-implemented method of claim 1, further
comprising sampling a Gaussian distribution of content to
produce the content vector sample.

7. The computer-implemented method of claim 1, further
comprising:

sampling the video clip to produce image frames; and

processing the image frames by a discriminative neural
network configured to distinguish real images from
generated images to generate updated parameters for
the generator neural network.

8. The computer-implemented method of claim 1, further

comprising:
sampling the video clip to produce sets of sequential
frames; and
processing the sets of sequential frames by a discrimina-
tive neural network configured to distinguish real video
clips from generated video clips to generate updated
parameters for the generator neural network and the
recurrent neural network.
9. The computer-implemented method of claim 1, further
comprising, prior to generating the sequence of motion
vectors, combining an action label associated with an action
category with the first set of random variables.
10. The computer-implemented method of claim 9,
wherein the action category represents facial expression.
11. The computer-implemented method of claim 9,
wherein the action category represents motion directions.
12. A system, comprising:
a parallel processing unit configured to implement a
recurrent neural network and a generator network,
wherein
the recurrent neural network is configured to generate
a sequence of motion vectors from a first set of
random variables,

the generator neural network receives the sequence of
motion vectors and a content vector sample, and
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the generator neural network processes the sequence of
motion vectors and the content vector sample to
produce a video clip.
13. The system of claim 12, wherein
the recurrent neural network is further configured to
generate an additional sequence of motion vectors from
a second set of random variables; and

the generator neural network is further configured to
process the additional sequence of motion vectors and
the content vector sample by to produce an additional
video clip.

14. The system of claim 13, wherein a number of frames
in the video clip differs from a number of frames in the
additional video clip.

15. The system of claim 12, wherein

the generator neural network is further configured to

receive an additional content vector sample; and

the generator neural network is further configured to

process the first sequence of motion vectors and the
additional content vector sample to produce an addi-
tional video clip.

16. The system of 12, further comprising an encode
configured to generate the content vector sample based on
identified content.

17. The system of claim 12, further comprising sampling
a Gaussian distribution of content to produce the content
vector sample.

18. The system of claim 12, further comprising:

an image sampler configured to sample the video clip to

produce image frames; and

a discriminative neural network configured to:

process the image frames, distinguishing real images
from the image frames; and

generate updated parameters for the generator neural
network.

19. The system of claim 12, further comprising:

a video sampler configured to sample the video clip to

produce sets of sequential frames; and

a discriminative neural network configured to:

process the sets of sequential frames, distinguishing
real video clips from the sets of sequential frames;
and

generate updated parameters for the generator neural
network and the recurrent neural network.

20. A non-transitory computer-readable media storing
computer instructions for translating images that, when
executed by a processor, cause the processor to perform the
steps of:

generating, by a recurrent neural network, a sequence of

motion vectors from a first set of random variables; and
receiving, by a generator neural network, the sequence of
motion vectors and a content vector sample; and
processing the sequence of motion vectors and the content
vector sample by the generator neural network to
produce a video clip.
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