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FUSING MULTILAYER AND MULTIMODAL factors for the first layer are computed based on the spatial 
DEEP NEURAL NETWORKS FOR VIDEO classification accuracies and the first set of feature maps . 

CLASSIFICATION In one embodiment , modified aggregated feature descrip 
tors are computed for multiple layers of the CNN ( i . e . , the 

CLAIM OF PRIORITY 5 video classification technique is multilayer ) . The video 
classification technique may be applied to different types 

This application claims the benefit of U . S . Provisional ( i . e . , modalities ) of input video image data , with a separate 
Application No . 62 / 369 , 688 titled " MULTILAYER AND CNN processing each modality . In one embodiment , clas 
MULTIMODAL FUSION OF DEEP NEURAL NET sification output data produced for each modality is com 
WORKS FOR VIDEO CLASSIFICATION , ” filed Aug . 1 , 10 bined to generate classification output data ( i . e . , the video 
2016 , the entire contents of which is incorporated herein by classification technique is multimodal ) . 
reference . 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIELD OF THE INVENTION 

15 FIG . 1A illustrates a flowchart of a method for classifying 
The present invention relates to video classification , and video image data using deep neural networks , in accordance 

more particularly to video classification using deep neural with one embodiment ; 
networks . FIG . 1B illustrates a block diagram of a system for 

classifying video image data , in accordance with one 
BACKGROUND 20 embodiment ; 

FIG . 1C illustrates a conceptual diagram of feature maps 
Content based video classification is fundamental to intel - and spatial discriminative factors , in accordance with one 

ligent video analytics ( IVA ) and includes automatic catego - embodiment ; 
rizing , searching , indexing , segmentation , and retrieval of FIG . 1D illustrates a flowchart of another method for 
videos . It has been applied to a wide range of real world 25 classifying video image data using deep neural networks , in 
applications , for instance , multimedia event detection , accordance with one embodiment ; 
semantic indexing , gesture control , etc . However , recogniz FIG . 1E illustrates a block diagram of a system that uses 
ing unconstrained videos is a challenging task because ( i ) an m ultilayer fusing to classify video image data , in accordance 
appropriate video representation can be task dependent , e . g . , with one embodiment ; 
coarse ( " swim ” vs . " run " ) or fine - grained ( “ walk ” vs . " run " ) 30 FIG . 1F illustrates a flowchart of a method for classifying 
categorizations , ( ii ) there may be multiple streams of infor - video image data using multilayer fusing , in accordance 
mation that need to be taken into account , such as actions , with one embodiment ; 
objects , scenes , and so forth , and ( iii ) there are large intra - FIG . 2A illustrates a block diagram of another system that 
class variations , which arise from diverse viewpoints , occlu - uses multilayer fusing to classify video image data , in 
sions and backgrounds . As the core information of videos , 35 accordance with one embodiment ; 
visual cues provide the most significant information for FIG . 2B illustrates a block diagram of a system that uses 
video classification . multilayer and multimodal fusing to classify video image 

Recently , deep convolutional neural networks ( CNN ) data , in accordance with one embodiment ; 
have proven to be effective for action recognition and video F IG . 2C illustrates a flowchart of a method for classifying 
classification . Although significant progress in recent years 40 video image data using the system of FIG . 2B , in accordance 
has been achieved in the development of feature learning by with one embodiment ; 
deep neural networks , it is clear that the features that are FIG . 2D illustrates a block diagram of a system that uses 
extracted by the neural networks do not have the same multimodal and multilayer fusing to classify video image 
discriminative capability over all classes . Therefore , con - data , in accordance with one embodiment ; 
ventional video classification techniques adaptively com - 45 FIG . 2E illustrates a flowchart of a method for classifying 
bine a set of complementary features . The conventional video image data using the system of FIG . 2D , in accordance 
techniques focus on short - term information because the with one embodiment ; 
representations of the complementary features are learned in FIG . 3 illustrates a parallel processing unit , in accordance 
short time durations . The short - term information is insuffi - with one embodiment ; 
cient for video classification because complex events are 50 FIG . 4A illustrates a general processing cluster of the 
better described by leveraging the temporal evolution of parallel processing unit of FIG . 3 , in accordance with one 
short - term contents . Consequently , there is no single and embodiment ; 
unified solution for all classes of videos . There is a need for FIG . 4B illustrates a partition unit of the parallel process 
addressing these issues and / or other issues associated with i ng unit of FIG . 3 , in accordance with one embodiment ; 
the prior art . 55 FIG . 5 illustrates the streaming multi - processor of FIG . 

4A , in accordance with one embodiment ; and 
SUMMARY FIG . 6 illustrates an exemplary system in which the 

various architecture and / or functionality of the various pre 
A method , computer readable medium , and system are vious embodiments may be implemented . 

disclosed for performing video classification using deep60 
neural networks . The method includes the steps of process DETAILED DESCRIPTION 
ing training video image data by at least a first layer of a 
convolutional neural network ( CNN ) to extract a first set of A video image data classification technique extracts fea 
feature maps and generate classification output data for the tures by processing input image data or snippet data ( i . e . , a 
training video image data . Spatial classification accuracy 65 short video clip ) using a set of learned parameters to 
data is computed based on the classification output data and generate a class label for the video ( i . e . , classification output 
target classification output data and spatial discrimination data ) . Each layer of a convolutional neural network ( CNN ) 
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extracts features . Typically the extracted features generated step 110 , classification accuracy data is computed for spatial 
by each layer are input to the subsequent layer to produce the regions associated with each image across a video ( i . e . , 
classification output data . During training , classification frames or snippets in a video sequence ) . 
accuracy data is computed by comparing the classification Each image in the video image data is divided into 
output data with a target classification output . 5 overlapping pixel regions referred to as receptive fields . 

In contrast with the prior art , following conventional Each feature map is divided into non - overlapping spatial 
training of a CNN , post - processing is performed during regions including one or more features or elements x , that 
which training image data is input to the CNN and the each correspond to a portion of the pixels ( e . g . , 2x2 pixel 
features generated by one or more layers of the CNN are regions ) . Each spatial region is associated with a receptive 
extracted and processed . The extracted features for each 10 field of the input image data and classification accuracy data 
frame or snippet of video are captured as a set of feature is computed for each spatial region of each feature map . 
maps for at least one layer . In contrast with the prior art , the At step 130 , spatial discrimination factors are computed 
video classification technique computes a modified aggre - for the first layer based on the spatial classification accura 
gated feature descriptor ( i . e . , weighted Fisher Vectors , wFV ) cies and the first set of feature maps . In one embodiment , 
for at least one layer using spatial discriminative factors ( i . e . , 15 each classification accuracy a ; is transformed to a spatial 
weights ) for the layer and the set of feature vectors . The discriminative factor w ; using a softmax function w , exp 
modified aggregated feature descriptors are then used during ( a ; ) / = R exp ( az ) . In one embodiment , each classification 
inferencing to classify the new input image data . The accuracy is transformed to a spatial discriminative factor w ; 
modified aggregated feature descriptors may be computed using a sigmoid function w ; = 1 / ( 1 + exp ( a - a ; ) ] , where a ' is a 
for multiple layers of the CNN ( i . e . , the video classification 20 parameter to control the relative weight . All features x ; of 
technique is multilayer ) . The video classification technique spatial region R , in the feature map share the same spatial 
may be applied to different types ( i . e . , modalities ) of input discriminative factor W ; . 
video image data , with a separate CNN processing each More illustrative information will now be set forth regard 
modality . The classification output data produced by each of ing various optional architectures and features with which 
the CNNs is combined to generate classification output data 25 the foregoing framework may or may not be implemented , 
( i . e . , the video classification technique is multimodal ) . per the desires of the user . It should be strongly noted that 

FIG . 1A illustrates a flowchart of a method for classifying the following information is set forth for illustrative pur 
video image data using deep neural networks , in accordance poses and should not be construed as limiting in any manner . 
with one embodiment . The method 100 is described in the Any of the following features may be optionally incorpo 
context of a CNN , and the method 100 may also be 30 rated with or without the exclusion of other features 
performed by a program , custom circuitry , or by a combi - described . 
nation of custom circuitry and a program . For example , the During the post - processing , spatial classification accuracy 
method 100 may be executed by a GPU , CPU , or any data is generated for each spatial region and the spatial 
processor capable of performing the necessary processing discriminative factors are computed . During inferencing , 
operations . Furthermore , persons of ordinary skill in the art 35 extracted features for new input image data to be classified 
will understand that any system that performs method 100 is are captured as a set of feature maps for each layer . Because 
within the scope and spirit of embodiments of the present feature maps are generated for each layer during inferencing , 
invention . no additional computation is performed . However , the fea 

At step 110 , training video image data is processed by at ture maps for one or more of the layers are captured . In 
least a first layer of a CNN to extract a first set of feature 40 contrast , conventional techniques simply pass the features 
maps and generate classification output data for the training maps to the subsequent layer without using the feature maps 
video image data . In the context of the following descrip - for any post - processing . 
tion , classification output data is a class label for at least one The captured set of feature maps and spatial discrimina 
image of video input data . In one embodiment , a class label tive factors ( computed during post - processing ) for each 
for the training video image data is produced based on the 45 layer are used to compute modified aggregated feature 
first set of feature maps that is processed by at least the first descriptors ( i . e . , weighted Fisher Vectors ) for the layer . The 
layer of the CNN . In one embodiment , a class label is a modified aggregated feature descriptors are then used to 
class - conditional probability vector associated with the classify the new input image data during inferencing . In one 
training video image data . embodiment , the modified aggregated feature descriptors are 

In one embodiment , the CNN is a two - dimensional ( 2D ) 50 computed on - the - fly during inferencing . In one embodi 
CNN and the training video image data corresponds to a ment , the captured set of feature maps for one or more layers 
single image or a single video frame . In one embodiment , is stored . In contrast , conventional techniques simply pass 
the CNN is a three - dimensional ( 3D ) CNN and the training the feature maps to the subsequent layer without computing 
video image data corresponds to a snippet , clip , or sequence spatial discriminative factors , computing modified aggre 
of video frames . In one embodiment , the CNN is configured 55 gated feature descriptors , and / or storing the feature maps for 
to process training video image data of one modality such as any post - processing . 
spatial ( color ) or optical flow . Optical flow data may be Modified aggregated feature descriptors may be com 
computed from video image data . In one embodiment , the puted for multiple layers of the CNN to improve classifica 
optical flow data is represented by three color channels . tion accuracy . In one embodiment , classification output data 
After the CNN is trained , post - processing is performed to 60 is determined based on the modified aggregated feature 
compute spatial classification accuracy data . descriptors for two or more layers of the CNN . More 
At step 120 , the spatial classification accuracy data is specifically , the classification data ( i . e . , predictions ) pro 

computed based on the classification output data and target duced for each layer may be combined to generate classi 
classification output data . Conventionally , a single classifi - fication output data ( i . e . , the video classification technique is 
cation accuracy value , such as a probability is computed for 65 multilayer ) . 
each image . In contrast , when video image data is classified The video classification technique may be applied to 
using deep neural networks , such as a 2D or 3D CNN during different representations ( i . e . , modalities ) of input video 
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image data . Example 2D modalities include a single frame applies a down - sampling operator to reduce temporal 
of spatial data ( color ) and a single frame of optical flow data . dimensions of internal multi - dimensional tensor before 
Example 3D modalities include multiple frames of spatial being processed by the classification unit 105 . 
data ( color ) and multiple frames of optical flow data . Mul - Each one of the CNN layers may exaggerate different 
tiple CNNs may be used to improve classification accuracy 5 characteristics of objects and similar characteristics are often 
by extracting diverse static and dynamic cues at multiple grouped within each feature map . For example , the different 
temporal scales to classify input video image data repre characteristics may include poses , colors , parts , shapes , 
sented in two or more modalities . The classification output articulations , object boundaries , patterns , and the like . 
data produced by each of the CNNs may be combined to Therefore , sets of features for appropriate levels of compo 
generate classification output data ( i . e . , the video classifi - 10 sitionality for the different CNN layers supply diverse 
cation technique is multimodal ) . fine - scale information for classification . Meanwhile , the 

A multilayer and multimodal fusion framework of deep feature maps from each layer are already generated for input 
neural networks for video classification can simultaneously to the subsequent layer , so that no additional computation is 
capture a variety of levels of abstractions in a single neural performed to produce the sets of feature maps . 
network , which is able to adapt from coarse - to fine - grained 15 FIG . 1C illustrates a conceptual diagram 170 of a set of 
categorizations . For the fusion of multiple layers and feature maps 176 and associated spatial discriminative fac 
modalities , a powerful fusing model may be employed to tors 178 , in accordance with one embodiment . When pro 
learn the optimal combination of multilayer and multimodal duced by a 2D - CNN 125 , each feature map in the set of 
predictions to produce a class label . feature maps 176 is associated with one frame . When 

20 produced by a 3D - CNN , each feature map in the set of 
Multilayer CNN Architecture feature maps 176 is associated with one video snippet or one 

short video sequence . 
For video classification , appropriate levels of abstraction A receptive field 173 that includes a portion of the pixels 

and invariance for video representation in a CNN are within the input image data 172 is associated with a spatial 
task - dependent and class - dependent . For example , distin - 25 region 174 within each feature map in the set of feature maps 
guishing " soccer game ” and “ basketball game ” requires 176 . In one embodiment , adjacent receptive fields 173 may 
high - level representations to model global scene statistics . overlap for one or more pixels of the input image data 172 . 
However , classification of " playing guitar " and " playing In one embodiment , at least one dimension of each receptive 
violin ” demands fine - scale features to capture subtle appear - field 173 , in pixels , is larger than at least one dimension of 
ance and motion features . Therefore , leveraging abstractions 30 a corresponding spatial region 174 . 
of the individual convolutional layers of a CNN can improve The set of feature maps 176 is converted to a set of feature 
video classification accuracy because the convolutional lay - descriptors ( i . e . , vectors ) , where each feature descriptor in 
ers of a CNN capture different levels of semantic abstrac - the set corresponds to at least one element x ; in the feature 
tions and retain spatial information . maps . For example , a 28x28x3 set of feature maps may be 

FIG . 1B illustrates a block diagram of a video classifica - 35 converted to 28x28 feature descriptors that each include 3 
tion system 115 for classifying video image data , in accor - elements . The feature descriptors within each receptive field 
dance with one embodiment . Input video image data may be 173 ( or spatial region 174 ) are aggregated over time to 
presented in the form of single frames C , to the 2D - CNNs generate convlets ( convolutional elements ) , where each con 
125 for extracting local spatial - temporal features by apply - vlet corresponds to a particular receptive field 173 of the 
ing learnable filters at each time t to generate a set of feature 40 input image data ( and a corresponding spatial region 174 of 
maps for each 2D - CNN layer . Each learnable filter is a each feature map ) . Each convlet is a one - dimensional vector 
multi - dimensional kernel that is determined when the of values corresponding to a set of feature maps aggregated 
2D - CNN 125 is trained . in spatial and temporal dimensions and the convlets are 

A 2D - CNN layer is shown in FIG . 1B as a CNN layer stored in a data structure . The convlets measure the spatial 
slice 138 that includes a wFV computation unit 128 and 45 discriminability of activations at a CNN layer . Assume s , is 
2D - CNNs 125 that each generate a feature map that is the size ( height and width ) of a feature map and d , denotes 
included in a set of feature maps for the layer . The wFV the total number of feature maps . A set of feature maps 
computation unit 128 receives the spatial discrimination extracted from a video is represented by C = { c : 7 ; t = 1 , . . . , 
factors w ; that were computed during post - processing and T ; 1 = 1 , . . . , L } , where T is the number of frames or short 
computes modified aggregated feature descriptors ( i . e . , 50 clips , L , is the number of feature maps in the set , and CE 
wFVs ) for each spatial region in the set of feature maps and R s / xs } xd ? indicates the 1 - th feature map computed at the t - th 
the spatial discrimination factors w ; . Two possible equations timestamp . The feature maps C4 , 1 are converted to sixS ; 
for computing the spatial discrimination factors W ; are feature descriptors , each of which includes di elements . 
described in conjunction with step 130 of FIG . 1A . Therefore , a video can generate n = s , XS , XT feature descrip 
Although , as shown in FIG . 1B , wFVs are computed for 55 tors x , ER di at the 1 - th CNN layer , where i = 1 , . . . , n . Let R 
only one of the 2D - CNN layers , in other embodiments , indicate the pre - defined spatial regions 174 for a CNN layer 
wFVs may be computed for multiple or even all of the and R , denote the j - th spatial region 174 . The convlet 
2D - CNN layers . corresponding to the spatial region 174 is : 

Two or more CNN layers may be connected in series . The 
set of feature maps generated by a first layer is output to the 60 9 ; = G ( { x ; } ter ; ) . j = 1 , . . . IRI , 
2D - CNNs 125 in a second layer , and so on until a fully where G is a general coding and pooling operator . In one 
connected ( FC ) layer including FCs 135 receives the last set embodiment , G is a Fisher vector . The convlet q ; is a 
of feature maps generated by the 2D - CNN layers . A classi - representation that aggregates x ; in a spatial region 174 over 
fication unit 105 receives the outputs of the FCs 135 and the time for the input image data . Each convlet q ; may be used 
modified aggregated feature descriptors and generates a 65 to perform video classification . As previously explained , 
video class label . In one embodiment , the outputs of the FCs classification accuracy a ; values associated with R , indicates 
135 are processed by a temporal max pooling layer that a discriminative value for each spatial region 174 is for a 
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CNN layer and the classification accuracy values are trans - the spatial discriminative factor as a weight causes more 
formed into spatial discriminative factors w ; informative features to gain higher contributions in the final 

A spatial discriminative factor corresponding to a spatial representation , while background or noisy features are sup 
region 174 indicates how discriminative or important each pressed . Modified aggregated feature descriptors ( i . e . , 
of the spatial regions 174 in a CNN layer is for determining 5 WFVs ) may be computed for one or more selected CNN 
a class label . As shown in FIG . 1C , the different patterns in layers over time and used to classify the input video image 
a “ heat map ” indicate increasing importance of the spatial data . 

FIG . 1D illustrates a flowchart of another method 155 for discriminative factors 178 . Specifically , the spatial regions classifying video image data using deep neural networks , in 174 towards the right side of the center of the spatial 10 accordance with one embodiment . The method 155 is discriminative factors 178 have a greater importance com - 10 described in the context of a CNN , and the method 155 may pared with the spatial regions at the edges of the spatial also be performed by a program , custom circuitry , or by a discriminative factors 178 . The upper and lower spatial combination of custom circuitry and a program . For regions 174 in the corners on the left side are the least example , the method 155 may be executed by a GPU , CPU , discriminative . Each spatial region 174 in the spatial dis - 15 or any processor capable of performing the necessary pro 
criminative factors 178 is associated with a respective cessing operations . Furthermore , persons of ordinary skill in 
spatial region 174 in each feature map included in the set of the art will understand that any system that performs method 
feature maps 176 . Each spatial region 174 includes one or 155 is within the scope and spirit of embodiments of the 
more elements x ; in the feature map ( e . g . , each spatial region present invention . 
174 includes 2x2 x ; ) . The value of a spatial discriminative 20 Steps 110 , 120 , and 130 are performed as previously 
factor 178 for a particular element x ; in the feature map described in conjunction with FIG . 1A to complete the 
indicates the importance of the element in terms of classic training and post - processing . At step 140 , new input video 
fication operations . For a different CNN layer , the impor - image data is processed by at least the first layer of the CNN 
tance of each spatial region 174 as indicated by the spatial to extract a second set of feature maps . In one embodiment , 
discriminative factors 178 may vary . Because the spatial 25 the first layer of the CNN is the CNN layer slice 138 shown 
discriminative factors w ; for each x , represent how discrimi - in FIG . 1B . In the context of the following description , the 
native or important x ; is for classification , the spatial dis - first layer , second layer , etc . does not necessarily indicate the 
criminative factors W ; may be used to improve classification order in which CNN layers are coupled in series . 
accuracy . At step 150 , modified aggregated feature descriptors ( i . e . , 

The features x , have a Gaussian mixture model ( GMM ) 30 WFVs ) are computed for the first CNN layer based on the 
distribution characterized by parameters { itk , Iko Ok with spatial discriminative factors w ; that were computed at step 
k = 1 , . . . , K , where uk Uke and ok are the prior mode 130 and the second set of feature maps . In one embodiment . 
probability , mean , and covariance ( diagonal ) of the k - th the modified aggregated feature descriptors are computed by 
Gaussian component ok . the wFV computation unit 128 shown in FIG . 1B . At step 

To better fit the diagonal covariance assumption , principal 35 160 , additional classification output data is generated for the 
component analysis ( PCA ) may be applied to decorrelate xi new input video image data using the modified aggregated 
and reduce feature dimensions . Each feature x ; is then feature descriptors for the first layer . In one embodiment , the 
encoded by the deviations with respect to the parameters of additional classification output data includes class labels . 
GMM . Let Yink be the soft assignment of x ; to the k - th FIG . 1E illustrates a block diagram of a video classifica 
Gaussian component : 40 tion system 145 that uses multilayer fusing to classify video 

image data , in accordance with one embodiment . Input 
video image data may be presented in the form of single 

TkØk ( Xi ) frames C , to the CNN layer slice 138 - 1 to generate a set of Vink = 

; 4 ; ( X ; ) feature maps for the CNN layer slice 138 - 1 . A number N of 
45 CNN layer slices 138 may be connected in series and the 

feature maps generated by each layer are output to the 
The modified aggregated feature descriptor ( i . e . , WFV ) subsequent layer slice , until a fully connected ( FC ) layer 

representation of video input data at a CNN layer may be including FCs 135 receives the last set of feature maps 
generated by the CNN layer slice 138 - N . obtained by concatenating the following derivative vectors 

from K Gaussian components : 50 Each CNN layer slice 138 receives the spatial discrimi 
nation factors w , that were computed during post - processing 
for the particular layer and computes modified aggregated 
feature descriptors ( i . e . , WFVs ) . Although , as shown in FIG . 
1E , WFVs are computed for all of the 2D - CNN layers , in 

55 other embodiments , wFVs may be computed for only a 
portion of the 2D - CNN layers . 

Classification units 106 that are each associated with a 
layer receive the modified aggregated feature descriptors 
and generate a video class scores ( i . e . , prediction ) for the 

60 layer . The outputs of the FCs 135 are processed by a 
where Pk and Tz are the di - dimensional derivatives with temporal max pooling layer 132 that applies a down - sam 
respect to uz and one of the k - th Gaussian component . The pling operator to reduce temporal dimensions of internal 
spatial discriminative factor wi is applied to weight the multi - dimensional tensor and generate a prediction . 
relative displacements of x ; to the mean and covariance in A set of FC layers may be represented as F = { ft . i ; t = 
the equations for computing Pk and Tk . In other words , the 65 1 , . . . , T ; 1 = 1 , . . . , Lt ) , where T is the number of frames 
spatial discriminative factors are applied to scale relative or short clips , Lfis the number of FC layers in a CNN , and 
displacements for computing Pzand Tz ( i . e . , WFV ) . Applying f , ER di indicates the 1 - th FC layer computed at the time 

i = 1 memo da nampak 
w ?zum [ hout - 1 ) i = 1 



US 10 , 402 , 697 B2 
10 

stamp t . The FC vector is more sensitive to the category - the temporal max pooling layer 132 and the convolutional 
level semantic information and usually has high dimensions layer predictions and generates the classification output data . 
( e . g . , d = 4096 ) . Compared to C4 , which can generate sixs , A coefficient may be learned during training for each 
feature descriptors , each of which includes d , elements , ftiis CNN layer and each prediction for the layer may be scaled 
far more sparse as spatial information is lost . Considering 5 by the coefficient and summed to generate a class label by 
these properties , temporal max pooling may be applied to multilayer fusing . Similarly , a coefficient may be learned for 
aggregate f . , across time to obtain f , which is the initial each modality , and each prediction by a 2D - CNN or a representation of video data at the 1 - th FC layer . 3D - CNN may be scaled by the coefficient for the modality While the last FC layer in a neural network performs and summed to generate a class label by multimodal fusing . linear classification , additional non - linearity may be injected 10 A training set for learning the coefficients may be repre to f , by using non - linear kernels in a support vector machine sented by { ( Vixy : ) } ; = 1 ̂ which contains N instance pairs of a ( SVM ) . However , non - linear SVM is generally much slower video V , EV and a class label y ; € { 1 , . . . , C } . Let { rm : V? than a linear SVM in terms of both learning and prediction . 
In particular , a linear SVM may be trained in time linear R dm } ) m = 1M indicate M video representations extracted by 
with the number of training samples . This favorably extends 15 the proposed feature aggregation methods from CNN and 
the applicability of linear SVM algorithms to large - scale FC layers of multiple modalities . A general kernel function 
data , which is usually the case for video classification . An K may be used to measure the similarity between instances 
explicit feature map may be employed to approximate a by the m - th video representation : Km ( v , V ' ) = K ( rm ( V ) , rm ( v ' ) ) . 
large - scale non - linear SVM using a linear SVM . In an So the kernel response of a given instance VeV to the 
explicit feature map , the initial representation f , is lifted to a 20 training set is defined as K m ( v ) = [ Km ( v , v1 ) , . . . , Km ( v , vy ) ] ? . 
Hilbert space with moderately higher feature dimensions The following derivation focuses on the binary classifi 
through W : R d R di ( 2z + 1 ) such that the inner product in the cation problem , which extends straightforwardly to multiple 
space can reasonably well approximate a non - linear kernel . classes . Here the objective is to optimize a linear combina 
Therefore , the final representation ( f ) of a FC layer makes tion of the predictions using M representations : U ( v ) 
use of not only the discriminative power of non - linear 25 = Meu , ( v ) , where is a mixing coefficient and unis 
kernels , but also the efficient training and evaluation of the a decision function . SVM may be used with the decision 
linear one . function um ( V ) = K m ( v ) ' am + bm , but the weak learner un is A multi - layer fusing unit 107 receives the prediction not necessarily SVM . All parameters of the fusion model can output of the temporal max pooling layer 132 and the be solved by training um based on each individual video convolutional layer predictions and generates an output 30 30 representation and subsequently optimizing Om through : video class label . The fusing operations are described further 
herein in conjunction with step 166 of FIG . 1F . 

FIG . 1F illustrates a flowchart of a method 180 for 
classifying video image data using multilayer fusing , in 
accordance with one embodiment . The method 180 is 35 
described in the context of a CNN , such as the CNN layer 
slices 138 in the video classification system 145 , and the s . t . Yi ) Omum ( vi ) + 1 2 € , i = 1 , . . . , N 
method 180 may also be performed by a program , custom 
circuitry , or by a combination of custom circuitry and a 
program . For example , the method 180 may be executed by 40 Om = 1 , Om 20 , m = 1 , . . . , M , 
a GPU , CPU , or any processor capable of performing the 
necessary processing operations . Furthermore , persons of 
ordinary skill in the art will understand that any system that 
performs method 180 is within the scope and spirit of where si is a slack variable and v is a regularization 
embodiments of the present invention . 10 parameter to control the smoothness of the resulting func 

Steps 110 , 120 , and 130 are performed as previously Qusly tion . Optimizing Om may be solved as a linear programming 10 
described in conjunction with FIG . 1A to complete the problem using the column generation approach . Similar to 
training and post - processing . However , step 130 may be image classification , in the multiclass case with C catego 
performed simultaneously for each layer of the CNN . At step ries , there are two variations of the mixing coefficients . The 
142 , new input video image data is processed by at least the 50 first variant is referred to as boost - u that jointly learns a 
first layer of the CNN to extract sets of feature maps for each uniform coefficient vector OERM for all classes . The alter 
CNN layer slice 138 . native variant , boost - c learns a coefficient vector for each 
At step 150 , modified aggregated feature descriptors ( i . e . , class resulting in a coefficient matrix OER MXC . So the final 

wFVs ) are computed for the CNN layer based on the spatial decision functions for the fusion of multiple layers and 
discriminative factor w that were computed at step 130 . Step 55 modalities with the two fusing variants are : 
150 may be performed simultaneously for each CNN layer 
slice 138 . In one embodiment , the modified aggregated 
feature descriptors are computed by the wFV computation 
unit 128 shown in FIG . 1B . At step 164 , predictions are Om ( Km ( v ) ' ac . m + bcm ) , 

generated for the new input video image data using the 60 
modified aggregated feature descriptors for the layer . In one 
embodiment , a prediction is classification output data . Step 
164 may be performed simultaneously for each layer of the 
CNN . At step 166 , the multilayer fusing unit 107 performs 
multilayer fusing by computing an optimized linear combi - 65 The fusing algorithm is a unified method for both multilayer 
nation of the predictions to produce classification output and multimodal fusion . It can be used by multilayer fusion 
data . The multilayer fusing unit 107 receives the output of to combine the video representations rm from multiple layers 

ang maxe - vi arg maxe - - 
0 , 8 , € VN 

m = 1 

y ( v ) = arg max 
c = 1 , . . . , 04 

m = 1 

Y ( w ) = arg _ max Šo Kuv ” cm + bcm ) . m = 1 
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in a single modality . If the set of representations is extracted The intermediate classification data associated with each 
over multiple modalities , then the fusing algorithm performs modality is then fused by a multimodal fusing unit 275 to 
multimodal fusion . produce the classification output data . Coefficients corre 

FIG . 2A illustrates a block diagram of another video sponding to each modality are learned and used to scale the 
classification system 245 that uses multilayer fusing to 5 intermediate classification data for each 2D - CNN 115 and 
classify video image data , in accordance with one embodi - 3D - CNN 245 . The scaled intermediate classification data are 
ment . In one embodiment , input video image data may be then combined by the multimodal fusing unit 275 to produce 
presented in the form of short clips C , of 16 or more frames the classification output data . 
to a 3D - CNN layer slice 238 - 1 for extracting local spatial The 2D - CNN 145 and 3D - CNN 245 receiving spatial 
temporal features in the form of a feature map . Compared 10 frames ( single frame in 2D - CNN - SF and short clip of frames 
with the 2D - CNN layer slice 138 , each 3D - CNN layer slice in 3D - CNN - SF ) as input video image data 220 and 225 can 
238 is configured to process video clips , so that time t is the capture objects and scenes that are strongly correlated to 
third dimension . A number N of 3D - CNN layer slices 238 certain video categories , e . g . , snow and mountains indicat 
may be connected in series and the feature maps generated ing skiing . The 3D - CNN 245 processing the 3D - CNN - SF 
by each layer are output to the subsequent layer slice , until 15 representation selectively attends to both motion and appear 
a fully connected recurrent neural network ( RNN ) layer ance cues through spatio - temporal convolution and pooling 
including RNNs 235 receives the last set of feature maps operations . The 3D - CNN 245 processing the 3D - CNN - SF 
generated by the 3D - CNN layer slice 238 - N . In one embodi - representation encapsulates the mid - term temporal informa 
ment , the FCs 135 in the 2D - CNN 145 of FIG . 1E are tion as the 3D - CNN - SF input video image data 225 to the 
replaced with the RNNs 235 . 20 3D - CNN 245 is a short video clip ( e . g . , 16 frames ) . The 

Each 3D - CNN layer slice 238 receives the spatial dis - RNNs 235 within the 3D - CNN 245 learn the long - term 
crimination factors w ; that were computed during post - temporal order . 
processing for the particular layer and computes modified Since optical flow explicitly captures dynamic motions , 
aggregated feature descriptors ( i . e . , wFVs ) . Although , as the 2D - CNN 145 and 3D - CNN 245 receiving optical flow 
shown in FIG . 2A , spatial discrimination factors w ; and 25 images as input video image data 230 and 235 provide vital 
wFVs are computed for all of the 3D - CNN layers , in other clues to recognize actions . Moreover , optical flow also 
embodiments , spatial discrimination factors w ; and wFVs conveys rough shape cues of moving objects , e . g . , the skier 
may be computed for only a portion of the 3D - CNN layers . and ski poles in skiing videos . In contrast to the temporal 

Classification units 206 that are each associated with a stream used in prior art techniques , which work on the 
layer receive the modified aggregated feature descriptors 30 stacked optical flow maps , a single colorized optical flow 
and generate a prediction for the layer . The outputs of the image is input to a 2D - CNN 145 . A colorized optical flow 
RNNs 235 are processed by a pooling layer 232 that applies image contains 3 channels of RGB values , while an optical 
a down - sampling operator to reduce temporal dimensions of flow map includes 2 channels with the raw values of 
internal multi - dimensional tensor . The multi - layer fusing horizontal and vertical displacements . 
unit 107 receives the prediction output of the pooling layer 35 The hue and saturation of a colorized optical flow image 
232 and the per - layer predictions and generates an output indicate the flow ' s orientation and magnitude . Therefore , 
video class label . over - fitting and training time may be reduced by leveraging 

Since the visual information in videos is a juxtaposition of pre - trained models from large - scale image datasets for the 
not only scenes and objects but also atomic actions evolving colorized optical flow images . Because the input video 
over the whole video sequence , it is favorable to capture and 40 image data is a single colorized image , the 2D - CNN 145 
combine both static appearances and dynamic motions . A receiving the 2D - CNN - OF representation captures the fine 
multimodal approach is used to model a variety of semantic scale and short - term temporal information between a pair of 
clues in multi - temporal scales . In one embodiment , four adjacent frames . The 3D - CNN 245 receiving the 3D - CNN 
different modalities , which provide mutually complemen OF representation models the high order motion cues such 
tary information in short , mid , and long - term temporal 45 as spatial and temporal derivatives of optical flow . The 
contexts are processed simultaneously and the results are 3D - CNN 245 receiving the 3D - CNN - OF representation also 
then combined to produce a classification label . encapsulates the mid - term temporal clues . The RNN 235 

FIG . 2B illustrates a block diagram of a video classifica - may also be employed to learn the long - term temporal order 
tion system 200 that uses multilayer and multimodal fusing of the 2D - CNN - OF and 3D - CNN - OF representations . 
to classify video image data , in accordance with one 50 To obtain the final multimodal representation of a video , 
embodiment . In one embodiment , the four different modali - the aforementioned wFV is used as well as temporal max 
ties used to represent the video image data are 2D - CNN - SF , pooling and explicit feature maps to compute aggregated 
2D - CNN - OF , 3D - CNN - SF , and 3D - CNN - OF . As shown in representations for selected CNN and FC layers ( respec 
FIG . 2B , input video image data 220 , 230 , 225 , and 235 are tively for each modality ) . Given multiple layers and modali 
represented as spatial ( single ) frames in 2D - CNN - SF ) , 55 ties , correlations across the different aggregated representa 
optical flow ( in 2D - CNN - OF ) , spatial clips ( in 3D - CNN tions are utilized via multilayer and multimodal fusion to 
SF ) , and optical flow clips ( in 3D - CNN - OF ) , respectively . maximize the classification accuracy . 
The robust fusing model is employed to learn coefficients for FIG . 2C illustrates a flowchart of a method for classifying 
the optimal combination of multiple layers and modalities . video image data using the system of FIG . 2B , in accordance 

The predictions generated by one or more layers within 60 with one embodiment . The method 210 is described in the 
each 2D - CNN 115 and 3D - CNN 245 are fused by the context of a video classification system , such as the video 
multilayer fusing unit 107 to produce intermediate classifi - classification system 200 including the 2D - CNN 145 and 
cation data for each modality . Coefficients corresponding to 3D - CNN 245 , and the method 210 may also be performed 
each layer are learned and used to scale the prediction for the by a program , custom circuitry , or by a combination of 
layer . The scaled predictions are then combined by each 65 custom circuitry and a program . For example , the method 
multilayer fusing unit 107 to compute the intermediate 210 may be executed by a GPU , CPU , or any processor 
classification data for each 2D - CNN 115 and 3D - CNN 245 . capable of performing the necessary processing operations . 
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Furthermore , persons of ordinary skill in the art will under - necessary processing operations . Furthermore , persons of 
stand that any system that performs method 210 is within the ordinary skill in the art will understand that any system that 
scope and spirit of embodiments of the present invention . performs method 270 is within the scope and spirit of 

Steps 110 , 120 , 130 , 142 , 150 , and 164 are included in a embodiments of the present invention . 
step 260 and are performed as previously described in 5 Steps 110 , 120 , 130 , 142 , 150 , and 164 are included in the conjunction with FIG . 1F to complete the training , post 
processing , and inferencing for multiple layers of a CNN . step 260 and are performed as previously described in 
The step 260 may be simultaneously performed by two or conjunction with FIG . 1F to complete the training , post 
more CNNs ( e . g . , 2D - CNNs 145 and / or 3D - CNNs 245 ) processing , and inferencing for multiple layers of a CNN . 
where each CNN receives training input data and input data 10 The step 260 may be simultaneously performed by two or 
for a different modality . more CNNs ( e . g . , 2D - CNNs 115 and / or 3D - CNNs 255 ) , 

After step 260 is completed , predictions for the new input where each CNN receives training input data and input data 
video image data are available for each layer of the CNNs . for a different modality . 
At step 216 , the multilayer fusing unit 107 within each CNN After step 260 is computed , predictions for the new input 
performs multilayer fusing by computing an optimized 15 video image data are available for each layer of the CNNs . 
linear combination of the predictions to produce the inter At step 266 , the per - layer multimodal fusing unit 285 mediate classification data for each modality . Step 216 may performs multimodal fusing by computing an optimized be performed simultaneously for each modality . At step 218 , linear combination of the predictions for each layer to the per - layer multimodal fusing unit 275 performs multi produce fused layer predictions for each layer . For example , modal fusing by computing an optimized linear combination 20 
of the intermediate classification data for each modality to the predictions for the first layer are combined across each 

modality to produce a fused first layer prediction . A separate produce classification output data . 
FIG . 2D illustrates a block diagram of a video classifi fused layer prediction is produced for each of the N layers . 

cation system 215 that uses multilayer and multimodal Step 266 may be performed simultaneously for each layer . 
fusing to classify video image data , in accordance with one 25 At step 280 , the multilayer fusing unit 107 performs mul 
embodiment . In one embodiment , the four different modali - tilayer fusing by computing an optimized linear combination 
ties are 2D - CNN - SF , 2D - CNN - OF , 3D - CNN - SF , and of the fused layer predictions to produce classification 
3D - CNN - OF representations of the input video image data . output data . 
As shown in FIG . 2D , input video image data 220 , 230 , 225 , The fusing algorithm is a unified method for both multi 
and 235 are spatial ( single ) frames , optical flow , spatial 30 laver and multimodal fusion . As previously described in 
clips , and optical flow clips , respectively . The robust fusing conjunction with step 166 of FIG . 1F , either the boost - u model is employed to learn the optimal combination of technique or the boost - c technique for learning coefficients 
multiple modalities and layers . The 3D - CNNs 255 are the may be used . As described in conjunction with FIGS . 2B and 3D - CNNs 245 without the multilayer fusing unit 107 . The 2C , the fusing algorithm can be used by multilayer and per - layer multimodal fusing unit 285 includes a multimodal 35 multimodal fusion to combine the video representations rm fusing unit 275 for each CNN and FC layer . In contrast with from multiple layers in a single modality to produce per the video classification system 200 shown in FIG . 2B , the 
different modalities are fused for each layer to generate a modality intermediate classification data and then combine 
multimodal predication for each layer instead of fusing the multiple modalities . However , the joint fusion of the 
across the different layers within each modality . 40 selected layers over all modalities to learn the coefficients 

The predictions generated by each layer of each 2D - CNN may produce more accurate classification compared with the 
115 and 3D - CNN 255 are fused across the different modali separate fusion of individual modalities first and then fusing 
ties by the per - layer multimodal fusing unit 285 to produce the per - modality intermediate classification data . The 
fused layer predictions for each layer . Coefficients corre - improved classification may be because the joint fusion 
sponding to each modality are learned and used to scale the 45 allows different modalities to explore better correlations at 
prediction for the modality . In one embodiment , the coeffi - different layers . 
cients for a particular modality may vary for each layer . The Although boost - c is more flexible to have class - specific scaled predictions are then combined by the per - layer mul mixing coefficients , the results are inferior to those of timodal fusing unit 285 to produce the fused layer predic boost - u . This is because the model of boost - c tends to tions . The fused layer predictions are output by the per - layer 50 over - fit , since the CxM parameters to fit in boost - c require multimodal fusing unit 285 to the multilayer fusing unit 107 more training data than the M parameters in boost - u . The to compute classification output data . Coefficients corre 
sponding to each layer are learned and used to scale the 3D - CNN - SF produces the best results before fusion as it 
corresponding fused laver predictions . The scaled fused jointly models appearance and motion information . 
layer predictions are then combined across the layers by the 55 TABLE 1 contains the classification accuracy for various 
multilayer fusing unit 107 to produce the classification of modalities when wFV is computed for the fourth and fifth 
output data ( i . e . , video class label ) . CNN layers . K = 128 Gaussian components for both FV and 

FIG . 2E illustrates a flowchart of a method 270 for wFV techniques so the final feature dimensionality is 76 . 8K . 
classifying video image data using multilayer and multi - As shown in TABLE 1 , wFV consistently outperforms FV 
modal fusing , in accordance with one embodiment . The 60 for CNN layers in all modalities with the improvements 
method 270 is described in the context of a video classifi - ranging from 0 . 6 % to 2 . 5 % . A larger improvement is 
cation system , such as the video classification system 215 observed for the fourth CNN layer ( conv4 ) compared with 
including the 2D - CNN 115 and 3D - CNN 255 , and the the fifth CNN layer ( conv5 ) , probably because of the finer 
method 270 may also be performed by a program , custom spatial information preserved in the fourth CNN layer . The 
circuitry , or by a combination of custom circuitry and a 65 improvements clearly show the advantages of utilizing the 
program . For example , the method 270 may be executed by spatial discriminability learned by convlets to enhance the 
a GPU , CPU , or any processor capable of performing the feature representation . 



16 
US 10 , 402 , 697 B2 

15 
TABLE 1 ( LCD ) device . In other embodiments , the PPU 300 may be 

utilized for performing general - purpose computations . 
Comparison of FV and wFV to represent While one exemplary parallel processor is provided herein CNN lavers of different modalities 

for illustrative purposes , it should be strongly noted that 
Modality Layer FV wFV 5 such processor is set forth for illustrative purposes only , and 
2D - CNN - SF that any processor may be employed to supplement and / or Conv4 74 . 2 % 76 . 7 % 

Conv5 79 . 6 % 80 . 6 % substitute for the same . 
2D - CNN - OF Conv4 75 . 6 % 78 . 1 % As shown in FIG . 3 , the PPU 300 includes an Input / 

Conv5 81 . 9 % 82 . 6 % Output ( I / O ) unit 305 , a host interface unit 310 , a front end 3D - CNN - SF Conv4 83 . 6 % 84 . 8 % 
Conv5 83 . 3 % 84 . 6 % unit 315 , a scheduler unit 320 , a work distribution unit 325 , 

3D - CNN - OF Conv4 78 . 2 % 78 . 8 % a hub 330 , a crossbar ( Xbar ) 370 , one or more general 
Conv5 78 . 1 % 78 . 7 % processing clusters ( GPCs ) 350 , and one or more partition 

units 380 . The PPU 300 may be connected to a host 
TABLE 2 contains the accuracy for various combinations 15 processor or other peripheral devices via a system bus 302 . 

of four modalities . Observe that fusing any pair of modali The PPU 300 may also be connected to a local memory 
ties improves individual results . The best classification accu comprising a number of memory devices 304 . In one 
racy of 91 . 9 % is obtained by the combination of all four embodiment , the local memory may comprise a number of 
modalities . dynamic random access memory ( DRAM ) devices . 

TABLE 2 
Classification accuracies of different modality combinations 

Modality Accuracy Combinations 
X X X 

x 
2D - CNN - SF 
2D - CNN - OF 
3D - CNN - SF 
3D - CNN - OF 
Fusion Accuracy 

83 . 2 
84 . 8 
85 . 9 
81 . 4 

x 
X - X X X X 

? 
91 . 9 90 . 3 90 . 8 

X 
90 . 4 87 . 1 91 . 2 91 . 3 

In comparison to the results in TABLE 1 , the multimodal The I / O unit 305 is configured to transmit and receive 
fusion produces much higher accuracy than any individual communications ( i . e . , commands , data , etc . ) from a host 
modality . This indicates the strong complementarity processor ( not shown ) over the system bus 302 . The I / O unit 
between the four modalities that capture diverse static and 35 305 may communicate with the host processor directly via 
dynamic features at multiple temporal scales . the system bus 302 or through one or more intermediate 

Using the modified aggregated feature descriptors , WFV , devices such as a memory bridge . In one embodiment , the 
to represent CNN layers in different modalities improves 1 / 0 unit 305 implements a Peripheral Component Intercon 
classification accuracy . Compared with conventional tech - nect Express ( PCIe ) interface for communications over a 
niques , wFV retains high - order statistics ; in particular , the 40 PCIe bus . In alternative embodiments , the I / O unit 305 may 
modified aggregated feature descriptors ( WFV ) adaptively implement other types of well - known interfaces for com 
weight the features of a CNN layer according to the asso municating with external devices . 
ciated spatial weights learned by the proposed convlet . In The I / O unit 305 is coupled to a host interface unit 310 
one embodiment , computing the spatial discriminative that decodes packets received via the system bus 302 . In one 
weights using the sigmoid is more discriminative than using 45 embodiment , the packets represent commands configured to 
the softmax , e . g . , WFV with sigmoid outperforms that with cause the PPU 300 to perform various operations . The host 
softmax by 0 . 6 % for the fifth CNN layer when the input interface unit 310 transmits the decoded commands to 
video image data is 2D - CNN - SF . various other units of the PPU 300 as the commands may 

specify . For example , some commands may be transmitted 
Parallel Processing Architecture 50 to the front end unit 315 . Other commands may be trans 

mitted to the hub 330 or other units of the PPU 300 such as 
FIG . 3 illustrates a parallel processing unit ( PPU ) 300 , in one or more copy engines , a video encoder , a video decoder , 

accordance with one embodiment . The PPU 300 may be a power management unit , etc . ( not explicitly shown ) . In 
configured to implement the video classification system 115 , other words , the host interface unit 310 is configured to route 
145 , 200 , 215 , or 245 and one or more layers of a 2D - CNN 55 communications between and among the various logical 
or a 3D - CNN . units of the PPU 300 . 

In one embodiment , the PPU 300 is a multi - threaded In one embodiment , a program executed by the host 
processor that is implemented on one or more integrated processor encodes a command stream in a buffer that pro 
circuit devices . The PPU 300 is a latency hiding architecture vides workloads to the PPU 300 for processing . A workload 
designed to process a large number of threads in parallel . A 60 may comprise a number of instructions and data to be 
thread ( i . e . , a thread of execution ) is an instantiation of a set processed by those instructions . The buffer is a region in a 
of instructions configured to be executed by the PPU 300 . In memory that is accessible ( i . e . , read / write ) by both the host 
one embodiment , the PPU 300 is a graphics processing unit processor and the PPU 300 . For example , the host interface 
( GPU ) configured to implement a graphics rendering pipe - unit 310 may be configured to access the buffer in a system 
line for processing three - dimensional ( 3D ) graphics data in 65 memory connected to the system bus 302 via memory 
order to generate two - dimensional ( 2D ) image data for requests transmitted over the system bus 302 by the I / O unit 
display on a display device such as a liquid crystal display 305 . In one embodiment , the host processor writes the 
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command stream to the buffer and then transmits a pointer by the PPU 300 . Each task may comprise one or more 
to the start of the command stream to the PPU 300 . The host groups of related threads , referred to herein as a warp . A 
interface unit 310 provides the front end unit 315 with thread block may refer to a plurality of groups of threads 
pointers to one or more command streams . The front end including instructions to perform the task . Threads in the 
unit 315 manages the one or more streams , reading com - 5 same group of threads may exchange data through shared 
mands from the streams and forwarding commands to the memory . In one embodiment , a group of threads comprises 
various units of the PPU 300 . 32 related threads . 

The front end unit 315 is coupled to a scheduler unit 320 FIG . 4A illustrates a GPC 350 of the PPU 300 of FIG . 3 , 
that configures the various GPCs 350 to process tasks in accordance with one embodiment . As shown in FIG . 4A , 
defined by the one or more streams . The scheduler unit 320 10 each GPC 350 includes a number of hardware units for 
is configured to track state information related to the various processing tasks . In one embodiment , each GPC 350 
tasks managed by the scheduler unit 320 . The state may includes a pipeline manager 410 , a pre - raster operations unit 
indicate which GPC 350 a task is assigned to , whether the ( PROP ) 415 , a raster engine 425 , a work distribution cross 
task is active or inactive , a priority level associated with the bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 
task , and so forth . The scheduler unit 320 manages the 15 and one or more Texture Processing Clusters ( TPCs ) 420 . It 
execution of a plurality of tasks on the one or more GPCs will be appreciated that the GPC 350 of FIG . 4A may include 
350 . other hardware units in lieu of or in addition to the units 

The scheduler unit 320 is coupled to a work distribution shown in FIG . 4A . 
unit 325 that is configured to dispatch tasks for execution on In one embodiment , the operation of the GPC 350 is 
the GPCs 350 . The work distribution unit 325 may track a 20 controlled by the pipeline manager 410 . The pipeline man 
number of scheduled tasks received from the scheduler unit ager 410 manages the configuration of the one or more TPCs 
320 . In one embodiment , the work distribution unit 325 420 for processing tasks allocated to the GPC 350 . In one 
manages a pending task pool and an active task pool for each embodiment , the pipeline manager 410 may configure at 
of the GPCs 350 . The pending task pool may comprise a least one of the one or more TPCs 420 to implement at least 
number of slots ( e . g . , 32 slots ) that contain tasks assigned to 25 a portion of a graphics rendering pipeline . For example , a 
be processed by a particular GPC 350 . The active task pool TPC 420 may be configured to execute a vertex shader 
may comprise a number of slots ( e . g . , 4 slots ) for tasks that program on the programmable streaming multiprocessor 
are actively being processed by the GPCs 350 . As a GPC 350 ( SM ) 440 . The pipeline manager 410 may also be configured 
finishes the execution of a task , that task is evicted from the to route packets received from the work distribution unit 325 
active task pool for the GPC 350 and one of the other tasks 30 to the appropriate logical units within the GPC 350 . For 
from the pending task pool is selected and scheduled for example , some packets may be routed to fixed function 
execution on the GPC 350 . If an active task has been idle on hardware units in the PROP 415 and / or raster engine 425 
the GPC 350 , such as while waiting for a data dependency while other packets may be routed to the TPCs 420 for 
to be resolved , then the active task may be evicted from the processing by the primitive engine 435 or the SM 440 . 
GPC 350 and returned to the pending task pool while 35 The PROP unit 415 is configured to route data generated 
another task in the pending task pool is selected and sched by the raster engine 425 and the TPCs 420 to a Raster 
uled for execution on the GPC 350 . Operations ( ROP ) unit in the partition unit 380 , described in 

The work distribution unit 325 communicates with the more detail below . The PROP unit 415 may also be config 
one or more GPCs 350 via XBar 370 . The XBar 370 is an ured to perform optimizations for color blending , organize 
interconnect network that couples many of the units of the 40 pixel data , perform address translations , and the like . 
PPU 300 to other units of the PPU 300 . For example , the The raster engine 425 includes a number of fixed function 
XBar 370 may be configured to couple the work distribution hardware units configured to perform various raster opera 
unit 325 to a particular GPC 350 . Although not shown tions . In one embodiment , the raster engine 425 includes a 
explicitly , one or more other units of the PPU 300 are setup engine , a course raster engine , a culling engine , a 
coupled to the host interface unit 310 . The other units may 45 clipping engine , a fine raster engine , and a tile coalescing 
also be connected to the XBar 370 via a hub 330 . engine . The setup engine receives transformed vertices and 

The tasks are managed by the scheduler unit 320 and generates plane equations associated with the geometric 
dispatched to a GPC 350 by the work distribution unit 325 . primitive defined by the vertices . The plane equations are 
The GPC 350 is configured to process the task and generate transmitted to the coarse raster engine to generate coverage 
results . The results may be consumed by other tasks within 50 information ( e . g . , an x , y coverage mask for a tile ) for the 
the GPC 350 , routed to a different GPC 350 via the XBar primitive . The output of the coarse raster engine may 
370 , or stored in the memory 304 . The results can be written transmitted to the culling engine where fragments associated 
to the memory 304 via the partition units 380 , which with the primitive that fail a z - test are culled , and transmitted 
implement a memory interface for reading and writing data to a clipping engine where fragments lying outside a view 
to / from the memory 304 . In one embodiment , the PPU 300 55 ing frustum are clipped . Those fragments that survive clip 
includes a number U of partition units 380 that is equal to the ping and culling may be passed to a fine raster engine to 
number of separate and distinct memory devices 304 generate attributes for the pixel fragments based on the plane 
coupled to the PPU 300 . A partition unit 380 will be equations generated by the setup engine . The output of the 
described in more detail below in conjunction with FIG . 4B . raster engine 425 comprises fragments to be processed , for 

In one embodiment , a host processor executes a driver 60 example , by a fragment shader implemented within a TPC 
kernel that implements an application programming inter - 420 . 
face ( API ) that enables one or more applications executing Each TPC 420 included in the GPC 350 includes an 
on the host processor to schedule operations for execution M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , one 
on the PPU 300 . An application may generate instructions or more SMS 440 , and one or more texture units 445 . The 
( i . e . , API calls ) that cause the driver kernel to generate one 65 MPC 430 controls the operation of the TPC 420 , routing 
or more tasks for execution by the PPU 300 . The driver packets received from the pipeline manager 410 to the 
kernel outputs tasks to one or more streams being processed appropriate units in the TPC 420 . For example , packets 
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associated with a vertex may be routed to the primitive is located on - chip and is shared between the various GPCs 
engine 435 , which is configured to fetch vertex attributes 350 . As shown , each partition unit 380 includes a portion of 
associated with the vertex from the memory 304 . In contrast , the L2 cache 460 associated with a corresponding memory 
packets associated with a shader program may be transmit device 304 . Lower level caches may then be implemented in 
ted to the SM 440 . 5 various units within the GPCs 350 . For example , each of the 

In one embodiment , the texture units 445 are configured SMS 440 may implement a level one ( L1 ) cache . The L1 
to load texture maps ( e . g . , a 2D array of texels ) from the cache is private memory that is dedicated to a particular SM memory 304 and sample the texture maps to produce 440 . Data from the L2 cache 460 may be fetched and stored sampled texture values for use in shader programs executed in each of the L1 caches for processing in the functional by the SM 440 . The texture units 445 implement texture 10 units of the SMs 440 . The L2 cache 460 is coupled to the operations such as filtering operations using mip - maps ( i . e . , memory interface 470 and the XBar 370 . texture maps of varying levels of detail ) . The texture unit 
445 is also used as the Load / Store path for SM 440 to MMU The ROP unit 450 includes a ROP Manager 455 , a Color 
490 . In one embodiment , each TPC 420 includes two ( 2 ) ROP ( CROP ) unit 452 , and a Z ROP ( ZROP ) unit 454 . The 

16 CROP unit 452 performs raster operations related to pixel texture units 445 . 15 . 
The SM 440 comprises a programmable streaming pro color , such as color compression , pixel blending , and the 

cessor that is configured to process tasks represented by a like . The ZROP unit 454 implements depth testing in con 
number of threads . Each SM 440 is multi - threaded and junction with the raster engine 425 . The ZROP unit 454 
configured to execute a plurality of threads ( e . g . , 32 threads ) receives a depth for a sample location associated with a pixel 
from a particular group of threads concurrently . In one 20 fragment from the culling engine of the raster engine 425 . 
embodiment , the SM 440 implements a SIMD ( Single The ZROP unit 454 tests the depth against a corresponding 
Instruction , Multiple - Data ) architecture where each thread depth in a depth buffer for a sample location associated with 
in a group of threads ( i . e . , a warp ) is configured to process the fragment . If the fragment passes the depth test for the 
a different set of data based on the same set of instructions . sample location , then the ZROP unit 454 updates the depth 
All threads in the group of threads execute the same instruc - 25 buffer and transmits a result of the depth test to the raster 
tions . In another embodiment , the SM 440 implements a engine 425 . The ROP Manager 455 controls the operation of 
SIMT ( Single - Instruction , Multiple Thread ) architecture the ROP unit 450 . It will be appreciated that the number of 
where each thread in a group of threads is configured to partition units 380 may be different than the number of 
process a different set of data based on the same set of GPCs 350 and , therefore , each ROP unit 450 may be 
instructions , but where individual threads in the group of 30 coupled to each of the GPCs 350 . Therefore , the ROP 
threads are allowed to diverge during execution . In other Manager 455 tracks packets received from the different 
words , when an instruction for the group of threads is GPCs 350 and determines which GPC 350 that a result 
dispatched for execution , some threads in the group of generated by the ROP unit 450 is routed to . The CROP unit 
threads may be active , thereby executing the instruction , 452 and the ZROP unit 454 are coupled to the L2 cache 460 
while other threads in the group of threads may be inactive , 35 via an L2 XBar 465 . 
thereby performing a no - operation ( NOP ) instead of execut - FIG . 5 illustrates the streaming multi - processor 440 of 
ing the instruction . The SM 440 may be described in more FIG . 4A , in accordance with one embodiment . As shown in 
detail below in conjunction with FIG . 5 . FIG . 5 , the SM 440 includes an instruction cache 505 , one 

The MMU 490 provides an interface between the GPC or more scheduler units 510 , a register file 520 , one or more 
350 and the partition unit 380 . The MMU 490 may provide 40 processing cores 550 , one or more special function units 
translation of virtual addresses into physical addresses , ( SFUS ) 552 , one or more load / store units ( LSUS ) 554 , an 
memory protection , and arbitration of memory requests . In interconnect network 580 , a shared memory / L1 cache 570 . 
one embodiment , the MMU 490 provides one or more As described above , the work distribution unit 325 dis 
translation lookaside buffers ( TLBs ) for improving transla - patches tasks for execution on the GPCs 350 of the PPU 300 . 
tion of virtual addresses into physical addresses in the 45 The tasks are allocated to a particular TPC 420 within a GPC 
memory 304 . 350 and , if the task is associated with a shader program , the 

FIG . 4B illustrates a memory partition unit 380 of the task may be allocated to an SM 440 . The scheduler unit 510 
PPU 300 of FIG . 3 , in accordance with one embodiment . As receives the tasks from the work distribution unit 325 and 
shown in FIG . 4B , the memory partition unit 380 includes a manages instruction scheduling for one or more groups of 
Raster Operations ( ROP ) unit 450 , a level two ( L2 ) cache 50 threads ( i . e . , warps ) assigned to the SM 440 . The scheduler 
460 , a memory interface 470 , and an L2 crossbar ( XBar ) unit 510 schedules threads for execution in groups of 
465 . The memory interface 470 is coupled to the memory parallel threads , where each group is called a warp . In one 
304 . Memory interface 470 may implement 16 , 32 , 64 , embodiment , each warp includes 32 threads . The scheduler 
128 - bit data buses , or the like , for high - speed data transfer . unit 510 may manage a plurality of different warps , sched 
In one embodiment , the PPU 300 comprises U memory 55 uling the warps for execution and then dispatching instruc 
interfaces 470 , one memory interface 470 per partition unit tions from the plurality of different warps to the various 
380 , where each partition unit 380 is connected to a corre - functional units ( i . e . , cores 550 , SFUS 552 , and LSUs 554 ) 
sponding memory device 304 . For example , PPU 300 may during each clock cycle . 
be connected to up to U memory devices 304 , such as In one embodiment , each scheduler unit 510 includes one 
graphics double - data - rate , version 5 , synchronous dynamic 60 or more instruction dispatch units 515 . Each dispatch unit 
random access memory ( GDDR5 SDRAM ) . In one embodi - 515 is configured to transmit instructions to one or more of 
ment , the memory interface 470 implements a DRAM the functional units . In the embodiment shown in FIG . 5 , the 
interface and U is equal to 8 . scheduler unit 510 includes two dispatch units 515 that 

In one embodiment , the PPU 300 implements a multi - enable two different instructions from the same warp to be 
level memory hierarchy . The memory 304 is located off - chip 65 dispatched during each clock cycle . In alternative embodi 
in SDRAM coupled to the PPU 300 . Data from the memory ments , each scheduler unit 510 may include a single dispatch 
304 may be fetched and stored in the L2 cache 460 , which unit 515 or additional dispatch units 515 . 

m 
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Each SM 440 includes a register file 520 that provides a like . Typically , a primitive includes data that specifies a 

set of registers for the functional units of the SM 440 . In one number of vertices for the primitive ( e . g . , in a model - space 
embodiment , the register file 520 is divided between each of coordinate system ) as well as attributes associated with each 
the functional units such that each functional unit is allo - vertex of the primitive . The PPU 300 can be configured to 
cated a dedicated portion of the register file 520 . In another 5 process the graphics primitives to generate a frame buffer 
embodiment , the register file 520 is divided between the ( i . e . , pixel data for each of the pixels of the display ) . 
different warps being executed by the SM 440 . The register An application writes model data for a scene ( i . e . , a 
file 520 provides temporary storage for operands connected collection of vertices and attributes ) to a memory such as a 
to the data paths of the functional units . system memory or memory 304 . The model data defines 

Each SM 440 comprises L processing cores 550 . In one 10 each of the objects that may be visible on a display . The 
embodiment , the SM 440 includes a large number ( e . g . , 128 , application then makes an API call to the driver kernel that 
etc . ) of distinct processing cores 550 . Each core 550 may requests the model data to be rendered and displayed . The 
include a fully - pipelined , single - precision processing unit driver kernel reads the model data and writes commands to 
that includes a floating point arithmetic logic unit and an the one or more streams to perform operations to process the 
integer arithmetic logic unit . The core 550 may also include 15 model data . The commands may reference different shader 
a double - precision processing unit including a floating point programs to be implemented on the SMS 440 of the PPU 300 
arithmetic logic unit . In one embodiment , the floating point including one or more of a vertex shader , hull shader , 
arithmetic logic units implement the IEEE 754 - 2008 stan domain shader , geometry shader , and a pixel shader . For 
dard for floating point arithmetic . Each SM 440 also com example , one or more of the SMs 440 may be configured to 
prises M SFUS 552 that perform special functions ( e . g . , 20 execute a vertex shader program that processes a number of 
attribute evaluation , reciprocal square root , and the like ) , and vertices defined by the model data . In one embodiment , the 
N LSUs 554 that implement load and store operations different SMS 440 may be configured to execute different 
between the shared memory / L1 cache 570 and the register shader programs concurrently . For example , a first subset of 
file 520 . In one embodiment , the SM 440 includes 128 cores SMS 440 may be configured to execute a vertex shader 
550 , 32 SFUS 552 , and 32 LSUS 554 . 25 program while a second subset of SMS 440 may be config 

Each SM 440 includes an interconnect network 580 that ured to execute a pixel shader program . The first subset of 
connects each of the functional units to the register file 520 SMs 440 processes vertex data to produce processed vertex 
and the LSU 554 to the register file 520 , shared memory / L1 data and writes the processed vertex data to the L2 cache 460 
cache 570 . In one embodiment , the interconnect network and / or the memory 304 . After the processed vertex data is 
580 is a crossbar that can be configured to connect any of the 30 rasterized ( i . e . , transformed from three - dimensional data 
functional units to any of the registers in the register file 520 into two - dimensional data in screen space ) to produce 
and connect the LSUS 554 to the register file and memory fragment data , the second subset of SMS 440 executes a 
locations in shared memory / L1 cache 570 . pixel shader to produce processed fragment data , which is 

The shared memory / L1 cache 570 is an array of on - chip then blended with other processed fragment data and written 
memory that allows for data storage and communication 35 to the frame buffer in memory 304 . The vertex shader 
between the SM 440 and the primitive engine 435 and program and pixel shader program may execute concur 
between threads in the SM 440 . In one embodiment , the rently , processing different data from the same scene in a 
shared memory / L1 cache 570 comprises 64 KB of storage pipelined fashion until all of the model data for the scene has 
capacity and is in the path from the SM 440 to the partition been rendered to the frame buffer . Then , the contents of the 
unit 380 . The shared memory / L1 cache 570 can be used to 40 frame buffer are transmitted to a display controller for 
cache reads and writes . display on a display device . 

The PPU 300 described above may be configured to The PPU 300 may be included in a desktop computer , a 
perform highly parallel computations much faster than con - laptop computer , a tablet computer , a smart - phone ( e . g . , a 
ventional CPUs . Parallel computing has advantages in wireless , hand - held device ) , personal digital assistant 
graphics processing , data compression , biometrics , stream 45 ( PDA ) , a digital camera , a hand - held electronic device , and 
processing algorithms , and the like . the like . In one embodiment , the PPU 300 is embodied on a 
When configured for general purpose parallel computa single semiconductor substrate . In another embodiment , the 

tion , a simpler configuration can be used . In this model , as PPU 300 is included in a system - on - a - chip ( SOC ) along with 
shown in FIG . 3 , fixed function graphics processing units are one or more other logic units such as a reduced instruction 
bypassed , creating a much simpler programming model . In 50 set computer ( RISC ) CPU , a memory management unit 
this configuration , the work distribution unit 325 assigns and ( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
distributes blocks of threads directly to the TPCs 420 . The In one embodiment , the PPU 300 may be included on a 
threads in a block execute the same program , using a unique graphics card that includes one or more memory devices 304 
thread ID in the calculation to ensure each thread generates such as GDDR5 SDRAM . The graphics card may be con 
unique results , using the SM 440 to execute the program and 55 figured to interface with a PCIe slot on a motherboard of a 
perform calculations , shared memory / L1 cache 570 com - desktop computer that includes , e . g . , a northbridge chipset 
municate between threads , and the LSU 554 to read and and a southbridge chipset . In yet another embodiment , the 
write Global memory through partition shared memory / L1 PPU 300 may be an integrated graphics processing unit 
cache 570 and partition unit 380 . ( GPU ) included in the chipset ( i . e . , Northbridge ) of the 
When configured for general purpose parallel computa - 60 motherboard . 

tion , the SM 440 can also write commands that scheduler Various programs may be executed within the PPU 300 in 
unit 320 can use to launch new work on the TPCs 420 . In one order to implement the various CNN , FC 135 , and RNN 235 
embodiment , the PPU 300 comprises a graphics processing layers of the video classification systems 115 , 145 , 200 , 215 , 
unit ( GPU ) . The PPU 300 is configured to receive com - and 245 . For example , the device driver may launch a kernel 
mands that specify shader programs for processing graphics 65 on the PPU 300 to implement at least one 2D or 3D CNN 
data . Graphics data may be defined as a set of primitives layer on one SM 440 ( or multiple SMs 440 ) . The device 
such as points , lines , triangles , quads , triangle strips , and the driver ( or the initial kernel executed by the PPU 300 ) may 
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also launch other kernels on the PPU 300 to perform other least a portion of the capabilities of both the central proces 
CNN layers , such as the FC 135 , RNN 235 and the classifier sor 601 and the graphics processor 606 , a chipset ( i . e . , a 
105 , 106 , or 206 . In addition , some of the CNN layers may group of integrated circuits designed to work and sold as a 
be implemented on fixed unit hardware implemented within unit for performing related functions , etc . ) , and / or any other 
the PPU 300 . It will be appreciated that results from one 5 integrated circuit for that matter . 
kernel may be processed by one or more intervening fixed Still yet , the architecture and / or functionality of the vari 
function hardware units before being processed by a subse ous previous figures may be implemented in the context of 
quent kernel on an SM 440 . a general computer system , a circuit board system , a game 

console system dedicated for entertainment purposes , an 
Exemplary System 10 application - specific system , and / or any other desired sys 

tem . For example , the system 600 may take the form of a 
FIG . 6 illustrates an exemplary system 600 in which the desktop computer , laptop computer , server , workstation , 

various architecture and / or functionality of the various pre - game consoles , embedded system , and / or any other type of 
vious embodiments may be implemented . The exemplary logic . Still yet , the system 600 may take the form of various 
system 600 may be used to implement the systems 115 , 145 , 15 other devices including , but not limited to a personal digital 
200 , and 245 for video classification . assistant ( PDA ) device , a mobile phone device , a television , 
As shown , a system 600 is provided including at least one etc . 

central processor 601 that is connected to a communication Further , while not shown , the system 600 may be coupled 
bus 602 . The communication bus 602 may be implemented to a network ( e . g . , a telecommunications network , local area 
using any suitable protocol , such as PCI ( Peripheral Com - 20 network ( LAN ) , wireless network , wide area network 
ponent Interconnect ) , PCI - Express , AGP ( Accelerated ( WAN ) such as the Internet , peer - to - peer network , cable 
Graphics Port ) , HyperTransport , or any other bus or point - network , or the like ) for communication purposes . 
to - point communication protocol ( s ) . The system 600 also While various embodiments have been described above , 
includes a main memory 604 . Control logic ( software ) and it should be understood that they have been presented by 
data are stored in the main memory 604 which may take the 25 way of example only , and not limitation . Thus , the breadth 
form of random access memory ( RAM ) . and scope of a preferred embodiment should not be limited 

The system 600 also includes input devices 612 , a graph - by any of the above - described exemplary embodiments , but 
ics processor 606 , and a display 608 , i . e . a conventional CRT should be defined only in accordance with the following 
( cathode ray tube ) , LCD ( liquid crystal display ) , LED ( light claims and their equivalents . 
emitting diode ) , plasma display or the like . User input may 30 What is claimed is : 
be received from the input devices 612 , e . g . , keyboard , 1 . A computer - implemented method , comprising : 
mouse , touchpad , microphone , and the like . In one embodi processing training video image data by at least a first 
ment , the graphics processor 606 may include a plurality of layer of a convolutional neural network ( CNN ) to 
shader modules , a rasterization module , etc . Each of the extract a first set of feature maps ; 
foregoing modules may even be situated on a single semi - 35 processing the first set of feature maps by a second layer 
conductor platform to form a graphics processing unit of the CNN to generate classification output data for the 
( GPU ) . training video image data ; 

In the present description , a single semiconductor plat computing spatial classification accuracy data based on 
form may refer to a sole unitary semiconductor - based inte the classification output data and target classification 
grated circuit or chip . It should be noted that the term single 40 output data ; 
semiconductor platform may also refer to multi - chip mod computing spatial discrimination factors for the first layer 
ules with increased connectivity which simulate on - chip based on the spatial classification accuracies and the 
operation , and make substantial improvements over utilizing first set of feature maps ; and 
a conventional central processing unit ( CPU ) and bus imple computing second spatial discrimination factors for the 
mentation . Of course , the various modules may also be 45 second layer based on at least the spatial classification 
situated separately or in various combinations of semicon accuracies . 
ductor platforms per the desires of the user . 2 . The computer - implemented method of claim 1 , further 

The system 600 may also include a secondary storage comprising : 
610 . The secondary storage 610 includes , for example , a processing input video image data by at least the first layer 
hard disk drive and / or a removable storage drive , represent - 50 to extract a second set of feature maps ; 
ing a floppy disk drive , a magnetic tape drive , a compact computing modified aggregated feature descriptors for the 
disk drive , digital versatile disk ( DVD ) drive , recording first layer based on the spatial discrimination factors 
device , universal serial bus ( USB ) flash memory . The and the second set of feature maps ; and 
removable storage drive reads from and / or writes to a generating additional classification output data for the 
removable storage unit in a well - known manner . input video image data using the modified aggregated 

Computer programs , or computer control logic algo feature descriptors for the first layer . 
rithms , may be stored in the main memory 604 and / or the 3 . The computer - implemented method of claim 2 , 
secondary storage 610 . Such computer programs , when wherein the input video image data comprises a first modal 
executed , enable the system 600 to perform various func i ty that is processed by at least the first layer of the CNN and 
tions . The memory 604 , the storage 610 , and / or any other 60 a second modality that is processed by at least a third layer 
storage are possible examples of computer - readable media . of a second CNN to compute third spatial discrimination 
Data streams associated with gestures may be stored in the factors for the third layer , and further comprising : 
main memory 604 and / or the secondary storage 610 . storage 610 . processing the second modality by at least the third layer 

In one embodiment , the architecture and / or functionality of the second CNN to extract a third set of feature 
of the various previous figures may be implemented in the 65 maps ; and 
context of the central processor 601 , the graphics processor computing second modified aggregated feature descrip 
606 , an integrated circuit ( not shown ) that is capable of at tors for the third layer based on the third spatial 
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discrimination factors and the third set of feature maps , computing first modified aggregated feature descriptors 
wherein the additional classification output data is for the first layer based on the spatial discrimination 
generated using the second modified aggregated feature factors and the third set of feature maps ; 
descriptors for the third layer . computing second modified aggregated feature descrip 

4 . The computer - implemented method of claim 2 , further 5 tors for the second layer based on the second spatial comprising : discrimination factors and the fourth set of feature extracting a third set of feature maps for the second layer maps ; 
of the CNN during processing of the training video generating first predictions using the first modified aggre 
image data , wherein the gated feature descriptors ; and second spatial discrimination factors for the second layer 10 
are computed based on the spatial classification accu generating second predictions using the second modified 
racies and the third set of feature maps . aggregated feature descriptors . 

5 . The computer - implemented method of claim 4 , further 13 . The computer - implemented method of claim 12 , fur 
ther comprising : comprising computing second modified aggregated feature 

descriptors for the second layer based on the second spatial 15 learning a first coefficient for the first layer ; 
discrimination factors and the third set of feature maps , learning a second coefficient for the second layer ; and 
wherein the additional classification output data is generated summing the first predictions scaled by the first coefficient 
using the second modified aggregated feature descriptors for and the second predictions scaled by the second coef 
the second layer . ficient to generate intermediate classification data . 

6 . The method of claim 2 , wherein the spatial discrimi - 2014 . The computer - implemented method of claim 13 , 
native factors are applied to scale relative displacements of wherein the input video image data includes a first modality 
each element within the first set of feature maps for com - that is processed by the CNN and a second modality , and 
puting the modified aggregated feature descriptors . further comprising : 

7 . The computer - implemented method of claim 1 , processing the second modality of the input video image 
wherein the first training data comprises a first modality that 25 data by at least a first layer of a second CNN to produce 
is processed by the at least first layer of the CNN and a second intermediate classification data ; 
second modality that is processed by at least a third layer of learning a third coefficient for the first modality ; 
a second CNN to compute third spatial discrimination learning a fourth coefficient for the second modality ; and 
factors for the third layer . summing the intermediate classification data scaled by the 

8 . The computer - implemented method of claim 1 , 30 third coefficient and the second intermediate classifi 
wherein the spatial discriminative factors are computed cation data scaled by the fourth coefficient to generate 
using a sigmoid function . additional classification output data . 

9 . The computer - implemented method of claim 1 , 15 . The computer - implemented method of claim 12 , 
wherein the spatial discriminative factors are computed wherein the input video image data includes a first modality 
using a softmax function . 35 that is processed by the CNN and a second modality , and 

10 . The computer - implemented method of claim 1 , further comprising : 
wherein each feature map in the first set of feature maps is processing the second modality of the input video image 
divided into pre - defined spatial regions that each include data by a first layer of a second CNN to produce third 
multiple elements of the feature map and each pre - defined predictions ; 
spatial region is associated with one of the spatial discrimi - 40 processing the second modality of the input video image 
native factors . data by a second layer of a second CNN to produce 

11 . The computer - implemented method of claim 10 , fourth predictions ; 
wherein the training video image data is divided into mul learning a first coefficient for the first layer of the first 
tiple receptive fields that each include multiple pixels and CNN ; 
each receptive field is associated with one of the pre - defined 45 learning a second coefficient for the first layer of the 
spatial regions . second CNN ; and 

12 . A computer - implemented method , comprising : summing the first predictions scaled by the first coefficient 
processing training video image data by at least a first and the third predictions scaled by the second coeffi 

layer of a convolutional neural network ( CNN ) to cient to generate fused first layer predictions . 
extract a first set of feature maps and generate classi - 50 16 . The computer - implemented method of claim 15 , 
fication output data for the training video image data ; wherein the input video image data includes a first modality 

computing spatial classification accuracy data based on that is processed by the CNN and a second modality , and 
the classification output data and target classification further comprising : 
output data ; processing the second modality of the input video image 

computing spatial discrimination factors for the first layer 55 data by a second layer of a second CNN to produce 
based on the spatial classification accuracies and the fourth predictions ; 
first set of feature maps ; learning a third coefficient for the second layer of the first 

extracting a second set of feature maps for a second layer modality ; 
of the CNN during processing of the training video learning a fourth coefficient for the second layer of the 
image data ; 60 second modality ; 

computing second spatial discrimination factors for the summing the second predictions scaled by the third coef 
second layer based on the spatial classification accura ficient and the fourth predictions scaled by the fourth 
cies and the second set of feature maps ; coefficient to generate fused second layer predictions ; 

processing input video image data by the first layer to 
extract a third set of feature maps ; 65 combining the fused first layer predictions and the fused 

processing the third set of feature maps by the second second layer predictions to generate additional classi 
layer to extract a fourth set of feature maps ; fication output data . 

and 
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17 . A system , comprising : 19 . A non - transitory computer - readable media storing 
a memory storing training video image data ; computer instructions for classifying input video image data 
a parallel processing unit that is coupled to the memory that , when executed by a processor , cause the processor to 

and configured to : perform the steps of : 
process training video image data by at least a first layer 5 processing training video image data by at least a first 

of a convolutional neural network ( CNN ) to extract a layer of a convolutional neural network ( CNN ) to 
first set of feature maps and generate classification extract a first set of feature maps ; 
output data for the training video image data ; processing the first set of feature maps by a second layer 

process the first set of feature maps by a second layer of of the CNN to generate classification output data for the 
the CNN to generate classification output data for the 10 training video image data ; 
training video image data ; computing spatial classification accuracy data based on 

compute spatial classification accuracy data based on the the classification output data and target classification 
classification output data and target classification out output data ; 
put data ; computing spatial discrimination factors for the first layer 

compute spatial discrimination factors for the first layer 1 based on the spatial classification accuracies and the 
based on the spatial classification accuracies and the first set of feature maps ; and 
first set of feature maps ; and computing second spatial discrimination factors for the 

compute second spatial discrimination factors for the second layer based on at least the spatial classification 
second layer based on at least the spatial classification accuracies . 

20 20 . The non - transitory computer - readable media of claim accuracies . 
18 . The system of claim 17 , wherein the parallel process - 19 , further comprising 19 

ing unit is further configured to : processing the input video image data by at least the first 
process input video image data by at least the first layer layer to extract a second set of feature maps ; 

to extract a second set of feature maps ; computing modified aggregated feature descriptors for the 
compute modified aggregated feature descriptors for the 25 first layer based on the spatial discrimination factors 

first layer based on the spatial discrimination factors and the second set of feature maps ; and 
and the second set of feature maps ; and generating additional classification output data for the 

generate additional classification output data for the input input video image data using the modified aggregated 
video image data using the modified aggregated feature feature descriptors for the first layer . 
descriptors for the first layer . * * * * * 


