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SYSTEM AND METHOD FOR OPTICAL FIG . 4A illustrates a general processing cluster within the 
FLOW ESTIMATION parallel processing unit of FIG . 3 , in accordance with one 

embodiment . 
CLAIM OF PRIORITY FIG . 4B illustrates a memory partition unit of the parallel 

5 processing unit of FIG . 3 , in accordance with one embodi 
This application claims the benefit of U . S . Provisional ment . 

Application No . 62 / 483 , 145 titled “ PYRAMIDAL CNN FIG . 5A illustrates the streaming multi - processor of FIG . 
MODEL FOR OPTICAL FLOW ESTIMATION , ” filed Apr . 4A , in accordance with one embodiment . 
7 , 2017 , the entire contents of which is incorporated herein FIG . 5B is a conceptual diagram of a processing system 
by reference . implemented using the PPU of FIG . 3 , in accordance with 

one embodiment . 
FIELD OF THE INVENTION FIG . 5C illustrates an exemplary system in which the 

various architecture and / or functionality of the various pre 
The present invention relates to optical flow and tech - , vious embodiments may be implemented . 

niques for estimating optical flow for images . 
DETAILED DESCRIPTION 

BACKGROUND 
An optical flow estimation system estimates the two 

Optical flow estimation is a core computer vision problem 20 dimensional ( 2D ) motion of pixels between two images . A 
and has many applications , e . g . , in autonomous driving , compact but effective convolutional neural network ( CNN ) 
video editing , and action recognition . Most top - performing model for optical flow estimation is described that exploits 
conventional techniques for estimating optical flow adopt an the principles of pyramid structures , warping , and correla 
energy minimization approach . However , optimizing a com - tion . Features extracted from a first image and features 
plex energy function is usually computationally expensive 25 extracted from a second image are both stored as pyramidal 
for real - time applications . Other conventional approaches structures of image features . The CNN model uses an 
have large memory requirements for storing a system model . upsampled optical flow computed for the previous ( 1 - 1 ) 
The large memory requirements cannot always be satisfied level of the pyramid structures to warp the features of the 
by embedded and mobile devices . There is a need for second image for the Ith level . The CNN model computes a 
addressing these issues and / or other issues associated with 30 partial cost volume based on the correlation between fea 
the prior art . tures of the first image and the warped features of the second 

image . The correlation output provides strong cues to esti 
SUMMARY mate the flow increment and is processed by convolution 

layers to refine the current optical flow . A method , computer 
A method , computer readable medium , and system are 35 readable medium , and system embodiment is disclosed . The 

disclosed for estimating optical flow for images . A first algorithm may be executed by a GPU , CPU , or any proces 
pyramidal set of features is generated for a first image and sor capable of implementing the CNN model . 
a partial cost volume for a level of the first pyramidal set of FIG . 1A illustrates a flowchart of a method 100 for 
features is computed , by a neural network , using features at estimating optical flow , in accordance with one embodiment . 
the level of the first pyramidal set of features and warped 40 Although method 100 is described in the context of a 
features extracted from a second image , where the partial processing unit , the method 100 may also be performed by 
cost volume is computed across a limited range of pixels that a program , custom circuitry , or by a combination of custom 
is less than a full resolution of the first image , in pixels , at circuitry and a program . For example , the method 100 may 
the level . The neural network processes the features and the be executed by a GPU ( graphics processing unit ) , CPU 
partial cost volume to produce a refined optical flow esti - 45 ( central processing unit ) , or any processor capable of imple 
mate for the first image and the second image . menting a neural network model . Furthermore , persons of 

ordinary skill in the art will understand that any system that 
BRIEF DESCRIPTION OF THE DRAWINGS performs method 100 is within the scope and spirit of 

embodiments of the present invention . 
FIG . 1A illustrates a flowchart of a method for estimating 50 At step 110 , a first pyramidal set of features is generated 

optical flow , in accordance with one embodiment for a first image . In one embodiment , a second pyramidal set 
FIG . 1B is a conceptual diagram of illustrating a warped of features is also generated for a second image , where the 

second image and limited range of pixels used to compute a second image is immediately after the first image in a video 
partial cost volume , in accordance with one embodiment . sequence . A pyramidal set of features is generated to have L 

FIG . 1C illustrates a block diagram of an optical flow 55 levels , where each level 1 includes feature representations 
system , in accordance with one embodiment . associated with a different resolution ( in pixels ) of the 

FIG . 2A illustrates a flowchart of a method for estimating image . In one embodiment , the bottom ( 1 = 1 ) level of the 
optical flow , in accordance with one embodiment . pyramidal set of features is the first image . A higher ( 1 = 2 ) 

FIG . 2B illustrates a block diagram of a feature pyramid level of the pyramidal set of features is generated by 
extraction network , in accordance with one embodiment . 60 convolving the image data ( i . e . , color and / or depth values for 

FIG . 2C illustrates a block diagram of a warping , partial each pixel in the first image ) with a filter . In one embodi 
cost volume , and flow estimator network , in accordance with ment , the filter is 3x3 pixels and a stride of 2 is used to 
one embodiment . generate one or more features for each application of the 

FIG . 2D illustrates a block diagram of a context network , filter . In one embodiment , each subsequent ( 1 + 1 ) level in the 
in accordance with one embodiment . 65 pyramidal set of features is generated by downsampling the 

FIG . 3 illustrates a parallel processing unit , in accordance features from the lower ( 1 ) level in the pyramidal set of 
with one embodiment . features . 
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In contrast with a conventional image pyramid , where process continues until the bottom level of the feature 
each level is a two - dimensional array of color values gen pyramids is used to produce a final optical flow estimate . 
erated by downsampling color values of a higher resolution More illustrative information will now be set forth regard 
image , each level of the feature pyramid is three - dimen - ing various optional architectures and features with which 
sional . The third dimension is a number of channels , where 5 the foregoing framework may or may not be implemented , 
each channel corresponds to a different feature for the same per the desires of the user . It should be strongly noted that 
pixel location . In one embodiment , the pyramidal set of the following information is set forth for illustrative pur 
features is generated by a CNN having multiple layers and poses and should not be construed as limiting in any manner . 
each layer of the neural network generates one channel of Any of the following features may be optionally incorpo 
the features . In one embodiment , the number of feature 10 rated with or without the exclusion of other features 
channels in a pyramidal set of features having 7 levels is 16 described . 
at the bottom layer ( 1 = 1 ) , increasing to 32 , 64 , 96 , 128 , and FIG . 1B is a conceptual diagram 170 illustrating a warped 
196 at the top ( 1 = 7 ) level . Features at higher levels of the second image and limited range of pixels used to compute a 
pyramidal set of features tend to capture global structures partial cost volume , in accordance with one embodiment . An 
within the image , whereas features at lower levels describe 15 object ( star ) at a first location in the first image has moved 
fine details of the image . to a second location in a second image , where the first and 

A drawback of conventional image pyramid having fixed second images are included in a video sequence . A warping 
values at each level is that the raw images used to generate operation is performed on the second image to move the 
the conventional image pyramid do not provide good fea object from the second location to a third location that is 
tures to establish correspondence between different images 20 closer to the first location . Note that although the object may 
in a video sequence , particularly in the presence of shadows be assumed to be represented as image data , in one embodi 
and lighting changes . Therefore , the conventional image ment , the object may be represented as one or more features 
pyramid is replaced with a feature pyramid ( i . e . , pyramidal generated for a level of a feature pyramidal structure . Each 
set of features ) and , when the feature pyramid is generated feature may correspond to a pixel location in the first and 
using a neural network , the parameters used to generate the 25 second images . The features of the second image for a 
features may be learned through training . highest level of the feature pyramidal structure are warped 
At step 130 , a partial cost volume for a level of the first towards the first image using an initial optical flow . For 

pyramidal set of features is computed , by a neural network , subsequent optical flow estimates , the features of the second 
using features at the level of the first pyramidal set of image for a subsequent ( i . e . , next lower ) level of the feature 
features and warped features extracted from a second image , 30 pyramidal structure are warped towards the first image using 
where the partial cost volume is computed across a limited the optical flow estimate computed for the higher level . 
range of pixels that is less than a full resolution of the first To estimate the optical flow , movement of the object from 
image , in pixels , at the level . The warping and limited range the first location in the first image to the second location in 
of pixels is described in more detail in conjunction with FIG . the second image is calculated . The first location is known 
1B . 35 and the second location ( i . e . , location of the object in the 
Conventional optical flow estimation techniques compute second image ) can be determined based on the warp opera 

a full cost volume , building the full cost volume at a single tion and a difference between the first and third locations 
scale , which is both computationally expensive and memory ( i . e . , locations of the object in first image and the warped 
intensive . By contrast , constructing the partial cost volume second image ) . As a result of the warping operation , the 
at multiple pyramid levels results in optical flow estimation 40 object in the warped second image is closer to the first 
models that are computationally accurate and efficient . location , so it is not necessary to search the entire warped 

At step 145 , the neural network processes the features and second image to identify the object and the third location . 
the partial cost volume , to produce an optical flow estimate Instead , a limited range of pixels surrounding the first 
for the first image and the second image . In one embodi - location may be searched . 
ment , the optical flow estimation technique iteratively pro - 45 As shown in FIG . 1B , in one embodiment , the limited 
cesses each level of the feature pyramid structures ( i . e . , each range of pixels is a 3x3 pixel region centered at the first 
pyramidal set of features ) , starting at the top level ( 1 = L ) for location . Importantly , the limited range is less than the full 
the first image and the second image using an optical flow resolution , in pixels , of the first image , where the full 
estimate from the previous iteration to refine the optical flow resolution is one of the dimensions ( e . g . , height or width ) of 
estimate until the target level is reached ( 1 = 1 ) . At the start of 50 the first image . Note that the dimensions of the first image 
the process , the optical flow estimate is initialized . In one and the warped second image for each level of the feature 
embodiment , the optical flow estimate is further processed pyramids are equal . In the context of the following descrip 
to produce a refined optical flow estimate . tion , the limited range of pixels is applied to a level of the 

For the first iteration , the top ( 1 = L ) level of the feature second pyramidal set of features that is warped . The limited 
pyramid for the second image is warped toward the top level 55 range of pixels is centered at a first location corresponding 
of the feature pyramid for the first image using the initial to the first location in the level of the first pyramidal set of 
optical flow estimate . Importantly , the feature pyramid struc - features . 
tures and warping enable a reduction in the search range ( in FIG . 1C illustrates a block diagram of an optical flow 
pixels ) used to compute the partial cost volume . The partial system 150 , in accordance with one embodiment . The opti 
cost volume is computed for the top level using the top level 60 cal flow system 150 includes a pyramidal image feature 
of the first feature pyramid and the warped top level of the structure generator 105 , a neural network model 115 , an 
second feature pyramid . The optical flow estimate is then upsampler 152 , and a context network 145 . The neural 
computed using the top level of the first feature pyramid , the network model 115 comprises multiple layers including one 
cost volume of the top level , and the initial optical flow or more warping layer ( s ) 125 , one or more partial cost 
estimate . The computed optical flow estimate is then 65 volume computation layer ( s ) 135 , and one or more optical 
upsampled and the process is repeated ( starting at the flow estimator layer ( s ) 140 . In one embodiment , the warping 
warping ) for the ( 1 = 1 - 1 ) level of the feature pyramids . The layer ( s ) 125 comprises a single layer , the partial cost volume 
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computation layer ( s ) 135 comprises a single layer , and the flow estimator layer ( s ) 140 to predict the new optical flow 
optical flow estimator layer ( s ) 140 comprises a CNN . In one estimates . Computation of the partial cost volume enables 
embodiment , the context network 145 is omitted and the changes that are as large as the range of correlation around 
optical flow estimate generated by the neural network model the unsampled optical flow . 
115 is used as the refined optical flow estimate . The context 5 The warping layer ( s ) 125 warps the features of the second 
network 145 is configured to post - process an optical flow image , c ' - toward the first image using the upsampled 
estimate output by the neural network model 115 , and may optical flow from the Ith level . 
perform median filtering , weighted median filtering , and / or C / + ( x ) = cz ? - 1 ( x + 1w ' ( x ) ) , bilateral filtering to generate the refined optical flow esti where | w ? denotes the upsampled and scaled optical flow mate . 10 

In one embodiment , the pyramidal image feature structure from the Ith level and is zero at the top level . The bilinear 
generator 105 is implemented using a neural network , start interpolation method may be used to implement the warping 
ing with the first and second images at the bottom level and operation and compute the gradients for the features and 
generating each higher level until the top level is reached . optical flow estimates for backpropagation during training of 

the pyramidal image feature structure generator 105 . For The optical flow estimation technique is iterative , starting at 15 
a coarse level of detail ( top level of the feature pyramid ) and non - translational motion , warping can compensate some 
finishing at a fine level of detail , as described in detail in geometric distortions and place image patches at the correct 
conjunction with FIG . 2A . Conventional techniques first scale . 
compute two ( Gaussian ) image pyramids for the first and the At the lth pyramid level , the partial cost volume compu 
second images . In contrast , the pyramidal image feature 20 tation layer ( s ) 135 computes the partial cost volume by 
structure generator 105 is a neural network configured to computing the correlation using features of the first image , 
construct feature pyramids , learning the filters that are used c , ' toward and warped features of the second image , cm ? : 
to compute the features from a training dataset . In one 
embodiment , features are extracted from the first image and 
the second image at the bottom level by a convolutional 25 CV ' ( x1 , x2 ) = ( ( xi ) Cu ( x2 ) , 
layer and then the extracted features are downsampled by 
another convolutional layer to generate the features for the 
subsequent level . Thereafter , each level is downsampled by Where T is the transpose operator and N is the length of the 
a convolutional layer to generate the features for the level column vector ci ' ( x , ) . For a seven level ( L = 7 ) feature 
above until the top level is reached . If the convolutional 30 pyramid , a partial cost volume is computed with a limited 
layers were replaced by fixed Gaussian filters , a conven - range of d pixels , i . e . , ( x , - Xylosd . Note that a one - pixel 
tional image pyramid could be generated . FIG . 2B illustrates motion at the top level corresponds to 64 ( 20 ) pixels at the 
one embodiment of the pyramidal image feature structure full resolution first and second images . Thus , d can be set to 
generator 105 . a small value . 

In one embodiment , for processing by the neural network 35 To obtain the optical flow estimate w ' at the lth pyramid 
model 115 , the top level ( I = L ) , the initial optical flow level , the features of the first image , the partial cost volume , 
estimate is initialized to 0 and provided to the warping and the upsampled optical flow estimate are input the optical 
layer ( s ) 125 and optical flow estimator layer ( s ) 140 by the flow estimator layer ( s ) 140 . In one embodiment , the param 
upsampler 152 . Beginning at the top level of the feature eters used by the optical flow estimator layer ( s ) 140 for 
pyramids , the features of the second image at the current 40 processing different levels of the feature pyramids are not 
level are warped using the initial optical flow estimate . For shared , so separate parameters are used for each level . In one 
subsequent levels of the feature pyramids , the features of the embodiment , within the optical flow estimator layer ( s ) 140 , 
second image at the current level are warped using the the inputs to every convolutional layer are the output of and 
refined optical flow estimate , w ' computed by the optical the input to the previous layer . The optical flow is estimated 
flow system 150 for the higher pyramid level that is 45 for each level by the neural network model 115 until the 
upsampled by the upsampler 152 . bottom level is reached . In one embodiment , the optical flow 

In contrast , conventional techniques using image pyra estimator layer ( s ) 140 outputs quarter resolution optical flow 
mids use spatial and temporal differences of the two small and bilinear interpolation is used to obtain the full - resolution 
images at the top levels of the image pyramids to compute optical flow estimate . In one embodiment , the context net 
the initial optical flow . At the next pyramid level , the optical 50 work 145 is omitted and the upsampler 152 receives the 
flow is upsampled from the higher level , and used to warp optical flow estimate directly from the optical flow estimator 
the second image toward the first image . Spatial and tem - layer ( s ) 140 . 
poral differences are computed for the first image and the As context is crucial for optical flow estimation , in one 
warped second image and the differences and the upsampled embodiment , the context network 145 is employed at the 
optical flow are used to compute the new optical flow 55 desired pyramid level ( i . e . , the bottom level ) , to effectively 
estimate at the current level . However , the temporal differ - enlarge the receptive field size of each output unit . In one 
ence computed by the conventional optical flow techniques , embodiment , the context network 145 is a feed - forward 
only allow small , often subpixel , changes around the up CNN , that receives the estimated optical flow and features of 
sampled flow . the second to last layer ( f ” ) from the optical flow estimator 

Instead of computing the temporal difference between the 60 layer ( s ) 140 , and outputs the refined optical flow estimate . 
first image and the warped second image , the partial cost In one embodiment , the design of the context network 145 
volume computation layer ( s ) 135 computes the correlation is based on dilated convolutions and includes seven convo 
between features of the first image and features of the lutional layers . The spatial kernel for each convolutional 
warped second image . The partial cost volume represents the layer is 3x3 and the layers have different dilation constants . 
correlation , and , together with the upsampled optical flow 65 A convolutional layer with a dilation constant k means that 
estimate provided by the upsampler 152 and features of the an input unit to a filter in the layer are k - unit apart from the 
first image , the partial cost volume is input to the optical other input units to the filter in the layer , both in vertical and 
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horizontal directions . Convolutional layers with large dila - 140 is initialized to zero and the feature pyramid level 1 is set 
tion constants enlarge the receptive field of each output unit to the top level L . At step 110 , a first pyramidal set of 
without incurring a large computational burden . In one features is generated by the pyramidal image feature struc 
embodiment , from bottom to top , the dilation constants are ture generator 105 for a first image . At step 210 , a second 
1 , 2 , 4 , 8 , 16 , 1 , and 1 . 5 pyramidal set of features , for a second image , is generated 

During training of the optical flow system 150 , the neural by the pyramidal image feature structure generator 105 . The 
network parameters ( e . g . , weights ) for the neural network first and second pyramidal sets of features may be generated 
model 115 and the pyramidal image feature structure gen - in parallel or in series . 
erator 105 are learned , as well as the neural network At step 215 , the warping layer ( s ) 125 warps the Ith level 
parameters of the context network 145 . Compared with 10 of the second pyramidal set of features using the upsampled 
conventional techniques that use energy minimization in optical flow estimate ( or the initialized optical flow estimate 
place of the partial cost volume computation layer ( s ) 135 when l = L ) to generate the warped second image features . At 
and optical flow estimator layer ( s ) 140 , the warping , partial step 220 , the partial cost volume computation layer ( s ) 135 
cost volume , and layers of the optical flow estimator layer ( s ) generates the partial cost volume for the Ith level using the 
140 within the neural network model 115 are computation - 15 lth level of the first pyramidal set of features and the warped 
ally light . Further , the warping layer ( s ) 125 and partial cost second image features ( i . e . , warped features for the lth level 
volume computation layer ( s ) 135 have no learnable param of the second pyramidal set of features ) . At step 225 , the 
eters , significantly reducing the size of the neural network optical flow estimator layer ( s ) 140 produces an optical flow 
model 115 . estimate for the lth level using the partial cost volume for the 

Assume that is the set of all the learnable parameters in 20 lth level and the lth level of the first pyramidal set of 
the optical flow system 150 including the pyramidal image features . In one embodiment , the context network 145 is 
feature structure generator 105 and the optical flow estima omitted and the optical flow estimate produced by the 
tor layer ( s ) 140 at different pyramid levels . Let we ' denote optical flow estimator layer ( s ) 140 is used as the refined 
the optical flow field at the lth pyramid level predicted by the optical flow estimate . 
neural network model 115 , and wom the corresponding 25 At step 230 , the optical flow system 150 determines if the 
supervision signal . A multiscale training loss may be com - bottom level of the feature pyramid has been processed , and , 
puted : if so , the optical flow estimate is final . Otherwise , at step 

L ( O ) = 27 Elwo ' ( x ) - WG7 ' ( x ) ] 2 + y1 @ l2 ( 3 ) 235 , the upsampler 152 upsamples the optical flow estimate . 
At step 240 , the optical flow system 150 decrements the where we ' ( x ) - W Gt " ( x ) l2 computes the L2 norm of a vector 30 level 1 and returns to step 215 to repeat steps 215 through and the second term regularizes parameters of the pyramidal 225 for another level . image feature structure generator 105 and the optical flow FIG . 2B illustrates a block diagram 245 of a feature estimator layer ( s ) 140 . For fine - tuning , the following robust pyramid extraction neural network , in accordance with one training loss may be used : embodiment . In one embodiment , the pyramidal image L ( O ) = L = 1 + 0 % Ex ( lwe ' ( x ) - wot ( x ) l + C ) P + y1 @ 12 ( 4 ) 35 feature structure generator 105 is implemented as the block 

Where we ' ( x ) - Wor ' ( x ) " denotes the L1 norm , q < 1 gives diagram 245 . Although the block diagram 245 is described 
less penalty to outliers , and E is a small constant . in the context of processing units , the block diagram 245 

In one embodiment , the weights in the training loss may also be performed by a program , custom circuitry , or by 
computation of equation ( 3 ) are set to be 0 . = 0 . 32 , az = 0 . 08 , a combination of custom circuitry and a program . 
02 = 0 . 02 , az = 0 . 01 , and ag = 0 . 005 . These settings give higher 40 An image is input to a convolutional layer 201 that 
weights to loss terms at the second and third pyramid levels , downsamples the image . In one embodiment , a 3x3x3 
accounting for the number of pixels at each level . The convolutional filter is used to perform a 2x downsampling 
ground truth flow may be scaled by 20 and downsampled to on a 512x512 pixel image . The downsampled image is 
obtain the supervision signals at different levels . Note that , processed by a convolutional layer 202 . In one embodiment , 
in one embodiment , no further scaling of the supervision 45 the convolutional layer 202 performs a 16x3x3 convolution 
signal is performed at each level . As a result , the upsampled operation on the downsampled image to extract the features 
optical flow estimate is scaled at each pyramid level for c ? . In one embodiment , the image includes 3 channels ( e . g . , 
input to the warping layer ( s ) 125 . For example , at the second red , green , blue color channels ) and the features c includes 
level , the upsampled flow is scaled from the third level by 16 channels that are each 256x256 pixels . 
a factor of 5 ( = 20 / 4 ) before warping features of the second 50 The features c is input to a convolutional layer 203 that 
image . The trade - off weight y is set to be 0 . 0004 . For the downsamples the features c ' . In one embodiment , a 16x3x3 
partial cost volume computation , the search range d is set to convolutional filter is used to perform a 2x downsampling 
4 pixels at each level . on the features c ' . The downsampled features c are pro 

FIG . 2A illustrates a flowchart of a method 200 for cessed by a convolutional layer 204 . In one embodiment , the 
estimating optical flow , in accordance with one embodiment . 55 convolutional layer 204 performs a 32x3x3 convolution 
Although method 200 is described in the context of a operation on the downsampled features cl to extract the 
processing unit , the method 200 may also be performed by features c2 . In one embodiment , the features c2 includes 32 
a program , custom circuitry , or by a combination of custom channels that are each 128x128 pixels . 
circuitry and a program . For example , the method 200 may The features c ? is input to a convolutional layer 206 that 
be executed by a GPU ( graphics processing unit ) , CPU 60 downsamples the features c ? . In one embodiment , a 32x3x3 
( central processing unit ) , or any processor capable of imple - convolutional filter is used to perform a 2x downsampling 
menting a neural network model . Furthermore , persons of on the features c² . The downsampled features c? are pro 
ordinary skill in the art will understand that any system that cessed by a convolutional layer 207 . In one embodiment , the 
performs method 200 is within the scope and spirit of convolutional layer 207 performs a 64x3x3 convolution 
embodiments of the present invention . 65 operation on the downsampled features c2 to extract the 

At step 205 , the optical flow estimate provided to the features c° . In one embodiment , the features c3 includes 64 
warping layer ( s ) 125 and the optical flow estimator layer ( s ) channels that are each 64x64 pixels . 
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The features cº is input to a convolutional layer 208 that layer ( s ) 135 computes the partial cost volume at the second 
downsamples the features cº . In one embodiment , a 64x3x3 level , cv2 . In one embodiment , the partial cost volume at the 
convolutional filter is used to perform a 2x downsampling second level includes 81 channels of 128x128 pixels . 
on the features c * . The downsampled features care pro - The partial cost volume at the second level and the 
cessed by a convolutional layer 209 . In one embodiment , the 5 features of the first image at the second level are input to a 
convolutional layer 209 performs a 96x3x3 convolution sequence of convolutional layers including a convolutional 
operation on the downsampled features c3 to extract the layer 221 , a convolutional layer 222 , a convolutional layer 
features c4 . In one embodiment , the features c * includes 96 223 , a convolutional layer 224 , a convolutional layer 226 , 
channels that are each 32x32 pixels . and a convolutional layer 227 to produce an optical flow 

The features c + is input to a convolutional layer 211 that 10 estimate for the second layer , w2 . In one embodiment , the 
downsamples the features c4 . In one embodiment , a 64x3x3 convolutional layers 221 , 222 , 223 , 224 , 226 , and 227 are 
convolutional filter is used to perform a 2x downsampling configured to perform convolutional operations of 115x3x3 
on the features c4 . The downsampled features c4 are pro for 128 channels , 128x3x3 for 128 channels , 128x3x3 for 96 
cessed by a convolutional layer 212 . In one embodiment , the channels , 96x3x3 for 64 channels , 64x3x3 for 32 channels , 
convolutional layer 212 performs a 128x3x3 convolution 15 and 32x3x3 for 2 channels , respectively to produce the 
operation on the downsampled features c4 to extract the optical flow estimate for the second layer having 2 channels 
features c " . In one embodiment , the features includes 128 of 128x128 pixels . The output of the next to last convolution 
channels that are each 16x16 pixels . layer 226 , fº is provided as an input to the context network 

The features is input to a convolutional layer 213 that 145 . 
downsamples the features cº . In one embodiment , a 128x 20 FIG . 2D illustrates a block diagram 255 of a context 
3x3 convolutional filter is used to perform a 2x downsam - network , in accordance with one embodiment . In one 
pling on the features c " . The downsampled features care embodiment , the context network 145 comprises the block 
processed by a convolutional layer 214 . In one embodiment , diagram 255 . Although the block diagram 255 is described 
the convolutional layer 214 performs a 192x3x3 convolu - in the context of processing units , the block diagram 255 
tion operation on the downsampled features cº to extract the 25 may also be performed by a program , custom circuitry , or by 
features cº . In one embodiment , the features cº includes 192 a combination of custom circuitry and a program . 
channels that are each 8x8 pixels . In one embodiment , the context network 145 includes a 

FIG . 2C illustrates a block diagram 250 of a warping , sequence of convolutional layers including a convolutional 
partial cost volume , and flow estimator neural network , in layer 228 , a convolutional layer 229 , a convolutional layer 
accordance with one embodiment . In one embodiment , the 30 231 , a convolutional layer 232 , a convolutional layer 233 , a 
neural network model 115 comprises the block diagram 250 . convolutional layer 234 , and a convolutional layer 236 to 
Although the block diagram 250 is described in the context produce an incremental optical flow estimate for the second 
of processing units , the block diagram 250 may also be level , dw2 . The incremental optical flow estimate for the 
performed by a program , custom circuitry , or by a combi second level is summed with the optical flow estimate for the 
nation of custom circuitry and a program . 35 second level to produce a refined optical flow estimate for 

The processing units in the block diagram 250 apply the the second layer , W2 . In one embodiment , the spatial kernel 
same operation at each level of the feature pyramid , warping for each convolutional layer is 3x3 and the convolutional 
the features of the second image toward the features of the layers have different dilation constants . 
first image using the upsampled optical flow estimate from In one embodiment , the convolutional layers 228 , 229 , 
the lower level , computing the correlation between features 40 231 , 232 , 233 , 234 , and 236 are configured to perform 
of the first image and the warped features of the second convolutional operations of 34x3x3 , 128x3x3 , 128x3x3 , 
image , and then decoding the optical flow at the current level 128x3x3 , 96x3x3 , 64x3x3 , and 32x3x3 , respectively to 
using the correlation and the upsampled flow and features . produce the refined optical flow estimate for the second 

In one embodiment the block diagram 250 is configured layer having 2 channels of 128x128 pixels . 
to estimate the optical flow at level 1 = 2 of the feature 45 The optical flow system 150 uses the optical flow estimate 
pyramid . At other levels , the block diagram 250 has the same for the previously processed feature pyramid layer to warp 
structure except for the top level , which does not use the the features of the second image . The warped features and 
upsampled optical flow and instead directly computes the features of the first image are then used to construct the 
partial cost volume using features of the first and second partial cost volume , which is processed to estimate the 
images . 50 optical flow . The use of feature pyramid structures instead of 

The warping layer ( s ) 125 receives the features for the first image pyramid structures combined with computation of a 
image at the second level , c . 2 , the features for the second partial cost volume provides advantages of increased accu 
image at the second level , c . 2 , and the upsampled optical racy , reduce model size , and reduced execution time for the 
flow estimate from the third ( previous ) level , îws . The optical flow system 150 . While constructing the full cost 
warping layer ( s ) 125 generates the warped features for the 55 volume has been thought to be computationally prohibitive 
second image at the second level , c . 2 . In one embodiment , for real - time optical flow estimation , computation of the 
the features for the first and second images at the second partial cost volume limiting the search range to a small 
level include 32 channels that are each 128x128 pixels , the number of pixels at each feature pyramid level . The warping 
upsampled optical flow estimate from the third level layer ( s ) 125 links different levels of the feature pyramids and 
includes 2 channels of features that are 128x128 pixels , and 60 enables the estimation of large motion . 
the warped features for the second image at the second level 
includes 32 channels that are 128x128 pixels . Parallel Processing Architecture 

The partial cost volume computation layer ( s ) 135 receives 
the warped features for the second image at the second level , FIG . 3 illustrates a parallel processing unit ( PPU ) 300 , in 
Cw , the features for the first image at the second level , c , ? , 65 accordance with one embodiment . In one embodiment , the 
and the upsampled optical flow estimate from the third PPU 300 is a multi - threaded processor that is implemented 
( previous ) level , w . The partial cost volume computation on one or more integrated circuit devices . The PPU 300 is a 
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latency hiding architecture designed to process many threads The 1 / 0 unit 305 decodes packets received via the inter 
in parallel . A thread ( i . e . , a thread of execution ) is an connect 302 . In one embodiment , the packets represent 
instantiation of a set of instructions configured to be commands configured to cause the PPU 300 to perform 
executed by the PPU 300 . In one embodiment , the PPU 300 various operations . The I / O unit 305 transmits the decoded 
is a graphics processing unit ( GPU ) configured to implement 5 commands to various other units of the PPU 300 as the 
a graphics rendering pipeline for processing three - dimen commands may specify . For example , some commands may 
sional ( 3D ) graphics data in order to generate two - dimen be transmitted to the front end unit 315 . Other commands sional ( 2D ) image data for display on a display device such may be transmitted to the hub 330 or other units of the PPU as a liquid crystal display ( LCD ) device . In other embodi 300 such as one or more copy engines , a video encoder , a ments , the PPU 300 may be utilized for performing general - 10 video decoder , a power management unit , etc . ( not explicitly purpose computations . While one exemplary parallel pro shown ) . In other words , the I / O unit 305 is configured to cessor is provided herein for illustrative purposes , it should route communications between and among the various logi be strongly noted that such processor is set forth for illus 
trative purposes only , and that any processor may be cal units of the PPU 300 . 
employed to supplement and / or substitute for the same . 15 5 In one embodiment , a program executed by the host 

One or more Ppus 300 may be configured to accelerate processor encodes a command stream in a buffer that pro 
thousands of High Performance Computing ( HPC ) , data vides workloads to the PPU 300 for processing . A workload 
center , and machine learning applications . The PPU 300 may comprise several instructions and data to be processed 
may be configured to accelerate numerous deep learning by those instructions . The buffer is a region in a memory that 
systems and applications including autonomous vehicle 20 is accessible ( i . e . , read / write ) by both the host processor and 
platforms , deep learning , high - accuracy speech , image , and the PPU 300 . For example , the host interface unit 310 may 
text recognition systems , intelligent video analytics , be configured to access the buffer in a system memory 
molecular simulations , drug discovery , disease diagnosis , connected to the interconnect 302 via memory requests 
weather forecasting , big data analytics , astronomy , molecu transmitted over the interconnect 302 by the I / O unit 305 . In 
lar dynamics simulation , financial modeling , robotics , fac - 25 one embodiment , the host processor writes the command 
tory automation , real - time language translation , online stream to the buffer and then transmits a pointer to the start 
search optimizations , and personalized user recommenda of the command stream to the PPU 300 . The front end unit 
tions , and the like . 315 receives pointers to one or more command streams . The 
As shown in FIG . 3 , the PPU 300 includes an Input / front end unit 315 manages the one or more streams , reading 

Output ( 1 / 0 ) unit 305 , a front end unit 315 , a scheduler unit 30 commands from the streams and forwarding commands to 
320 , a work distribution unit 325 , a hub 330 , a crossbar the various units of the PPU 300 . 
( Xbar ) 370 , one or more general processing clusters ( GPCs ) The front end unit 315 is coupled to a scheduler unit 320 
350 , and one or more partition units 380 . The PPU 300 may that configures the various GPCs 350 to process tasks 
be connected to a host processor or other PPUS 300 via one defined by the one or more streams . The scheduler unit 320 
or more high - speed NVLink 310 interconnect . The PPU 300 35 is configured to track state information related to the various 
may be connected to a host processor or other peripheral tasks managed by the scheduler unit 320 . The state may 
devices via an interconnect 302 . The PPU 300 may also be indicate which GPC 350 a task is assigned to , whether the 
connected to a local memory comprising a number of task is active or inactive , a priority level associated with the 
memory devices 304 . In one embodiment , the local memory task , and so forth . The scheduler unit 320 manages the 
may comprise a number of dynamic random access memory 40 execution of a plurality of tasks on the one or more GPCs 
( DRAM ) devices . The DRAM devices may be configured as 350 . 
a high - bandwidth memory ( HBM ) subsystem , with multiple The scheduler unit 320 is coupled to a work distribution 
DRAM dies stacked within each device . unit 325 that is configured to dispatch tasks for execution on 

The NVLink 310 interconnect enables systems to scale the GPCs 350 . The work distribution unit 325 may track a 
and include one or more PPUS 300 combined with one or 45 number of scheduled tasks received from the scheduler unit 
more CPUs , supports cache coherence between the PPUS 320 . In one embodiment , the work distribution unit 325 
300 and CPUs , and CPU mastering . Data and / or commands manages a pending task pool and an active task pool for each 
may be transmitted by the NVLink 310 through the hub 330 of the GPCs 350 . The pending task pool may comprise a 
to / from other units of the PPU 300 such as one or more copy number of slots ( e . g . , 32 slots ) that contain tasks assigned to 
engines , a video encoder , a video decoder , a power man - 50 be processed by a particular GPC 350 . The active task pool 
agement unit , etc . ( not explicitly shown ) . The NVLink 310 may comprise a number of slots ( e . g . , 4 slots ) for tasks that 
is described in more detail in conjunction with FIG . 5B . are actively being processed by the GPCs 350 . As a GPC 350 

The I / O unit 305 is configured to transmit and receive finishes the execution of a task , that task is evicted from the 
communications ( i . e . , commands , data , etc . ) from a host active task pool for the GPC 350 and one of the other tasks 
processor ( not shown ) over the interconnect 302 . The I / O 55 from the pending task pool is selected and scheduled for 
unit 305 may communicate with the host processor directly execution on the GPC 350 . If an active task has been idle on 
via the interconnect 302 or through one or more intermediate the GPC 350 , such as while waiting for a data dependency 
devices such as a memory bridge . In one embodiment , the to be resolved , then the active task may be evicted from the 
I / O unit 305 may communicate with one or more other GPC 350 and returned to the pending task pool while 
processors , such as one or more the PPUS 300 via the 60 another task in the pending task pool is selected and sched 
interconnect 302 . In one embodiment , the I / O unit 305 uled for execution on the GPC 350 . 
implements a Peripheral Component Interconnect Express The work distribution unit 325 communicates with the 
( PCIe ) interface for communications over a PCIe bus and one or more GPCs 350 via XBar 370 . The XBar 370 is an 
the interconnect 302 is a PCIe bus . In alternative embodi - interconnect network that couples many of the units of the 
ments , the I / O unit 305 may implement other types of 65 PPU 300 to other units of the PPU 300 . For example , the 
well - known interfaces for communicating with external XBar 370 may be configured to couple the work distribution 
devices . unit 325 to a particular GPC 350 . Although not shown 
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explicitly , one or more other units of the PPU 300 may also The PROP unit 415 is configured to route data generated 
be connected to the XBar 370 via the hub 330 . by the raster engine 425 and the DPCs 420 to a Raster 

The tasks are managed by the scheduler unit 320 and Operations ( ROP ) unit in the partition unit 380 , described in 
dispatched to a GPC 350 by the work distribution unit 325 . more detail in conjunction with FIG . 4B . The PROP unit 415 
The GPC 350 is configured to process the task and generate 5 may also be configured to perform optimizations for color 
results . The results may be consumed by other tasks within blending , organize pixel data , perform address translations , 
the GPC 350 , routed to a different GPC 350 via the XBar and the like . 
370 , or stored in the memory 304 . The results can be written The raster engine 425 includes a number of fixed function to the memory 304 via the partition units 380 , which hardware units configured to perform various raster opera implement a memory interface for reading and writing data 10 tions . In one embodiment , the raster engine 425 includes a to / from the memory 304 . The results can be transmitted to 
another PPU 304 or CPU via the NVLink 310 . In one setup engine , a coarse raster engine , a culling engine , a 

embodiment , the PPU 300 includes a number U of partition clipping engine , a fine raster engine , and a tile coalescing 
units 380 that is equal to the number of separate and distinct engine . The setup engine receives transformed vertices and 
memory devices 304 coupled to the PPU 300 . A partition 15 generates plane equations associated with the geometric 
unit 380 will be described in more detail below in conjunc primitive defined by the vertices . The plane equations are 
tion with FIG . 4B . transmitted to the coarse raster engine to generate coverage 

In one embodiment , a host processor executes a driver information ( e . g . , an x , y coverage mask for a tile ) for the 
kernel that implements an application programming inter - primitive . The output of the coarse raster engine is trans 
face ( API ) that enables one or more applications executing 20 mitted to the culling engine where fragments associated with 
on the host processor to schedule operations for execution the primitive that fail a z - test are culled , and transmitted to 
on the PPU 300 . In one embodiment , multiple computea clipping engine where fragments lying outside a viewing 
applications are simultaneously executed by the PPU 300 frustum are clipped . Those fragments that survive clipping 
and the PPU 300 provides isolation , quality of service and culling may be passed to the fine raster engine to 
( QoS ) , and independent address spaces for the multiple 25 generate attributes for the pixel fragments based on the plane 
compute applications . An application may generate instruc - equations generated by the setup engine . The output of the 
tions ( i . e . , API calls ) that cause the driver kernel to generate raster engine 425 comprises fragments to be processed , for 
one or more tasks for execution by the PPU 300 . The driver example , by a fragment shader implemented within a DPC 
kernel outputs tasks to one or more streams being processed 420 . 
by the PPU 300 . Each task may comprise one or more 30 Each DPC 420 included in the GPC 350 includes an 
groups of related threads , referred to herein as a warp . In one M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , and 
embodiment , a warp comprises 32 related threads that may one or more SMS 440 . The MPC 430 controls the operation 
be executed in parallel . Cooperating threads may refer to a of the DPC 420 , routing packets received from the pipeline 
plurality of threads including instructions to perform the task manager 410 to the appropriate units in the DPC 420 . For 
and that may exchange data through shared memory . 35 example , packets associated with a vertex may be routed to 
Threads and cooperating threads are described in more detail the primitive engine 435 , which is configured to fetch vertex 
in conjunction with FIG . 5A . attributes associated with the vertex from the memory 304 . 

FIG . 4A illustrates a GPC 350 of the PPU 300 of FIG . 3 , In contrast , packets associated with a shader program may 
in accordance with one embodiment . As shown in FIG . 4A , be transmitted to the SM 440 . 
each GPC 350 includes a number of hardware units for 40 The SM 440 comprises a programmable streaming pro 
processing tasks . In one embodiment , each GPC 350 cessor that is configured to process tasks represented by a 
includes a pipeline manager 410 , a pre - raster operations unit number of threads . Each SM 440 is multi - threaded and 
( PROP ) 415 , a raster engine 425 , a work distribution cross - configured to execute a plurality of threads ( e . g . , 32 threads ) 
bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , from a particular group of threads concurrently . In one 
and one or more Data Processing Clusters ( DPCs ) 420 . It 45 embodiment , the SM 440 implements a SIMD ( Single 
will be appreciated that the GPC 350 of FIG . 4A may include Instruction , Multiple - Data ) architecture where each thread 
other hardware units in lieu of or in addition to the units in a group of threads ( i . e . , a warp ) is configured to process 
shown in FIG . 4A . a different set of data based on the same set of instructions . 

In one embodiment , the operation of the GPC 350 is All threads in the group of threads execute the same instruc 
controlled by the pipeline manager 410 . The pipeline man - 50 tions . In another embodiment , the SM 440 implements a 
ager 410 manages the configuration of the one or more DPCs SIMT ( Single - Instruction , Multiple Thread ) architecture 
420 for processing tasks allocated to the GPC 350 . In one where each thread in a group of threads is configured to 
embodiment , the pipeline manager 410 may configure at process a different set of data based on the same set of 
least one of the one or more DPCs 420 to implement at least instructions , but where individual threads in the group of 
a portion of a graphics rendering pipeline . For example , a 55 threads are allowed to diverge during execution . In one 
DPC 420 may be configured to execute a vertex shader embodiment , a program counter , call stack , and execution 
program on the programmable streaming multiprocessor state is maintained for each warp , enabling concurrency 
( SM ) 440 . The pipeline manager 410 may also be configured between warps and serial execution within warps when 
to route packets received from the work distribution unit 325 threads within the warp diverge . In another embodiment , a 
to the appropriate logical units within the GPC 350 . For 60 program counter , call stack , and execution state is main 
example , some packets may be routed to fixed function tained for each individual thread , enabling equal concur 
hardware units in the PROP 415 and / or raster engine 425 rency between all threads , within and between warps . When 
while other packets may be routed to the DPCs 420 for execution state is maintained for each individual thread , 
processing by the primitive engine 435 or the SM 440 . In threads executing the same instructions may be converged 
one embodiment , the pipeline manager 410 may configure at 65 and executed in parallel for maximum efficiency . The SM 
least one of the one or more DPCs 420 to implement a neural 440 will be described in more detail below in conjunction 
network model and / or a computing pipeline . with FIG . 5A . 
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The MMU 490 provides an interface between the GPC Data from the memory 304 or other system memory may 

350 and the partition unit 380 . The MMU 490 may provide be fetched by the memory partition unit 380 and stored in the 
translation of virtual addresses into physical addresses , L2 cache 460 , which is located on - chip and is shared 
memory protection , and arbitration of memory requests . In between the various GPCs 350 . As shown , each memory 
one embodiment , the MMU 490 provides one or more 5 partition unit 380 includes a portion of the L2 cache 460 
translation lookaside buffers ( TLBs ) for performing trans associated with a corresponding memory device 304 . Lower 

lation of virtual addresses into physical addresses in the level caches may then be implemented in various units 
memory 304 . within the GPCs 350 . For example , each of the SMS 440 

FIG . 4B illustrates a memory partition unit 380 of the may implement a level one ( L1 ) cache . The L1 cache is 
PPU 300 of FIG . 3 , in accordance with one embodiment . As 10 10 private memory that is dedicated to a particular SM 440 . 

Data from the L2 cache 460 may be fetched and stored in shown in FIG . 4B , the memory partition unit 380 includes a each of the Ll caches for processing in the functional units Raster Operations ( ROP ) unit 450 , a level two ( L2 ) cache of the SMs 440 . The L2 cache 460 is coupled to the memory 460 , and a memory interface 470 . The memory interface 470 interface 470 and the XBar 370 . 
is coupled to the memory 304 . Memory interface 470 may 15 The ROP unit 450 performs graphics raster operations 
implement 32 , 64 , 128 , 1024 - bit data buses , or the like , for related to pixel color , such as color compression , pixel 
high - speed data transfer . In one embodiment , the PPU 300 blending , and the like . The ROP unit 450 also implements 
incorporates U memory interfaces 470 , one memory inter depth testing in conjunction with the raster engine 425 , 
face 470 per pair of partition units 380 , where each pair of receiving a depth for a sample location associated with a 
partition units 380 is connected to a corresponding memory 20 pixel fragment from the culling engine of the raster engine 
device 304 . For example , PPU 300 may be connected to up 425 . The depth is tested against a corresponding depth in a 
to Y memory devices 304 , such as high bandwidth memory depth buffer for a sample location associated with the 
stacks or graphics double - data - rate , version 5 , synchronous fragment . If the fragment passes the depth test for the sample 
dynamic random access memory ( GDDR5 SDRAM ) . location , then the ROP unit 450 updates the depth buffer and 

In one embodiment , the memory interface 470 imple - 25 transmits a result of the depth test to the raster engine 425 . 
ments an HBM2 memory interface and Y equals half U . In It will be appreciated that the number of partition units 380 
one embodiment , the HBM2 memory stacks are located on may be different than the number of GPCs 350 and , there 
the same physical package as the PPU 300 , providing fore , each ROP unit 450 may be coupled to each of the GPCs 
substantial power and area savings compared with conven - 350 . The ROP unit 450 tracks packets received from the 
tional GDDR5 SDRAM systems . In one embodiment , each 30 different GPCs 350 and determines which GPC 350 that a 
HBM2 stack includes four memory dies and Y equals 4 , with result generated by the ROP unit 450 is routed to through the 
HBM2 stack including two 128 - bit channels per die for a Xbar 370 . 
total of 8 channels and a data bus width of 1024 bits . FIG . 5A illustrates the streaming multi - processor 440 of 

In one embodiment , the memory 304 supports Single - FIG . 4A , in accordance with one embodiment . As shown in 
Error Correcting Double - Error Detecting ( SECDED ) Error 35 FIG . 5A , the SM 440 includes an instruction cache 505 , one 
Correction Code ( ECC ) to protect data . ECC provides or more scheduler units 510 , a register file 520 , one or more 
higher reliability for compute applications that are sensitive processing cores 550 , one or more special function units 
to data corruption . Reliability is especially important in ( SFUS ) 552 , one or more load / store units ( LSUS ) 554 , an 
large - scale cluster computing environments where PPUS interconnect network 580 , a shared memory / L1 cache 570 . 
300 process very large datasets and / or run applications for 40 As described above , the work distribution unit 325 dis 
extended periods . patches tasks for execution on the GPCs 350 of the PPU 300 . 

In one embodiment , the PPU 300 implements a multi The tasks are allocated to a particular DPC 420 within a 
level memory hierarchy . In one embodiment , the memory GPC 350 and , if the task is associated with a shader 
partition unit 380 supports a unified memory to provide a program , the task may be allocated to an SM 440 . The 
single unified virtual address space for CPU and PPU 300 45 scheduler unit 510 receives the tasks from the work distri 
memory , enabling data sharing between virtual memory bution unit 325 and manages instruction scheduling for one 
systems . In one embodiment the frequency of accesses by a or more thread blocks assigned to the SM 440 . The scheduler 
PPU 300 to memory located on other processors is traced to unit 510 schedules thread blocks for execution as warps of 
ensure that memory pages are moved to the physical parallel threads , where each thread block is allocated at least 
memory of the PPU 300 that is accessing the pages more 50 one warp . In one embodiment , each warp executes 32 
frequently . In one embodiment , the NVLink 310 supports threads . The scheduler unit 510 may manage a plurality of 
address translation services allowing the PPU 300 to directly different thread blocks , allocating the warps to the different 
access a CPU ' s page tables and providing full access to CPU thread blocks and then dispatching instructions from the 
memory by the PPU 300 . plurality of different cooperative groups to the various 

In one embodiment , copy engines transfer data between 55 functional units ( i . e . , cores 550 , SFUS 552 , and LSUS 554 ) 
multiple PPUs 300 or between PPUs 300 and CPUs . The during each clock cycle . 
copy engines can generate page faults for addresses that are Cooperative Groups is a programming model for orga 
not mapped into the page tables . The memory partition unit nizing groups of communicating threads that allows devel 
380 can then service the page faults , mapping the addresses opers to express the granularity at which threads are com 
into the page table , after which the copy engine can perform 60 municating , enabling the expression of richer , more efficient 
the transfer . In a conventional system , memory is pinned parallel decompositions . Cooperative launch APIs support 
( i . e . , non - pageable ) for multiple copy engine operations synchronization amongst thread blocks for the execution of 
between multiple processors , substantially reducing the parallel algorithms . Conventional programming models pro 
available memory . With hardware page faulting , addresses vide a single , simple construct for synchronizing cooperat 
can be passed to the copy engines without worrying if the 65 ing threads : a barrier across all threads of a thread block ( i . e . , 
memory pages are resident , and the copy process is trans - the syncthreads ( function ) . However , programmers would 
parent . often like to define groups of threads at smaller than thread 
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block granularities and synchronize within the defined efficiently use Tensor Cores from a CUDA - C + + program . At 
groups to enable greater performance , design flexibility , and the CUDA level , the warp - level interface assumes 16x16 
software reuse in the form of collective group - wide function size matrices spanning all 32 threads of the warp . 
interfaces . Each SM 440 also comprises M SFUs 552 that perform 

Cooperative Groups enables programmers to define 5 special functions ( e . g . , attribute evaluation , reciprocal 
groups of threads explicitly at sub - block ( i . e . , as small as a square root , and the like ) . In one embodiment , the SFUs 552 single thread ) and multi - block granularities , and to perform may include a tree traversal unit configured to traverse a collective operations such as synchronization on the threads hierarchical tree data structure . In one embodiment , the in a cooperative group . The programming model supports SFUS 552 may include texture unit configured to perform clean composition across software boundaries , so that librar - 10 texture map filtering operations . In one embodiment , the ies and utility functions can synchronize safely within their texture units are configured to load texture maps ( e . g . , a 2D local context without having to make assumptions about 
convergence . Cooperative Groups primitives enable new array of texels ) from the memory 304 and sample the texture 
patterns of cooperative parallelism , including producer - con maps to produce sampled texture values for use in shader 
sumer parallelism . opportunistic parallelism and global 15 programs executed by the SM 440 . In one embodiment , the 
synchronization across an entire grid of thread blocks . texture maps are stored in the shared memory / L1 cache 470 . 

A dispatch unit 515 is configured to transmit instructions The texture units implement texture operations such as 
to one or more of the functional units . In the embodiment , filtering operations using mip - maps ( i . e . , texture maps of 
the scheduler unit 510 includes two dispatch units 515 that varying levels of detail ) . In one embodiment , each SM 340 
enable two different instructions from the same warp to be 20 includes two texture units . 
dispatched during each clock cycle . In alternative embodi Each SM 440 also comprises N LSUS 554 that implement 
ments , each scheduler unit 510 may include a single dispatch load and store operations between the shared memory / L1 
unit 515 or additional dispatch units 515 . cache 570 and the register file 520 . Each SM 440 includes 

Each SM 440 includes a register file 520 that provides a an interconnect network 580 that connects each of the 
set of registers for the functional units of the SM 440 . In one 25 functional units to the register file 520 and the LSU 554 to 
embodiment , the register file 520 is divided between each of the register file 520 , shared memory / L1 cache 570 . In one 
the functional units such that each functional unit is allo - embodiment , the interconnect network 580 is a crossbar that 
cated a dedicated portion of the register file 520 . In another can be configured to connect any of the functional units to 
embodiment , the register file 520 is divided between the any of the registers in the register file 520 and connect the 
different warps being executed by the SM 440 . The register 30 LSUs 554 to the register file and memory locations in shared 
file 520 provides temporary storage for operands connected memory / L1 cache 570 . 
to the data paths of the functional units . The shared memory / L1 cache 570 is an array of on - chip 

Each SM 440 comprises L processing cores 550 . In one memory that allows for data storage and communication 
embodiment , the SM 440 includes a large number ( e . g . , 128 , between the SM 440 and the primitive engine 435 and 
etc . ) of distinct processing cores 550 . Each core 550 may 35 between threads in the SM 440 . In one embodiment , the 
include a fully - pipelined , single - precision , double - precision , shared memory / L1 cache 570 comprises 128 KB of storage 
and / or mixed precision processing unit that includes a capacity and is in the path from the SM 440 to the partition 
floating point arithmetic logic unit and an integer arithmetic unit 380 . The shared memory / L1 cache 570 can be used to 
logic unit . In one embodiment , the floating point arithmetic cache reads and writes . One or more of the shared memory / 
logic units implement the IEEE 754 - 2008 standard for 40 L1 cache 570 , L2 cache 460 , and memory 304 are backing 
floating point arithmetic . In one embodiment , the cores 550 stores . 
include 64 single - precision ( 32 - bit ) floating point cores , 64 Combining data cache and shared memory functionality 
integer cores , 32 double - precision ( 64 - bit ) floating point into a single memory block provides the best overall per 
cores , and 8 tensor cores . formance for both types of memory accesses . The capacity 

Tensor cores configured to perform matrix operations , 45 is usable as a cache by programs that do not use shared 
and , in one embodiment , one or more tensor cores are memory . For example , if shared memory is configured to use 
included in the cores 550 . In particular , the tensor cores are half of the capacity , texture and load / store operations can use 
configured to perform deep learning matrix arithmetic , such the remaining capacity . Integration within the shared 
as convolution operations for neural network training and memory / L1 cache 570 enables the shared memory / L1 cache 
inferencing . In one embodiment , each tensor core operates 50 570 to function as a high - throughput conduit for streaming 
on a 4x4 matrix and performs a matrix multiply and accu - data while simultaneously providing high - bandwidth and 
mulate operation D = AXB + C , where A , B , C , and D are 4x4 low - latency access to frequently reused data . 
matrices . When configured for general purpose parallel computa 

In one embodiment , the matrix multiply inputs A and B tion , a simpler configuration can be used compared with 
are 16 - bit floating point matrices , while the accumulation 55 graphics processing . Specifically , the fixed function graphics 
matrices C and D may be 16 - bit floating point or 32 - bit processing units shown in FIG . 3 , are bypassed , creating a 
floating point matrices . Tensor Cores operate on 16 - bit much simpler programming model . In the general purpose 
floating point input data with 32 - bit floating point accumu parallel computation configuration , the work distribution 
lation . The 16 - bit floating point multiply requires 64 opera - unit 325 assigns and distributes blocks of threads directly to 
tions and results in a full precision product that is then 60 the DPCs 420 . The threads in a block execute the same 
accumulated using 32 - bit floating point addition with the program , using a unique thread ID in the calculation to 
other intermediate products for a 4x4x4 matrix multiply . In ensure each thread generates unique results , using the SM 
practice , Tensor Cores are used to perform much larger 440 to execute the program and perform calculations , shared 
two - dimensional or higher dimensional matrix operations , memory / L1 cache 570 to communicate between threads , and 
built up from these smaller elements . An API , such as 65 the LSU 554 to read and write global memory through the 
CUDA 9 C + + API , exposes specialized matrix load , matrix shared memory / L1 cache 570 and the memory partition unit 
multiply and accumulate , and matrix store operations to 380 . When configured for general purpose parallel compu 
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tation , the SM 440 can also write commands that the through which a DNN extracts useful information from a 
scheduler unit 320 can use to launch new work on the DPCs given input ) include identifying handwritten numbers on 
420 . checks deposited into ATM machines , identifying images of 

The PPU 300 may be included in a desktop computer , a friends in photos , delivering movie recommendations to 
laptop computer , a tablet computer , servers , supercomputers , 5 over fifty million users , identifying and classifying different 
a smart - phone ( e . g . , a wireless , hand - held device ) , personal types of automobiles , pedestrians , and road hazards in 
digital assistant ( PDA ) , a digital camera , a vehicle , a head driverless cars , or translating human speech in real - time . 
mounted display , a hand - held electronic device , and the like . During training , data flows through the DNN in a forward 
In one embodiment , the PPU 300 is embodied on a single propagation phase until a prediction is produced that indi 
semiconductor substrate . In another embodiment , the PPU 10 cates a label corresponding to the input . If the neural 
300 is included in a system - on - a - chip ( SoC ) along with one network does not correctly label the input , then errors 
or more other devices such as additional PPUS 300 , the between the correct label and the predicted label are ana 
memory 204 , a reduced instruction set computer ( RISC ) lyzed , and the weights are adjusted for each feature during 
CPU , a memory management unit ( MMU ) , a digital - to - a backward propagation phase until the DNN correctly 
analog converter ( DAC ) , and the like . 15 labels the input and other inputs in a training dataset . 

In one embodiment , the PPU 300 may be included on a Training complex neural networks requires massive 
graphics card that includes one or more memory devices amounts of parallel computing performance , including float 
304 . The graphics card may be configured to interface with i ng - point multiplications and additions that are supported by 
a PCIe slot on a motherboard of a desktop computer . In yet the PPU 300 . Inferencing is less compute - intensive than 
another embodiment , the PPU 300 may be an integrated 20 training , being a latency - sensitive process where a trained 
graphics processing unit ( iGPU ) or parallel processor neural network is applied to new inputs it has not seen before 
included in the chipset of the motherboard . to classify images , translate speech , and generally infer new 

information . 
Machine Learning Neural networks rely heavily on matrix math operations , 

25 and complex multi - layered networks require tremendous 
Deep neural networks ( DNNs ) developed on processors , amounts of floating - point performance and bandwidth for 

such as the PPU 300 have been used for diverse use cases , both efficiency and speed . With thousands of processing 
from self - driving cars to faster drug development , from cores , optimized for matrix math operations , and delivering 
automatic image captioning in online image databases to tens to hundreds of TFLOPS of performance , the PPU 300 
smart real - time language translation in video chat applica - 30 is a computing platform capable of delivering performance 
tions . In one embodiment , the PPU 300 may be configured required for deep neural network - based artificial intelligence 
to implement the optical flow system 150 . Deep learning is and machine learning applications . 
a technique that models the neural learning process of the 
human brain , continually learning , continually getting Exemplary Computing System 
smarter , and delivering more accurate results more quickly 35 
over time . A child is initially taught by an adult to correctly Systems with multiple GPUs and CPUs are used in a 
identify and classify various shapes , eventually being able to variety of industries as developers expose and leverage more 
identify shapes without any coaching . Similarly , a deep parallelism in applications such as artificial intelligence 
learning or neural learning system needs to be trained in computing . High - performance GPU - accelerated systems 
object recognition and classification for it get smarter and 40 with tens to many thousands of compute nodes are deployed 
more efficient at identifying basic objects , occluded objects , in data centers , research facilities , and supercomputers to 
etc . , while also assigning context to objects . solve ever larger problems . As the number of processing 

At the simplest level , neurons in the human brain look at devices within the high - performance systems increases , the 
various inputs that are received , importance levels are communication and data transfer mechanisms need to scale 
assigned to each of these inputs , and output is passed on to 45 to support the increased bandwidth . 
other neurons to act upon . An artificial neuron or perceptron FIG . 5B is a conceptual diagram of a processing system 
is the most basic model of a neural network . In one example , 500 implemented using the PPU 300 of FIG . 3 , in accor 
a perceptron may receive one or more inputs that represent dance with one embodiment . The exemplary system 565 
various features of an object that the perceptron is being may be configured to implement the method 100 shown in 
trained to recognize and classify , and each of these features 50 FIG . 1A and / or the method shown in FIG . 2A . The process 
is assigned a certain weight based on the importance of that ing system 500 includes a CPU 530 , switch 510 , and 
feature in defining the shape of an object . multiple PPUs 300 each and respective memories 304 . The 

A deep neural network ( DNN ) model includes multiple NVLink 310 provides high - speed communication links 
layers of many connected perceptrons ( e . g . , nodes ) that can between each of the PPUS 300 . The switch 510 interfaces 
be trained with enormous amounts of input data to quickly 55 between the interconnect 302 and the CPU 530 . The PPUS 
solve complex problems with high accuracy . In one 300 , memories 304 , and NVLinks 310 may be situated on a 
example , a first layer of the DLL model breaks down an single semiconductor platform to form a parallel processing 
input image of an automobile into various sections and looks module 525 . 
for basic patterns such as lines and angles . The second layer In the context of the present description , a single semi 
assembles the lines to look for higher level patterns such as 60 conductor platform may refer to a sole unitary semiconduc 
wheels , windshields , and mirrors . The next layer identifies tor - based integrated circuit fabricated on a die or chip . It 
the type of vehicle , and the final few layers generate a label should be noted that the term single semiconductor platform 
for the input image , identifying the model of a specific may also refer to multi - chip modules with increased con 
automobile brand . nectivity which simulate on - chip operation and make sub 
Once the DNN is trained , the DNN can be deployed and 65 stantial improvements over utilizing a conventional bus 

used to identify and classify objects or patterns in a process implementation . Of course , the various circuits or devices 
known as inference . Examples of inference ( the process may also be situated separately or in various combinations 
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of semiconductor platforms per the desires of the user removable storage drive reads from and / or writes to a 
Alternately , the parallel processing module 525 may be removable storage unit in a well - known manner . 
implemented as a circuit board substrate and each of the Computer programs , or computer control logic algo 
PPUs 300 and / or memories 304 may be packaged devices . rithms , may be stored in the main memory 540 and / or the 
In one embodiment , the CPU 530 , switch 510 , and the 5 secondary storage . Such computer programs , when 
parallel processing module 525 are situated on a single executed , enable the system 565 to perform various func 
semiconductor platform . tions . The memory 540 , the storage , and / or any other storage 

In one embodiment , the signaling rate of each NVLink are possible examples of computer - readable media . 
310 is 20 to 25 Gigabits / second and each PPU 300 includes The architecture and / or functionality of the various pre 
six NVLink 310 interfaces ( as shown in FIG . 5B , five 10 vious figures may be implemented in the context of a general 
NVLink 310 interfaces are included for each PPU 300 ) . computer system , a circuit board system , a game console 
Each NVLink 310 provides a data transfer rate of 25 system dedicated for entertainment purposes , an application 
Gigabytes / second in each direction , with six links providing specific system , and / or any other desired system . For 
300 Gigabytes / second . The NVLinks 310 can be used exclu - example , the system 565 may take the form of a desktop 
sively for PPU - to - PPU communication as shown in FIG . 5B , 15 computer , a laptop computer , a tablet computer , servers , 
or some combination of PPU - to - PPU and PPU - to - CPU , supercomputers , a smart - phone ( e . g . , a wireless , hand - held 
when the CPU 530 also includes one or more NVLink 310 device ) , personal digital assistant ( PDA ) , a digital camera , a 
interfaces . vehicle , a head mounted display , a hand - held electronic 

In one embodiment , the NVLink 310 allows direct load / device , a mobile phone device , a television , workstation , 
store / atomic access from the CPU 530 to each PPU ' s 300 20 game consoles , embedded system , and / or any other type of 
memory 304 . In one embodiment , the NVLink 310 supports logic . 
coherency operations , allowing data read from the memories While various embodiments have been described above , 
304 to be stored in the cache hierarchy of the CPU 530 , it should be understood that they have been presented by 
reducing cache access latency for the CPU 530 . In one way of example only , and not limitation . Thus , the breadth 
embodiment , the NVLink 310 includes support for Address 25 and scope of a preferred embodiment should not be limited 
Translation Services ( ATS ) , allowing the PPU 300 to by any of the above - described exemplary embodiments , but 
directly access page tables within the CPU 530 . One or more should be defined only in accordance with the following 

NVLinks 310 may also be configured to operate in a claims and their equivalents . 
low - power mode . What is claimed is : 

FIG . 5C illustrates an exemplary system 565 in which the 30 1 . A computer - implemented method , comprising : 
various architecture and / or functionality of the various pre - generating a first pyramidal set of features for a first 
vious embodiments may be implemented . The exemplary image ; 
system 565 may be configured to implement the method 100 computing , by a neural network , a partial cost volume for 
shown in FIG . 1A and / or the method 200 shown in FIG . 2A . a level of the first pyramidal set of features using 
As shown , a system 565 is provided including at least one 35 features at the level of the first pyramidal set of features 

central processing unit 530 that is connected to a commu and warped features extracted from a second image , 
nication bus 575 . The communication bus 575 may be wherein the partial cost volume is computed across a 
implemented using any suitable protocol , such as PCI ( Pe limited range of pixels that is less than a full resolution 
ripheral Component Interconnect ) , PCI - Express , AGP ( AC of the first image , in pixels , at the level ; and 
celerated Graphics Port ) , HyperTransport , or any other bus 40 processing , by the neural network , the features and the 
or point - to - point communication protocol ( s ) . The system partial cost volume to produce an optical flow estimate 
565 also includes a main memory 540 . Control logic ( soft for the first image and the second image . 
ware ) and data are stored in the main memory 540 which 2 . The computer - implemented method of claim 1 , 
may take the form of random access memory ( RAM ) . wherein the features extracted from the second image are 

The system 565 also includes input devices 560 , the 45 included in a second pyramidal set of features extracted 
parallel processing system 525 , and display devices 545 , i . e . from the second image . 
a conventional CRT ( cathode ray tube ) , LCD ( liquid crystal 3 . The computer - implemented method of claim 2 , 
display ) , LED ( light emitting diode ) , plasma display or the wherein the features extracted from the second image for the 
like . User input may be received from the input devices 560 , level of the second pyramidal set of images are warped 
e . g . , keyboard , mouse , touchpad , microphone , and the like . 50 toward the features extracted from the first image using an 
Each of the foregoing modules and / or devices may even be optical flow estimate for a second level of the first pyramidal 
situated on a single semiconductor platform to form the set of images to produce the warped features . 
system 565 . Alternately , the various modules may also be 4 . The computer - implemented method of claim 1 , further 
situated separately or in various combinations of semicon - comprising : 
ductor platforms per the desires of the user . convolving the first image with overlapping filters to 

Further , the system 565 may be coupled to a network extract the features for a first level of the first pyramidal 
( e . g . , a telecommunications network , local area network set of features ; 
( LAN ) , wireless network , wide area network ( WAN ) such as convolving the first level with additional filters to extract 
the Internet , peer - to - peer network , cable network , or the the features for a subsequent level of the first pyramidal 
like ) through a network interface 535 for communication 60 set of features ; and 
purposes . the convolving the subsequent level with additional filters 

The system 565 may also include a secondary storage ( not to extract the features for another subsequent level of 
shown ) . The secondary storage 610 includes , for example , a the first pyramidal set of features until a last level of the 
hard disk drive and / or a removable storage drive , represent first pyramidal set of features is generated . 
ing a floppy disk drive , a magnetic tape drive , a compact 65 5 . The computer - implemented method of claim 1 , 
disk drive , digital versatile disk ( DVD ) drive , recording wherein a single layer of the neural network generates the 
device , universal serial bus ( USB ) flash memory . The warped features . 

55 
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6 . The computer - implemented method of claim 1 , 15 . The system of claim 14 , wherein the pyramidal image 
wherein the neural network is a convolutional neural net - feature structure generator is further configured to generate 
work . a second pyramidal set of features for the second image that 7 . The computer - implemented method of claim 1 , includes the features extracted from the second image . 
wherein a single layer of the neural network computes the 5 16 . The system of claim 15 . further comprising a warping 
partial cost function . 

8 . The computer - implemented method of claim 1 , layer that is configured to warp the features extracted from 
wherein the optical flow estimate is computed based on a the second image for the level of the second pyramidal set 
previous optical flow estimate produced using a previous of images toward the features extracted from the first image 
level of the first pyramidal set of features . using an optical flow estimate for a second level of the first 

9 . The computer - implemented method of claim 8 , further pyramidal set of images to produce the warped features . 
comprising upscaling the previous optical flow estimate 17 . The system of claim 14 , wherein the pyramidal image 
before computing the optical flow estimate . feature structure generator generates the first pyramidal set 

10 . The computer - implemented method of claim 9 , of features for a first image by : 
wherein an initial optical flow estimate of zero is used to convolving the first image with overlapping filters to compute the previous optical flow estimate . extract the features for a first level of the first pyramidal 11 . The computer - implemented method of claim 8 , further 

set of features ; comprising repeating the computing and processing for each 
level in the first pyramidal set of features . convolving the first level with additional filters to extract 

12 . The computer - implemented method of claim 1 , the features for a subsequent level of the first pyramidal 
wherein the second image is after the first image in a video 20 set of features , and 

the convolving the subsequent level with additional filters sequence . 
13 . The computer - implemented method of claim 1 , fur to extract the features for another subsequent level of 

ther comprising processing the optical flow estimate by a the first pyramidal set of features until a last level of the 
context network to produce a refined optical flow estimate . first pyramidal set of features is generated . 

14 . A system , comprising : · 25 18 . The system of claim 14 , wherein a single layer of the 
a parallel processing unit configured to implement a neural network generates the warped features . 

19 . The system of claim 14 , wherein the neural network neural network and a pyramidal image feature structure is a convolutional neural network . generator , wherein 
the pyramidal image feature structure generator is 20 . A non - transitory computer - readable media storing 

configured to generate a first pyramidal set of fea - 30 con 30 computer instructions for estimating optical flow that , when 
tures for a first image and executed by a processor , cause the processor to perform the 

the neural network is configured to generate an optical 
flow estimate for the first image and a second image generating a first pyramidal set of features for a first 
by : image ; 

computing a partial cost volume for a level of the 35 computing , by a neural network , a partial cost volume for 
first pyramidal set of features using features at the a level of the first pyramidal set of features using 
level of the first pyramidal set of features and features at the level of the first pyramidal set of features 

and warped features extracted from a second image , warped features extracted from the second image , 
wherein the partial cost volume is computed wherein the partial cost volume is computed across a 
across a limited range of pixels that is less than a 40 limited range of pixels that is less than a full resolution 
full resolution of the first image , in pixels , at the of the first image , in pixels , at the level ; and 

level ; and processing , by the neural network , the features and the 
processing the features and the partial cost volume to partial cost volume to produce an optical flow estimate 

produce an optical flow estimate for the first image for the first image and the second image . 
and the second image . 

steps of : 


