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ONLINE DETECTION AND provide immediate feedback to users . There is a need for 
CLASSIFICATION OF DYNAMIC GESTURES addressing these issues and / or other issues associated with 
WITH RECURRENT CONVOLUTIONAL the prior art . 

NEURAL NETWORKS 
SUMMARY 

CLAIM OF PRIORITY 
A method , computer readable medium , and system are 

This application claims the benefit of U . S . Provisional disclosed for detecting and classifying hand gestures . The 
Application No . 62 / 278 , 924 titled " ONLINE DETECTION method includes the steps of receiving an unsegmented 
AND CLASSIFICATION OF DYNAMIC HAND GES - 10 stream of data associated with a hand gesture , extracting 
TURES WITH CONVOLUTIONAL NEURAL NET spatio - temporal features from the unsegmented stream by a 
WORKS , ” filed Jan . 14 , 2016 , the entire contents of which three - dimensional convolutional neural network ( 3D - CNN ) , 

and producing a class label for the hand gesture based on the is incorporated herein by reference . spatio - temporal features . In one embodiment , a recurrent 
15 3D - CNN ( R3DCNN ) is used to extract the spatio - temporal FIELD OF THE INVENTION 

features from the unsegmented stream and produce the class 

The present invention relates to gesture recognition , and label for the hand gesture . 
more particularly to gesture recognition using recurrent BRIEF DESCRIPTION OF THE DRAWINGS convolutional neural networks . 

FIG . 1A illustrates a flowchart of a method for detecting BACKGROUND and classifying dynamic hand gestures , in accordance with 
one embodiment ; 

Hand gestures and gesticulations are a common form of FIG . 1B illustrates a negative lag for detecting and 
human communication . It is therefore natural for humans to 25 classifying dynamic hand gestures , in accordance with one 
use this form of communication to interact with machines as embodiment : 
well . For instance , touch - less human computer interfaces in FIG . 1C illustrates a block diagram of a system for 
vehicles can improve comfort and safety . Recently , deep detecting and classifying dynamic hand gestures , in accor 
convolutional neural networks ( CNN ) receiving video dance with one embodiment ; 
sequences of gestures as inputs have proven to be an 30 FIG . 2A illustrates a block diagram of a 3DCNN for 
effective algorithm for gesture recognition , and have sig - detecting and classifying dynamic hand gestures , in accor 
nificantly advanced the accuracy of dynamic hand gesture dance with one embodiment ; 
and action recognition tasks . CNNs are also useful for FIG . 2B illustrates a block diagram of an R3DCNN for 
optimally combining the input data from multiple sensors detecting and classifying dynamic hand gestures , in accor 
( multi - modal data ) for gesture recognition in challenging 35 dance with one embodiment ; 
lighting conditions . However , real world systems for FIG . 2C illustrates a block diagram of multiple 
dynamic hand gesture recognition present numerous open R3DCNNs for detecting and classifying dynamic hand ges 

tures using multiple modalities , in accordance with one challenges that are yet to be addressed . embodiment ; First , the systems receive continuous streams of unpro 40 FIG . 2D illustrates a conceptual block diagram of an cessed visual data , where gestures known to the system must R3DCNN for detecting and classifying dynamic hand ges be simultaneously detected and classified . Conventional tures , in accordance with one embodiment ; systems , typically regard gesture segmentation and classi FIG . 2E illustrates another flowchart of a method for fication separately . Two classifiers , a detection classifier to detecting and classifying dynamic hand gestures , in accor dete 
distinguish between “ gesture and “ no gesture ” , and a rec - 45 dance with one embodiment : 
ognition classifier to identify the specific gesture type , are FIG . 2F illustrates a flowchart of a method for training the 
often trained separately and applied in sequence to the input 3DCNN for gesture detection and labeling , in accordance 
data streams . There are two reasons for this : ( 1 ) to compen - with one embodiment ; 
sate for variability in the duration of gestures and ( 2 ) to FIG . 3 illustrates a parallel processing unit , in accordance 
reduce noise due to unknown hand motions in the “ no 50 with one embodiment ; 
gesture ” class thereby simplifying the task of the recognition FIG . 4A illustrates a general processing cluster of the 
classifier . However , processing the visual data with a detec - parallel processing unit of FIG . 3 , in accordance with one 
tion classifier limits the accuracy that is achievable by the embodiment ; 
system to the accuracy of the upstream gesture detection FIG . 4B illustrates a partition unit of the parallel process 
classifier . 55 ing unit of FIG . 3 , in accordance with one embodiment ; 

Second , dynamic hand gestures generally contain three FIG . 5 illustrates the streaming multi - processor of FIG . 
temporally overlapping phases : preparation , nucleus , and 4A , in accordance with one embodiment ; 
retraction , of which the nucleus is the most discriminatory . FIG . 6 illustrates an exemplary system in which the 
The other two phases can be quite similar for different various architecture and / or functionality of the various pre 
gestures and hence less useful or even detrimental to accu - 60 vious embodiments may be implemented . 
rate gesture classification . Therefore , classifiers often rely 
primarily on the nucleus phase for gesture classification . DETAILED DESCRIPTION 

Finally , humans are acutely perceptive of the response 
time of user interfaces , with lags greater than 100 ms A gesture detection and classification algorithm unifies 
perceived as annoying . This presents the additional chal - 65 detection and classification of dynamic hand gestures from 
lenge of detecting and classifying gestures immediately multiple complementary modalities . The gesture detection 
upon ( or preferably before ) completion of the gesture to and classification algorithm may also be used to detect and 



US 10 , 157 , 309 B2 

classify static hand gestures . The modalities may include disparity images . In one embodiment , the SoftKinetic 
data streams such as continuous depth , color , optical flow , DS325 sensor ( e . g . , depth camera ) is used to acquire front 
stereo - IR , and IR disparity images . A recurrent three - dimen - view ( facing a user providing the gesture ) color and depth 
sional convolutional neural network ( R3DCNN ) performs videos and a top - mounted DUO 3D sensor is used to record 
the unified detection and classification without relying on 5 a pair of IR streams ( e . g . , stereo IR ) viewing a user from 
preliminary segmentation . At least one unsegmented data above . A dense optical flow data stream may be computed 
stream of one modality is received for processing by the from the color stream and an IR disparity data stream may 
R3DCNN , and the R3DCNN outputs a class label for the be computed from the pair of IR - stereo streams . 
gesture . At step 130 , a class label for the hand gesture is produced 

The unified detection and classification technique 10 based on the spatio - temporal features . In one embodiment , 
improves early detection of gestures , resulting in zero or a class label is a class - conditional probability vector asso 
negative lag , which is crucial for designing responsive user ciated with one hand gesture . When two or more data 
interfaces . For example , the gesture is typically classified streams are received at step 110 , the class label may be 
before the end of the gesture has occurred , providing an generated by combining probability vectors corresponding 
interactive user experience . 15 to each one of the data streams . 

During training , a connectionist temporal classification More illustrative information will now be set forth regard 
( CTC ) cost function may be employed to train the network ing various optional architectures and features with which 
to predict class labels from in - progress gestures in unseg - the foregoing framework may or may not be implemented , 
mented input streams . The CTC function enables gesture per the desires of the user . It should be strongly noted that 
classification to be based on the nucleus phase of the gesture , 20 the following information is set forth for illustrative pur 
without requiring explicit pre - segmentation of the gesture poses and should not be construed as limiting in any manner . 
streams into the three temporal phases ( e . g . , preparation , Any of the following features may be optionally incorpo 
nucleus , and retraction ) . Feature dropout may also be rated with or without the exclusion of other features 
employed during training to reduce overfitting and improve described . 
gesture classification accuracy . 25 FIG . 1B illustrates a negative lag for detecting and 

FIG . 1 illustrates a flowchart of a method 100 for detect - classifying a dynamic hand gesture , in accordance with one 
ing and classifying dynamic hand gestures , in accordance embodiment . A gesture starts at a first time indicated by start 
with one embodiment . Although method 100 is described in of gesture 101 . The gesture ends at a second time indicated 
the context of a processing element within a R3DCNN , the by end of gesture 103 . In the prior art a detection classifier 
method 100 may also be performed by a program , custom 30 algorithm begins processing the gesture , and after the detec 
circuitry , or by a combination of custom circuitry and a tion classifier algorithm completes the detection processing 
program . For example , the method 100 may be executed by ( i . e . , completes segmentation ) , a recognition classifier algo 
a GPU , CPU , or any processor capable of performing the rithm is used to process the segmented gesture . The recog 
necessary arithmetic operations . Furthermore , persons of nition classifier does not start processing until the end of 
ordinary skill in the art will understand that any system that 35 gesture 103 or later . The recognition classifier completes 
performs method 100 is within the scope and spirit of processing after the end of gesture 103 at a time indicated by 
embodiments of the present invention . a prior art classification 104 . 
At step 110 , an unsegmented stream of data associated In contrast , when the gesture detection and classification 

with a hand gesture is received . In contrast with an unseg - method 100 shown in FIG . 1A is used , the gesture is 
mented stream of data , in a segmented stream of data at least 40 processed using the detection and labeling classifier algo 
one point in the stream where a gesture is detected ( e . g . , rithm . Before the end of gesture 103 , the gesture is labeled 
preparation , nucleus , and retraction ) is indicated in the at a gesture label 102 . Typically , a gesture that is received by 
segmented stream of data . The stream of data is processed in the gesture detection and classification method 100 is 
some manner to provide the indication . For example , a labeled when the gesture is 40 % complete . In other words , 
detection classifier may process the stream of data to pro - 45 the gesture detection and classification method 100 typically 
duce a segmented stream of data . labels a gesture when only 40 % of the time between the start 

In addition to receiving a stream of data that is not of gesture 101 and the end of gesture 103 has elapsed . 
segmented , the technique for detecting and classifying Therefore , the gesture detection and classification method 
dynamic hand gestures also does not rely on environmental 100 has a negative lag because the gesture is labeled before 
data to predict motions . The hand gestures that are detected 50 the end of the gesture is detected . 
and labeled may be static or dynamic gestures . Example Connectionist temporal classification ( CTC ) cost function 
hand gestures include moving either the hand or two fingers may be employed to train a neural network to implement the 
up , down , left or right ; clicking with the index finger ; gesture detection and classification method 100 and predict 
beckoning ; opening or shaking the hand ; showing the index class labels from in - progress gestures in unsegmented or 
finger , or two or three fingers ; pushing the hand up , down , 55 weakly segmented input streams . CTC enables gesture clas 
out or in ; rotating two fingers clockwise or counter - clock - sification to be based on the nucleus phase of the gesture , 
wise ; pushing two fingers forward ; closing the hand twice ; without requiring explicit pre - segmentation of the gestures 
and showing “ thumb up ” or “ OK ” . In one embodiment , the into their three temporal phases . Classification during the 
hand gesture also includes at least a portion of the person ' s nucleus phase results in a zero or negative lag , which is 
body in addition to their hand . 60 beneficial for designing responsive user interfaces . 

At step 120 , spatio - temporal features are extracted from FIG . 1C illustrates a block diagram of a system 125 for 
the unsegmented stream of data by a three - dimensional detecting and classifying dynamic hand gestures , in accor 
convolutional neural network ( 3DCNN ) . In one embodi - dance with one embodiment . The system 125 includes a 
ment , one or more additional streams of data associated with processor 130 and multiple sensors that may each provide 
the hand gesture are also received at step 110 . Each unseg - 65 one or more data streams to the processor 130 . Each one of 
mented stream of data includes data of one modality such as the sensors may provide a data stream of a different modality 
continuous depth , color , optical flow , stereo - IR , and IR that is captured or computed within a gesture environment . 
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The gesture environment includes a human that generates transformed into a feature representation f , by the 3D - CNN 
static or dynamic gestures using his or her hands , arms , 200 implementing a function F : 
torso , and / or head . The processor 130 may be a graphics F : Rkxlxcxm _ > R4 , where f = F ( C . ) , Equation ( 1 ) processor or any processor capable of performing the nec 
essary arithmetic operations of the method 100 . 5 by applying spatio - temporal filters to the data stream clip . 

A color sensor 117 may provide one or more frames of The 3D - CNN 200 includes a 3D convolution layer 205 , an 
color data ( RGB , YUV , etc . ) captured from a front view of activation layer 210 , a maximum pooling layer 215 , and one 
the gesture . In one embodiment , the color sensor 117 is a or more fully connected neural network layers 218 . In one 
camera . An optical flow sensor 115 may provide one or more embodiment , the 3D - CNN 200 includes multiple 3D con 
frames of optical flow data computed as flow vectors based 10 volution layers 205 , where each 3D convolution layer 205 is 
on two or more frames of color data . A depth sensor 116 may followed by an activation layer 210 , and a maximum pooling 
provide one or more frames of depth data indicating front layer 215 connected in series before the fully connected 
view distances to the gesture . A stereo IR sensor 118 may neural network layers 218 . The 3D convolution layer 205 
provide one or more frames of stereo IR data , where the performs 3D convolution in the spatial and temporal 
stereo IR data is encoded as pairs of images for each frame 15 domains using a multi - dimensional kernel that is determined 
producing a pair of data streams . The stereo IR data is when the R3DCNN 230 is trained . The activation layer 210 
captured from a top view of the gesture environment . An IR applies non - linear mapping of input data into another space , 
disparity sensor 119 may provide one or more frames of IR and may comprise a Rectified Linear Unit ( ReLU ) that maps 
disparity data computed from the pair of IR - stereo data negative inputs to zero , and positive inputs to their original 
streams . 20 value . The maximum pooling layer 205 applies a downsam 

The frames of data may be encoded as a multi - dimen - pling operator to reduce spatial and temporal dimensions of 
sional tensor in dimensions of x and y ( e . g . , frame size in internal multi - dimensional tensor . In one embodiment , the 
pixels ) , channels ( e . g . , RGB ) , and temporal length ( e . g . , maximum pooling layer 205 implements a maximum opera 
frame number ) . The processor 130 may be configured to tor that for every non - overlapping grid of 2x2x2 elements 
perform 3D convolution in the spatial and temporal 25 produces only a single value of the sub - tensor equal to the 
domains , activation functions , and maximum pooling opera - maximum value ; grids might be 2x2x1 , 1x2x2 , 2x1x2 , 
tions repeatedly before processing the data using fully 1x1x2 , 2x1x1 , 1x2x1 , where first two dimensions describe 
connected layers of a neural network to produce local size in spatial domain , and the third one in temporal domain . 
spatio - temporal features . A multi - dimensional kernel is FIG . 2B illustrates a block diagram of an R3DCNN 230 
applied as a filter during the 3D convolution . 30 for detecting and classifying dynamic hand gestures , in 

The local spatio - temporal features represent micro - level accordance with one embodiment . The 3D - CNN 200 is 
and / or short - term details of the gesture . In other words , the connected in series with a RNN 220 ( i . e . , recurrent layer ) 
local spatio - temporal features are features within a clip and a linear classifier 225 . 
including one or more frames or a short buffer of frames . The RNN 220 performs global temporal modeling , aggre 
The processor 130 then processes the local spatio - temporal 35 gating transitions across two or more clips of the data 
features using a recurrent layer to produce global spatio - stream . The recurrent network maintains a hidden state 
temporal features . The global spatio - temporal features rep - vector h - 1 , which is computed using previous data stream 
resent macro - level and / or long - term details of the gesture . In clips and previous local spatio - temporal features . An 
other words , the global spatio - temporal features are features updated hidden state vector for the current data stream clip , 
extracted over multiple clips . Finally , the processor 130 40 h , is computed using the local spatial - temporal features f 
processes the global spatio - temporal features using a soft - received from the 3D - CNN 200 and the hidden state vector 
max layer to predict class - conditional gesture probabilities h - 1 . The updated hidden state vector for the current data 
( e . g . , gesture labels ) . When data streams for more than one stream clip , h , , is input into the linear classifier 225 to 
modality are input to the processor 130 , the data stream for estimate class - conditional gesture probabilities , s , of the 
each modality may be processed separately and the resulting 45 various gestures in the data stream . In one embodiment , the 
modality - specific probabilities may be combined using aver - linear classifier 225 implements a softmax function . In one 
aging to produce the gesture label 102 . embodiment , the linear classifier 225 is replaced by a 

In one embodiment , the processor 130 receives input data support vector machine ( SVM ) classifier that computes 
streams sequentially as m - frame clips and outputs class class - conditional probabilities by operating on local spatial 
conditional probabilities after processing each clip ( m is a 50 temporal features f , or hidden state vectors h , extracted by 
positive integer ) . Generally the nucleus of the gesture spans the R3DCNN 230 . 
multiple clips , potentially enabling gesture classification Classification of gestures may be performed by splitting 
before processing all clips resulting in a negative lag . In one an entire data stream V into T clips of length m and 
embodiment , m = 8 . computing the set of class - conditional probabilities S = { So , 

55 S1 , . . . S7 - 1 } for each individual data stream clip . For offline 
Recurrent 3D Convolutional Neural Network ( i . e . , non - real time ) gesture classification , the probabilities 

( R3DCNN ) Architecture of all the data stream clips within the entire data stream and 
belonging to a gesture may be combined . For example , the 

FIG . 2A illustrates a block diagram of a 3D - CNN 200 for probabilities may be averaged to produce gavg = 1 / TESESS , 
detecting and classifying dynamic hand gestures , in accor - 60 and the predicted class is = argmax , ( [ save ] ; ) , across all 
dance with one embodiment . A gesture data stream ( e . g . , gesture classes i . In one embodiment , per - clip probabilities 
video ) is presented in the form of short clips C , of at least one s are used to compute per - clip gesture labels and the per - clip 
frame to the 3D - CNN 200 for extracting local spatial gesture labels may be combined to produce a gesture label 
temporal features , fr . for multiple clips of a data stream . 

A data stream clip ( e . g . , video clip ) is defined as a volume 65 FIG . 2C illustrates a block diagram of multiple 
CER kxlxcxm of m?l sequential frames with c channels of R3DCNNs 230 for detecting and classifying dynamic hand 
size kxl pixels ending at time t . Each data stream clip is gestures using multiple modalities , in accordance with one 
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embodiment . In one embodiment , R3DCNNs 230 are sepa with weights WSER wxd , bias bER " , and a softmax func 
rately trained for each modality and , when fusing modalities , tion S : RW R W , where ( S ( x ) ] ; = eti / 2 , etk The label for 
the class - conditional probability vectors may be averaged the gesture class w having the highest probability is output 
geometrically or algebraically . Each R3DCNN 230 receives as the gesture label . 
a data stream associated with a separate modality and a 5 FIG . 2E illustrates another flowchart of a method 255 for 
combiner 235 combines the class - conditional probability detecting and classifying dynamic hand gestures during 
vectors to produce a gesture label . In one embodiment , inferencing , in accordance with one embodiment . At step 
class - conditional probability vectors are averaged across 256 , a data stream clip for a modality is received by the 
modalities for each data stream clip to produce the gesture R3DCNN 230 or 250 . At step 260 , the 3DCNN 200 extracts 
label . In one embodiment , local spatial - temporal features f , 10 local spatio - temporal features from the data stream clip . At 

step 262 , the RNN 220 extracts global spatio - temporal or hidden state vectors h , may be averaged across data features from the local spatio - temporal features and the stream clips and normalized by the respective 12 - norms to hidden state of the previous clip ( i . e . , the global spatio form a single representation for the entire data stream . temporal features from the previous clip ) . At step 265 , a TABLE 1 contains the accuracy for various combinations softmax layer processes the global spatio - temporal features 
of sensor modalities . Observe that fusing any pair of sensors 15 to generate class - conditional probability vector . A class 
improves individual results . In addition , combining different conditional probability value is generated for each possible 
modalities of the same sensor ( e . g . , color and optical flow ) gesture class and the no gesture class to generate a class 
also improves the accuracy . The highest gesture recognition conditional probability vector . The class - conditional prob 
accuracy ( 83 . 8 % ) is observed for the combination of all ability values generated for each modality sum to one ( e . g . , 
modalities . 100 % ) . 

TABLE 1 
Comparison of modalities and combinations 

Sensor Accuracy Combination 

x 
X 

x 
X X X 

XX X X 

Depth 80 . 3 % 
Optical flow 77 . 8 % 
Color 74 . 1 % 
IR image 63 . 5 % 
IR disparity 57 . 8 % 

Fusion Accuracy % 
X 
? 

66 . 2 79 . 3 
X 

81 . 5 82 . 0 82 . 0 82 . 4 82 . 6 83 . 2 83 . 4 83 . 8 

50 

FIG . 2D illustrates a conceptual block diagram of an At step 268 , a class label is produced for the hand gesture 
R3DCNN 250 for detecting and classifying dynamic hand 35 based on the gesture probability values . In one embodiment , 
gestures , in accordance with one embodiment . In addition to the combiner 235 combines the class - conditional probability 
the 3D - CNN 200 , RNN 220 , and linear classifier 225 , the vectors for two or more modalities to produce the gesture 
R3DCNN 250 includes a connectionist temporal classifica - label . In one embodiment , the class label is produced for a 
tion unit ( CTC ) 240 . During training , the CTC 240 is used class - conditional probability vector corresponding to one 
to implement a cost function and during inference , the CTC 40 modality and one data stream clip . In one embodiment , the 
240 is not used . As understood by those skilled in the art , class label is produced for class - conditional probability 
CTC is a cost function designed for training a CNN on a vectors corresponding to one modality and multiple data 
sequence that is unsegmented or weakly segmented . The stream clips . In one embodiment , the class label is produced 
CTC 240 implements a CTC forward algorithm that iden - for class - conditional probability vectors corresponding to 
tifies and correctly labels the nucleus of the gesture , while 45 multiple modalities and one data stream clip . In one embodi 
assigning a no gesture class to the remaining clips , address - ment , the class label is produced for class - conditional prob 
ing the alignment of class labels to particular clips in the data ability vectors corresponding to multiple modalities and 
stream . When the R3DCNN 250 is used for inferencing , the multiple data stream clips . 
CTC 240 may be replaced with the combiner 235 . 

The R3DCNN 250 receives a data stream partitioned into » Training 
a sequence of clips ( C , C4 + 19 . . , C + x ) and each 3D - CNN FIG . 2F illustrates a flowchart of a method for training the 
200 processes one clip in the sequence of clips to produce R3DCNN 230 or 250 for gesture detection and labeling , in 
the local spatial - temporal features ( f . , fj + 1 , . . . fr + N ) . Each accordance with one embodiment . At step 272 , a training 
RNN 220 computes the hidden state vector h , ER “ as a 55 data stream associated with a hand gesture is received by the 
function of the hidden state of the previous clip h2 - 1 and the R3DCNN 230 or 250 . In one embodiment , X = { V o , 
feature representation of the current clip f : V , . . . , pl } is a mini - batch of training examples in the 

form of weakly - segmented gesture videos V ; . Note that hE = R ( Winfi + WyHx - 1 ) , Equation ( 2 ) weakly - segmented videos contain the preparation , nucleus , 
with weight matrices WinER dxq and WER dxd . During 60 and retraction phases and frames from the no gesture class . 
training , a truncated rectified linear unit R : Rd > R " , Each video consists of T clips , making X a set of N = T : P 
R ( x ) = min ( max ( 0 , x ) , 4 ) may be used by the RNN 220 to clips . Class labels y ; are drawn from the alphabet A to form 

limit gradient explosion . Finally , the linear classifier 225 a vector of class labels y with size lyl = P . 
transforms the hidden state vector h , into class - conditional In one embodiment , the 3D - CNN 200 is initialized with 
probabilities sy of w classes : 65 the C3D network trained on the large - scale Sport - 1M human 

recognition dataset . The network has 8 convolutional layers 
Sq = S ( Wh + b ) of 3x3x3 filters and 2 fully - connected neural network layers 
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trained on 16 - frame clips . In one embodiment , a softmax The dictionary of existing gestures is extended to include 
prediction layer is appended to the last fully - connected a no gesture class : A ' = A U { no gesture } . Consequently , the 
neural network layer and the 3D - CNN 200 is fine - tuned by linear classifier 225 outputs a class - conditional probability 
back - propagation with negative log - likelihood to predict for this additional no gesture class . Instead of averaging 
gestures classes from individual clips C ; . 5 predictions across training data stream clips in a pre - seg 
At step 275 , the 3D convolution layer 205 performs 3D mented data stream , the R3DCNN 230 or 250 computes the 

convolution on the training data stream to produce feature probability of observing a particular gesture ( or no gesture ) 
maps . Each feature map corresponds to a different semantic k at time t in an unsegmented training data stream X : p?k , 
feature extracted from the input stream . Feature maps are t | X ) = s , VtE [ 0 , N ) . 
recomputed for different modalities and different input clips . 10 A path or is defined as a possible mapping of the unseg 

mented training data stream X into a sequence of class At step 278 , a portion of the feature maps are removed and labels y . The probability of observing path o is partl remaining feature maps are scaled proportionally . In one X ) = II , 3 , 4 , where it , is the class label predicted at time t in embodiment , the feature maps are randomly selected for path n . 
drop - out and each selected feature map is set to zero to 15 Paths are mapped into a sequence of event labels y by remove the feature map . Employing feature map drop - out operator B as y = B ( IT ) , condensing repeated class labels 
when training the 3D - CNN 200 from scratch provided little and removing no gesture labels , e . g . , B ( [ - , 1 , 2 , - , - 1 ) = 
or no improvement in hand gesture recognition . However , B ( [ 1 , 1 , - , 2 , - 1 ) = [ 1 , 2 ] , where 1 , 2 are actual gesture classes 
when the 3D - CNN 200 is pre - trained on a larger dataset with and “ _ ” is no gesture . Under B , many paths o result in the 
more classes and then fine - tuned for a smaller domain with 20 same event sequence y . The probability of observing a 
fewer training examples and classes , not all of the original particular sequence y given an input sequence X is the sum 
feature maps are likely to exhibit strong activations for the of the conditional probabilities of all paths mapping to that 
new training data streams , resulting in overfitting during the sequence , B - 1 ( y ) = { st : B ( IT ) = y } : 
fine - tuning . Dropping feature maps in the convolution layers 
205 improves generalization in pre - trained networks . The 25 pylu ) = TEB - 1 ( v \ P ( TI ) . 
accuracies of the 3D - CNN 200 are improved for all modali - Computation of p ( y | X ) is simplified by dynamic pro 
ties when the 3D - CNN 200 is trained using feature map gramming . An assistant vector y is generated by adding a no 
drop - out . In one embodiment , a drop - out rate of 10 % is used gesture label before and after each training data stream clip 
to remove a portion of the feature maps for one or more data in y , so that y contains lýl = P = 2P + 1 labels . Then , a forward 
streams and activations of each remaining feature map are 30 variable aER NXP is computed , where a , ( u ) is the combined 
scaled by 1 . 1 during a training procedure ; at inference time , probability of all mappings of events up to training data 
all feature maps have no additional scaling . stream clip t and event u . The transition function for a is : 
At step 280 , a class label is produced for the hand gesture 

based on the spatio - temporal features . At first , feature maps 
from the last 3D convolutional layer of the 3D - CNN 200 are 35 Q : ( u ) = 5x ( @ t - 1 ( u ) + Qt - 1 ( u – 1 ) + Bt - 1 ( u – 2 ) ) , vectorized and passed through fully connected layers 218 
followed by the recurrent layer 220 . The output of the where 

recurrent layer 220 is fed into the linear classifier 225 to ar ( u ) , if Yu + 1 = no gesture and Yu + Yu + 2 produce output class conditional probabilities . The CTC 240 Bi ( u ) = ? 
otherwise computes the probability of the sequence and , given a 40 

ground truth sequence , propagates errors to the preceding 
layer . Given the error in estimate , each layer updates its and ? , denotes the class label of event u . The forward 
parameters in the direction of error reduction and propagates variable is initialized with co ( 0 ) = sto , the probability of a 
any remaining error to reduce errors . In one embodiment , path beginning with ºo = no gesture , and ao ( 1 ) = s , the 
the training procedure is implemented as stochastic gradient 45 probability of a path starting with the first actual event ?? : 
descent with momentum . The training procedure may be Since a valid path cannot begin with a later event , a . ( i ) is 
repeated iteratively until convergence is achieved . initialized : a . ( i ) = 0 Vi > 1 . At each time step t > 0 , paths in 

After fine - tuning the 3D - CNN 200 , the entire R3DCNN which the event u is currently active ( with probability gir ) 
230 or 250 is trained with back - propagation - through - time are considered and ( 1 ) remains unchanged from the previous 
( BPTT ) . BPTT is equivalent to unrolling the recurrent 50 time t - 1 ( Qx - 1 ( u ) ) , ( 2 ) changes from no gesture to the next 
layers , transforming the recurrent layers into a multi - layer actual gesture or vice versa ( at _ 1 ( u - 1 ) ) , or ( 3 ) transitions 
feed - forward network , applying standard gradient - based from one actual gesture to the next while skipping no gesture 
back - propagation , and averaging the gradients to consoli - if the two gestures have distinct labels ( Pt - 1 ( u - 2 ) ) . Finally , 
date updates to weights duplicated by unrolling . any valid path it must end at time N - 1 with the last actual 

Two training cost functions may be considered : negative 55 gesture or with no gesture ºp - or with no gesture Ýp? , hence 
log - likelihood for the entire training data stream and CTC p ( yl X ) = 2x - 1 ( P - 1 ) + ax - 1 ( P ' ) . 
for training data stream clips . The negative log - likelihood Using this computation for p?yl X ) , the CTC loss is : 
function for a mini - batch of training data streams is : E ctc - In ( p \ \ X ) ) , 

60 expressed in the log domain . While CTC is used as a training 
cost function only , it affects the architecture of the network 
by adding the extra no gesture class label . For pre - seg 
mented data stream classification , the no gesture output is 
removed and probabilities are renormalized by the 1 , - norm 

where p ( y ; IV : ) = [ savg ] yi is the probability of gesture label yi 65 after modality fusion . 
given training data stream ( e . g . , video ) Vias predicted by In one embodiment , to optimize the network parameters 
the R3DCNN 230 or 250 . W with respect to either of the loss functions stochastic 

L = 1080P / IV . ) , 
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gradient descent ( SGD ) is used with a momentum term 
u = 0 . 9 . Each parameter of the network DEW is updated at 
every back - propagation step i by : 

In one embodiment , the R3DCNN 230 or 250 that is 
trained using training data streams generated by a particular 
sensor for a modality is used to accurately detect and classify 
gestures captured using a different sensor for the same 
modality . As a result of the training techniques , the accuracy 
of the R3DCNN 230 or 250 may be used to detect and 
classify gestures captured using a variety of sensors for a 
modality , even when the R3DCNN 230 or 250 is trained 
using a different sensor for the modality . 

0 ; = 0 ; - 1 + V ; - y10 : - 1 , 

vi = Hvi = - 19 ( Vi = uvi - 1 - ) od batch 

10 
where à is the learning rate , Parallel Processing Architecture 

FIG . 3 illustrates a parallel processing unit ( PPU ) 300 , in 
accordance with one embodiment . The PPU 300 may be 

100 l batch 15 configured to implement the system 125 and one or more 
layers of the R3DCNN 230 or 250 . 

is the gradient value of the chosen cost function E with In one embodiment , the PPU 300 is a multi - threaded 
respect to the parameter 0 averaged over the mini - batch , and processor that is implemented on one or more integrated 
y is the weight decay parameter . To prevent gradient explo - circuit devices . The PPU 300 is a latency hiding architecture 
sion in the recurrent layers during training , a soft gradient 20 designed to process a large number of threads in parallel . A 
clipping operator I ) is applied with a threshold of 10 . thread ( i . e . , a thread of execution ) is an instantiation of a set 

In addition to drop - out for feature maps , a number of of instructions configured to be executed by the PPU 300 . In 
regularization techniques may be employed to reduce over - one embodiment , the PPU 300 is a graphics processing unit 
fitting . For example , a weight decay ( Y = 0 . 5 % ) may be used ( GPU ) configured to implement a graphics rendering pipe 
for all weights in the network . Drop - out may be applied to 25 line for processing three - dimensional ( 3D ) graphics data in 
the fully - connected layers of the 3D - CNN 200 . In one order to generate two - dimensional ( 2D ) image data for 
embodiment , a drop - out rate of p = 75 % is used and the display on a display device such as a liquid crystal display 
remaining activations are rescaled by a factor of 1 / ( 1 - P ) . ( LCD ) device . In other embodiments , the PPU 300 may be 

In one embodiment , during training , the 3D - CNN 200 is utilized for performing general - purpose computations . 
fine - tuned for 16 epochs with an initial learning rate of 30 While one exemplary parallel processor is provided herein 
a = 3x10 - 3 , reducing by a factor of 10 after every 4 epochs for illustrative purposes , it should be strongly noted that 
Next , the R3DCNN 230 or 250 is trained end - to - end for an such processor is set forth for illustrative purposes only , and 
additional 100 epochs with a constant learning rate of that any processor may be employed to supplement and / or 
à = 3x10 - 4 . All network parameters without pre - trained ini - substitute for the same . 
tializations are randomly sampled from a zero - mean Gauss - 35 As shown in FIG . 3 , the PPU 300 includes an Input / 
ian distribution with a standard deviation 0 . 01 . Output ( I / O ) unit 305 , a host interface unit 310 , a front end 

In one embodiment , each training data stream of a unit 315 , a scheduler unit 320 , a work distribution unit 325 , 
weakly - segmented gesture is stored with 80 frames of a hub 330 , a crossbar ( Xbar ) 370 , one or more general 
120x160 pixels and training is completed with frames of processing clusters ( GPCs ) 350 , and one or more partition 
size 112x112 generated by random crops . Videos from the 40 units 380 . The PPU 300 may be connected to a host 
test set are evaluated with the central crop of each frame . To processor or other peripheral devices via a system bus 302 . 
increase variability in the training examples , additional data The PPU 300 may also be connected to a local memory 
augmentation steps may be applied to each video in addition comprising a number of memory devices 304 . In one 
to cropping . For example , one or more of random spatial embodiment , the local memory may comprise a number of 
rotation , scaling , temporal scaling , and jittering may also be 45 dynamic random access memory ( DRAM ) devices . 
applied to the video . The parameters for each augmentation The I / O unit 305 is configured to transmit and receive 
step may be drawn from a uniform distribution with a communications ( i . e . , commands , data , etc . ) from a host 
specified range . Since recurrent connections can learn the processor ( not shown ) over the system bus 302 . The I / O unit 
specific order of data streams in the training set , the training 305 may communicate with the host processor directly via 
gesture data streams may be randomly permuted for each 50 the system bus 302 or through one or more intermediate 
training epoch . devices such as a memory bridge . In one embodiment , the 

In on embodiment , the 3D - CNNs 200 may be pre - trained 1 / 0 unit 305 implements a Peripheral Component Intercon 
on three - channel RGB images . To apply the pre - trained nect Express ( PCIe ) interface for communications over a 
3D - CNN 200 to one - channel depth or IR images , the con - PCIe bus . In alternative embodiments , the I / O unit 305 may 
volutional kernels for the three channels of the first layer 55 implement other types of well - known interfaces for com 
may be summed to obtain one kernel . Similarly , to employ m unicating with external devices . 
the pre - trained 3D - CNNs 200 with two - channel inputs ( e . g . The I / O unit 305 is coupled to a host interface unit 310 
optical flow ) , the third channel of each kernel may be that decodes packets received via the system bus 302 . In one 
removed and the remaining two channels may be rescaled by embodiment , the packets represent commands configured to 
a factor of 1 . 5 . 60 cause the PPU 300 to perform various operations . The host 

In one embodiment , for the 3D - CNN 200 , splitting a interface unit 310 transmits the decoded commands to 
gesture into non - overlapping clips of m = 8 frames yields the various other units of the PPU 300 as the commands may 
best combination of classification accuracy , computational specify . For example , some commands may be transmitted 
complexity and prediction latency . To work with clips of size to the front end unit 315 . Other commands may be trans 
m = 8 frames on the C3D network ( originally trained with 65 mitted to the hub 330 or other units of the PPU 300 such as 
m = 16 frames ) , temporal pooling is removed after the last one or more copy engines , a video encoder , a video decoder , 
convolutional layer . a power management unit , etc . ( not explicitly shown ) . In 
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other words , the host interface unit 310 is configured to route implement a memory interface for reading and writing data 
communications between and among the various logical to / from the memory 304 . In one embodiment , the PPU 300 
units of the PPU 300 . includes a number U of partition units 380 that is equal to the 

In one embodiment , a program executed by the host number of separate and distinct memory devices 304 
processor encodes a command stream in a buffer that pro - 5 coupled to the PPU 300 . A partition unit 380 will be 
vides workloads to the PPU 300 for processing . A workload described in more detail below in conjunction with FIG . 4B . 
may comprise a number of instructions and data to be In one embodiment , a host processor executes a driver 
processed by those instructions . The buffer is a region in a kernel that implements an application programming inter 
memory that is accessible ( i . e . , read / write ) by both the host face ( API ) that enables one or more applications executing 
processor and the PPU 300 . For example , the host interface 10 on the host processor to schedule operations for execution 
unit 310 may be configured to access the buffer in a system on the PPU 300 . An application may generate instructions 
memory connected to the system bus 302 via memory ( i . e . , API calls ) that cause the driver kernel to generate one 
requests transmitted over the system bus 302 by the I / O unit or more tasks for execution by the PPU 300 . The driver 
305 . In one embodiment , the host processor writes the kernel outputs tasks to one or more streams being processed 
command stream to the buffer and then transmits a pointer 15 by the PPU 300 . Each task may comprise one or more 
to the start of the command stream to the PPU 300 . The host groups of related threads , referred to herein as a warp . A 
interface unit 310 provides the front end unit 315 with thread block may refer to a plurality of groups of threads 
pointers to one or more command streams . The front end including instructions to perform the task . Threads in the 
unit 315 manages the one or more streams , reading com - same group of threads may exchange data through shared 
mands from the streams and forwarding commands to the 20 memory . In one embodiment , a group of threads comprises 
various units of the PPU 300 . 32 related threads . 

The front end unit 315 is coupled to a scheduler unit 320 FIG . 4A illustrates a GPC 350 of the PPU 300 of FIG . 3 , 
that configures the various GPCs 350 to process tasks in accordance with one embodiment . As shown in FIG . 4A , 
defined by the one or more streams . The scheduler unit 320 each GPC 350 includes a number of hardware units for 
is configured to track state information related to the various 25 processing tasks . In one embodiment , each GPC 350 
tasks managed by the scheduler unit 320 . The state may includes a pipeline manager 410 , a pre - raster operations unit 
indicate which GPC 350 a task is assigned to , whether the ( PROP ) 415 , a raster engine 425 , a work distribution cross 
task is active or inactive , a priority level associated with the bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 
task , and so forth . The scheduler unit 320 manages the and one or more Texture Processing Clusters ( TPCs ) 420 . It 
execution of a plurality of tasks on the one or more GPCs 30 will be appreciated that the GPC 350 of FIG . 4A may include 
350 . other hardware units in lieu of or in addition to the units 

The scheduler unit 320 is coupled to a work distribution shown in FIG . 4A . 
unit 325 that is configured to dispatch tasks for execution on In one embodiment , the operation of the GPC 350 is 
the GPCs 350 . The work distribution unit 325 may track a controlled by the pipeline manager 410 . The pipeline man 
number of scheduled tasks received from the scheduler unit 35 ager 410 manages the configuration of the one or more TPCs 
320 . In one embodiment , the work distribution unit 325 420 for processing tasks allocated to the GPC 350 . In one 
manages a pending task pool and an active task pool for each embodiment , the pipeline manager 410 may configure at 
of the GPCs 350 . The pending task pool may comprise a least one of the one or more TPCs 420 to implement at least 
number of slots ( e . g . , 32 slots ) that contain tasks assigned to a portion of a graphics rendering pipeline . For example , a 
be processed by a particular GPC 350 . The active task pool 40 TPC 420 may be configured to execute a vertex shader 
may comprise a number of slots ( e . g . , 4 slots ) for tasks that program on the programmable streaming multiprocessor 
are actively being processed by the GPCs 350 . As a GPC 350 ( SM ) 440 . The pipeline manager 410 may also be configured 
finishes the execution of a task , that task is evicted from the to route packets received from the work distribution unit 325 
active task pool for the GPC 350 and one of the other tasks to the appropriate logical units within the GPC 350 . For 
from the pending task pool is selected and scheduled for 45 example , some packets may be routed to fixed function 
execution on the GPC 350 . If an active task has been idle on hardware units in the PROP 415 and / or raster engine 425 
the GPC 350 , such as while waiting for a data dependency while other packets may be routed to the TPCs 420 for 
to be resolved , then the active task may be evicted from the processing by the primitive engine 435 or the SM 440 . 
GPC 350 and returned to the pending task pool while The PROP unit 415 is configured to route data generated 
another task in the pending task pool is selected and sched - 50 by the raster engine 425 and the TPCs 420 to a Raster 
uled for execution on the GPC 350 . Operations ( ROP ) unit in the partition unit 380 , described in 

The work distribution unit 325 communicates with the more detail below . The PROP unit 415 may also be config 
one or more GPCs 350 via XBar 370 . The XBar 370 is an ured to perform optimizations for color blending , organize 
interconnect network that couples many of the units of the pixel data , perform address translations , and the like . 
PPU 300 to other units of the PPU 300 . For example , the 55 The raster engine 425 includes a number of fixed function 
XBar 370 may be configured to couple the work distribution hardware units configured to perform various raster opera 
unit 325 to a particular GPC 350 . Although not shown tions . In one embodiment , the raster engine 425 includes a 
explicitly , one or more other units of the PPU 300 are setup engine , a course raster engine , a culling engine , a 
coupled to the host interface unit 310 . The other units may clipping engine , a fine raster engine , and a tile coalescing 
also be connected to the XBar 370 via a hub 330 . 60 engine . The setup engine receives transformed vertices and 

The tasks are managed by the scheduler unit 320 and generates plane equations associated with the geometric 
dispatched to a GPC 350 by the work distribution unit 325 . primitive defined by the vertices . The plane equations are 
The GPC 350 is configured to process the task and generate transmitted to the coarse raster engine to generate coverage 
results . The results may be consumed by other tasks within information ( e . g . , an x , y coverage mask for a tile ) for the 
the GPC 350 , routed to a different GPC 350 via the XBar 65 primitive . The output of the coarse raster engine may 
370 , or stored in the memory 304 . The results can be written transmitted to the culling engine where fragments associated 
to the memory 304 via the partition units 380 , which with the primitive that fail a z - test are culled , and transmitted 
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16 
to a clipping engine where fragments lying outside a view - 128 - bit data buses , or the like , for high - speed data transfer . 
ing frustum are clipped . Those fragments that survive clip - In one embodiment , the PPU 300 comprises U memory 
ping and culling may be passed to a fine raster engine to interfaces 470 , one memory interface 470 per partition unit 
generate attributes for the pixel fragments based on the plane 380 , where each partition unit 380 is connected to a corre 
equations generated by the setup engine . The output of the 5 sponding memory device 304 . For example , PPU 300 may 
raster engine 425 comprises fragments to be processed , for be connected to up to U memory devices 304 , such as 
example , by a fragment shader implemented within a TPC graphics double - data - rate , version 5 , synchronous dynamic 
420 . random access memory ( GDDR5 SDRAM ) . In one embodi 

Each TPC 420 included in the GPC 350 includes an ment , the memory interface 470 implements a DRAM 
M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , one 10 interface and U is equal to 8 . 
or more SMS 440 , and one or more texture units 445 . The In one embodiment , the PPU 300 implements a multi 
MPC 430 controls the operation of the TPC 420 , routing level memory hierarchy . The memory 304 is located off - chip 
packets received from the pipeline manager 410 to the in SDRAM coupled to the PPU 300 . Data from the memory 
appropriate units in the TPC 420 . For example , packets 304 may be fetched and stored in the L2 cache 460 , which 
associated with a vertex may be routed to the primitive 15 is located on - chip and is shared between the various GPCs 
engine 435 , which is configured to fetch vertex attributes 350 . As shown , each partition unit 380 includes a portion of 
associated with the vertex from the memory 304 . In contrast , the L2 cache 460 associated with a corresponding memory 
packets associated with a shader program may be transmit - device 304 . Lower level caches may then be implemented in 
ted to the SM 440 . various units within the GPCs 350 . For example , each of the 

In one embodiment , the texture units 445 are configured 20 SMS 440 may implement a level one ( L1 ) cache . The L1 
to load texture maps ( e . g . , a 2D array of texels ) from the cache is private memory that is dedicated to a particular SM 
memory 304 and sample the texture maps to produce 440 . Data from the L2 cache 460 may be fetched and stored 
sampled texture values for use in shader programs executed in each of the Ll caches for processing in the functional 
by the SM 440 . The texture units 445 implement texture units of the SMS 440 . The L2 cache 460 is coupled to the 
operations such as filtering operations using mip - maps ( i . e . , 25 memory interface 470 and the XBar 370 . 
texture maps of varying levels of detail ) . The texture unit The ROP unit 450 includes a ROP Manager 455 , a Color 
445 is also used as the Load / Store path for SM 440 to MMU ROP ( CROP ) unit 452 , and a Z ROP ( ZROP ) unit 454 . The 
490 . In one embodiment , each TPC 420 includes two ( 2 ) CROP unit 452 performs raster operations related to pixel 
texture units 445 . color , such as color compression , pixel blending , and the 

The SM 440 comprises a programmable streaming pro - 30 like . The ZROP unit 454 implements depth testing in con 
cessor that is configured to process tasks represented by a junction with the raster engine 425 . The ZROP unit 454 
number of threads . Each SM 440 is multi - threaded and receives a depth for a sample location associated with a pixel 
configured to execute a plurality of threads ( e . g . , 32 threads ) fragment from the culling engine of the raster engine 425 . 
from a particular group of threads concurrently . In one The ZROP unit 454 tests the depth against a corresponding 
embodiment , the SM 440 implements a SIMD ( Single - 35 depth in a depth buffer for a sample location associated with 
Instruction , Multiple - Data ) architecture where each thread the fragment . If the fragment passes the depth test for the 
in a group of threads ( i . e . , a warp ) is configured to process sample location , then the ZROP unit 454 updates the depth 
a different set of data based on the same set of instructions . buffer and transmits a result of the depth test to the raster 
All threads in the group of threads execute the same instruc - engine 425 . The ROP Manager 455 controls the operation of 
tions . In another embodiment , the SM 440 implements a 40 the ROP unit 450 . It will be appreciated that the number of 
SIMT ( Single - Instruction , Multiple Thread ) architecture partition units 380 may be different than the number of 
where each thread in a group of threads is configured to GPCs 350 and , therefore , each ROP unit 450 may be 
process a different set of data based on the same set of coupled to each of the GPCs 350 . Therefore , the ROP 
instructions , but where individual threads in the group of Manager 455 tracks packets received from the different 
threads are allowed to diverge during execution . In other 45 GPCs 350 and determines which GPC 350 that a result 
words , when an instruction for the group of threads is generated by the ROP unit 450 is routed to . The CROP unit 
dispatched for execution , some threads in the group of 452 and the ZROP unit 454 are coupled to the L2 cache 460 
threads may be active , thereby executing the instruction , via an L2 XBar 465 . 
while other threads in the group of threads may be inactive , FIG . 5 illustrates the streaming multi - processor 440 of 
thereby performing a no - operation ( NOP ) instead of execut - 50 FIG . 4A , in accordance with one embodiment . As shown in 
ing the instruction . The SM 440 may be described in more FIG . 5 , the SM 440 includes an instruction cache 505 , one 
detail below in conjunction with FIG . 5 . or more scheduler units 510 , a register file 520 , one or more 

The MMU 490 provides an interface between the GPC processing cores 550 , one or more special function units 
350 and the partition unit 380 . The MMU 490 may provide ( SFUS ) 552 , one or more load / store units ( LSUS ) 554 , an 
translation of virtual addresses into physical addresses , 55 interconnect network 580 , a shared memory / L1 cache 570 . 
memory protection , and arbitration of memory requests . In As described above , the work distribution unit 325 dis 
one embodiment , the MMU 490 provides one or more patches tasks for execution on the GPCs 350 of the PPU 300 . 
translation lookaside buffers ( TLBs ) for improving transla - The tasks are allocated to a particular TPC 420 within a GPC 
tion of virtual addresses into physical addresses in the 350 and , if the task is associated with a shader program , the 
memory 304 . 60 task may be allocated to an SM 440 . The scheduler unit 510 

FIG . 4B illustrates a memory partition unit 380 of the receives the tasks from the work distribution unit 325 and 
PPU 300 of FIG . 3 , in accordance with one embodiment . As manages instruction scheduling for one or more groups of 
shown in FIG . 4B , the memory partition unit 380 includes a threads ( i . e . , warps ) assigned to the SM 440 . The scheduler 
Raster Operations ( ROP ) unit 450 , a level two ( L2 ) cache unit 510 schedules threads for execution in groups of 
460 , a memory interface 470 , and an L2 crossbar ( XBar ) 65 parallel threads , where each group is called a warp . In one 
465 . The memory interface 470 is coupled to the memory embodiment , each warp includes 32 threads . The scheduler 
304 . Memory interface 470 may implement 16 , 32 , 64 , unit 510 may manage a plurality of different warps , sched 
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uling the warps for execution and then dispatching instruc - unique results , using the SM 440 to execute the program and 
tions from the plurality of different warps to the various perform calculations , shared memory / L1 cache 570 com 
functional units ( i . e . , cores 550 , SFUs 552 , and LSUs 554 ) municate between threads , and the LSU 554 to read and 
during each clock cycle . write Global memory through partition shared memory / L1 

In one embodiment , each scheduler unit 510 includes one 5 cache 570 and partition unit 380 . 
or more instruction dispatch units 515 . Each dispatch unit W hen configured for general purpose parallel computa 
515 is configured to transmit instructions to one or more of tion , the SM 440 can also write commands that scheduler 
the functional units . In the embodiment shown in FIG . 5 , the unit 320 can use to launch new work on the TPCs 420 . 
scheduler unit 510 includes two dispatch units 515 that In one embodiment , the PPU 300 comprises a graphics 
enable two different instructions from the same warp to be 10 processing unit ( GPU ) . The PPU 300 is configured to 
dispatched during each clock cycle . In alternative embodi - receive commands that specify shader programs for process 
ments , each scheduler unit 510 may include a single dispatch ing graphics data . Graphics data may be defined as a set of 
unit 515 or additional dispatch units 515 . primitives such as points , lines , triangles , quads , triangle 

Each SM 440 includes a register file 520 that provides a strips , and the like . Typically , a primitive includes data that 
set of registers for the functional units of the SM 440 . In one 15 specifies a number of vertices for the primitive ( e . g . , in a 
embodiment , the register file 520 is divided between each of model - space coordinate system ) as well as attributes asso 
the functional units such that each functional unit is allo - ciated with each vertex of the primitive . The PPU 300 can 
cated a dedicated portion of the register file 520 . In another be configured to process the graphics primitives to generate 
embodiment , the register file 520 is divided between the a frame buffer ( i . e . , pixel data for each of the pixels of the 
different warps being executed by the SM 440 . The register 20 display ) . 
file 520 provides temporary storage for operands connected An application writes model data for a scene ( i . e . , a 
to the data paths of the functional units . collection of vertices and attributes ) to a memory such as a 

Each SM 440 comprises L processing cores 550 . In one system memory or memory 304 . The model data defines 
embodiment , the SM 440 includes a large number ( e . g . , 128 , each of the objects that may be visible on a display . The 
etc . ) of distinct processing cores 550 . Each core 550 may 25 application then makes an API call to the driver kernel that 
include a fully - pipelined , single - precision processing unit requests the model data to be rendered and displayed . The 
that includes a floating point arithmetic logic unit and an driver kernel reads the model data and writes commands to 
integer arithmetic logic unit . The core 550 may also include the one or more streams to perform operations to process the 
a double - precision processing unit including a floating point model data . The commands may reference different shader 
arithmetic logic unit . In one embodiment , the floating point 30 programs to be implemented on the SMS 440 of the PPU 300 
arithmetic logic units implement the IEEE 754 - 2008 stan - including one or more of a vertex shader , hull shader , 
dard for floating point arithmetic . Each SM 440 also com domain shader , geometry shader , and a pixel shader . For 
prises M SFUS 552 that perform special functions ( e . g . , example , one or more of the SMS 440 may be configured to 
attribute evaluation , reciprocal square root , and the like ) , and execute a vertex shader program that processes a number of 
NLSUS 554 that implement load and store operations 35 vertices defined by the model data . In one embodiment , the 
between the shared memory / L1 cache 570 and the register different SMS 440 may be configured to execute different 
file 520 . In one embodiment , the SM 440 includes 128 cores shader programs concurrently . For example , a first subset of 
550 , 32 SFUs 552 , and 32 LSUs 554 . SMS 440 may be configured to execute a vertex shader 

Each SM 440 includes an interconnect network 580 that program while a second subset of SMs 440 may be config 
connects each of the functional units to the register file 520 40 ured to execute a pixel shader program . The first subset of 
and the LSU 554 to the register file 520 , shared memory / L1 SMs 440 processes vertex data to produce processed vertex 
cache 570 . In one embodiment , the interconnect network data and writes the processed vertex data to the L2 cache 460 
580 is a crossbar that can be configured to connect any of the and / or the memory 304 . After the processed vertex data is 
functional units to any of the registers in the register file 520 rasterized ( i . e . , transformed from three - dimensional data 
and connect the LSUS 554 to the register file and memory 45 into two - dimensional data in screen space ) to produce 
locations in shared memory / L1 cache 570 . fragment data , the second subset of SMS 440 executes a 

The shared memory / L1 cache 570 is an array of on - chip pixel shader to produce processed fragment data , which is 
memory that allows for data storage and communication then blended with other processed fragment data and written 
between the SM 440 and the primitive engine 435 and to the frame buffer in memory 304 . The vertex shader 
between threads in the SM 440 . In one embodiment , the 50 program and pixel shader program may execute concur 
shared memory / L1 cache 570 comprises 64 KB of storage rently , processing different data from the same scene in a 
capacity and is in the path from the SM 440 to the partition pipelined fashion until all of the model data for the scene has 
unit 380 . The shared memory / L1 cache 570 can be used to been rendered to the frame buffer . Then , the contents of the 
cache reads and writes . frame buffer are transmitted to a display controller for 

The PPU 300 described above may be configured to 55 display on a display device . 
perform highly parallel computations much faster than con The PPU 300 may be included in a desktop computer , a 
ventional CPUs . Parallel computing has advantages in laptop computer , a tablet computer , a smart - phone ( e . g . , a 
graphics processing , data compression , biometrics , stream wireless , hand - held device ) , personal digital assistant 
processing algorithms , and the like . ( PDA ) , a digital camera , a hand - held electronic device , and 
When configured for general purpose parallel computa - 60 the like . In one embodiment , the PPU 300 is embodied on a 

tion , a simpler configuration can be used . In this model , as single semiconductor substrate . In another embodiment , the 
shown in FIG . 3 , fixed function graphics processing units are PPU 300 is included in a system - on - a - chip ( SoC ) along with 
bypassed , creating a much simpler programming model . In one or more other logic units such as a reduced instruction 
this configuration , the work distribution unit 325 assigns and set computer ( RISC ) CPU , a memory management unit 
distributes blocks of threads directly to the TPCs 420 . The 65 ( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
threads in a block execute the same program , using a unique In one embodiment , the PPU 300 may be included on a 
thread ID in the calculation to ensure each thread generates graphics card that includes one or more memory devices 304 
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such as GDDR5 SDRAM . The graphics card may be con a conventional central processing unit ( CPU ) and bus imple 
figured to interface with a PCIe slot on a motherboard of a mentation . Of course , the various modules may also be 
desktop computer that includes , e . g . , a northbridge chipset situated separately or in various combinations of semicon 
and a southbridge chipset . In yet another embodiment , the ductor platforms per the desires of the user . 
PPU 300 may be an integrated graphics processing unit 5 The system 600 may also include a secondary storage 
( GPU ) included in the chipset ( i . e . , Northbridge ) of the 610 . The secondary storage 610 includes , for example , a 
motherboard . hard disk drive and / or a removable storage drive , represent 

Various programs may be executed within the PPU 300 in ing a floppy disk drive , a magnetic tape drive , a compact 
order to implement the various layers of the R3DCNN 230 disk drive , digital versatile disk ( DVD ) drive , recording 
or 250 . For example , the device driver may launch a kernel 10 device , universal serial bus ( USB ) flash memory . The 
on the PPU 300 to implement the 3D - CNN 230 on one SM removable storage drive reads from and / or writes to a 
440 ( or multiple SMS 440 ) . The device driver ( or the initial removable storage unit in a well - known manner . 
kernel executed by the PPU 300 ) may also launch other Computer programs , or computer control logic algo 
kernels on the PPU 300 to perform other layers of the rithms , may be stored in the main memory 604 and / or the 
R3DCNN 230 or 250 , such as the RNN 220 and the linear 15 secondary storage 610 . Such computer programs , when 
classifier 225 . In addition , some of the layers of the executed , enable the system 600 to perform various func 
R3DCNN 230 or 250 may be implemented on fixed unit tions . The memory 604 , the storage 610 , and / or any other 
hardware implemented within the PPU 300 . It will be storage are possible examples of computer - readable media . 
appreciated that results from one kernel may be processed Data streams associated with gestures may be stored in the 
by one or more intervening fixed function hardware units 20 main memory 604 and / or the secondary storage 610 . 
before being processed by a subsequent kernel on an SM In one embodiment , the architecture and / or functionality 

of the various previous figures may be implemented in the 
context of the central processor 601 , the graphics processor 

Exemplary System 606 , an integrated circuit ( not shown ) that is capable of at 
25 least a portion of the capabilities of both the central proces 

FIG . 6 illustrates an exemplary system 600 in which the sor 601 and the graphics processor 606 , a chipset ( i . e . , a 
various architecture and / or functionality of the various pre - group of integrated circuits designed to work and sold as a 
vious embodiments may be implemented . The exemplary unit for performing related functions , etc . ) , and / or any other 
system 600 may be used to implement the R3DCNN 230 or integrated circuit for that matter . 
250 for dynamic gesture recognition . The R3DCNN 230 or 30 Still yet , the architecture and / or functionality of the vari 
250 support online gesture classification with zero or nega - ous previous figures may be implemented in the context of 
tive lag , effective modality fusion , and may be trained with a general computer system , a circuit board system , a game 
weakly segmented data streams . In one embodiment , the console system dedicated for entertainment purposes , an 
R3DCNN 230 or 250 achieves an accuracy of 83 . 8 % for application - specific system , and / or any other desired sys 
weakly segmented gestures that contain all three gesture 35 tem . For example , the system 600 may take the form of a 
phases , comparing favorably with human subject accuracy desktop computer , laptop computer , server , workstation , 
of 88 . 4 % . By employing a recurrent connection and CTC for game consoles , embedded system , and / or any other type of 
training the R3DCNN 230 or 250 , may also perform online logic . Still yet , the system 600 may take the form of various 
detection and recognition of gestures accurately during only other devices including , but not limited to a personal digital 
the nucleus phase of the gesture . 40 assistant ( PDA ) device , a mobile phone device , a television , 

As shown , a system 600 is provided including at least one etc . 
central processor 601 that is connected to a communication Further , while not shown , the system 600 may be coupled 
bus 602 . The communication bus 602 may be implemented to a network ( e . g . , a telecommunications network , local area 
using any suitable protocol , such as PCI ( Peripheral Com - network ( LAN ) , wireless network , wide area network 
ponent Interconnect ) , PCI - Express AGP ( Accelerated 45 ( WAN ) such as the Internet , peer - to - peer network , cable 
Graphics Port ) , HyperTransport , or any other bus or point - network , or the like ) for communication purposes . 
to - point communication protocol ( s ) . The system 600 also While various embodiments have been described above , 
includes a main memory 604 . Control logic ( software ) and it should be understood that they have been presented by 
data are stored in the main memory 604 which may take the way of example only , and not limitation . Thus , the breadth 
form of random access memory ( RAM ) . 50 and scope of a preferred embodiment should not be limited 

The system 600 also includes input devices 612 , a graph by any of the above - described exemplary embodiments , but 
ics processor 606 , and a display 608 , i . e . a conventional CRT should be defined only in accordance with the following 
( cathode ray tube ) , LCD ( liquid crystal display ) , LED ( light claims and their equivalents . 
emitting diode ) , plasma display or the like . User input may What is claimed is : 
be received from the input devices 612 , e . g . , keyboard , 55 1 . A computer - implemented method for detecting and 
mouse , touchpad , microphone , and the like . In one embodi - classifying gestures , comprising : 
ment , the graphics processor 606 may include a plurality of receiving , by a processor , an unsegmented stream of data 
shader modules , a rasterization module , etc . Each of the associated with a hand gesture , wherein the processor 
foregoing modules may even be situated on a single semi is configured as a three - dimensional convolutional neu 
conductor platform to form a graphics processing unit 60 ral network ( 3D - CNN ) for unified detection and clas 
( GPU ) . sification of gestures ; 

In the present description , a single semiconductor plat extracting spatio - temporal features from the unsegmented 
form may refer to a sole unitary semiconductor - based inte stream by the 3D - CNN ; and 
grated circuit or chip . It should be noted that the term single producing a class label for the hand gesture based on the 
semiconductor platform may also refer to multi - chip mod - 65 spatio - temporal features . 
ules with increased connectivity which simulate on - chip 2 . The method of claim 1 , wherein the spatio - temporal 
operation , and make substantial improvements over utilizing features are local spatio - temporal features extracted from a 

pe 
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frame within the unsegmented stream of data and the associated with the hand gesture is obtained using a second 
processor is further configured as a recurrent neural network sensor that is different than the first sensor . 
layer , and producing comprises processing the local spatio 15 . The method of claim 1 , wherein a CNN function is 
temporal features by the recurrent neural network layer to used during training of the 3D - CNN . 
generate global spatio - temporal features based on a set of 5 5 16 . The method of claim 1 , wherein during training of the 

3D - CNN , the 3D - CNN generates first spatio - temporal fea frames within the unsegmented stream of data . tures and a portion of the first spatio - temporal features are 3 . The method of claim 2 , wherein the processor is further removed before the first spatio - temporal features are pro configured as a softmax layer and the global spatio - temporal cessed by a recurrent neural network . 
features are processed by the softmax layer to generate the 17 . A system for detecting and classifying gestures , com 
class label . prising : 

4 . The method of claim 2 , wherein the producing further a memory configured to store an unsegmented data stream 
comprises processing global spatio - temporal features gen associated with a hand gesture ; and 
erated by the recurrent neural network layer for a previous a processor that is coupled to the memory and configured 
set of frames within the unsegmented stream of data . as a three - dimensional convolutional neural network 

5 . The method of claim 1 , wherein the unsegmented ( 3D - CNN ) for unified detection and classification of 
stream of data comprises a sequence of frames partitioned gestures to : 
into clips of m frames , and further comprising producing a receive the unsegmented stream of data ; 
class label for each one of the clips . extract spatio - temporal features from the unsegmented 

6 . The method of claim 5 , wherein the spatio - temporal 20 stream using the 3D - CNN ; and 
features comprise local spatio - temporal features correspond produce a class label for the hand gesture based on the 
ing to each frame within a first clip of the clips and global spatio - temporal features . 
spatio - temporal features corresponding to two or more of the 18 . The system of claim 17 , wherein the spatio - temporal 

features are local spatio - temporal features extracted from a clips . 
7 . The method of claim 1 , wherein the unsegmented 25 frame within the unsegmented stream of data and the 

stream of data comprises color values corresponding to the processor is further configured as a recurrent neural network 
hand gesture . layer , and 

8 . The method of claim 1 , wherein the unsegmented the recurrent neural network layer processes the local 
stream of data comprises depth values corresponding to the spatio - temporal features to generate global spatio - tem 
hand gesture . poral features based on a set of frames within the 

9 . The method of claim 1 , wherein the unsegmented unsegmented stream of data . 
stream of data comprises optical flow values corresponding 19 . A non - transitory computer - readable media storing 
to the hand gesture . computer instructions for detecting and classifying gestures 

10 . The method of claim 1 , wherein the unsegment stream that , when executed by one or more processors , cause the 
of data comprises stereo - infrared pairs and / or disparity 35 one or more processors to perform the steps of : 
values corresponding to the hand gesture . receiving an unsegmented stream of data associated with 

a hand gesture , wherein the one or more processors are 11 . The method of claim 1 , wherein the class label is each configured as a three - dimensional convolutional produced before the hand gesture ends . 
12 . The method of claim 1 , wherein the unsegmented neural network ( 3D - CNN ) for unified detection and 

stream of data is one of color data and depth data , and further 10 classification of gestures ; 
comprising : extracting spatio - temporal features from the unsegmented 

receiving a second unsegmented stream of stereo - infrared stream by the 3D - CNN ; and 
data ; producing a class label for the hand gesture based on the 

generating a first class - conditional probability vector for spatio - temporal features . 
the unsegmented stream of data ; and 20 . The non - transitory computer - readable media of claim 

generating a second class - conditional probability vector 45 19 , wherein the spatio - temporal features are local spatio 
for the second unsegmented stream . temporal features extracted from a frame within the unseg 

13 . The method of claim 12 , wherein producing the class mented stream of data and the processor is further config 
label comprises combining the first class - conditional prob ured as a recurrent neural network layer , and 
ability vector with the second class - conditional probability 50 the recurrent neural network layer processes the local 
vector . spatio - temporal features to generate global spatio - tem 

14 . The method of claim 1 , wherein the 3D - CNN is poral features based on a set of frames within the 
unsegmented stream of data . trained using weakly - segmented streams of data captured 

using a first sensor and the unsegmented stream of data 

30 


